
Mnemocrypt:
A Machine Learning Approach for Cryptographic

Function Detection in x86 Executables
André Pacteau, Antonino Vitale, Davide Balzarotti, Simone Aonzo

EURECOM
firstname.lastname@eurecom.fr

Abstract—Cryptographic function detection in binaries is a
crucial task in software reverse engineering (SRE), with signifi-
cant implications for secure communications, regulatory compli-
ance, and malware analysis. While traditional approaches based
on cryptographic signatures are common, they are challenging
to maintain and often prone to false negatives in the case of
custom implementations or false positives when short signatures
are used. Alternatively, techniques based on statistical analysis
of mnemonics in disassembled code have emerged, positing that
cryptographic functions tend to involve a high frequency of
arithmetic and logic operations. However, these methods have
predominantly been formulated as heuristics, with thresholds that
may not always be optimal or universally applicable.

In this paper, we present Mnemocrypt, a machine learning-
based tool for detecting cryptographic functions in x86 exe-
cutables, which we release as an IDA Pro plugin. Using a
random forest classifier, Mnemocrypt leverages both structural
and content-related metrics of functions at varying levels of
granularity to make its predictions. The primary design goal
of Mnemocrypt is to minimize false positives, as misleading
results could lead analysts down incorrect investigative paths,
undermining the efficacy of reverse engineering efforts.

Trained on a diverse dataset of cryptographic libraries com-
piled with different optimization levels, Mnemocrypt achieves
robust detection capabilities without relying on predefined sig-
natures or computationally expensive data flow graph analysis,
ensuring high efficiency.

Our evaluation, conducted on 231 Portable Executable x86
Windows malware samples from different families, demonstrates
that Mnemocrypt, when configured with a high confidence
threshold, significantly outperforms existing solutions in terms of
false positives. The few false positives detected by Mnemocrypt
were only related to compression functions or complex data
processing routines, further emphasizing the tool’s precision
in distinguishing algorithms that use instructions similar to
cryptographic processes. Finally, with a median execution time
of six seconds, Mnemocrypt provides the reverse engineering
community with a practical and efficient solution for identifying
cryptographic functions, paving the way for further studies to
improve this type of model.

I. INTRODUCTION

In the domain of Software Reverse Engineering (SRE),
the identification of cryptographic functions plays a pivotal
role, as these functions underpin secure communication, data
integrity, and confidentiality. Their correct implementation
and usage are fundamental to the security of any system
employing cryptographic measures as any errors, such as using
outdated algorithms (e.g., MD5), hardcoded keys, or weak
random number generators, can compromise defenses. SRE
helps uncover these flaws, and therefore, it is essential for
an analyst to be able to detect and identify the presence
of cryptographic functions promptly. This can speed up the
analysis of proprietary or non-standard protocols and help to
expose weaknesses and design flaws in their implementations.

Additionally, compliance with regulations, like PCI, DSS,
and GDPR, mandates secure cryptographic practices. In this
case, SRE ensures adherence by identifying cryptographic
functions and verifying their alignment with industry stan-
dards. Finally, cryptographic functions are frequently lever-
aged by malware authors, serving purposes such as ob-
fuscation, secure communication with command-and-control
servers, or encrypting stolen data for ransom. Identifying
these functions within malware samples is critical not only
for dissecting their operation but also for counteracting their
malicious intent.

Developers have several options for implementing cryp-
tographic primitives. They can use the APIs offered by the
operating system (for example, the Windows “Cryptography
API: Next Generation” [3]), resort to renowned libraries like
OpenSSL, implement their own custom routines, or simply
copy-paste the implementation of a popular cryptography al-
gorithm from online sources. This latter case is also a popular
choice for malware authors (e.g., the Dharma ransomware [4]
uses an RSA implementation) because it is not detected by
traditional sandboxes and dynamic analysis systems (since
they usually just monitor APIs), and it does not require any
external dependency.

From a reverse-engineering perspective, the usage of stan-
dard cryptographic APIs is trivial to study, while statically
liked libraries or copy-pasted code makes the process much
harder and time-consuming. However, cryptographic algo-
rithms often include hard-coded constants (like prime num-

Workshop on Binary Analysis Research (BAR) 2025
28 February 2025, San Diego, CA, USA
ISBN 979-8-9919276-4-2
https://dx.doi.org/10.14722/bar.2025.23002
www.ndss-symposium.org



bers, S-boxes, or other predefined values), which can act
as indicators for detecting the presence of these algorithms.
For this reason, the SRE community often uses tools/plugins,
like Findcrypt [6], that leverage this characteristic to quickly
pinpoint cryptographic routines in a binary given a database
of signatures. However, signatures fail to identify custom
cryptographic algorithms since their characteristic patterns are
unknown, generating false negatives.

Researchers have also proposed a wide array of alternative
techniques based on statistical signatures, data-flow graphs,
runtime information, and code similarity. As we will describe
more in detail in Section II, all these techniques have pros
and cons, but they often overfit with regard to reference
cryptographic implementations or result in large numbers of
false positives.

In this paper we present Mnemocrypt. It detects crypto-
graphic functions within binary programs by using a ma-
chine learning classifier trained on features extracted from
instructions mnemonics. Mnemocrypt is based on the work
of Caballero et al. [11], where the ratio of certain classes
of instructions in a function was used to determine whether
the function could contain a cryptographic algorithm or not.
We extended this idea by considering more features, and
we developed a novel machine learning classifier trained on
cryptographic libraries with different compiler optimizations.
The main strength of Mnemocrypt is that it does not rely on
signatures, so it is capable of detecting custom algorithms,
and it is not computing the DFG (like [24], [27]), making it
computationally fast.

