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Abstract

5G and future Radio Access Networks (RAN) are evolving toward greater openness and
programmability, driven by the principles of Open RAN and initiatives such as Telecom
Infra Project (TIP) and O-RAN Alliance. This transformation is enabled by two key factors:
(1) open interfaces that ensure vendor-agnostic interoperability, and (2) Software-Defined
RAN (SD-RAN) principles, which introduce dynamic and flexible network control. These
open interfaces are standardized not only by 3rd Generation Partnership Project (3GPP) but
also by the O-RAN Alliance, which plays a crucial role in integrating intelligence into the
SD-RAN ecosystem.

In the O-RAN architecture, the SD-RAN controller is defined as the RAN Intelligent
Controller (RIC), which enables third parties to develop and deploy SD-RAN applications,
known as xApps (for near-real-time control) and rApps (for non-real-time control). Beyond
enhancing RAN programmability across different time domains, O-RAN also allows these
applications to leverage techniques such as machine learning, enabling more efficient, in-
telligent, and adaptive network optimization. While O-RAN unlocks broader capabilities,
it also presents new challenges. The growing demands of emerging use cases (e.g., real-
time gaming, haptic communication) and advanced features (e.g., network slicing) increase
complexity, making x/rApps harder to develop and manage. Additionally, due to less stan-
dardized interfaces, x/rApps often become tied to specific RIC platforms or vendors, limit-
ing their portability and reuse. Moreover, integrating O-RAN technologies into existing 5G
networks further complicates the optimization process, adding burdens for operators.

In this work, we investigate how to enhance the flexibility and programmability of net-
work customization for both the control and user planes of SD-RAN while addressing the
complexity introduced byO-RAN technologies, with the goal of simplifying network infras-
tructure and optimization processes to pave the way for next-generation mobile networks.
First, we design a Flexible Control plane (FlexCtrl) that allows control logic to be dis-
tributed across three levels — SD-RAN applications, controller, and RAN nodes — based on
use case requirements and control loop latency constraints. This design includes an open
interface and a virtualization layer for xApps to enable real-time control and simplify devel-
opment. Second, we propose Integrated and programmable User Plane (IUP), a novel RAN
system design with a concrete realization, integrating User Plane Function (UPF) function-
alities into a RAN node to enable real-time coordination of traffic management and radio
resource allocation. Third, leveraging the synergy of the proposed FlexCtrl and IUP, we
introduce AUTO-RAN, an innovative concept that enables autonomous programmability
through a robust SD-RAN application design, significantly reducing operational complexity
for network operators in RAN optimization while ensuring seamless coordination across
both 3GPP and O-RAN ecosystems.

We evaluate the proposed solutions using open-source platforms (OpenAirInterface and
FlexRIC). Results demonstrate enhanced flexibility and extended programmability across
both the control and user planes. In the control plane, FlexCtrl evolves control logic within
SD-RAN applications, simplifying development through recursive abstraction and support-
ing flexible logic placement to meet use case needs. For example, a distributed control plane
achieves control loop latency below 50 µs, suitable for real-time radio scheduling. In the
user plane, IUP consolidates traffic management within the RAN, enabling unified con-
trol over IP flows and radio resources. This reduces control latency and cuts data delivery
overhead by up to 50%. Building on these capabilities, AUTO-RAN integrates autonomous
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Abstract

mechanisms into SD-RAN applications, significantly reducing development complexity of
x/rApps by up to 90% in line of codes. Results also show that AUTO-RAN achieves real-time
adaptability without requiring explicit operator intervention in RAN slicing use cases, and
supports intent-driven optimization by allowing operators to declaratively express high-
level intents in mobility management use cases.

This thesis simplifies network operations by reducing the development complexity of
control logic within RAN functions and SD-RAN applications, streamlining the deployment
of network functions in the user plane, and abstracting the intricacies of O-RAN technolo-
gies, thereby enabling real-time, unified, and autonomous optimization. Overall, the pro-
posed methods and architectures provide the foundational infrastructure to enhance flexi-
bility, programmability, and customizability across both planes, accelerating the transition
toward intelligent next-generation mobile networks.
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Résumé

La 5G et les futurs réseaux d’accès radio (RAN) évoluent vers une ouverture et une pro-
grammabilité accrues, sous l’impulsion des principes de l’Open RAN et d’initiatives telles
que le Telecom Infra Project (TIP) et l’O-RAN Alliance. Cette transformation est rendue
possible par deux facteurs clés : (1) des interfaces ouvertes garantissant une interopérabil-
ité indépendante des fournisseurs, et (2) les principes du Software-Defined RAN (SD-RAN),
qui introduisent un contrôle réseau dynamique et flexible. Ces interfaces sont normalisées
non seulement par le 3rdGeneration Partnership Project (3GPP), mais aussi par l’O-RANAl-
liance, qui joue un rôle essentiel dans l’intégration de l’intelligence au sein de l’écosystème
SD-RAN.

Dans l’architecture O-RAN, le contrôleur SD-RAN est défini comme le contrôleur in-
telligent RAN (RIC), qui permet à des tiers de développer et de déployer des applications
SD-RAN, connues sous les noms de xApps (pour le contrôle en quasi temps réel) et rApps
(pour le contrôle en temps non réel). Au-delà de l’amélioration de la programmabilité
du RAN dans différents domaines temporels, O-RAN permet également à ces applications
d’exploiter des techniques telles que l’apprentissage automatique, rendant l’optimisation du
réseau plus efficace, intelligente et adaptative. Si O-RAN ouvre de nouvelles perspectives,
il soulève également plusieurs défis. Les exigences croissantes des cas d’usage émergents
(par exemple, les jeux en temps réel ou la communication haptique), ainsi que des fonc-
tions avancées comme le découpage du réseau (network slicing), augmentent la complexité
et rendent le développement et la gestion des x/rApps plus difficiles. Par ailleurs, en rai-
son d’interfaces encore peu standardisées, les x/rApps deviennent souvent dépendantes de
plateformes RIC ou de fournisseurs spécifiques, limitant ainsi leur portabilité et leur réutil-
isabilité. Enfin, l’intégration des technologies O-RAN dans les réseaux 5G existants com-
plique davantage le processus d’optimisation, ce qui accroît la charge opérationnelle pour
les opérateurs.

Dans ce travail, nous étudions comment améliorer la flexibilité et la programmabilité
de la personnalisation du réseau pour les plans de contrôle et utilisateur du SD-RAN, tout
en abordant la complexité introduite par les technologies O-RAN, dans le but de simplifier
l’infrastructure réseau et les processus d’optimisation, afin de préparer la transition vers
les réseaux mobiles de nouvelle génération. Premièrement, nous concevons un plan de
contrôle flexible (FlexCtrl) qui permet de distribuer la logique de contrôle sur trois niveaux
— les applications SD-RAN, le contrôleur, et les nœuds RAN — en fonction des exigences
des cas d’usage et des contraintes de latence des boucles de contrôle. Cette conception
comprend une interface ouverte et une couche de virtualisation pour les xApps, permet-
tant un contrôle en temps réel tout en simplifiant le développement. Deuxièmement, nous
proposons un plan utilisateur intégré et programmable (IUP), une nouvelle conception du
système RAN avec une réalisation concrète, intégrant les fonctionnalités de la User Plane
Function (UPF) dans un nœud RAN afin de permettre la coordination en temps réel de la
gestion du trafic et de l’allocation des ressources radio. Troisièmement, en tirant parti de
la synergie entre FlexCtrl et IUP, nous présentons AUTO-RAN, un concept innovant qui
permet une programmabilité autonome grâce à une conception robuste d’application SD-
RAN. Cette approche réduit significativement la complexité opérationnelle pour les opéra-
teurs dans l’optimisation du RAN, tout en assurant une coordination transparente entre les
écosystèmes 3GPP et O-RAN.

Nous évaluons les solutions proposées en nous appuyant sur des plateformes open
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source (OpenAirInterface et FlexRIC). Les résultats démontrent une flexibilité accrue et
une programmabilité étendue des plans de contrôle et d’utilisateur du SD-RAN. Dans le
plan de contrôle, FlexCtrl fait évoluer la logique de contrôle au sein des applications SD-
RAN, en simplifiant le développement grâce à une abstraction récursive, tout en permettant
un placement flexible de la logique selon les besoins des cas d’usage. Par exemple, un plan
de contrôle distribué permet d’atteindre une latence de boucle de contrôle inférieure à 50 µs,
adaptée à la planification radio en temps réel. Dans le plan utilisateur, IUP consolide la ges-
tion du trafic au sein du RAN, permettant un contrôle unifié des flux IP et des ressources
radio. Cette approche permet de réduire la latence de contrôle et de diminuer les frais de
transmission des données jusqu’à 50%. En s’appuyant sur ces capacités, AUTO-RAN intè-
gre des mécanismes autonomes dans les applications SD-RAN, réduisant significativement
la complexité du développement des x/rApps, jusqu’à 90% en nombre de lignes de code. Les
résultats montrent également qu’AUTO-RAN permet une adaptabilité en temps réel sans
intervention explicite de l’opérateur dans les cas d’utilisation de découpage du RAN, et
qu’il prend en charge l’optimisation basée sur les intentions en permettant aux opérateurs
d’exprimer de manière déclarative des intentions de haut niveau dans les cas d’utilisation
de gestion de la mobilité.

Cette thèse simplifie les opérations réseau en réduisant la complexité du développe-
ment de la logique de contrôle au sein des fonctions RAN et des applications SD-RAN,
en rationalisant le déploiement des fonctions réseau dans le plan utilisateur, et en abstra-
hant les complexités des technologies O-RAN, permettant ainsi une optimisation en temps
réel, unifiée et autonome. Dans l’ensemble, les méthodes et architectures proposées four-
nissent une infrastructure de base visant à renforcer la flexibilité, la programmabilité et la
personnalisation sur les deux plans, accélérant ainsi la transition vers les réseaux mobiles
intelligents de nouvelle génération.
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Introduction 1.1 Evolution of Mobile Network Architecture

1.1 Evolution of Mobile Network Architecture

Over the past two decades, mobile networks have undergone a significant evolution, tran-
sitioning from Third Generation (3G) to Fourth Generation (4G), and now Fifth Generation
(5G), fundamentally reshaping global connectivity. Each generation has introduced key
technological advancements that have expanded network capabilities, improved perfor-
mance, and unlocked new applications across industries, as shown in Table 1.1.

The introduction of 3G in the early 2000s marked a major shift in mobile communi-
cation. It was the first generation to support mobile internet access, transitioning from
circuit-switched to packet-switched architecture for data services. This shift enabled more
devices to connect to the internet, facilitating mobile web browsing, email, and basic multi-
media streaming. Standardized by the 3rd Generation Partnership Project (3GPP), 3G tech-
nologies - such as Wideband Code Division Multiple Access (WCDMA) and High-Speed
Packet Access (HSPA) - laid the groundwork for modern mobile networks, providing the
essential infrastructure for future advancements [138].

Building upon the foundation established by 3G, the 2010s saw the introduction of 4G,
with Long-TermEvolution (LTE) and LTE-Advanced (LTE-A), bringing significant enhance-
ments in speed, capacity, and network efficiency. Unlike 3G, which was the first to in-
troduce mobile internet access, 4G fully transitioned to an all-IP-based architecture [126,
138], removing circuit-switched communication in the Core Network (CN). This shift en-
abled much higher data speeds (100 Mbps to 1 Gbps) and improved support for a rapidly
growing number of connected devices. Moreover, traditional voice and text services were
replaced by VoLTE, ensuring seamless integration with modern digital services (e.g., iMes-
sage, WhatsApp). With these advancements, 4G became the backbone of themodern digital
world, enabling the rise of social media, streaming, online shopping, and digital finance. Its
improved efficiency enabled increasingly demanding applications, paving the way for 5G.
While the CN architecture underwent a major transformation, the Radio Access Network
(RAN) architecture sawmore limited advancements from 3G to 4G. Although 4G introduced
standardized interfaces (e.g., S1 interface, which allowed CN and RAN to be sourced from
different vendors), most deployments remained vendor-specific. Advanced RAN features
— such as Software-Defined RAN (SD-RAN), Virtualized RAN (vRAN), Centralized RAN
(C-RAN), and RAN Controller — were implemented primarily through proprietary vendor
solutions, limiting multi-vendor interoperability and scalability.

