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ABSTRACT

In this paper, we address the need for tailored image com-
pression by focusing on the specific use case of smartphone
photography, particularly selfie, food and landscape images,
which dominate user-captured photos. We adapt SegPIC
(Segmentation Prior Image Compression) by fine-tuning it
individually on a dedicated selfie, food and landscape dataset
while keeping the decoder unchanged to maintain compat-
ibility with JPEG AI standard decoding requirements. The
model’s performance was evaluated using Kodak dataset and
the JPEG AI test set, with comparisons based on PSNR and
MS-SSIM metrics. To assess the effectiveness of category-
specific fine-tuning method, we evaluated the MBT model
(Minnen’s et al.’s) across the same categories. Our results
demonstrate that this fine-tuning improves compression ef-
ficiency and image quality compared to training on general
datasets (achieving up to 8.2 % BD-rate reduction compared
to training on general datasets), highlighting the benefits of
category-specific training within standardized frameworks.

Index Terms— image compression, encoder fine-tuning,
smartphone photography.

1. INTRODUCTION

The proliferation of smartphones equipped with high resolu-
tion cameras has led to an exponential increase in the volume
of images captured and shared daily. Efficient image com-
pression is essential to reduce storage requirements and trans-
mission bandwidth, particularly for mobile devices with lim-
ited resources. Smartphone photography represents a signifi-
cant and growing portion of global image capture, driven by
the ubiquity of mobile devices and the ease of sharing on so-
cial media platforms. Optimizing image compression in this
context is critical not only for reducing storage and bandwidth
demands but also for enhancing user experience by preserving
image quality across diverse mobile applications.

Traditional image compression standards, such as JPEG
[1], JPEG 2000 [2], VVC [3], and BPG [4], have been widely
adopted but are approaching their performance limits in terms
of compression efficiency and visual quality. These methods
incorporate modules for transform, quantization, and entropy
coding. The transform process focuses on converting images

into a more compact set of coefficients by reducing redun-
dancy and eliminating pixel correlations as much as possible.
In addition, quantization reduces the precision of these coef-
ficients based on perceptual or statistical criteria, effectively
lowering the bit-rate with minimal impact on visual quality,
while entropy coding exploits the statistical distribution of the
quantized coefficients to further compress the data into a com-
pact bitstream.

In recent years, learning-based image compression (LIC)
methods have emerged as a promising alternative, leveraging
deep neural networks to achieve superior compression per-
formance. However, most of these models are trained on
general-purpose datasets, which may not optimally integrate
the specific characteristics of images captured by smartphone
cameras. Consequently, there is a need for models that can
adapt to the unique features of smartphone images, ensuring
better compression efficiency and image quality. The three
most popular image categories on social media are studied in
this work, including selfie, food and landscape [5].

This paper builds upon our previous work [6] and ad-
dresses the need for tailored image compression by propos-
ing a fine-tuning approach for a recent LIC model focused
on smartphone-centric categories. We would like to empha-
size that our proposed method modifies only the encoder
weights; the decoder architecture and bitstream syntax stay
fully compliant with the original JPEG AI vision. While
this adaptation improves compression efficiency, the decoder
remains unchanged to ensure continued compatibility with
the JPEG AI standard decoding requirements. The main
challenge, however, is not merely to comply with JPEG AI
standards [7], but to continue using the same decoder that
was originally designed for general purposes, ensuring that
specific image categories can still be efficiently compressed
without sacrificing the compatibility and functionality of the
original decoder.

2. BACKGROUND AND RELATED WORK

Learning-based image compression (LIC) methods have
shown remarkable progress in recent years, outperforming
traditional approaches by optimizing the rate-distortion trade-
off. Notable examples include the work of Ballé et al. [8],
who introduced a variational autoencoder (VAE) framework



for image compression, and Minnen et al. [9], who pro-
posed joint autoregressive and hierarchical priors for entropy
modelling. More recently, Liu et al. [10] introduced the
SegPIC model, a segmentation-prior-guided framework that
uses class-agnostic masks to achieve superior performance in
pixel-fidelity metrics for learned image compression.

Most LIC models are trained on general-purpose datasets
like COCO [11] and ImageNet [12], which consist of diverse
images from various categories. While this broad training
can generalize across different image types, it may not op-
timally capture the specific characteristics of images taken
by smartphones, particularly selfie, food and landscape im-
ages. Despite the prevalence of mobile photography, there
is a notable lack of LIC methods specifically tailored for the
dominant content types captured by mobile devices. This gap
underscores the need for category-specific compression tech-
niques that can efficiently handle the images commonly taken
by smartphone users

Efforts toward standardizing LIC, such as the JPEG
AI initiative [7], have also emerged, focusing on develop-
ing models that offer state-of-the-art compression efficiency
while ensuring compatibility and inter-operability across de-
vices and platforms, including mobile environments. Testing
models on the JPEG AI test set is essential for aligning with
these standardization efforts and ensuring fair comparisons
among different approaches.