Moreover, it was developed with the goal of minimizing
false positives. This is a very important aspect, as false
positives could otherwise lead analysts to follow a misleading
path, thwarting the original purpose of supporting the SRE
process. Our experiments show that it outperforms in terms of
the number of false positives signatures-based solutions [6] as
well as those based on mnemonics [11], [25], [26]. According
to our tests performed on a dataset of real-world malware
samples, Mnemocrypt configured to use a high value of confi-
dence score threshold leads to 11.4% of false positives among
flagged functions as cryptographic, while these percentages
are 34.8% and 38.6% for Findcrypt and union of other state
of the art heuristics respectively.

This paper is structured as follows. Section II presents the
state-of-the-art and the building blocks of our work. Section III
defines the scope of our work. Section IV describes the
dataset we used. In Section V, we describe the empirical
development of Mnemocrypt, while in Section VI, we tested it
on some real-world malware samples. Finally, after discussing
the limitations of our approach in Section VII, our paper
concludes in Section VIII.

In the spirit of open science, we also release 1 the tool as
an IDA Pro [20] plugin, but also the code needed to extract
the features and train a new model, in the hope that this tool
will be of help to the SRE community.

1https://github.com/theneonai/mnemocrypt

II. RELATED WORK

A. Signatures-based approaches.

Today, reverse engineers mostly rely on byte signatures-
based algorithms (such as the one implemented in the IDA
plugin Findcrypt3 [6]), which search for known cryptography-
related constants in their database. This type of approach is
extremely fast, but the database needs to be constantly main-
tained, and this requires a considerable manual effort. Besides,
the presence of relatively short cryptographic signatures in
databases increases drastically the chances of having false pos-
itives, due to potential collisions of cryptographic signatures
with byte patterns of non-cryptographic functions. On the other
side, signatures cannot match custom cryptographic routines,
increasing the chances of false negatives. Finally, this family
of cryptography detection tools is very sensitive to obfuscation
and does not take into account any semantics of the analyzed
functions.

B. Mnemonic-based approaches.

A complementary approach was proposed in 2009 by Ca-
ballero et al. in Dispatcher [11] as part of automated reverse
engineering of botnet message protocol. The authors proposed
a heuristic (which we will call the Caballero heuristic) to count
the percentage of arithmetic and bitwise instructions inside a
function, flagging it as cryptographic if that percentage was
higher than a fixed threshold. Other works have adopted the
same idea. For instance, K-Hunt [25] narrowed the scope by
flagging Basic Blocks instead of functions, whereas CIS [26],
in addition to evaluating different techniques, proposed two
new heuristics (adjusted Caballero heuristic and asymmetric
Caballero heuristic) based on the selection of specific arith-
metic and bitwise mnemonics mostly encountered in symmet-
ric and asymmetric cryptography respectively. However, as we
will see later in the paper, all of these approaches oversimplify
the problem and produce a large number of false positives.
Moreover, previous studies did not clearly specify the exact
instructions to take into account, such as how the thresholds
are experimentally computed and on which ground truth.

C. DFG-based approaches.

Solutions such as Crypto-DFG [24] and Where’s
Crypto [27] try to spot cryptographic functions by recognizing
the Data Flow Graphs (DFG) of known cryptographic
implementations. The basic idea is to build a database of
signatures based on the DFGs of known cryptographic
libraries. To analyze a sample, its DFG is manipulated and
“standardized” so that it can be compared with the entries in
the signatures database. The main drawback of this approach
is that the solutions rely on external libraries for building the
signatures. Even if the DFG of the algorithms is normalized
to cover multiple variations, the signature is highly dependent
on the reference implementation, and often results in both
false positives and negatives. Moreover, proprietary ciphers
cannot be identified with these methods.

2

https://github.com/theneonai/mnemocrypt


D. Dynamic approaches.

Several solutions have been proposed to take advantage
of additional runtime information regarding the state and
execution of the target program. Most of these solutions [18],
[12], [29], [31] focuses on loops, with the idea that, during
both the encryption and decryption stages, loops are required
to cycle through all the bytes of the input. Other works
proposed alternative solutions, such as ReFormat [30], where
the cumulative percentage of arithmetic and bitwise operations
is used for detection, and CipherXRay, which exploits the
avalanche effect of cryptographic functions. The main draw-
back of existing dynamic analysis tools is that they require
considerable amounts of resources and time to execute the
programs under analysis and trace the needed information, thus
reducing the scalability of the solution.

E. Function similarity.

Finally, several works approached the problem through the
lens of binary code similarity. An exhaustive list can be found
in the 2021 SoK paper by Haq et al. [19]. The main problem
of those approaches is that they require a reference to compare
an unknown function against, which does not scale for large
volumes of input functions, considering also that the reference
set can easily become very large due to the presence of
distinct cryptographic algorithms, several optimization levels,
and different implementations.

III. SCOPE AND DESIGN CHOICES

The purpose of this work is to develop a practical tool,
that we named Mnemocrypt, to support reverse engineers
in statically identifying cryptographic functions. The choice
of name is a reference to mnemonics, namely, the human-
readable symbolic representations of these assembly instruc-
tions. They provide a more understandable way to write and
read instructions without needing to deal with raw binary or
hexadecimal machine code.

Mnemocrypt provides, for a given binary, a list of candidate
cryptographic functions, each with its associated confidence
score. By default, the classifier is tuned to reduce the number
of false positives and provides the analyst with flagged func-
tions’ names along with their respective confidence scores,
indicating the probability of being cryptography-related in the
sense of our classifier.

In designing Mnemocrypt, we deliberately opted for a
machine learning model rather than traditional signature-based
approaches. This decision is rooted in the following consider-
ations:

1) Adaptability to Variations: Signature-based methods rely
on predefined patterns or rules specific to known cryp-
tographic functions. While effective for detecting previ-
ously encountered functions, they struggle with novel,
obfuscated, or modified implementations of cryptographic
algorithms. Moreover, cryptographic implementations in
binaries often vary significantly due to compiler optimiza-
tions or architecture-specific instructions. In contrast, an

ML model learns to identify patterns from training data,
enabling it to generalize to new or unseen functions.