Table 1.1: Evolutions of Mobile network architecture.

Generation
RAN Architecture

CN Architecture
Services

Monolithic Disaggregated
RAN Control

Voice Call SMS Text Internet Data
& Optimization

2G Vendor Locked - Vendor-Locked Circuit-Switched
✓ ✓ -Base Station Controller

3G Vendor Locked - Vendor-Locked Circuit-Switched
✓ ✓

✓
Radio Network Controller & Packet-Switched (Low Data Rate)

4G Vendor Specific Vendor Specific Vendor Specific All-IP-Based ✓(VoLTE) ✓
(vRAN, C-RAN) RAN Controller (High Data Rate)

5G with Vendor Specific Vendor Agnostic Vendor Agnostic Service-Based ✓(VoNR) ✓
Open RAN (CU, DU, RU) RAN Intelligent Controller (eMBB, uRLLC, mMTC)
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Introduction 1.1 Evolution of Mobile Network Architecture

As mobile demands grew, the 2020s marked the arrival of 5G New Radio (NR), driven by
the need for greater network efficiency, enhanced service assurance, and architectural flexi-
bility. Unlike its predecessors, 5G introduced several key innovations toward an application-
aware network design, incorporating standardized capabilities such as tailored Quality of
Service (QoS) [18], network slicing [5], and a more flexible network architecture [8]. These
advancements allow network operators to dynamically customize and configure network
deployments, optimizing performance for a variety of use cases. To leverage these inno-
vations, 5G is structured around three primary service categories, each targeting distinct
performance needs: (1) enhancedMobile Broadband (eMBB) – enabling cloud gaming, high-
definition streaming, and immersive Augmented/Virtual Reality (AR/VR) experiences, (2)
ultra-Reliable Low-Latency Communications (uRLLC) – supporting autonomous vehicles,
remote surgery, and mission-critical applications, (3) massive Machine-Type Communica-
tions (mMTC) – enabling smart cities and industrial automation.

Delivering these services efficiently requires a highly adaptable network architecture.
To achieve this, 5G introduces an evolved architecture that enhances both CN and RAN.
In the CN, 5G adopts a Service-Based Architecture (SBA) by standardizing more interfaces
between network functions, enabling greater flexibility in deploying network functions
based on service requirements. For example, User Plane Functions (UPFs) can be distributed
across access, edge, and cloud sites, optimizing latency, network efficiency, and application
performance based on specific use cases. In contrast, 5G RAN has fewer standardized inter-
faces, though some, like the F1 interface between Distributed Units (DUs) and Centralized
Units (CUs), allow for more scalable and flexible deployments. This enables a single CU to
manage multiple DUs, improving scalability and resource utilization. However, many of
these implementations remain vendor-specific, much like in 4G, making RAN deployments
largely proprietary and restricting openness in mobile network infrastructure.

As 5G adoption accelerates, the lack of interoperability in RAN has become a major
challenge, limiting deployment flexibility and increasing costs for operators. To address
this challenge, the concept of Open RAN [84, 127, 147] has emerged as a transformative
paradigm, aiming to break traditional vendor lock-in and promote interoperability between
network components from different vendors. A key driver of this movement is the O-RAN
Alliance [36], which actively defines open interfaces and specifications based on 3GPP stan-
dards. By doing so, it fosters a more flexible, cost-efficient, and scalable network environ-
ment, enabling operators to mix and match RAN components, such as CU, DU and Radio
Unit (RU), from different vendors while optimizing performance and cost. Within the O-
RAN architecture [117], open interfaces are introduced across various network elements,
including O1 interface for Service Management and Orchestration (SMO) [38, 39], as well
as A1 and E2 interfaces for RAN Intelligent Controllers (RICs) [29, 30, 40, 42]. Building
on SD-RAN principles, which separate the Control and User Planes (CP and UP) functions,
O-RAN further enhances programmability by enabling RICs to provide centralized, intelli-
gent control of RAN nodes across multiple vendors through standardized open interfaces.
As a key component of O-RAN, the RICs, comprising the Near-Real and Non-Real Time
RICs (NearRT-RIC [40] and NonRT-RIC) [30]), act as the SD-RAN controllers, optimizing
RAN operations through their control applications (e.g., xApps in NearRT-RIC and rApps
in NonRT-RIC), while also facilitating the integration of advanced technologies such as
Artificial Intelligence (AI) and Machine Learning (ML).
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With the industry moves beyond 5G and toward 6G, RAN architecture must evolve to
become more flexible, programmable, and intelligent to support application-centric net-
works. O-RAN (or Open RAN) is expected to play a central role in shaping the next-
generationmobile networks by fostering an open, interoperable, and software-driven ecosys-
tem, reducing reliance on proprietary solutions. Integrating O-RAN architectures into ex-
isting infrastructures unlocks new opportunities for real-time programmability, AI/ML-
driven optimizations, and seamless orchestration of diverse network functions (e.g., in-
telligent control applications). These advancements will enhance network scalability and
efficiency while enabling emerging use cases like ubiquitous connectivity, autonomous sys-
tems, and immersive digital experiences, driving the evolution of future mobile networks.

1.2 Challenges

Realizing and improving flexibility to enhance greater programmability and customizabil-
ity of RAN introduces several challenges, spanning technical, operational, and economic
dimensions. Technically, achieving a flexible control mechanism that supports not only
near- and non-real-time control operations but also real-time control for time-sensitive
RAN processes remains a significant hurdle in O-RAN architecture. Additionally, coordi-
nating 3GPP-defined UP functions across both CN and RAN domains is a key challenge in
optimizing both network and user performance in future application-centric mobile net-
works. From an operational and economic perspective, integrating O-RAN technologies
with existing 3GPP infrastructure while managing its complexities is crucial to ensuring
seamless interoperability and widespread adoption. This section discusses these challenges
and explores potential solutions for building a more flexible and programmable RAN archi-
tecture for next-generation mobile networks. Figure 1.1 illustrates these challenges within
their respective domains alongside the corresponding contributions presented in this thesis.

3GPPO-RAN

Challenge 1: Achieving Control Flexibility in O-RAN
(Section 1.2.1)

Challenge 2: Coordinating UP Functions in 3GPP
(Section 1.2.2)

Challenge 3: Integration O-RAN with 3GPP
(Section 1.2.3)

Contribution 1: Flexible Control Plane
(Chapter 2)

Contribution 2: Integrated and Programmable User Plane
(Chapter 3)

Contribution 3: Autonomous Radio Access Network
(Chapter 4)

Programmable RAN Architecture
for Next-Generation Mobile Network

Figure 1.1: Addressed challenges and corresponding contributions in enabling a pro-
grammable RAN architecture for next-generation mobile networks.
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1.2.1 Achieving Control Flexibility in O-RAN

O-RAN introduces vendor-agnostic interoperability through standardized open interfaces
aswell as standardized ServiceModels (SMs), such as Key PerformanceMeasurement (KPM)
[41], RAN Control (RC) [46], and Cell Configuration Control (CCC) [44]. Additionally, it
enables control operations in both near- and non-real-time domains, allowing adaptation
to different network scenarios. While these advancements enhance interoperability and
flexibility, they also introduce significant development complexities for both control ap-
plications (e.g., xApps) and RAN functions, making real-time control more challenging to
implement. A major limitation of current O-RAN architectures is that control logic is stati-
cally confined to the control application layer, further increasing the complexity of control
application development. This lack of flexibility restricts the ability to dynamically adjust
control logic based on network conditions and specific scenario requirements (e.g., dynamic
radio resource scheduling).

1.2.1.1 Complexity of Control Application

One of the key challenges in achieving control flexibility is the increasing complexity of
xApp development in the O-RAN architecture, where xApps operate within the NearRT-
RIC. This complexity limits xApp real-time control capabilities and hinders its reusability
and portability in multi-vendor environments. It primarily stems from the rigid structure
of O-RAN-defined SMs and the need for xApps to interact with heterogeneous RAN nodes,
each with vendor-specific implementations, further increasing development difficulties.

As xApp control logic becomes more sophisticated, the challenge intensifies due to the
need to process large volumes of data from multiple SMs across different RAN nodes. Pars-
ing and transforming complex data structures introduces significant processing overhead,
making real-time optimization increasingly difficult (cf. Section 2.3.3). Additionally, as
xApp complexity increases, maintaining low-latency decision-making becomes more chal-
lenging, further limiting the feasibility of real-time control operations.

Beyond software challenges, the lack of a standardized interface between xApps and
the NearRT-RIC further hinders portability (cf. Section 2.3.1). Without a unified frame-
work, xApps must be customized for vendor-specific NearRT-RIC Application Protocol In-
terfaces (APIs) [118], leading to compatibility issues and increased development overhead.
This fragmentation restricts deployment flexibility and limits scalability in multi-vendor
environments.

Moreover, the rigid structure of standardized SMs constrains functional extensibility,
making it difficult to support emerging network requirements. For example, the RC SM
lacks support for application flow control in scenarios requiring Low Latency, Low Loss,
Scalable Throughput (L4S) [62], preventing xApps from optimizing such applications. This
limitation forces developers to implementworkarounds or vendor-specific extensions, com-
pounding fragmentation within the Open RAN ecosystem.
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Summary and Potential Solutions. These challenges increase development time and
costs while slowing innovation, as xApp developers need to focus on adapting to vendor-
specific constraints rather than advancing higher-level network optimization strategies.
Without addressing these barriers, xApp innovation will remain limited, restricting the
implementation of a flexible control mechanism capable of supporting real-time control
operations. Overcoming these challengeswill require solutions that enable vendor-agnostic
development and streamline xApp design to improve control flexibility.

1.2.1.2 Complexity of RAN Function

Another key challenges in achieving control flexibility is the increasing complexity of RAN
function development, which requires enabling programmability to ensure that RAN func-
tions can efficiently execute control actions based on decisionsmade by higher-layer x/rApps.
For example, to meet Service Level Agreements (SLAs), a network operator may deploy an
xApp to create multiple network slices within the RAN, requiring the RAN to dynami-
cally allocate resources for each slice. However, enabling this capability demands that RAN
vendors develop slicing-related functions, incorporating specialized algorithms and tech-
nologies for slice creation and resource allocation.

Additionally, RAN function development has to integrate logic from O-RAN-defined
SMs to correctly interpret control messages sent from xApps. This means implementations
need to be capable of decoding O-RAN-definedmessages and interfacing with internal RAN
APIs to execute control actions. As the number of O-RAN SMs continues to grow and their
structures become increasingly complex, the development and integration challenges in
RAN systems are further amplified.

Beyond handling control decisions from x/rApps, real-time decision-making introduces
additional complexity. Many time-sensitive RAN processes, such as radio resource schedul-
ing and beam management, require ultra-low latency responses and efficient processing,
which centralized control applications often struggle to provide. To address this limitation,
some approaches (e.g., dApp [81] and JANUS [83]) enable real-time programmability by ex-
ecuting control operations locally. While embedding control logic within the RAN reduces
control latency, it also significantly increases the complexity of RAN function development
(cf. Section 2.3.2), necessitating additional mechanisms for dynamic control adjustments,
conflict resolution, and multi-cell coordination.

However, the complexity of RAN functions is further exacerbated by vendor inconsis-
tencies in O-RAN deployments. RAN vendors implement O-RAN SMs and internal control
logic differently, leading to interoperability issues. For example, an xApp sending the same
control message to multiple RAN nodes may encounter varying levels of support for the
requested control actions. Consequently, xApp development becomes increasingly com-
plex, as it has to accommodate these variations and implement additional logic to ensure
compatibility across diverse RAN implementations (cf. Section 2.3.3).