3. METHODOLOGY

3.1. SegPIC Model: Overview and Architecture

The SegPIC model, proposed by Liu et al. [10], is a state-of-
the-art learned image compression framework that leverages
segmentation priors for region-specific compression. It in-
troduces two key modules: the Region-Adaptive Transform
(RAT) and the Scale Affine Layer (SAL), which adaptively
process different regions of an image based on semantic con-
tent. This capability makes SegPIC particularly well-suited
for smartphone photography use cases, such as selfies, food,
and landscape images, where semantic information plays a
critical role in effective compression.

Figure 1 illustrates the overall architecture of the SegPIC
framework. The design integrates essential modules, includ-
ing RAT, SAL, the Window Attention Module (WAM), the
Channel-wise Auto-Regressive Model (ChARM), the Factor-
ized Model (FM), and Generalized Divisive Normalization
(GDN). The architecture demonstrates how RAT and SAL
guide region-specific transformations and enrich contextual
information within the encoder and decoder, enabling the
model to capture high-level semantic features and enhance
image reconstruction quality. Additionally, Downsample and
Upsample Blocks with specialized convolutional and trans-
posed convolutional layers facilitate encoding, decoding, and
prototype extraction processes.

The RAT module uses class-agnostic segmentation masks
to guide region-specific transformations without relying on
specific category labels. This flexibility enables the model to
learn compression-friendly semantic priors, making it robust
for diverse image content. Meanwhile, the SAL module en-
hances contextual feature representation, contributing to im-
proved compression efficiency and image quality.

3.2. Freezing the Decoder During Fine-Tuning

In our approach, we fine-tune only the encoder of the SegPIC
model for different image categories such as selfie, food and
landscape. The decoder remains unchanged across all rate-
distortion trade-offs, as it is fixed from the initial checkpoint.
This approach ensures compliance with JPEG AI standardiza-
tion requirements [13], where the decoder must be standard-
ized and not retrained. By freezing the decoder, we guarantee
that the encoded bitstreams produced by the fine-tuned (FT)
encoder remain compatible with a fixed decoder, avoiding the
need for additional bitrate or computation. This approach
demonstrates that, for each category, the encoder is tailored
while the decoder remains constant, ensuring practical appli-
cability without modifications to the decoding process. Only
the encoder’s RAT, SAL, and entropy modules are fine-tuned;
the decoder remains fixed for JPEG AI compliance.

3.3. Handling Inference Without Masks

Segmentation masks are treated as privileged information
during the training phase, helping the encoder to learn more
effective compression strategies by guiding the model’s atten-
tion to specific regions of the image. However, for inference,
these masks are not available, especially for datasets like
Selfie [14][15], Food101 [16] and landscape dataset [17],
where segmentation masks are not provided. To address
this, we use 4×4 grid partitions (aligned with the codec’s
native 4×4 transform blocks, requiring no side-information
or decoder changes) during the inference phase to replace
segmentation masks. The fixed decoder effectively uses these
grid partitions, demonstrating that the model has learned to
generalize and capture relevant contextual information even
without access to the detailed segmentation data used during
training. This approach ensures that the compression remains
efficient and maintains high reconstruction quality, even when
explicit mask information is unavailable.

3.4. Training Setup

The fine-tuning process involved training the encoder sep-
arately on smartphone selfie, food, and landscape image
datasets, keeping the decoder unmodified to ensure compat-
ibility with standardized decoders. We optimized the model
using a rate-distortion trade-off loss function, focusing on
minimizing bit per pixel (bpp) while maximizing image qual-
ity, as measured by Peak Signal-to-Noise Ratio (PSNR) and
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Fig. 1. Framework of SegPIC, from [10]

Multi-Scale Structural Similarity Index Measure (MS-SSIM).
The training strategy involved adjusting hyperparameters
such as the learning rate, number of epochs, and batch size to
balance compression efficiency and image quality. Detailed
training settings are provided in the following section.