2) Reduction of False Positives: One of the key objectives
of Mnemocrypt is to minimize false positives to save ana-
lysts’ time. Signature-based systems often lead to higher
false positives when generalized to diverse binaries, as
minor deviations from a known signature might still
match. Moreover, signature-based solutions only provide
a true-false result. In our case, by leveraging confidence
scores in the ML model, Mnemocrypt provides more
nuanced results, allowing analysts to adapt the tool to
their needs and focus on functions with higher likelihoods
of being cryptographic.

3) Function-Level Classification: Since SRE frameworks
decompose programs into functions, we designed
Mnemocrypt to classify at the function level by extract-
ing rich features such as instruction patterns, software
metrics, and statistical properties. This feature-driven
approach leverages the strength of ML to capture com-
plex patterns that would be difficult to encode as static
signatures.

Finally, a primary challenge in automating the detection
of cryptographic functions pertains to the definition of cryp-
tographic functions themselves. First of all, cryptographic
functions can be classified into several categories, including
hash functions, encryption algorithms (subsequently divided
into symmetric and asymmetric), and digital signatures —
each with its distinct formal definition. Nevertheless, a reverse
engineer would seek to identify them irrespective of their
categorization. Despite the absence of any explicit definition
for cryptographic functions, it is possible to identify the
elements that are of particular concern to reverse engineers
during the static analysis of binaries. These elements may
pertain to the content or structure of functions. The features
of our machine learning model correspond to these elements.
We will elaborate on this point in the following sections.

IV. TRAINING DATASET

In order to provide our supervised machine learning model
with ground truth, we used the well-known cryptographic li-
braries Libsodium 1.0.20 [7] and OpenSSL 3.3.1 [9]. OpenSSL
has been chosen as a comprehensive cryptographic library,
including implementations of the most widely used symmetric
and asymmetric cryptographic algorithms, as well as some
cryptographic hashes. The purpose of including Libsodium
is to provide the model with an alternative implementation
of some cryptographic algorithms so that the model could
generalize better.

The training set is composed of 32-bit binaries statically
linked with OpenSSL and Libsodium, compiled with debug-
ging symbols (to be able to read the names of functions later)
using Clang v14.0 [2], GCC v11.4 [17] and MSVC v14.39 [28]
compilers for all of their main optimization levels: O0, O1,
O2, O3, Ofast, Os and Oz for Clang; O0, O1, O2, O3,
Ofast and Os for GCC; Od, O1, O2 and Ox for MSVC.
This variety makes it possible for the model to learn variations

3



Table I: Number of functions in Libsodium and OpenSSL
binaries from the training set.

Libsodium OpenSSL
Configuration Total Crypto Total Crypto

Clang O0 1,389 53 19,482 173
Clang O1 1,389 53 19,224 173
Clang O2 1,197 50 14,711 175
Clang O3 1,196 50 14,697 172
Clang Ofast 1,198 50 14,699 174
Clang Os 1,210 53 15,146 172
Clang Oz 1,274 60 15,523 168

GCC O0 1,394 53 21,060 173
GCC O1 1,228 59 15,283 173
GCC O2 1,229 59 15,346 174
GCC O3 1,212 55 14,760 175
GCC Ofast 1,214 55 14,762 175
GCC Os 1,259 59 15,437 171

MSVC Od 1,290 58 13,300 203
MSVC O1 1,175 62 12,444 203
MSVC O2 1,076 64 11,189 202
MSVC Ox 1,076 64 11,189 202

of mnemonics for the same functions but built with different
configurations.

Ensuring the reliability of the ground truth is paramount
for the development of any supervised machine learning
model. Given the scarcity of cryptographic functions relative
to the total number of functions, the presence of incorrectly
labeled functions can have a substantial adverse impact on the
model’s generalization capacity and performance. Therefore,
by manually inspecting the original source code, we labeled
each function as cryptographic or non-cryptographic.

As shown in Table I, the only significant discrepancy in the
number of cryptographic functions is observed in OpenSSL’s
MSVC-built binaries, where a substantial number of crypto-
graphic functions were not inlined as in GCC and Clang.

It is worth reporting that during the labeling process, we
realized that three subclasses of cryptographic functions can be
distinguished: core, hybrid, and auxiliary. The core functions’
purpose is to only perform cryptographic operations and that
without calling any other cryptographic function. For example,
most of the block encrypting functions are core. The hybrid
functions perform some cryptographic operations, but in addi-
tion, call some other cryptographic function or repeatedly call
some bitwise elementary functions such as rotation of a vector
by a specific number of bits. Operation modes functions are
typical examples of hybrid functions. The auxiliary functions
are not themselves performing any encryption, decryption,
hashing, cryptographic key expansion, or derivation but corre-
spond to usual operations defined on complex objects, which
are often manipulated in asymmetric cryptography. Functions
defining basic operations on big numbers or cryptographic
curves typically fall into this category.

V. DEVELOPMENT

A. Categorization

The most fundamental yet effective approach to extract-
ing information from mnemonics within a specific function

Figure 1: Normalized distributions of mnemonics categories
in the training set (averaged over functions)

involves identifying their overall behavior, which includes
activities such as data movement, computation, and control
flow management. In light of this, a mnemonics categorization
is needed. We used the one from the ASM86 Language
Reference Manual [22], which distinguishes six categories of
mnemonics: data transfer, arithmetic, logic, string manipula-
tion, control transfer, and process control.