Summary and Potential Solutions. In summary, RAN function development complex-
ity arises from the need to enable programmable functionalities, handle control decisions
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from x/rApps, integrate O-RAN SM logic, and support real-time decision-making within
the RAN. These challenges not only impact real-time network operations but also introduce
vendor-specific inconsistencies, making standardization and large-scale O-RAN adoption
more difficult. To overcome these barriers, solutions should enhance control mechanisms
and optimize processing frameworks to enable flexible, adaptive control across near-, non-,
and real-time latency requirements, ensuring a scalable and programmable RAN architec-
ture for future mobile networks.

1.2.2 Coordinating UP Functions in 3GPP

Asmobile networks evolve, newer generations of 3GPP, along with standards issued by ITU
and IEEE, are shifting from a network-centric to an application-centric approach [104, 108,
146]. In this paradigm, the network needs to provide an extensive and ubiquitous medium
for serving diverse application requirements. However, the current RAN architecture faces
significant challenges in adapting to this shift. Two primary issues emerge: (1) disparities
in UP function management across CN and RAN and (2) the complexity of distributed UP
functions.

1.2.2.1 Disparities Between CN and RAN

One of the key challenges in coordinating UP functions is the increasing disparity in UP
functionmanagement betweenCN andRAN.Asmobile networks evolve toward application-
centric architectures, the lack of coordination between UP functions across CN and RAN
creates significant challenges in meeting the diverse requirements of emerging applications
such as Augmented Reality (AR) and Virtual Reality (VR).

Despite ongoing research efforts, most existing solutions focus on optimizing either CN
or RAN performance in isolation rather than addressing coordination between the two. For
instance, several works [53, 72, 98, 133] primarily enhance RAN performance, improving
radio resource scheduling efficiency. Similarly, other approaches [60, 89, 110] focus on CN
performance, improving packet processing efficiency. However, without effective coordina-
tion, these independent optimizations create disparities that make end-to-end performance
optimization increasingly difficult.

A major source of disparity occurs when data transitions from the IP-based Data Net-
work (DN) to the mobile network. This process involves multiple transformations that can
introduce inefficiencies. In the CN, the User Plane Function (UPF) aggregates and classifies
IP flows into one ormore QoS flows based on predefined parameters such as 5QI values [18].
These QoS flows are then mapped to Data Radio Bearers (DRBs) in the RAN by the Service
Data Adaptation Protocol (SDAP) layer, which further reduces the granularity of the origi-
nal IP flows. This transformation introduces inconsistencies in how traffic is handled across
different network domains (cf. Section 3.3.1).

The lack of seamless UP coordination affects network performance in multiple ways.
First, as data moves from the DN to CN, the process of mapping IP flows into QoS flows
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may misrepresent application traffic characteristics, leading to inefficient flow prioritiza-
tion. This issue is particularly problematic in applications requiring fine-grained traffic
differentiation, such as ultra-low latency communications and real-time media streaming.
Second, as traffic moves from the CN to RAN, these disparities impact the ability of RAN
to allocate adequate resources, preventing it from meeting the stringent requirements of
next-generation mobile applications.

Although 3GPP has defined a set of QoS characteristics[18] and network slicing mech-
anisms[5] to ensure differentiated traffic treatment, the effectiveness of these solutions de-
pends on vendor-specific implementations. Different vendors may implement QoS map-
ping, flow classification, and resource allocation mechanisms differently, further intensi-
fying inconsistencies between CN and RAN, especially in Open RAN environments. As a
result, programmability and adaptability to diverse application behaviors remain limited,
making it increasingly difficult to support emerging mobile network use cases (cf. Sec-
tion 3.3.2).

Summary and Potential Solutions. Optimizing end-to-end performance requires ad-
dressing disparities in flowmanagement and resource allocation between the CN and RAN.
Seamless UP coordination is crucial for supporting the application-centric evolution of mo-
bile networks and ensuring consistent performance management across network domains.
A unified, programmable RAN architecture can bridge these gaps by enabling software-
defined control over UP functions, allowing dynamic network policy adaptation and re-
source allocation to meet diverse application requirements.

1.2.2.2 Complexity in Distributed UP Functions

Another key challenge in coordinating UP functions is the growing complexity of dis-
tributed UP functions in mobile network infrastructure. In 5G and beyond, network de-
ployment has become more flexible, allowing network operators to customize deployments
based on specific service requirements. For example, UPFs can now be deployed across
cloud, edge, and access sites, depending on service latency constraints. Similarly, with the
emergence of Open RAN, the disaggregated RAN architecture enables operators to mix
and match network components (e.g., RU, DU, and CU) based on resource availability and
coverage needs.

While these advancements enhance deployment flexibility, they also increase opera-
tional complexity. The rise in distributed network components requires operators to man-
age, configure, and optimize a growing number of elements, making network orchestra-
tion more challenging. Additionally, interworking between 3GPP and non-3GPP networks
requires additional gateway hops [1], further complicating infrastructure and increasing
processing overhead (cf. Section 3.3.3).

The modern RAN architecture must efficiently handle IP-based traffic, unlike its orig-
inal design for circuit-switched voice and text services. However, within the end-to-end
UP, RAN operates as a heavy Layer 2 entity in the OSI model, which restricts IP packet
traversal efficiency. To address this obstacle, various optimizations have been introduced

8



Introduction 1.2 Challenges

to improve UPF performance[60, 89, 110] and reduce transport latency by shortening the
physical distance between UPF and RAN or DN and UPF [125].

However, these optimizations primarily focus on improving RANbackhaul performance,
often overlooking coordinationwith the radio link. As a result, latency issues persist, partic-
ularly due to the placement of UPF components across different network segments and the
overhead introduced by GPRS Tunneling Protocol User Plane (GTP-U) tunneling. The con-
tinued reliance on GTP-U tunnels complicates traffic flow optimization between RAN and
CN, adding protocol processing overhead and further increasing latency (cf. Section 3.3.1).
This issue is especially critical in emerging technologies such as Open RAN, where addi-
tional UP hops further exacerbate latency challenges.

Summary andPotential Solutions. Asmobile networks evolve, an efficient, programmable,
and well-coordinated RAN architecture becomes increasingly essential. Addressing the
complexity of distributed UP functions and enhancing UP coordination between the CN
and RAN are key to optimizing network and user performance, ensuring low-latency, high-
throughput connectivity for future mobile applications.

1.2.3 Abstracting O-RAN Complexities in 3GPP Networks

As O-RAN emerges within the 3GPP-based mobile network infrastructure, it offers new op-
portunities for vendors and operators by enabling greater customizability. Through open
interfaces, operators can deploy networks with more flexibility while leveraging RAN pro-
grammability via the RIC to support new use cases. However, despite these advantages,
integrating O-RAN into 3GPP-based systems introduces significant challenges due to the
complexity of managing dual ecosystems.

While O-RAN specifications are built upon 3GPP standards, they focus primarily on
RAN optimizations and lack direct coordination with CN functions. This architectural gap
affects network operators in multiple ways. First, it complicates end-to-end network op-
timization, as O-RAN lacks built-in mechanisms to coordinate with CN functions such as
UPF. This fragmentation forces operators to develop custom solutions, increasing integra-
tion costs and operational overhead.

Second, the adoption of O-RAN-specific frameworks (e.g., Service Management Orches-
tration [117]), tools (e.g., gRPC [122]), and architectures (e.g., O-Cloud [117]) further in-
creases network complexity. Unlike traditional 3GPP-based systems, where network func-
tions are tightly integrated, O-RAN’s modular approach requires additional configuration
and adaptation efforts, placing a heavier burden on network operators.

Finally, the lack of seamless integration of control applications limits real-time adapt-
ability, making it challenging to implement dynamic network adjustments. Even though
vendors provide rApps with ML-driven network slicing decisions and xApps with real-time
control for slice modification, operators often lack the necessary O-RAN expertise to deploy
and integrate them effectively. This slows the adoption of advanced network optimization
techniques, such as control applications for load balancing management, interference man-
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agement, and energy-saving mechanisms.

Summary andPotential Solutions. Consequently, these complexities not only increase
deployment overhead but also hinder real-time adaptability, slowing the seamless adoption
of advanced RAN programmability. Addressing this challenge is essential for enabling a
programmable RAN architecture while ensuring the effective integration of O-RAN and
leveraging its capabilities for next-generation mobile networks.

1.3 Motivation and Problem Statement

Building on the challenges outlined above, achieving a programmable RAN architecture
is essential for enabling the next generation of adaptable and intelligent mobile networks.
This section presents the key motivations driving the need for a programmable RAN and
defines the specific research problems addressed in this thesis.

1.3.1 Why Programmable RAN Architecture?

A programmable RAN unlocks new capabilities that enhance network flexibility for real-
time adaptability, enable efficient coordination for end-to-end network optimization, and
ensure smooth interoperability between heterogeneous ecosystems (e.g., O-RAN and 3GPP).
These capabilities are critical for supporting evolving application-driven services and opti-
mizing network efficiency at scale.

EnhancingNetwork Flexibility andAdaptability. Modernmobile networksmust sup-
port a wide range of deployment scenarios, such as network slicing and multi-cell coordi-
nation. However, traditional RAN architectures, including early SD-RAN implementations,
often lack the agility needed for real-time adaptability due to centralized control structures
and vendor-specific constraints. A programmable RAN introduces software-defined con-
trol mechanisms, enabling networks to adjust in real time to meet changing deployment
requirements. This flexibility allows operators to customize control mechanisms, dynami-
cally allocate radio resources, optimize network policies, and fine-tune performance across
different time scales — without disrupting RAN operations. As mobile networks become
increasingly complex, real-time optimizations will be essential for ensuring performance,
reliability, and seamless service delivery in next-generation mobile systems.

Enabling Consistent End-to-End Network Optimization. Modern applications such
as immersive XR, autonomous vehicles, and industrial automation demand ultra-low la-
tency, high throughput, and intelligent resource management to deliver seamless user ex-
periences. A programmable RAN plays a crucial role in enhancing coordination between
RAN and CN functions, particularly in UP operations. By dynamically managing UP re-
sources across the entire network stack, operators can make real-time adjustments to traf-
fic routing, load balancing, and QoS management. A software-defined approach enables
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demand-driven resource allocation, ensuring consistent management across network do-
mains. This level of end-to-end coordination improves trafficmanagement, enhances appli-
cation performance, and optimizes overall network efficiency, making programmable RAN
a cornerstone of future application-centric mobile networks.

Enabling Seamless Interoperability Between O-RAN and 3GPP Networks. A pro-
grammable RAN drives innovation by embracing openness, interoperability, and vendor-
agnostic deployment models inspired by Open RAN principles. As O-RAN adoption ex-
pands, mobile networks gain the ability to accelerate innovation cycles and improve cost
efficiency while maintaining compliance with 3GPP standards. By seamlessly integrating
O-RAN technologies with existing 3GPP infrastructure, a programmable RAN enables au-
tonomous control mechanisms for intelligent network optimization. This programmability
empowers operators to deploy new technologies more efficiently, implement AI-driven op-
timizations, and enhance interoperability across diverse network components— without
increasing operational overhead. This shift toward autonomous, intelligent, and highly in-
teroperable networks provides operators with greater control, flexibility, and scalability,
paving the way for a more agile, future-ready mobile ecosystem.

1.3.2 Research Problem Definition

Despite its potential, achieving a fully programmable RAN architecture presents funda-
mental research problems that need to be addressed to realize its full potential for next-
generation mobile networks. This thesis focuses on three key problems:

1.3.2.1 The Problem of Enabling a Flexible Control Mechanism

• Challenge: Developing control applications and RAN functions remains complex,
restricting the ability to implement a flexible and programmable control mechanism.

• Motivation: Simplifying control application design is essential for enabling real-
time adaptability in RAN operations, while simplifying RAN function development
is crucial for achieving a more adaptable, scalable, and programmable control mech-
anism.