4. EXPERIMENTS AND RESULTS

4.1. Model Fine-Tuning

To tailor the SegPIC model for specialized image compres-
sion tasks, we fine-tuned it using subsets from the Selfie
dataset [14][15], Food101 dataset [16], and 10,000 land-
scape images from the Flickr dataset [17]. Initially, the Seg-
PIC model was trained for 400 epochs on the COCO-Stuff
dataset [18], with a batch size of 32 and 32 worker threads.
This initial training employed a learning rate of 1 × 10−4,
with a training patience of 16 epochs and a minimum learn-
ing rate of 5 × 10−6. For the fine-tuning phase, the model
was further trained for 100 epochs, maintaining a batch size
of 32 but reducing the number of workers to 24. We ex-
perimented with different λ values (0.0018, 0.0035, 0.0067,
0.0130, 0.0250, and 0.0483), where λ is the Lagrange multi-
plier controlling the trade-off between bitrate and distortion,
using the Mean Squared Error loss, and we reset the model to
its pre-trained state before fine-tuning on each dataset inde-
pendently to avoid any cross-dataset influence. The learning
rate was adjusted to facilitate weight updates, with an initial
learning rate set to 1 × 10−4, a patience of 10 epochs, and a
minimum learning rate of 5× 10−5.

The fine-tuning process for the Selfie dataset [14][15] in-
volved using a subset of 10,000 images, divided into 8,000
for training, 1,000 for validation, and 1,000 for testing. For
the Food101 dataset [16], we selected 10,100 images in to-
tal, shuffled across all food categories to ensure a diverse rep-
resentation. These images were split similarly, with 8,080
images used for training, 1,010 for validation, and 1,010 for

testing.
The same split was applied to the 10,000 landscape im-

ages from the Flickr dataset [17], ensuring balanced represen-
tation within each dataset. This approach allowed the model
to adapt effectively to the characteristics of selfie, food and
landscape images, which are prevalent in smartphone photog-
raphy.

The SegPIC model comprises 83.5 M parameters in total,
of which 16.5 M are trainable during fine-tuning. On a sin-
gle GPU, encoding a Kodak image (768×512) takes approxi-
mately 142 ms and decoding takes 130 ms.

4.2. Results Analysis

The results, as detailed in Table 1, indicate a clear improve-
ment in performance for the fine-tuned SegPIC compared to
the pre-trained model when tested on Selfie, Food101, and
landscape datasets (see Fig. 2). For both PSNR and MS-SSIM
metrics, the fine-tuned model demonstrates superior perfor-
mance, particularly at lower bit-per-pixel (bpp) values, no-
tably in Figure 3, where maintaining image quality is more
challenging. The evaluation was extended to include a subset
of 3,931 selfie images from Flickr30k [19], where the fine-
tuned SegPIC model showed an improvement over the pre-
trained model. We observed a bitrate saving of -3.40% for a
fixed PSNR and -5.80% for a fixed MS-SSIM, as indicated by
the reduction in the Bjøntegaard rate (BD-rate) [20], which
measures the average bitrate change needed to maintain the
same quality level relative to a reference. This highlights the
model’s ability to generalize effectively to new and unseen
selfie images, underscoring the advantage of fine-tuning for
smartphone image compression.

Additionally, we tested the fine-tuned SegPIC model
trained on Food101 on a subset of the Selfie dataset to inves-
tigate whether the performance is significantly affected by the
image category. As expected, the results revealed a significant
drop in performance with a BD-rate increase of +4.83% for a
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Fig. 2. Visualization of the reconstructed images between the pre-trained and fine-tuned SegPIC and MBT models on Food101,
Selfie, and landscape datasets. The metrics shown are (PSNR↑/bpp↓), indicating that our fine-tuned models capture object
contours more accurately with less bitrate.

Table 1. Average BD-Rate PSNR/MS-SSIM across different
bit rates for SegPIC fine-tuned on different datasets (Relative
to Pre-Trained)

Dataset FT SegPIC Selfie FT SegPIC Food101 FT SegPIC landscape
BD PSNR BD MS-SSIM BD PSNR BD MS-SSIM BD PSNR BD MS-SSIM

Selfie -2.69% -2.89% +4.83% +3.13% - -
Flickr30k (selfie) -3.40% -5.80% - - - -

Food - - -3.87% -4.02% - -
landscape - - - - -1.13% -1.40%

Kodak +0.21% +0.25% +0.84% -0.19% -0.18% -0.04%
JPEG AI +1.50% -0.20% -0.80% -0.10% +0.21% -0.04%

Table 2. Average BD-Rate PSNR/MS-SSIM across different
bit rates for MBT fine-tuned on different datasets (Relative to
Pre-Trained)

Dataset FT MBT Selfie FT MBT Food101 FT MBT landscape
BD PSNR BD MS-SSIM BD PSNR BD MS-SSIM BD PSNR BD MS-SSIM

Selfie -7.24% -5.27% - - - -
Flickr30k (selfie) -3.29% -4.12% - - - -

Food - - -5.10% -4.82% - -
landscape - - - - -2.38% -0.90%

Kodak -0.65% +0.30% -1.04% +0.64% +0.81% +0.70%

fixed PSNR and +3.13% for a fixed MS-SSIM. This confirms
that while fine-tuning on one domain (e.g., Food101) brings
clear benefits for similar images, it can degrade performance
on dissimilar domains (e.g., Selfie). It also explains the ob-
served increase in BD-rate when testing on the JPEG AI
test set [21], where the pre-trained model, trained on a gen-
eral dataset, shows better generalization across varied image
categories, while fine-tuned models are more specialized.