In Figure 1, we plot the normalized distributions of oc-
currences of each category in our training set. It shows that
cryptographic functions have clearly different distributions
compared to non-cryptographic ones. This difference could
derive from the choice of the dataset, so even if metrics over
categories can help the model to capture high-level information
on functions, they are not enough, and some mnemonics such
as logical AND, XOR, bit shifting, multiplication, addition,
etc. can be more “cryptography-related” than others [26].
Thus, separate metrics for such mnemonics are relevant to
use to capture details of function behavior.

B. Mnemonic Roots

Mnemonics are often appended with specific prefixes or
suffixes, depending mainly on the type of data with which
they are used [21]. We define a root as the most semantically
meaningful morphological part of a given mnemonic. To avoid
considering all these varieties separately, we regrouped such
semantically close mnemonics under the same roots. They
are essential for Mnemocrypt to process and analyze binary
instructions effectively. Roots represent the fundamental se-
mantic operations encoded in mnemonics, independent of
the specific prefixes or suffixes coming with various instruc-
tion sets. For example, mnemonics like vaddph and add
share the root (ADD), reflecting their common purpose of
performing addition, regardless of their architectural or data-
specific modifiers. Aggregating mnemonic occurrences under
their corresponding roots generalizes and makes the following
statistical analysis more relevant for our classifier.

When Mnemocrypt parses a given mnemonic from a func-
tion, it matches it using regex rules against a predefined root
with an associated category. If the mnemonic matches several
roots, only the longest one is supposed to be kept – so the

4



roots are preliminarily sorted by length to avoid unnecessary
computations.

However, the roots are naturally prone to constraints of
morphological nature. This sometimes required manual adjust-
ments to make some roots immune to this kind of limitation.
For example, for the shift operations there is no unique root
long enough to be specific. Just to cite a few, once we matched
the SHL, SHR, SAL, and SAR instructions, we aggregated them
under a unique root, which we named SH for convenience. The
same approach has been adopted for data move, addition, sub-
traction, and rotation operations because they are essentially
the ones on which Mnemocrypt is computing statistics.

In our implementation, each root is deliberately assigned to
only one category as a structuring choice. This ensures that
roots form more semantically precise groups, offering finer
granularity compared to the broader and more general group-
ings of categories. This led us to take additional precautions
in the choice of roots in order to avoid potential inconsistency
errors in matching. Thus, for example, the mnemonics mov
and movsx from the data transfer category can not be all
directly associated with the same root MOV because the root
MOVS, belonging to string manipulation, would match movsx
as it is longer than the root MOV. To avoid this, a separate
root MOVSX has been introduced so that after the mnemonic-
root matching stage, the occurrences of roots MOV and MOVSX
are aggregated under the data move root named MOV. Full
documentation of predefined prefixes and categories with their
roots is available in the repository of Mnemocrypt.

C. Feature Selection.

In order to provide our model with information about the
structure of functions, we considered the following state-
of-the-art features [15], [16], [23]: number of basic blocks,
number of loops, maximum depth of loops, and cyclomatic
complexity. The choice of these control flow-related metrics
comes from the fact that usual cryptographic functions present
a well-structured and repetitive control flow.

In addition to the structural metrics described above, statis-
tics on the categories and some of roots matched by the
mnemonics processed by Mnemocrypt are also included as
features. This information allows the model to gain insight
into the kind of operations performed in the given function.
We have included detailed statistics on categories (average oc-
currence per basic block, median, standard deviation, min, and
max) as features because high-level information is more likely
to be exploitable if analyzed from multiple perspectives. In
addition, we have considered individual densities of the roots
used in the computation of adjusted and asymmetric Caballero
ratios, the density of a root in a function being defined as
its occurrence divided by the total number of instructions of
the function, without counting MOV instructions [26]. We have
also included the Caballero ratios themselves in the features
in order to emphasize the importance of these quantities for
the model and to encompass Caballero heuristics.

We also decided to include average values per basic block of
the 1-grams (thus equivalent to roots in our case) and bigrams

Figure 2: Cumulative information gain of roots and bigrams.
Graph truncated after the top 20. The elbow is marked with a
red cross.

representing the highest information gain (IG) in the training
set with respect to our labeling. The strategy is to determine
the most influential features by applying the elbow method
to the IG distribution obtained by first computing the Term
Frequency-Inverse Document Frequency (TF-IDF) scores of
each feature candidate. In our case, the “Term Frequency”
corresponds to the frequency of the feature over basic blocks
of functions, and in the ”Inverse Document Frequency,” the
term “document” corresponds to a function.

In Figure 2, we plot the cumulative IG of the top 20 roots
and bigrams sorted in decreasing order of their contribution,
the percentage being relative to the roots and bigrams having
positive IG. A clear change of slope can be observed after
the 8th feature candidate (bigram ADD_MUL); thus, according
to the elbow method, we decided to keep the first 8 features.
It is important to note that the bigrams here are undirected,
i.e., a pair of roots where order does not matter. This decision
comes from the fact that the cumulative IG curve with directed
bigrams did not present any clear elbow, thus increasing the
risk of making a sub-optimal feature selection decision.

D. True and False Positives Optimizations

Some mnemonics are particularly interesting in cryptogra-
phy detection because they are part of Intel cryptographic
extension, like AES-NI and SHA. If a function has one
or more of these mnemonics, it is immediately considered
cryptographic.

In addition to this, the algorithm eliminates in advance
some potential false positives by directly flagging as non-
cryptographic the functions that contain mnemonics involving
floating point numbers manipulation. Such functions corre-
spond in our case to encountering at least one mnemonic
with the prefix ‘f,’ standing for float [21], or of at least
one root corresponding to real mathematical function like
cos or sin. This preliminary filter is due to the fact that
cryptographic algorithms require exact computations, which

5



Table II: Xmllint FPs across compilers and their optimization
levels. The numbers correspond to the order of optimization
levels written in Section IV.