• Research Question: How can a flexible and programmable control mechanism be
achieved while reducing the complexity of control applications and RAN functions,
and ensuring real-time control capabilities?

1.3.2.2 TheProblemof EnablingCoordinationUP functions betweenCNandRAN

• Challenge: The distributed nature of UP functions complicates end-to-end network
optimization and increases infrastructure complexity, making it difficult to achieve
seamless coordination across CN and RAN.
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• Motivation: Achieving seamless coordination of UP functions across CN and RAN is
essential for efficient flow control, optimized radio resource allocation, and consistent
network management.

• Research Question: How can UPF in the CN and UP functions in the RAN be effec-
tively controlled and coordinated in real-time without introducing additional infras-
tructure complexity?

1.3.2.3 The Problem of Integrating O-RAN into 3GPP Networks

• Challenge: O-RAN introduces architectural complexities that make it difficult for
network operators to manage and integrate with existing 3GPP networks.

• Motivation: Abstracting O-RAN complexities will enable operators to seamlessly
adopt and leverage O-RAN technologies (xApps, rApps) within 3GPP networks, with-
out increasing operational overhead.

• ResearchQuestion: How can network operators leverageO-RAN technologieswithin
existing 3GPP networks while minimizing operational complexity?

1.4 Thesis Contributions and Structure

In this thesis, we investigate both O-RAN and 3GPP networks to enhance the customiz-
ability and programmability of RAN, with the goal of realizing a programmable RAN ar-
chitecture that can adapt to future application-centric networks. The thesis begins with
an introduction to the evolution of mobile network architectures in Section 1.1, providing
a historical and technical foundation. Additionally, background and related work on rele-
vant concepts and technologies related to O-RAN and 3GPP are incorporated into the initial
sections of each chapter.

Building upon the research challenges and problems discussed in Sections 1.2 and 1.3,
this thesis is structured to systematically address each key issue. Each chapter focuses on
a specific research problem, and Figure 1.1 illustrates how the contributions align with the
identified research challenges. The key contributions of this thesis are as follows:

Chapter 2: Flexible Control Plane. This chapter introduces FlexCtrl, a flexible CP
architecture designed to address the challenges of control flexibility and real-time pro-
grammability in O-RAN and SD-RAN. FlexCtrl supports all three control topologies — cen-
tralized, decentralized, and distributed — enabling adaptable control logic placement to ac-
commodate different deployment scenarios. To tackle the complexity of xApp development
and real-time control capabilities, we propose FlexApp, a framework within the decentral-
ized topology of FlexCtrl. FlexApp provides native support for third-party xApps through
its E2* interface, addressing current limitations in portability by enabling interoperability
between Near-RT RIC platforms and third-party xApps, while also supporting ultra-low-
latency control operations (<10ms). To further abstract the complexity of O-RAN SMs tied
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to RAN Functions (RFs), FlexApp enables recursive virtualization of RFs. This high-level
abstraction alleviates the rigidity of standardized SMs and makes it easier for xApps to
control RFs across vendor-specific implementations. Additionally, we redesign the radio
resource scheduler, introducing a recursive scheduler for multi-level resource allocation, to
demonstrate FlexCtrl’s capability in controlling RAN functions in real-time.

Chapter 3: Integrated and Programmable User Plane. This chapter introduces IUP,
a novel RAN system to address the lack of coordination between UP functions across CN
and RAN and the growing complexity of distributed UP functions in mobile network in-
frastructure. IUP unifies UP functions across the RAN and UPF into a single programmable
entity, envisioned as a foundational component for next-generation mobile networks. By
integrating UP functions, IUP simplifies mobile network architecture, reducing latency and
protocol overhead (e.g., GTP-U) while enabling end-to-end programmability — from IP flow
traffic control to radio resource allocation. This application-centric design ensures the net-
work can dynamically adapt to diverse service requirements. To tackle the complexity
of distributed UP functions, IUP introduces the Integrated Data Flow Control (IDFC) sub-
layer, a new traffic management pipeline integrated into the RAN protocol stack. Addition-
ally, programmable rules for IP traffic control and radio resource allocation provide greater
programmability, enabling simultaneous control of both traffic flow and radio resources.
Furthermore, IUP facilitates seamless interworking with non-3GPP networks, enhancing
interoperability across heterogeneous network domains. Several key use cases, including
handover and roaming, are analyzed to demonstrate IUP’s compatibility with existing de-
ployments and its ability to simplify complex mobile network infrastructures. Finally, real-
world testbed results validate IUP’s practical benefits, including reduced network latency
and overhead, seamless convergence between 3GPP and non-3GPP networks, and enhanced
programmability for IP traffic control and radio resource allocation to support diverse ap-
plications.

Chapter 4: Autonomous Radio Access Network. This chapter introduces AUTO-
RAN, a novel concept that abstracts the current O-RAN architecture with an autonomous
control loop, addressing the challenges of integrating O-RAN into 3GPP-based mobile net-
works. By simplifying optimization process, AUTO-RAN enables operators to improve both
network and user performance in a declarative manner - without needing to manage the
complexity of two distinct architectures. AUTO-RAN allows operators to interact with the
network using familiar 3GPP-defined logic, while seamlessly leveraging the programmabil-
ity of O-RAN. This approach ensures interoperability between the two ecosystems and sup-
ports real-time adaptability, enhancing overall performance without requiring operators to
directly intervene in O-RAN’s internal mechanisms. Furthermore, AUTO-RAN facilitates
the smooth integration of new features introduced by either 3GPP or O-RAN, thanks to
its foundation across both standards. Finally, we demonstrate its effectiveness through
real-world use cases, highlighting how AUTO-RAN automatically optimizes network and
service performance via robust SD-RAN applications integrated with autonomous control
loop mechanisms. This implementation underscores AUTO-RAN’s role in bridging the two
architectures, making network operations more autonomous, adaptive, and efficient.
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Finally, Table 1.2 presents selected publications and demonstrations in chronological
order, highlighting their contributions to the respective thesis chapters.

Table 1.2: Categorization of publications, demonstrations, and their contributions to spe-
cific chapters.

Type Reference Ch. 2 Ch. 3 Ch. 4
Workshop
Demo

Chieh-Chun Chen, Navid Nikaein, and Mikel Irazabal Bengoa. “FlexRIC: an SDK
for next-generation SD-RANs-slicing and traffic control use-case”. In: Summer
OpenAirInterface Workshop, 12-13 July 2022, Paris, France (2022). url: https : / /
youtu.be/sHJSA3FgGd8

✓ ✓ ✓

Conference
Paper

Chieh-Chun Chen et al. “FlexApp: Flexible and Low-Latency xApp Framework
for RAN Intelligent Controller”. In: ICC 2023 - IEEE International Conference on
Communications. 2023, pp. 5450–5456. doi: 10.1109/ICC45041.2023.10278600

✓ ✓ ✓

Exhibition
Demo

Chieh-Chun Chen, Alireza Mohammadi, and Navid Nikaein. “xApp independent
lifecycle, Interactive RAN Slicing xApp for xApp maintainer from Open RAN op-
erator”. In: Mobile World Congress, 27 February - 2 March 2023, Barcelona, Spain
(2023). url: https://youtu.be/kbh31hSxVFI

✓

Workshop
Demo

Chieh-Chun Chen et al. “xApp DevOps evolution and observable OAM in open
RAN ecosystem”. In: Joint OSC/OSFG-OAIWorkshop: End-to-End Reference Designs
for O-RAN, 14-15 November 2023, Burlington, MA, USA (2023). url: https://www.
eurecom.fr/publication/7863

✓ ✓

Conference
Paper

Chieh-Chun Chen, Chia-Yu Chang, and Navid Nikaein. “FlexSlice: Flexible and
real-time programmable RAN slicing framework”. In: GLOBECOM 2023 - 2023
IEEE Global Communications Conference. 2023, pp. 3807–3812. doi: 10 . 1109 /
GLOBECOM54140.2023.10437791

✓ ✓

Exhibition
Demo

Chieh-Chun Chen, Navid Nikaein, and Alireza Mohammadi. “ECO-RAN: Multi-
cell mobility management in an end-to-end 5G O-RAN network”. In: Mobile World
Congress, 26-29 February 2024, Barcelona, Spain (2024). url: https://youtu.be/hlLt--
WSQPc

✓ ✓

Magazine
Paper

Chieh-Chun Chen, Chia-Yu Chang, and Navid Nikaein. “IUP: Integrated and Pro-
grammable User Plane for Next-Generation Mobile Networks”. In: IEEE Network
(2025), pp. 1–1. doi: 10.1109/MNET.2025.3551245 (To be Published)

✓ ✓

Workshop
Demo

Chieh-Chun Chen, Navid Nikaein, and Mikel Irazabal Bengao. “Auto-RAN: Au-
tomated application-driven RAN slicing”. In: OpenAirInterface 10th Anniversary
Workshop, 12-13 September 2024, Sophia Antipolis, France (2024). url: https : / /
www.eurecom.fr/publication/7860

✓ ✓ ✓
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Flexible Control Plane 2.1 Introduction

2.1 Introduction

The roll-out of 5G elevates user experience among distinct aspects and brings new oppor-
tunities to reshape mobile networks. Specifically, some key features, such as flexibility,
openness, and intelligence, are expected to evolve monolithic infrastructures in legacy Ra-
dio Access Network (RAN). In this regard, standardization development organizations and
industry fora, such as O-RAN Alliance [36] and Telecom Infra Project [84], are formed to
not only concretize this vision into requirements, but also standardize open network inter-
faces among disaggregated RAN entities, such as Centralized Unit (CU), Distributed Unit
(DU), and Radio Unit (RU).

This standardization has enabled the concept of “Open RAN ”, characterized by enhanced
programmability and extensibility. A crucial aspect of this innovation is the adoption of SD-
RAN, which leverages software-defined principles to enable dynamic and programmable
control. In the following, we explore the role of the Control Plane (CP) in O-RAN and
SD-RAN architectures, highlighting the current challenges and presenting the solutions
proposed in this chapter.

2.1.1 Control Plane in O-RAN

In specific, within the O-RAN architecture [117], as illustrated in Figure 2.1, the RAN In-
telligent Controllers (RICs) are central to providing software-defined control mechanisms,
which are categorized into two types: Near-Real-Time (NearRT-RIC) [40] and Non-Real-
Time (NonRT-RIC) [30]. The NonRT-RIC operates within the Service Management and
Orchestration (SMO) framework and is designed to manage control loops with latencies
greater than 1 s. Its key responsibilities include training and deploying Machine Learning
(ML) and/or Artificial Intelligence (AI) models, managing policies (e.g., slice prioritization),
and overseeing performance metrics (e.g., user and network performance).

Additionally, the NonRT-RIC communicates with the NearRT-RIC via the standard-
ized A1 interface [29] to enforce policies and provide insights that facilitate near-real-time
decision-making. Furhtermore, the NearRT-RIC handles control loops with latencies be-
tween 10ms and 1 sec, focusing on near-real-time optimization of RAN-Nodes (e.g., CU and
DU) over the E2 interface [42]. These RAN-Nodes are collectively referred to as E2-Nodes
in the O-RAN terminology. The O1 interface [39], which serves the purpose of operations,
administration, and management, is beyond the scope of this discussion.

To take it a step further, the Non-RT RIC and Near-RT RIC host two distinct types of
control applications: rApps [30] for the NonRT-RIC and xApps [40] for the NearRT-RIC,
as shown in Figure 2.1. The rApps provide value-added services for RAN operation and
optimization (e.g., load balancing and energy savings) by communicating with the Non-RT
RIC via the R1 interface [50]. In contrast, xApps communicate with network components
through the NearRT-RIC Application Programming Interface (APIs), as illustrated by the
light blue arrows in Figure 2.1, over various interfaces, encapsulating data into appropriate
protocols. For instance, xApps interact with E2-Nodes via the E2 interface, with the NonRT-
RIC via the A1 interface, and with the SMO via the O1 interface.
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Figure 2.1: O-RAN architecture with the proposed FlexApp framework and E2* interface.