When it comes to landscape images, the fine-tuned Seg-
PIC model demonstrates promising results as well, achieving

a bitrate saving of -1.13% for a fixed PSNR and -1.40% for
a fixed MS-SSIM. This shows that the fine-tuned model can
generalize to other outdoor photography use cases, highlight-
ing its robustness across various landscape photography sce-
narios.

4.3. Generalization Analysis

To further evaluate how category-specific fine-tuning general-
izes to different architectures, we also tested the MBT model
introduced by Minnen et al. [9, 22], which integrates joint
autoregressive and hierarchical priors within a learned image
compression framework for state-of-the-art rate–distortion
performance. Table 2 presents the BD-Rate results for MBT
models fine-tuned on different datasets. This analysis high-
lights how dataset-specific fine-tuning impacts performance
across various image categories.

The fine-tuned MBT model shows improvements, achiev-
ing the highest BD-Rate reduction of -7.24% for a fixed PSNR
for the Selfie category and the lowest reduction of -2.38%
for the landscape category. Similarly, for MS-SSIM, the fine-
tuned MBT model achieves the highest reduction of -5.27%
for the Selfie category and the lowest reduction of -0.9% for
the landscape category. This confirms that fine-tuning on tar-
geted datasets leads to noticeable gains in compression effi-
ciency across different categories, demonstrating the model’s
ability to efficiently compress images in various scenarios,
and we also observe improvement especially for high bpp val-
ues as illustrated in Figure 4, where the model preserves fine
details more effectively.

Interestingly, the performance on Kodak dataset [23], a



general-purpose benchmark, shows minor variations across
all fine-tuned models, with a BD-Rate ranging from +0.65%
to -1.04% for a fixed PSNR. This indicates that while fine-
tuning on specific datasets leads to improvements in targeted
categories, the generalization to unseen data remains stable,
with only slight changes in bitrate.

Finally, Figures 5 and 6 show that on both Kodak dataset
[23] and the JPEG AI test set [21], fine-tuned SegPIC and
MBT models remain nearly unaffected, with BD-rate shifts
within ±0.25 % relative to their pre-trained counterparts, con-
firming that fine-tuning does not impair general dataset per-
formance while providing notable domain-specific gains. As
illustrated in Figure 2, the reconstructed outputs of the fine-
tuned SegPIC and MBT models on Food101, Selfie, and land-
scape images visibly preserve object contours with fewer bits
than the pre-trained models.
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Fig. 3. Performance comparison at different compression
rate of pre-trained and fine-tuned SegPIC model on various
datasets: PSNR (top row) and MS-SSIM (bottom row) com-
parisons.
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Fig. 4. Performance comparison at different compression rate
of pre-trained and fine-tuned MBT model on various datasets:
PSNR (top row) and MS-SSIM (bottom row) comparisons.
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5. CONCLUSION AND FUTURE WORK

In this paper, we presented an approach to enhance the per-
formance of learning-based image compression (LIC) mod-
els for smartphone-specific use cases, focusing on selfie, food
and landscape images. By fine-tuning the SegPIC model, we
demonstrated that adapting the encoder while keeping the de-
coder unchanged can improve compression efficiency and im-
age quality compared to models trained on general datasets.
We also showed that same conclusions apply to another LIC
model, MBT, when fine-tuned on the smartphone-specific cat-
egories.

For future work, we plan to extend our research by ex-
ploring the impact of fine-tuning the SegPIC model across a
broader range of image categories—such as pets and portrait
images—to validate its adaptability for various smartphone
photography scenarios while ensuring that the model delivers
optimal quality, speed, and resource efficiency through real-
time compression performance evaluations on diverse mobile
devices. In tandem with these efforts, we will retrain the
model on a comprehensive dataset that incorporates repre-
sentative proportions of each category, ensuring robust per-
formance across all typical smartphone use cases. Moreover,
we aim to develop a pre-classification mechanism to dynami-
cally select the most appropriate encoder for each image type,
thereby optimizing both compression efficiency and output
quality for a wide range of content.
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