Trees Clang GCC MSVC
100 5, 1, 1, 1, 1, 2, 1 9, 0, 0, 1, 1, 1 4, 1, 2, 2
1,000 4, 1, 1, 1, 1, 2, 2 9, 0, 0, 1, 1, 1 4, 2, 3, 3

is not guaranteed in floating-point arithmetic. We verified this
claim, and we found no floating-point calculations among the
functions of the training set that we labeled as cryptographic.

E. Training and Validation

Our training set is highly imbalanced (as can be seen
in Table I), which is a constraint that not all supervised
machine learning models can adapt to. In addition, the model
should be able to handle non-linearity – as cryptographic
functions detection is a complex problem. Another important,
yet not necessary, criterion for the choice of the model is
its explainability, as it allows one to choose more and more
relevant features by training draft versions of the model and
studying the importance of each feature. The Random Forest
algorithm satisfies all these constraints and this is why we
have chosen it as the basis for Mnemocrypt. We addressed
the issue related to the imbalanced nature of the dataset by
employing the Synthetic Minority Oversampling Technique
(SMOTE) [13].

The use of the Random Forest model implies the tuning of
hyperparameters: the depth of the trees and their number. In
our study, we decided not to introduce any pruning because
the training process was relatively fast, and we did not observe
any overfitting during our preliminary tests. To choose the
number of trees, we tested models trained with 100 and 1,000
trees (values that represent a compromise between training
time and generalization ability of the model) on known non-
cryptographic applications: Al-Khaser [1] and Xmllint from
Libxml2 [8]. We chose these two open-source repositories
because we know their codebase well and it does not contain
cryptographic functions. Xmllint was built with the same
settings (compiler/optimizations) as the training set. Al-Khaser
was only built with the MSVC compiler and its different
optimization levels because it is the only compiler supported
by this project.

Moreover, even if our primary goal is to reduce false pos-
itives as much as possible, the ability to detect cryptographic
functions is also important for the algorithm to be efficiently
used in practice. For this reason, we also tested the models
on manually crafted binaries implementing common crypto-
graphic algorithms: AES, Blowfish, ChaCha20, DES, MARS,
RC4, RC6, RSA, Skip32, TEA, and Twofish. They were
generated with the same settings (compiler/optimizations) as
the training set. In the following, we will refer to these pro-
grams as “toy libraries”. During model testing, the confidence
threshold of the cryptographic class was set to 50%, i.e., any
function with confidence below 0.5 would be classified as non-
cryptographic.

Table III: toy libraries FNs across different optimization levels.

Trees Clang GCC MSVC
100 20, 17, 15, 14, 14, 18, 21 17, 20, 23, 12, 12, 19 8, 22, 11, 12
1,000 21, 17, 14, 14, 14, 18, 20 16, 20, 22, 13, 13, 20 7, 22, 11, 11

For Al-Khaser, both trained models produced 2 false pos-
itives out of a total of 4,574 functions, while in the case
of Xmllint, the model with 100 trees resulted in 33 false
positives, and the one with 1,000 trees produced 36 false
positives out of a total of 92,933 functions. We report the
results for Xmllint in Table II. It is interesting to observe
that the number of false positives is consistently higher for
non-optimized binaries. This could be because non-optimized
binaries typically contain more functions than their optimized
counterparts. A more plausible explanation, however, is that
optimized binaries are more similar to each other than they
are to their corresponding non-optimized versions. Since our
dataset includes more optimized binaries than non-optimized
ones, the model is less trained on non-optimized cases, leading
to the observed disparity.

A manual inspection of the false positives revealed that they
are related to either non-cryptographic hash functions, parsers,
or other complex data processing functions. This is due to
the fact that these functions share certain characteristics with
cryptographic functions, as they frequently involve the use of
low-level operations, such as bitwise shifts, XORs, and modulo
operations.

For the toy libraries, comprising a total of 177,610 func-
tions, none of the models produced any false positive,
with the exception of two non-cryptographic libc functions,
int_mallinfo and _dl_lookup_direct, which were
flagged in all executables built with Clang and GCC. These
are not part of libc’s public APIs and are used internally for
specific purposes related to memory allocation statistics and
dynamic symbol lookup, respectively. The model trained with
100 trees resulted in slightly more false negatives than the
one trained with 1,000 trees (275 vs 273, see Table III), with
a total of 564 cryptographic functions.

Overall, based on these preliminary tests, we decided to use
the model trained with 100 trees for the following tests, as it
has fewer false positives in the validation set (which is the
most important metric to minimize), even though this comes
at the cost of potentially detecting slightly fewer cryptographic
functions compared to the model trained with 1,000 trees.

F. Interpretability

Another advantage of Random Forest models is the ability
to gain insight into feature ranking by examining the learned
weights of the features. These weights are determined by the
total information gain (reduction in Gini impurity) contributed
by each feature across all decision trees in the forest. The
weights represent the cumulative contribution of a feature to
the model’s accuracy, normalized to sum to one. They are
always positive and indicate the significance of each feature in
differentiating between cryptographic and non-cryptographic
functions in the training set.

6



Table IV: Top 15 features weights in the retained model.
nb = number of

Rank Feature Name Weight

1 default caballero ratio 0.132
2 adjusted caballero ratio 0.111
3 mean mov sh 0.087
4 density sh 0.084
5 mean sh 0.081
6 max nb instr 0.071
7 mean mov xor 0.051
8 density xor 0.049
9 mean logic 0.046

10 nb instr 0.044
11 mean xor 0.032
12 mean add add 0.018
13 std dev data transfer 0.017
14 std dev logic 0.017
15 density and 0.017

We report the top 15 in Table IV. The fact that two of
the three Caballero heuristics are in the top two positions
suggests that their choice was well-motivated. However, the
asymmetric Caballero ratio metric has a relatively low rank
(i.e., 25th out of 43), with a weight of 0.006. This may
be attributed to the potentially inaccurate approximation of
asymmetric cryptographic functions or the influence of the
training set, which exhibits a notable dominance of symmetric
cryptography.