Specifically, to interact with RAN Functions (RFs) within E2-Nodes, such as the radio
resource scheduler in the DU, xApps follow the data structures defined by standardized
Service Models (SMs) [43] to send control actions or receive monitoring data1. These mes-
sages are generated through NearRT-RIC APIs (e.g., E2-related APIs [40]), encapsulated
within E2SM [43], and transmitted to E2-Nodes over the E2 interface [42]. For example,
the Key Performance Measurement (KPM) SM [41] is used to collect performance metrics
(e.g., bit rate, error rate, and radio resource usage) from E2-Nodes and their connected User
Equipments (UEs).

Challenges. Beyond the above recap, two key challenges remain. First, the interoper-
ability of xApps across different NearRT-RIC platforms. Due to the lack of a standardized
interface between the NearRT-RIC and xApps, current xApps rely on platform-specific APIs
provided by the NearRT-RIC to interact with its functionalities. This reliance on propri-
etary APIs challenges the Open RAN vision of interoperability and openness, limiting xApp
portability and multi-vendor integration. Second, the scalability of xApp deployments is
constrained by the latency and overhead introduced by the NearRT-RIC. All messages sent
to an xApp must first pass through the NearRT-RIC, where they are processed and exposed
via its APIs. This centralized handling can become a bottleneck, especially for large-scale
deployments or real-time RFs that require low-latency responses.

Contributions. To address these challenges, we propose the FlexApp framework not
only provide interoperability for any native or third-party xApps, but also to enable ultra-
low latency operations (<10ms). This framework relies on our newly-designed interface -
E2* - between NearRT-RIC and xApps (i.e., dark red lines in Fig. 2.1), which can be viewed
as a natural extension of the E2 interface and is considered as a potential candidate for stan-
dardization. Further, this framework enables virtualization of RFs recursively to produce
high-level abstraction and trigger future intent-based networking.

1SMs define the mechanisms for controlling and monitoring RAN functionalities in an E2-Node.
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Figure 2.2: Hierarchical control of RAN user planes in SD-RAN (left) and three topologies
for control plane in the proposed FlexCtrl architecture (right).

2.1.2 Control Plane in SD-RAN

Current SD-RAN platforms provide a programmable and centralized approach to manag-
ing RAN functionalities. A key feature of these platforms is the use of control applications
(referred to as “App” in this context for clarity) running on top of the RAN controller, a
concept also adopted by the O-RAN framework through constructs such as xApps operat-
ing on the NearRT-RIC, as illustrated in Figure 2.2. While this design facilitates dynamic
management of RAN functionalities, it also brings significant challenges.

Challenges. One of the primary challenges lies in the centralized CP design. Manag-
ing multiple RAN-Nodes , through a single App on the RAN controller leads to increasing
control complexity. This complexity grows as the RAN controller must coordinate multi-
ple Apps, resolve potential conflicts, and ensure seamless interaction with the underlying
RAN-Nodes. Furthermore, the lack of flexibility in supporting sub-10ms control loops lim-
its the ability of current SD-RAN platforms to provide real-time control and monitoring,
which are critical for achieving advanced functionalities such as adaptive RAN slicing and
efficient resource optimization in highly dynamic network environments.

In particular, RAN slicing is a key feature of 5G-Advanced and future networks. It al-
lows multiple services to run on the same infrastructure while ensuring performance guar-
antees and resource isolation. However, achieving effective RAN slicing requires a variety
of standardized control options, further compounding the complexity of managing RAN
User Planes (UPs). These challenges highlight the need for enhanced flexibility, scalability,
and real-time control mechanisms in SD-RAN platforms to meet the evolving demands of
next-generation networks.
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To present a generalized approach and delve into the details of our proposed FlexCtrl ar-
chitecture, three components are illustrated on the left side of Figure 2.2 (1) business logic,
(2) control logic, and (3) RAN UPs. The business logic is defined by service providers in
terms of the required Key Performance Indicators (KPIs), e.g., expected throughput and la-
tency, in the Service Level Agreement (SLA). By invoking the exposed service APIs, business
logic is converted into control logic, e.g., scheduling algorithms and parameters. Finally, the
control logic is applied to RAN UPs, e.g., radio resource scheduler at the Medium Access
Control (MAC) layer, by using the exposed RAN APIs.

From the viewpoint of service providers, the control logic can be centralized in the
App, decentralized in the RAN controller, or distributed in RAN-Node(s), as shown in Fig-
ure 2.2. Their trade-off ismainly in terms of control loop latency and RAN-Node complexity.
Take the centralized one (i.e., current O-RAN approach) as an example; the control logic is
mostly located in the App; thus, it has the lowest RAN complexity but the highest control
loop latency, which limits its real-time control capability. In contrast, decentralized and
distributed topologies can not only reduce such control loop latency, but also enable App
interoperability across various RAN controller platforms.

Contributions. In this chapter, we propose FlexCtrl, a flexible CP architecture that sup-
ports all three topologies (centralized, decentralized, and distributed) while offering both
control flexibility through loosely coupled control logic locations and real-time programma-
bility (down to microseconds). This architecture further enhances the proposed FlexApp
and evolves the O-RAN architecture. Additionally, we redesign the radio resource sched-
uler, introducing a recursive scheduler for multi-level resource allocation, to demonstrate
its capability in controlling RAN UPs.

2.2 Related Work

Software-Defined Networking (SDN) introduces a groundbreaking approach to network-
ing by decoupling the Control Plane (CP) from the data plane, enabling programmable
networks and centralized network management [101, 99, 115]. Using CP communication
protocol like OpenFlow [111], SDN empowers network owners to directly program net-
work devices, such as switches, through a centralized controller. This programmability,
exposed through Application Programming Interfaces (APIs), supports dynamic manage-
ment, efficient resource allocation, traffic optimization, as well as provides a global network
view for intelligent decision-making and automated operations.

Historically, mobile networks have been opaque and tightly bound to vendor-specific
hardware, creating closed ecosystems that are difficult to adapt or scale for rapidly evolving
use cases and application demands [80]. However, with the increasing need for flexibility
and scalability in next-generation infrastructures [148], mobile networks are being restruc-
tured around SDN principles, enabling programmability and vendor-agnostic architectures.
Extending these principles to the RAN, Software-Defined Radio Access Network (SD-RAN)
provides dynamic and scalable control, driving innovations across generations of mobile
networks. In the following sections, we elaborate on the evolution of SD-RAN in 4G, 5G,

19



Flexible Control Plane 2.2 Related Work

and beyond, highlighting key advancements and challenges.

2.2.1 SD-RAN Platforms in 4G Network

One such innovation is SoftRAN [85], which introduces the concept of SD-RANwith a cen-
tralized CP topology by abstracting all base stations within a local geographical area into
a single “big base station." This abstraction is composed of: (1) a central controller, which
acts as the centralized CP, maintaining a global network view to manage time-flexible and
coordination-critical tasks (e.g., centralized handovers); and (2) radio elements, which form
the distributed CP, handling time-sensitive, localized control decisions (e.g., radio resource
scheduling) at individual base stations. While SoftRAN offers control flexibility by combin-
ing centralized and distributed CPs, it has limitations in scalability across multiple Radio
Access Technologies (RATs) and relies on vendor-specific southbound APIs to interface
with underlying technologies.

Building upon this need for scalability and interoperability, 5G-EmPOWER [77] offers
a RAT-agnostic architecture that enables a centralized controller (referred to as the op-
erating system in [77]) to manage various RATs, such as LTE, NR, and Wi-Fi, through
the southbound interface using its OpenEmpower protocol. This architecture abstracts the
complexity of underlying radio technologies, allowing network operators to access the net-
work state and perform control actions through management applications that communi-
cate with the centralized controller via the northbound interface using high-level Domain-
Specific Languages (DSLs). However, the centralized CP design introduces a fixed control
loop latency, which may pose challenges for latency-sensitive decision-making, such as
radio resource scheduling operating within millisecond or sub-millisecond intervals.

In parallel, FlexRAN [82] takes a hybrid approach, combining centralized and decentral-
ized CP architectures. It achieves this by virtualizing the complex control logic of the RAN
into modular functions within a centralized controller. This controller interacts with the
RAN infrastructure through a custom-tailored southbound API, supporting programmabil-
ity and enabling operators to develop control applications (App) through its northbound
API. FlexRAN also allows dynamic modification of virtualized control functions, facilitat-
ing flexible control delegation, monitoring, and management of RAN operations. However,
its northbound API exposes lower-level details rather than offering high-level abstractions,
making application development more complex. Moreover, while the customizable south-
bound API enhances flexibility, it limits the controller’s ability to seamlessly control mul-
tiple RANs and RATs from different vendors, reducing its overall scalability and interoper-
ability.

Adding another dimension to this landscape, Self-Organizing Networks (SON) [26, 52],
focus on automating network management tasks. SON enables dynamic configuration,
handover control, interference management, and load balancing, making networks more
adaptable to fluctuating conditions. Despite its programmability and automation capabili-
ties, SON implementations have historically relied on vendor-specific solutions, which re-
strict their flexibility and hinder full interoperability across diverse network environments.

These innovations collectively highlight the potential benefits of SD-RAN, yet they re-
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mained largely experimental and in their infancy during the 4G era, with limited real-world
deployment. Furthermore, they underscore persistent challenges, such as interoperability,
latency, and dependence on vendor-specific implementations that next-generation archi-
tectures might overcome. In 5G, SD-RAN principles are increasingly adopted, with Open
RAN, led by the O-RANAlliance [36], making significant progress in addressing these chal-
lenges, as detailed in the next section.

2.2.2 SD-RAN Platforms in 5G Network

Building on the foundational ideas of SD-RAN, O-RAN introduces a groundbreaking ap-
proach to 5G networks by disaggregating hardware and software, enabling vendor-agnostic
interoperability through standardized interfaces (e.g., E2 [42]), as well as enabling pro-
grammability through AI/ML-based solutions. These advancements mark a transition to-
ward more open (vendor-agnostic), scalable, and programmable mobile network architec-
tures, paving the way for further innovation in 5G and beyond [137]. Research leveraging
the O-RAN architecture [117] demonstrates its potential to enhance 5G networks and ad-
dress these challenges.

FlexRIC [134] is an open-source Near Real-Time RAN Intelligent Controller (NearRT-
RIC) platform compliant with O-RAN standards that implements the standardized E2 inter-
face protocol to enable seamless communication between RAN nodes and controller. This
standardized control protocol ensures interoperability across vendors and RATs, addressing
key challenges from the 4G era (see Section 2.2.1). Leveraging the centralized CP architec-
ture defined by O-RAN, FlexRIC enables network operators and vendors to develop App,
known as xApps in O-RAN terminology, which control and monitor RAN operations using
standardized Service Models (SMs).

Unlike the NearRT-RIC implementation provided by the O-RAN Software Community
(OSC) [119], which faces practical limitations from bugs [95], unnecessary feature over-
head [134], and insufficient support for emerging use cases cases, FlexRIC addresses these
shortcomings by offering a more robust, flexible, and extensible platform. By enabling ven-
dors to extend and customize SMs, FlexRIC not only supports the creation of specialized
SD-RAN controllers but also enables advanced capabilities such as fine-grained traffic con-
trol [90] and dynamic radio resource slicing tailored to specific QoS requirements [134],
going beyond the scope of standardized SMs. The importance of customizable SMs is fur-
ther demonstrated in works like [95, 97], where tailored SMs were developed for use cases
such as programmable network slice configuration and statistics collection. These examples
highlight the growing need to extend O-RAN standardized SMs and enable their customiza-
tion to meet the demands of emerging use cases and applications.