Another important observation is that this ranking is dom-
inated by the influence of the XOR and SHift instructions,
which are commonly used in cryptographic functions due
to their simplicity, efficiency, and versatility in bit-level ma-
nipulations. These instructions are computationally inexpen-
sive and widely supported across all x86 processors, making
them ideal for high-performance implementations. The shift
instruction enables controlled bitwise movements, facilitating
operations such as key scheduling and diffusion, while the
XOR instruction is integral for combining data streams and
introducing nonlinearity in encryption algorithms. Together,
they form the foundation for many cryptographic primitives,
offering a balance of speed and functionality critical for secure
and efficient cryptographic processes.

VI. TESTING

We have tested Mnemocrypt on a dataset of 231 PE x86
Windows malware samples, all belonging to different families.
To build the dataset, we replicated and filtered the dataset used
in 2023 by Dambra et al. [15] by excluding packed samples
detected as such by Detect-It-Easy [5] and PackGenome [10].
Moreover, we removed the samples marked as corrupted by
VirusTotal [14] and randomly selected one sample per each
family. Even though this choice required us to manually verify
the results (because there is no ground truth about the presence
of cryptographic functions for the families in our dataset), we
believe that malicious code analysis is the most typical use
case for Mnemocrypt. The final dataset contains a total of
277,193 functions.

Table V: Manual labeling of Mnemocrypt with threshold 90%.
CDP = Complex Data Processing

Function type Count Mean StdDev Median Max Min

True Positive 140 0.97 0.029 0.98 1.0 0.9

Compression 4 0.935 0.006 0.935 0.94 0.93
CDP 14 0.944 0.029 0.960 0.98 0.9

For this experiment, we set the confidence score to 90%.
Namely, unless the confidence score of a given function is
higher than 0.9 it will be classified as non-cryptographic.
We chose to test Mnemocrypt with this threshold to achieve
a sufficiently low number of flagged functions for manual
inspection. However, Mnemocrypt is fully configurable, so that
the analyst can manually tune the confidence score according
to the experiment and expected results.

A. Results

When using the conservative threshold of 0.9, Mnemocrypt
flagged 158 (0.055%) functions as cryptographic. We excluded
from this measurement the cryptographic functions detected as
such by the presence of mnemonics from Intel AES-NI or SHA
extensions, as our model does not contribute to this discovery.

Upon a manual examination of all results, we concluded that
140 functions were indeed related to cryptographic algorithms,
while 18 were false positives. A closer look at the false
positives revealed that they were all related to compression
and complex data processing. In the first category, we found
functions performing discrete cosine transform used in JPEG
compression, while complex data processing routines employ
many instructions to perform bit operations on data.

Table V shows the confidence score Mnemocrypt assigned
to the three types of functions. As we can see, the mean
and median values of confidence scores of true positives are
significantly higher than the ones of false positives. Moreover,
if we look at the overall ranking of the 158 functions (in
decreasing order of confidence), the first false positives appear
only at position 62.

B. Comparison with Findcrypt and Caballero heuristics

To test the Caballero heuristics on our dataset, we con-
sidered the logical union of the adjusted and asymmetric
Caballero heuristics [26]. This means that if at least one of
the ratios is above the associated threshold, the given function
is flagged as cryptographic. This combination arises from the
fact that adjusted or asymmetric Caballero heuristics, if used
alone, would, by design, lead to missing almost all asym-
metric or symmetric cryptography respectively. As a result,
we identified 663 functions flagged as cryptographic. Since
this number is too high to analyze manually, we randomly
extracted 158 functions (the number chosen to analyze the
same number of functions for all tested approaches) and
manually inspected them. According to our analysis, 61 are
false positives (38.6%).

Findcrypt, in its original implementation [6], does not output
functions but rather identifies cryptographic byte sequences.

7



Table VI: Execution time (in seconds) of Mnemocrypt, Ca-
ballero heuristics, and Findcrypt on malware samples.

Category Mean StdDev Median Max Min

Mnemocrypt 12 15 6 148 4
Caballero 4 5 2 40 1
Findcrypt 2 3 2 31 1

Therefore, we considered functions flagged as cryptographic
by Findcrypt to correspond to those obtained via cross-
references on the byte sequences. Based on this approach,
Findcrypt, when run on our malware dataset, flagged 530
functions as cryptographic. Among 158 randomly chosen
functions that we analyzed, 55 were false positives (34.8%).

Thus, according to our tests, Mnemocrypt, used with a
threshold of 90% on our malware dataset, outperforms Find-
crypt and the combination of adjusted and asymmetric Ca-
ballero heuristics in terms of the number of false positives,
namely, 11.4% FPs against 34.8% and 38.6% of the previous
solutions.

C. Execution time

To measure the execution time, we performed all tests on
a system with an Intel i7-6820HQ processor, 16GB RAM,
running Windows 10 and using IDA Pro 8.3. The results
are summarized in Table VI. Overall, Mnemocrypt is roughly
three times slower than Findcrypt and the Caballero heuristics.
However, we believe that a median time of six seconds to
analyze an entire program is perfectly reasonable and almost
negligible if compared to the human time required to reverse
engineer the same amount of code.

VII. LIMITATIONS

This section discusses the limitations faced by Mnemocrypt
and suggests avenues for improvement to enhance its capabil-
ities and performance.