Additionally, project JANUS [83] underscores the limitations of standardized SMs, which
evolve slowly and do not scale efficiently. Every new use case requires a new SM, forcing
collaboration with a specific RIC and RAN vendor to add support for each SM. JANUS ad-
dresses this limitation by introducing dynamic virtual RAN functionality, extending the
RIC to allow operators and trusted third parties to write and deploy their own telemetry,
control, and inference logic (referred to as codelets) at runtime. However, it deviates from
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O-RAN specifications, which may limit interoperability across different RAN vendors. In
contrast, FlexRIC [134] not only offers enhanced customizability but also builds on O-RAN
specifications, inheriting its core interoperability features.

Despite these advancements, mobile networks still face significant barriers in achieving
comprehensive control flexibility across the entire system. A major challenge is that cur-
rent approaches [83, 96, 134] primarily focus on enhancing the programmability of RAN
functionalities while the flexible control of Apps and controllers within the SD-RAN archi-
tecture remains underdeveloped. For instance, each use casemay require one ormore Apps,
such as data monitoring, slice control, or handover control. This brings up critical ques-
tions for operators, such as which Apps should be selected and deployed in the network.
At the same time, vendors face the challenge of developing Apps and controllers that can
be dynamically managed to adapt to fluctuating network conditions while responding to
control decisions made by operators. Addressing these challenges is essential for enabling
adaptive and intelligent network control in SD-RAN.

Another challenge is the limited usability of Apps, which are often constrained by
platform-specific implementations. For instance, xApps communicate with the NearRT-
RIC via E2-related APIs [40], which are not standardized as open interfaces - E2 [42]. This
lack of standardization frequently results in vendor lock-in, making it difficult to port Apps
across different controllers or platforms. In addition, the development complexity of Apps
continues to grow. This is due not only to the intricate data structures defined in stan-
dardized SMs but also to the increasingly sophisticated control logic required to manage
heterogeneous RAN environments.

2.3 Why Flexible Control Plane?

In this section, we discuss the need for a flexible CP design in the context of O-RAN and SD-
RAN, respectively. We beginwith the FlexApp framework, which enables platform-agnostic
xApps within the O-RAN architecture. Next, we introduce FlexCtrl, which builds on the
FlexApp framework to deliver low-latency and customized control operations. Finally, we
highlight the role of FlexCtrl in controlling heterogeneous RAN and enabling advanced use
cases like RAN slicing.

2.3.1 Platform-Agnostic xApp in O-RAN

To avoid lock-in with a closed and/or proprietary xApp framework, we compare FlexApp
framework with two others proposed by the open-source community: one developed by
the O-RAN Software Community (OSC) and the other by the Open Networking Foundation
(ONF).While the OSC and ONF xApp frameworks are deployed on their respective NearRT-
RIC platforms, the FlexApp framework offers a distinct approach, as shown in Figure 2.3
and detailed in Table 2.1.
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Table 2.1: State-of-the-art comparison for open-source xApp framework.

xApp Design Approach
Open-Source xApp Frameworks

OSC [123] ONF [124] FlexApp
Operating Platform OSC RIC ONF µONOS RIC Any RIC

Communication Interface RMR/IS95 library gRPC-based APIs E2*
Baseline SDK Language-specific Language-specific Language-agnostic

Programming Language C++, Golang, Python, Rust Golang, Python Supports a broad range of languages
Deployment on NearRT-RIC Embedded Embedded Isolated

Complexity of Data Composition High High Low, with simplified data recursively
Across Multi-Vendor/RAT E2-Nodes exposed at the northbound interface
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Figure 2.3: Comparison of xApp framework from OSC, ONF and the proposed FlexApp.

OSC xApp Framework. The OSC presents its xApp framework [123] (see Figure 2.3a)
on its own NearRT-RIC platform (OSC RIC [119]) and introduces the RIC Message Router
(RMR)2 to communicate with the xApps through its Software Development Kit (SDK). The
RMR is a library that abstracts the message transport mechanism (e.g., Nanomsg, Nanomsg
next generation, or Socket Interface-95 [SI95] [120]) to be used by xApps to send/receive
messages to/from an E2-Node. The message routing and endpoint selection in RMR are
based on a pair of message type and subscription ID, which need to be translated into the
endpoint via a table entry. A non-negligible overhead and latency are observable when this
framework is employed due to the process of selecting an endpoint for each message [121].

ONF xApp Framework. Moreover, the ONF introduces its xApp framework, referred to
as RIC SDKs in Figure 2.3b, for developing xApps on its own NearRT-RIC platform (µONOS
RIC) [124]. These xApps communicate with the µONOS RIC using gRPC-based APIs3,
which provide HTTP request/response communication. Such an SDK encapsulates some
of the complexities of dealing with individual gRPC services (e.g., threading and session
management) to offer routing capabilities, and it requires xApps to provide the endpoint
address (e.g., DNS server hostname, IP address, and port number) [124]. Despite claims that
gRPC is faster than other REST-like transaction implementations, when compared to the
RMR on top of SI95 (RMR/SI95) [122], gRPC cannot achieve the same throughput and with
only acceptable latency when the message rate is less than 10,000 per second.

2https://github.com/o-ran-sc/ric-plt-lib-rmr
3https://github.com/onosproject/onos-api
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FlexApp Framework. In contrast, the proposed FlexApp framework (see Figure 2.3c)
extends the standardized E2AP protocol as an E2* interface. This new interface can onboard
the xApps into the NearRT-RIC and supports bidirectional communication between xApps
and NearRT-RIC while inheriting the existing mechanism in the E2, i.e., Stream Control
Transmission Protocol (SCTP) socket. One key aspect of this framework is to avoid platform
lock-in; hence, the NearRT-RIC platform in Figure 2.3c can be any O-RAN compliant RIC
(e.g., OSC RIC in Figure 2.3a, µONOS RIC in Figure 2.3b, or FlexRIC [134]). This framework
also supports xApp development in a variety of high-level programming languages, such
as Python, GoLang, and Java.

Another advantage of the proposed FlexApp framework is its ability to enable xApps to
specialize in a desired set of SMs, effectively decoupling the SMs from the NearRT-RIC. In
the current approach, different formats for a given SM are standardized, allowing xApps to
manage the SMs’ internal data models by subscribing to specific events and actions. Con-
sequently, an xApp must compose the desired SMs from different E2-Nodes and aggregate
the data accordingly which increases the complexity of managing data in an xApp, particu-
larly as the number of E2 Nodes grows. In contrast, the FlexApp framework simplifies this
process by enabling the composability of data collected from various SMs at an intermedi-
ate level. It achieves this by using a virtualized RAN Function (vRF) to consolidate the data
from different E2-Nodes, which is then exposed to higher-level xApps through its recursive
northbound interface.

2.3.2 Low-Latency and Customized Control Operations

The O-RAN architecture introduces two operational cases for the RIC, based on control
loop durations. Tasks sensitive to latency, such as radio bearer, radio resource, interference,
and mobility managements, are assigned to the NearRT-RIC, which operates with control
loops under 1 s [40]. Meanwhile, tasks requiring longer processing times for large-scale
data analysis and optimization, such as energy efficiency, predictive traffic steering, and
long-term network capacity planning using AI/ML models, are handled by the NonRT-RIC,
which supports control loops exceeding 1 s [30].

While the O-RAN approach supports these two cases, certain advanced RAN function-
alities, such as beamforming and Time Division Duplex (TDD) managements, as well as
Quality of Service (QoS) adjustments, often require control loop intervals in the sub-10ms
or sub-millisecond range, demanding ultra-low-latency control responses under dynamic
network conditions. These stringent requirements cannot be met by the NearRT-RIC or
NonRT-RIC due to their longer control loop intervals. Consequently, real-time systems,
such as DU and RU, are necessary for immediate, direct control. Additionally, the O-RAN
architecture lacks sufficient flexibility to adapt the placement of control logic based on spe-
cific deployment needs, as its centralized applications (e.g., xApps and rApps) limit opti-
mization for latency requirements.

For instance, use case like adaptive RAN slicing across multiple E2-Nodes, which dy-
namically allocates radio resources to delay-critical services, cannot be effectively sup-
ported under the current O-RAN architecture. Such use case rely on real-time control
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Table 2.2: State-of-the-art comparison for control plane design in SD-RAN.

Control Control
Support Control Plane Topologies

Minimum Average
Plane Logic Control RAN
Design Placements(s) Centralized Decentralized Distributed Latency Complexity

SoftRAN [85] RAN Controller,
✓ - ✓ Low LowRAN-Node

FlexRAN [82] App ✓ - - High Low
O-RAN [117] App ✓ - - High Low
HexRAN [96] App ✓ - - High Low

RAN Engine [135] RAN-Node - - ✓ Low High
dApp [81] RAN-Node - - ✓ Low High
JANUS[83] RAN-Node - - ✓ Low High

FlexApp
App,

✓ ✓ - Medium Low
RAN Controller

FlexCtrl
App,

✓ ✓ ✓ Low LowRAN Controller,
RAN-Node

mechanisms and close coordination between E2-Nodes to ensure consistent performance
and meet stringent SLAs. Depending on the specific requirements, control logic may need
to operate closer to the E2-Nodes (e.g., real-time scheduling decisions), moderately farther
from them (e.g., interference management), or significantly farther from them (e.g., energy
management). These limitations underscore the need to enhance the O-RAN architecture
by distributing CP in real-time systems, supporting ultra-low-latency control operations,
and enabling flexible control logic placement for diverse deployment scenarios.

The proposed FlexCtrl architecture addresses these challenges by supporting all three
CP topologies: centralized, decentralized, and distributed, as shown in Figure 2.2. This
flexibility allows for a balance between control latency and RAN complexity, making it
adaptable to diverse deployment scenarios. Unlike existing solutions that rely on specific
CP topologies and are limited to particular use cases, FlexCtrl provides a versatile and uni-
fied approach. A detailed comparison of the proposed solutions, comprising the FlexCtrl
architecture and the FlexApp framework, against the current O-RAN approach and related
works is presented in Table 2.2.

The centralized CP topology [85, 82, 117, 96] simplifies RAN implementations by cen-
tralizing control logic within App(s) or the RAN controller. However, it introduces ad-
ditional control latency due to the need to translate business logic into control logic for
heterogeneous RANs. This translation further increases the complexity of App(s) or RAN
controller and exacerbates control delays, making it less suitable for scenarios handling
low-latency services.

To address these latency challenges, the distributed CP topology [135, 81, 83] embeds
control logic directly within the RAN-Nodes. This approach eliminates intermediate pro-
cessing layers, enabling ultra-low-latency control operations. However, while it minimizes
latency, it significantly increases the complexity of RAN implementations. Each RAN-Node
must independently handle sophisticated control tasks, which complicates coordination
across multiple RAN-Nodes and makes the system harder to manage at scale.
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In contrast, the decentralized CP, as implemented in the FlexApp framework, strikes
a balance by bringing control logic closer to the RAN-Nodes while leveraging an abstrac-
tion layer within the RAN controller. This abstraction layer efficiently manages business
logic and applies it across multiple RAN-Nodes, reducing control latency without the full
complexity of a distributed topology. Additionally, FlexApp simplifies App(s) by offloading
complex processing to a decentralized yet abstracted layer, while retaining the capability
to coordinate multiple RAN-Nodes effectively.

Building on these concepts, the FlexCtrl architecture balances the trade-offs of all three
CP topologies. It enables operators to adaptively allocate control logic to centralized, de-
centralized, or distributed layers based on specific deployment requirements. By providing
this flexibility, FlexCtrl ensures low-latency control operations while maintaining man-
ageable RAN complexity, making it a robust and adaptable solution for dynamic network
conditions.

2.3.3 Controlling Heterogeneous RAN

Controlling heterogeneous RAN becomes increasingly complex when managing diverse
technologies across multiple RAN-Nodes from different vendors. A flexible CP serves as
the glue that unifies and optimizes such environments, providing seamless management of
RAN-Nodes regardless of vendor-specific differences. The FlexApp framework introduces
abstraction for control logic, while the FlexCtrl architecture provides three CP topologies to
support diverse deployment needs. Together, they enable efficient resource management,
low-latency control operations, and advanced use cases such as RAN slicing, making it
possible to support multi-service and multi-tenancy in heterogeneous RAN.