One significant limitation lies in the training dataset, which
could benefit from expansion and diversification. The per-
formance of supervised ML models is highly dependent on
the quality and comprehensiveness of the training sets. By
enriching the dataset, Mnemocrypt can improve its ability to
reduce false positive rates while identifying a broader range
of cryptographic functions. Specifically, the inclusion of addi-
tional cryptographic libraries written in diverse programming
languages could complement the current dataset dominated by
C-based libraries.

Extending Mnemocrypt to support x86-64 bit architecture is
another important improvement avenue. Currently, the tool fo-
cuses primarily on the 32-bit x86 architecture, which limits its
applicability to modern software that increasingly utilizes 64-
bit architectures. Incorporating x86-64 support would enable
Mnemocrypt to analyze a broader range of binaries, especially
those built for contemporary systems, thus enhancing its
practicality and scope. We prioritized 32-bit binaries as our
primary focus was to support malware analysis, and a recent
2022 study [15] found that in the VirusTotal feed 88% of the

malicious PE samples were 32-bit executables, 8% were DLLs
(32-bit or 64-bit), and 4% were 64-bit executables. However, it
is important to note that Mnemocrypt is not explicitly based on
the hypothesis of being used on 32-bit binaries and, therefore,
can technically also be used to analyze 64-bit executables.

The dataset could further be augmented by including non-
cryptographic applications to reduce the false positives related
to non-cryptographic functions. For instance, false positives
involving compression algorithms, such as JPEG, could be
reduced by including binaries containing such functions and
labeling them as non-cryptographic. However, this requires
careful validation to ensure that these binaries do not inad-
vertently contain cryptographic functions, such as hashes or
authentication mechanisms, which are increasingly common
in modern software due to security requirements.

Our solution relies only on assembly instruction mnemonics
- a deliberate choice we made to keep the model lightweight
and efficient. However, it might be possible to obtain better
results by also utilizing the full information contained in
the instruction operands. In addition, grouping mnemonics
under common roots does not always capture nuances, such
as distinctions between vectorized and scalar operations. For
example, treating mnemonics from vectorized instructions as
multiple occurrences of associated standard mnemonics could
provide a more accurate statistical representation, enhancing
the tool’s effectiveness.

Finally, the efficiency of Mnemocrypt could also be im-
proved by reimplementing the current Python-based imple-
mentation in a more performant language, such as C++.
Leveraging the IDA C++ SDK instead of IDAPython would
likely lead to a significant speed improvement, enhancing the
tool’s usability for large-scale or time-sensitive analyses.

By addressing these limitations, Mnemocrypt can evolve
into a more comprehensive, accurate, and efficient framework
for the detection and analysis of cryptographic functions.

VIII. CONCLUSION

In this paper, we presented Mnemocrypt, a static analysis
tool designed to detect cryptographic functions within x86
executables. Built upon a supervised machine learning frame-
work utilizing a random forest model, Mnemocrypt lever-
ages 43 carefully selected features, encompassing structural
metrics of functions and statistical metrics derived from the
mnemonics of their assembly instructions. The tool was trained
on manually labeled datasets generated from 32-bit builds
of Libsodium and OpenSSL, compiled using Clang, GCC,
and MSVC at various optimization levels, ensuring broad
applicability and robustness.

Mnemocrypt serves as a generalization and enhancement
of Caballero heuristics, incorporating and extending their
principles. It is interpretable, offering insights into the feature
weights of the trained model, and highly customizable, en-
abling users to enrich feature sets or adjust detection thresholds
post-training. Our evaluation on a dataset of 231 real-world
malware samples demonstrated that Mnemocrypt achieves a
false positive rate of 11.4% relative to the number of flagged

8



cryptographic functions when applied with a 90% confidence
threshold. Notably, all false positives were related to either
compression functions or complex data processing, under-
lining the tool’s effectiveness in narrowing down candidate
cryptographic functions.

To facilitate adoption, we have released Mnemocrypt as
open-source software, alongside an IDA Pro plugin that allows
users to analyze binaries and obtain confidence scores for
functions predicted as cryptographic with a confidence level
above 0.5. Additionally, we adapted the Findcrypt3 plugin to
integrate its cryptographic algorithm identification information
into Mnemocrypt’s output, enhancing its usability and func-
tionality.

Through its interpretability, flexibility, and demonstrated
low number of false positives, Mnemocrypt provides a pow-
erful, efficient solution for detecting cryptographic functions,
addressing a critical need in cybersecurity analysis while
paving the way for further advancements in automated binary
analysis.

ACKNOWLEDGMENT

We express our gratitude to Slasti Mormanti for his invalu-
able cryptanalysis expertise, which was instrumental in the
success of this study.

This work benefited from two government grants managed
by the French National Research Agency with references:
“ANR-22-PECY-0007” and “ANR-23-IAS4-0001”.

REFERENCES

[1] Al-khaser. https://github.com/ayoubfaouzi/al-khaser.
[2] Clang. https://clang.llvm.org/.
[3] Cryptography API: Next Generation. https://learn.microsoft.com/en-us/

windows/win32/seccng/cng-portal.
[4] Dharma Ransomware Analysis: What It’s Teaching Us. https://www.fo

rtinet.com/blog/threat-research/dharma-ransomware--what-it-s-teachin
g-us.

[5] Die. https://github.com/horsicq/Detect-It-Easy.
[6] Findcrypt3. https://github.com/polymorf/findcrypt-yara.
[7] Libsodium. https://doc.libsodium.org/.
[8] Libxml2. https://github.com/GNOME/libxml2.
[9] OpenSSL. https://www.openssl.org/.

[10] Packgenome. https://github.com/packgenome/PackGenome-Artifacts.
[11] Juan Caballero, Pongsin Poosankam, Christian Kreibich, and Dawn

Song. Dispatcher: Enabling Active Botnet Infiltration Using Automatic
Protocol Reverse-Engineering. In ACM Conference on Computer and
Communications Security, 2009.

[12] Joan Calvet, José M Fernandez, and Jean-Yves Marion. Aligot: Crypto-
graphic Function Identification in Obfuscated Binary Programs. In ACM
Conference on Computer and Communications Security, 2012.

[13] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip
Kegelmeyer. Smote: synthetic minority over-sampling technique. Jour-
nal of artificial intelligence research, 16:321–357, 2002.

[14] Chronicle Security. VirusTotal. https://www.virustotal.com/, Accessed
March 2, 2025.

[15] Savino Dambra, Yufei Han, Simone Aonzo, Platon Kotzias, Antonino
Vitale, Juan Caballero, Davide Balzarotti, and Leyla Bilge. Decoding the
secrets of machine learning in malware classification: A deep dive into
datasets, feature extraction, and model performance. In Proceedings of
the 2023 ACM SIGSAC Conference on Computer and Communications
Security, pages 60–74, 2023.

[16] Steven HH Ding, Benjamin CM Fung, and Philippe Charland. Asm2vec:
Boosting static representation robustness for binary clone search against
code obfuscation and compiler optimization. In 2019 ieee symposium
on security and privacy (sp), pages 472–489. IEEE, 2019.

[17] GNU. GCC. https://gcc.gnu.org/.

[18] Felix Gröbert, Carsten Willems, and Thorsten Holz. Automated Identifi-
cation of Cryptographic Primitives in Binary Programs. In International
Symposium on Recent Advances in Intrusion Detection, 2011.

[19] Irfan Ul Haq and Juan Caballero. A survey of binary code similarity.
Acm computing surveys (csur), 54(3):1–38, 2021.

[20] Hex-rays. IDA Pro. https://hex-rays.com/ida-pro/, Accessed March 2,
2025.

[21] Intel Corporation. Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual.

[22] Intel Corporation. ASM86 Language Reference Manual, 1981, 1982,
1983.

[23] Sudesh Kumar Santhosh Kumar, Sandeep Pai Kulyadi, Pavitra Mohan-
das, MJ Shankar Raman, and VS Vasan. Computation of cyclomatic
complexity and detection of malware executable files. In 2021 13th
International Conference on Electronics, Computers and Artificial In-
telligence (ECAI), pages 1–5. IEEE, 2021.

[24] Pierre Lestringant, Frédéric Guihéry, and Pierre-Alain Fouque. Auto-
mated Identification of Cryptographic Primitives in Binary Code with
Data Flow Graph Isomorphism. In ACM Symposium on Information,
Computer and Communications Security, 2015.

[25] Juanru Li, Zhiqiang Lin, Juan Caballero, Yuanyuan Zhang, and Dawu
Gu. K-Hunt: Pinpointing Insecure Cryptographic Keys from Execution
Traces. In ACM Conference on Computer and Communication Security,
2018.

[26] Felix Matenaar, Andre Wichmann, Felix Leder, and Elmar Gerhards-
Padilla. Cis: The crypto intelligence system for automatic detection and
localization of cryptographic functions in current malware. In 2012 7th
International Conference on Malicious and Unwanted Software, pages
46–53. IEEE, 2012.

[27] Carlo Meijer, Veelasha Moonsamy, and Jos Wetzels. Where’s Crypto?:
Automated Identification and Classification of Proprietary Cryptographic
Primitives in Binary Code. In USENIX Security Symposium, 2021.

[28] Microsoft Corporation. MSVC. https://learn.microsoft.com/en-us/cpp/
build/reference/compiler-options.

[29] Ruoyu Wang, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni
Vigna. Steal This Movie: Automatically Bypassing DRM Protection in
Streaming Media Services. In USENIX Security Symposium, 2013.

[30] Zhi Wang, Xuxian Jiang, Weidong Cui, Xinyuan Wang, and Mike Grace.
ReFormat: Automatic Reverse Engineering of Encrypted Messages.
In Computer Security–ESORICS 2009: 14th European Symposium on
Research in Computer Security, Saint-Malo, France, September 21-23,
2009. Proceedings 14, 2009.

[31] Dongpeng Xu, Jiang Ming, and Dinghao Wu. Cryptographic Function
Detection in Obfuscated Binaries via Bit-Precise Symbolic Loop Map-
ping. In IEEE Symposium on Security and Privacy, 2017.

9

https://github.com/ayoubfaouzi/al-khaser
https://clang.llvm.org/
https://learn.microsoft.com/en-us/windows/win32/seccng/cng-portal
https://learn.microsoft.com/en-us/windows/win32/seccng/cng-portal
https://www.fortinet.com/blog/threat-research/dharma-ransomware--what-it-s-teaching-us
https://www.fortinet.com/blog/threat-research/dharma-ransomware--what-it-s-teaching-us
https://www.fortinet.com/blog/threat-research/dharma-ransomware--what-it-s-teaching-us
https://github.com/horsicq/Detect-It-Easy
https://github.com/polymorf/findcrypt-yara
https://doc.libsodium.org/
https://github.com/GNOME/libxml2
https://www.openssl.org/
https://github.com/packgenome/PackGenome-Artifacts
https://www.virustotal.com/
https://gcc.gnu.org/
https://hex-rays.com/ida-pro/
https://learn.microsoft.com/en-us/cpp/build/reference/compiler-options
https://learn.microsoft.com/en-us/cpp/build/reference/compiler-options

	Introduction
	Related Work
	Signatures-based approaches.
	Mnemonic-based approaches.
	DFG-based approaches.
	Dynamic approaches.
	Function similarity.

	Scope and Design Choices
	Training Dataset
	Development
	Categorization
	Mnemonic Roots
	Feature Selection.
	True and False Positives Optimizations
	Training and Validation
	Interpretability

	Testing
	Results
	Comparison with Findcrypt and Caballero heuristics
	Execution time

	Limitations
	Conclusion
	References