In the context of RAN slicing, the radio resource scheduling aims to use limited spec-
trum for distinct criteria, e.g., Proportional Fairness (PF). Several works explore further
performance metrics, like the ones introduced in NVS [100] and Earliest Deadline First
(EDF) [86] algorithms, by taking particular service requirements into account. Another
aspect is how radio resources are allocated, e.g., the work in [102] provides a two-level ra-
dio resource scheduler (slice- and user-level) by abstracting radio resources from Physical
Resource Blocks (PRBs) to virtual RBs (vRBs).

Building on these ideas, our objective is to increase the modularity and extensibility
of the radio resource scheduler, so that the control logic in the FlexCtrl architecture can
flexibly construct a multi-level scheduling function. To achieve it, we redesign the MAC
scheduler recursively in Section 2.5.

2.4 FlexApp Framework

In this section, we provide an overview of the FlexApp framework within the context of
the O-RAN architecture, focusing on how it enhances the scalability and reusability of con-
trol applications. We also delve into the design details of FlexApp, emphasizing its core
principles and key capabilities.
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Figure 2.4: NearRT-RIC platform without and with the proposed FlexApp framework and
three xApp examples (xApp-I, xApp-II, xApp-III).

2.4.1 Overview

As discussed in Section 2.1, the FlexApp framework is proposed to address challenges such
as platform lock-in and limited xApp reusability. A key approach adopted in FlexApp is to
offer a novel set of abstractions for the vRFs to provide a high level of SM compatibility and
composability, as depicted in Figure 2.4. In fact, this approach can distinguish the xApp
development model by relying on SMs’ logic from that relying on business logic [40]. To
provide more insight, three cases are presented in the same figure.

The first legacy case is xApp-I in Figure 2.4, in which this xApp needs to handle different
RFs (i.e., RF-1 and RF-2) through the corresponding SMs, data, and control actions and form
a virtualized base station to process the data, even in a vendor-specific case. In contrast, the
FlexApp framework provides the notion of vRFs to enable flexible SM composition based
on the xApp requirements. Therefore, vRF-I in Figure 2.4 is formed, which reveals a single
SM abstracting data from the 2 RFs from different vendors to the xApp-II. Further, a higher
level of abstraction can be built via recursive vRFs referencing, e.g., vRF-2 in Figure 2.4
can handle the data from both RF-3 and vRF-1 among different Radio Access Technologies
(RATs) to serve the purpose of xApp-III. Such virtualization allows the construction of new
vRFs from existing RFs/vRFs as well as the recomposition of SMs, while still complying
with E2 interface requirements.

As a concrete example, the vRF related to Quality of Service (QoS) management can be
composed by virtualizing other RFs that handle the data rate (e.g., by scheduling resource
blocks) and latency (e.g., by managing queues). Furthermore, this vRF can also virtualize
another vRF that handles service-specific metrics, such as RAN availability, according to
the business logic in xApp.
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Figure 2.5: The design of FlexApp framework.

To conclude, our proposed FlexApp framework can benefit both RAN providers and
xApp developers. On one hand, it simplifies the development of RFs and lowers the over-
head on the E2-Nodes, since more advanced vRFs become composable via multi-level ab-
stractions. On the other hand, it abstracts the heterogeneous RAN deployment and allows
the newly composed vRF to be tailored to the desired xApp objectives, thereby simplifying
the development of xApp. Furthermore, unlike the relationship between NearRT-RIC and
xApps using platform-specific NearRT-RIC APIs (cf. Figure 2.3a and Figure 2.3b), xApps
under the FlexApp framework are independent components. They have independent life-
cycles and are treated as “first-class citizen applications” with a dedicated E2* interface to
transfer the E2-based context for compatibility.

2.4.2 Design Details

Generally, the FlexApp framework follows the zero-overhead principle to achieve low la-
tency, and it includes fourmain elements, as shown in Figure 2.5: (1) E2* interface, (2) server
library, (3) virtualization layer, and (4) agent library. From the viewpoint of the xApp, a spe-
cialized service controller is formed by utilizing these elements to realize its control logic.
We can see a depiction of such a controller in Figure 2.6, and the design details of these
elements are given as follows:

E2* Interface. The E2* interface supports elementary procedures (e.g., E2* setup request
and response) and services (e.g., report and control) similar to the E2AP protocol [42]. First,
like the E2 interface, the E2* setup request message is initiated by the agent towards the
NearRT-RIC, and, once successfully received, the NearRT-RIC assigns a particular xApp ID
and responds with the information of connected E2-Nodes. However, unlike E2, the E2*
subscription request message is generated by the agent to the NearRT-RIC, including the
E2-Node(s) that this xApp would like to subscribe to. This message is bookkept (e.g., up-
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Figure 2.6: A specialized service controller based on the FlexApp framework.

date the subscription request ID) and then forwarded to the corresponding E2-Node by the
NearRT-RIC. A similar process is followed by a control request message. In total, four new
elementary procedures are added to the E2 ASN.1 specification: E2* Setup, RIC Subscrip-
tion, RIC Subscription Delete, and RIC control. Note that other encoding and decoding
schemes (compared to the standard ASN.1) are supported in the E2* interface using C11
_Generics, which can alleviate existing bottlenecks at the CPU.

Server Library. The server library is essential for extending the NearRT-RIC with a vir-
tualization layer that can aggregate vRFs from RFs/vRFs, as mentioned in Section 2.4. More-
over, it manages the connection towards the agents and multiplexes messages between the
virtualization layer and the agents by using the E2* termination, E2* management, and
E2* message handler modules in Figure 2.6. Also, this library is designed as an event-
driven/callback-driven system, adhering to the aforementioned ultra-lean design principle
to imposeminimal overhead. Therefore, it activates the virtualization layer onlywhen there
are new messages to be handled.

Virtualization Layer. The virtualization layer can implement new SMs on top of the
newly composed vRF and expose specific information to xApps. From the xApp viewpoint,
this layer is the key in the specialized service controller, and there are four modules in
this layer (cf. Figure 2.6). First, the E2SM abstraction handles the vRFs and the respective
SMs to expose the prepossessed information to the northbound xApp via the E2* interface.
Moreover, the E2SM management module handles the information of the supported SMs
in the NearRT-RIC. Then, the subscription management module is responsible for the sub-
scription procedure and tracks the existing RF subscription statuses for each xApp. Finally,
the service management module takes care of the interaction between xApps and (v)RFs by
processing the messages related to the basic services specified in E2SM, including report,
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insert, control, and policy.more than one xApps sends conflicting messages to the same
(v)RFs.

Agent Library and xApp Development. From the perspective of xApp, the agent li-
brary is the cornerstone of realizing its logic because it is built on top of this library in the
southbound. Furthermore, as shown in Figure 2.5, an xApp can recursively expand the in-
terface at its northbound by reusing the server library. In detail, two building blocks exist
in this library as a part of the SDKs: C SDK and SWIG4 as shown in Figure 2.6. The C SDK
refactors all common functionalities of an xApp (e.g., communication, message handling,
encoding/decoding, and data layer) under a single C library to be exposed to xApps for the
development of C/C++ based xApp. In contrast, as mentioned in Section 2.3, to enable the
xApp development using other high-level programming languages, the SWIG compiler is
apoted to create the wrapper codes for the C-based library of E2/E2* interfaces. To develop
an xApp, the northbound SDK is provided in the agent library functions including:

• init_xapp_api: Initializes the xApp by sending E2* setup request to the NearRT-RIC.

• e2_nodes_xapp_api: Retrieves information about connected E2-Nodes.

• report_sm_xapp_api: Enables report service by subscribing to a RF in an E2-Node.

• control_sm_xapp_api: Controls a targeted RF on an E2-Node..

In short, the FlexApp framework provides several key takeaways: (a) Forward compat-
ibility, such as dedicated controllers and xApps, (b) Ultra-lean design by extending E2AP
without extra overhead, (c) A unified SDK exposing generic APIs for xApp development,
and (d) Multilingual xApp development kit.

2.4.3 Implementation and Testbed Setup

Weprototype the proposed FlexApp framework by implementing it on the top of FlexRIC [134],
which is the O-RAN compliant NearRT-RIC platform developed by the OpenAirInterface
(OAI) [114]. This implementation validates the performance of the E2* interface (referred
to as the E42 interface in the FlexRIC implementation) and the concept of the virtualization
layer in the NearRT-RIC, as detailed in the evaluation results presented in Section 2.6.

Furthermore, we setup two testbeds to evaluate the FlexApp framework: a containerized
(cloud-native) environment and a non-containerized (bare-metal) environment. The cloud-
native testbed runs on Ubuntu 20.04.5, with 20 CPUs at 4.8 GHz, 64 GiB of memory, and
uses Kubernetes v1.24.5 alongside Containerd v1.6.8. The bare-metal testbed operates on
Ubuntu 20.04.1, with 12 CPUs at 4.7 GHz and 32 GiB of memory, without any container
orchestration.

To represent the functionalities within RF and perform the RIC report service [40], we
use the E2-emulator provided by the FlexRIC.Within each E2-emulator, theMediumAccess

4https://www.swig.org/
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Control (MAC) RF is enabled, and the corresponding data is encapsulated into a customized
SM - MAC SM. Then, our self-developed xApp subscribes to the MAC SM with a particular
periodicity, and the composed E2SM will be periodically updated by the E2-emulator using
E2AP and sent to the xApp using the E2* interface.

2.5 FlexCtrl Architecture

In this section, we provide an overview of the FlexCtrl architecture, which extends the
FlexApp framework, and compare its three control topologies, using RAN slicing as a rep-
resentative use case. Additionally, we delve into the design details of FlexCtrl, focusing on
the abstraction of control logic and the implementation of the redesigned radio resource
scheduler.

2.5.1 Overview

Building on the above foundation, we introduce the FlexCtrl architecture, which integrates
the FlexApp framework and extends the current O-RAN architecture. This extension en-
ables the flexible deployment of control logic across centralized, decentralized, and dis-
tributed topologies (see Figure 2.2), providing the adaptability needed to meet diverse de-
ployment scenarios and achieve shorter control loop latencies.

One use case that demonstrates this flexibility is adaptive RAN slicing, where the radio
resource scheduling function is implemented as a recursive design, allowing heterogeneous
control actions to be performed based on the control logic placement. Moreover, the recur-
sive design concept can be extended to other RFs, empowering RAN-Nodes to efficiently
support multi-service and multi-tenancy operations.

In Figure 2.7, a high-level architecture of FlexCtrl is shown, containing business logic
(yellow), control logic (blue), and RAN UPs (gray). The service provider defines the busi-
ness logic5, which specifies the required KPIs for a particular service, such as throughput
and latency, as part of the SLA. These KPIs are represented in Figure 2.7 as ExpTput and
ExpLat, respectively. Control logic is then responsible for meeting these SLAs by instanti-
ating appropriate control actions (e.g., create network slices) on the controllable RFs within
the RAN UP (e.g., radio resource scheduling functions). Depending on the topology used
(cf. Figure 2.2), control logic can reside in the App, the RAN controller, or the RAN-Node:

• Centralized: Apps handle business logic and control logic. As shown in Figure 2.7,
App-I abstracts the expected throughput of Service 1 into control logic, e.g., PRB num-
ber, in a comprehensible manner to the radio resource scheduling function (denoted
as SCH in Figure 2.7) within RAN-Node A.

• Decentralized: Apps define business logic and use service APIs exposed by the RAN
controller. In Figure 2.7, App-II and App-III request the expected throughput for

5Business logic is used to encode real-world business rules as a sequence of commands or actions, and can
be defined in a nested way.

31



Flexible Control Plane 2.5 FlexCtrl Architecture

RAN-Node A

Redesigned
Radio Resource Scheduler

RAN 
Controller

SCH

SCH

UE1

Abstract Control Logic
S3S2 S2a S2b

RAN-Node B

Redesigned Radio Resource Scheduler

SCH

SCH

UE2UE3 UE4

SCH

SCH

SCH

Service Level Agreement

App-II

Service2: ExpTput

Service2a: ExpLat
Service2b: ExpLat

Service Level Agreement

App-III

Service3: ExpTput

RAN-Node C

Redesigned Radio Resource Scheduler

Abstract Control Logic

SCH

SCH SCH

UE5 UE6

S4 S5

Service Level Agreement

App-II

Service5: ExpLat

Centralized
Control Plane

Decentralized
Control Plane

Distributed
Control Plane

Legend

Business Logic

Control Logic

RAN User Plane Service APIs

RAN APIs

Slice-Level
Scheduling Results

User-Level
Scheduling Results

Service Level Agreement

App-I

Service1: ExpTput

Abstract Control Logic

Service4: ExpLat
S1

Controllable 
RAN Function

Figure 2.7: FlexCtrl architecture with three abstract control logic examples.

Services 2 and 3, respectively, and Service 2 asks for extra expected latency for its
two sub-services (2a and 2b). The RAN controller abstracts all these requests into the
control logic and uses RAN APIs toward SCHs within RAN-Node B.

• Distributed: RAN-Nodes incorporate both controllable functions in RAN UP and
control logic, allowing shorter control loops in real-time. Consider App-III and App-
IV in Figure 2.7, RAN-Node C embeds the abstracted control logic from the expected
latency for Services 4 and 5 directly into the SCHs within RAN UP.

Moreover, the abstract control logic shown in Figure 2.7 unifies the underlying functions
within RANUP and used SMs across various dimensions, includingmulti-vendor andmulti-
RAT RAN-Nodes. Thus, it allows tailoring the control logic to the service requirements in
terms of the requested KPIs. Such an “abstraction layer” is essential to FlexCtrl.

Entering the controllable RFs within RAN UP as depicted in Figure 2.7, three redesigned
radio resource scheduler are shown in RAN-Nodes A, B, and C for Services 1, Services 2
and 3, as well as Service 4 and 5, respectively. These RFs are realized by employing the
recursive approach and will be detailed in the next subsection, which allows for multi-
level scheduling. At the slice level, radio resources are partitioned based on (sub-)slice
information (e.g., SLA). These per-slice resources are then allocated to the associated UEs
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Figure 2.8: Abstract control logic and redesigned radio resource scheduler for recursive
operation in the RAN slicing use case.

based on UE information, e.g., QoS. In Figure 2.7, the colors within each SCH represent the
radio resources allocated for the corresponding service.

2.5.2 Design Details

In this section, we elaborate on two key enablers of FlexCtrl: (a) abstract control logic, and
(b) redesigned radio resource scheduler to support recursive operations in the RAN slicing
use case as an example.

Abstract Control Logic. The aim of abstract control logic is to allow network operators
to define the characteristics of each slice in a flexible manner based on the KPIs of each
service without disclosing specific deployment details (e.g., multi-vendor and multi-RAT
at various sites). As depicted in Figure 2.8, the process of controlling RAN slices is done
by the “mix-and-match” abstract control logic between the requested KPIs for each service
and the respective slice configuration (e.g., radio resource share), which includes setting up
slices, and deciding the scheduling algorithm and parameters. Specifically, four tasks are
included as shown in Figure 2.8:

1. Sorting: Arrange services based on their requested KPIs or non-technical criteria,

2. Virtualization: Virtualize radio resources of RAN-Nodeswith tailored approach (e.g.
PRB to vRB),

3. Filtering: Adjust the requested KPIs in accordance with the (virtualized) resources
of RAN-Nodes,

4. Mapping: Create slice configurations by mapping the requested KPIs to use respec-
tive RFs (e.g., scheduling algorithm and parameters).
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Redesigned Radio Resource Scheduler. RFs redesign is key to FlexCtrl, and we fo-
cus on the radio resource scheduler as an example. First, it is divided into two parts in
Figure 2.8: (a) pre-processor and (b) post-processor. The former incorporates the radio
resource scheduling function (denoted as SCH in Figure 2.8) and can be controlled as a
RF, while the latter allocates resources to physical channels based on the results from the
pre-processor. Then, the SCH is redesigned recursively to dynamically apply different al-
gorithms and parameters based on performance requirements and scheduling constraints,
effectively realizing both slice- and user-level scheduling. By doing so, the original schedul-
ing problem can be decomposed, further increasing flexibility and extensibility.

Algorithm 1 Recursive radio resource scheduling
Global Variable
C is a vector of size C with slice configuration (scheduling algorithm and associated
user information).
Si is a vector containing the number of scheduled resources to i-th slice slice and
its associated UEs.
Input
l is the scheduling level, equal to slice or user.
r is the number of available resource blocks.
N is the set of unscheduled slices.

1: procedure SCH(l, r,N )
2: if r > 0 then
3: if l = slice then
4: i← SelectSlice(C,N )

5: Si[0]← min (r,AllocRB(r,C[i], 0)) ;
6: r ← r − Si[0];
7: N ← N \ {ci};
8: if length(Si) > 1 then SCH(user,Si[0],N )

9: end if
10: if |N | > 0 then SCH(slice, r,N );
11: end if
12: else
13: j ← 1

14: while r > 0 and j < length(Si) do
15: Si[j]← min (r,AllocRB(r,C[i], j));
16: r ← r − Si[j];
17: j ← j + 1;
18: end while
19: end if
20: end if
21: end procedure

Practically, this recursive approach is provided in details in Algorithm 1, and we first
define two sets:

• C :=
{
c1, · · · , c|C|

}
contains all slices to be scheduled.
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• Ui :=
{
u1, · · · , u|Ui|

}
,∀ci ∈ C includes all associated UEs with the i-th slice.

Then, two global variables are formed in Algorithm 1:

• C is a vector of size |C| comprising all slice configurations.

• Si is a vector of size |Ui| + 1 including the number of scheduled resources for the
i-th slice (i.e., Si [0] as the first element of Si) and for its associated UEs (i.e., Si [j],
∀j ∈ [1, |Ui|]).

Finally, Si, ∀ci ∈ C will be passed to the post-processor as the scheduling results.

Then, three inputs are defined: l denotes the scheduling level, r is the number of avail-
able RBs, and set N contains the unscheduled slices. To start the recursive operation, the
following arguments are used: l ← slice, N ← C, and r ← R, where R is the maximum
number of RBs can be scheduled. At the slice-level from line 4 in Algorithm 1, we first select
an unscheduled slice using the SelectSlice (·) function, allocate RBs to this slice using the
AllocRB (·) function, recursively call SCH to assign RBs to its associated UEs (see line 9),
and move to the next unscheduled slice (see line 12). At the user-level from line 15, every
associated UE is looped through to schedule all slice-level resources, i.e., Si [0].

2.5.3 Implementation and Testbed Setup

We implement our proposed FlexCtrl architecture on top of a platform comprising compo-
nents from OAI [114], including the core network, gNB (RAN-Node), and soft-UEs, along
with FlexRIC [134], which serves as the NearRT-RIC (RAN Controller) and xApp (App).
The abstract control logic is distributed across the xApp, NearRT-RIC, and gNB. Messages
exchanged between these components are encapsulated in two customized SMs: SLA and
Slice. Moreover, the testbed environment consists of two Ubuntu 20.04.1 machines. The
first machine, used for the gNB, UE, NearRT-RIC, and xApp, is equipped with 12 CPUs (3.0
GHz each) and 32 GiB of memory. The second machine, dedicated to the core network,
features 18 CPUs (3.7 GHz each) and 31 GiB of memory.

2.6 Performance Evaluation

In this section, we validate the performance of the FlexApp framework and the FlexCtrl
architecture through a series of evaluations based on prototypes implemented on state-of-
the-art platforms. First, the performance of the FlexApp framework is evaluated in three
aspects (see Sections 2.6.1, 2.6.2, and 2.6.3) using a prototype built on the O-RAN-compliant
FlexRIC [134]. Specifically:

• Low-LatencyControl Operation and Scalability: In Section 2.6.1, wemeasure the
control loop latency from the E2-Node to the xApp under different numbers of E2-
Nodes, which represents the capability to realize ultra-low latency operations even
in a scaled deployment.
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• Superior Performance of E2* Interfcae: Section 2.6.2 presents a comparison of the
proposed E2* interface with two other transport mechanisms, gRPC and RMR/SI95,
adopted by the OSC and ONF, respectively (cf. Figure 2.3).

• Efficient Two-Level Abstract Control Logic: Section 2.6.3 verifies the efficiency
and effectiveness of the xApp control logic after applying the virtualization layer for
multi-level abstraction within the FlexApp framework.

Next, we evaluate the FlexCtrl architecture in two aspects (see Sections 2.6.4 and 2.6.5)
through a prototype built on the end-to-end 5G stack providing by OAI [114], with control-
lable radio resource scheduling functions implemented in the OAI gNB:

• Flexible Control Operation: Section 2.6.4 provides a quantitative comparison of
three CP topologies, analyzing the trade-offs between control operation latency and
the additional complexities introduced at the RAN-Node.

• Dynamic RAN Slicing: In Section 2.6.5, we evaluate network and user performance
in scenarios where the RAN is dynamically sliced, showcasing the programmability
and adaptability enabled by real-time control operations.

2.6.1 Control Loop Latency and Scalability

Setup and Workloads. In this evaluation, three Precision Timing Protocol (PTP) syn-
chronized machines are used to deploy the E2-emulator, FlexRIC, and xApp. We cover both
containerized and non-containerized environments. The xApp subscribes to the MAC SM
and obtains the monitoring data from the E2-emulator(s) via the E2* interface for every
Transmission Time Interval (TTI) in a 12-byte message format (including E2AP and E2SM
protocols). Two relationships between xApps and E2-emulator are evaluated: 1-to-N and
N-to-1.

Low-Latency Control Operation. As shown in Figure 2.9a, both the average and the
maximum values of control loop latency are presented for 10ms TTI in a containerized
environment. Therefore, within 1 sec, there are 100 messages to be processed for each
connected E2-emulator or xApp. The average control loop latency remains constant when
the number of E2-emulators or xApps is low (i.e., 8); however, its values increase when
there are either 32 E2-emulators6 or 32 xApps, but remain below 1 ms for ultra-low latency
operations. A similar trend is observed in the maximum control loop latency, where the
values are all lower than 10ms. This guarantees that the FlexApp approach will not produce
an internal bottleneck under a 10ms TTI.

6The maximum number of supported E2-emulators is currently limited by FlexRIC; hence, we only eval-
uate up to 32 E2-emulators.
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(a) Control loop latency between xApp(s) and
E2-emulator(s).
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(b) Feasible regions of different latency restric-
tions.

Figure 2.9: Latency measurements and scalability evaluations.

Scalability. Based on the results shown in Figure 2.9a, we can conclude that the FlexApp
framework can support 32 xApps using its northbound to monitor SM from an E2-Node,
and an xApp can simultaneously monitor 32 E2-Nodes connected to the NearRT-RIC. In
parallel, we perform a stress test on the FlexApp framework, which shows that up to 350
xApps could be supported per machine, and the average control loop latency is around
6ms. This limitation is due to the thread mode implemented in our prototype and the way
messages are enqueued. We plan to make improvements in the future.

KeyObservations. In addition, wemeasure the control loop latency in a non-containerized
environment to plot the viable regions for different latency restrictions, as shown in Fig-
ure 2.9b, in terms of various combinations of TTI values and the number of E2-emulators.
Take the example case with 1ms latency restriction, its viable region covers both the light
orange and the light red parts in Figure 2.9b, since these two parts can support latency be-
low 1ms. We can see a tradeoff between how frequently the data can be updated and how
many E2-Nodes can be monitored simultaneously, e.g., shorter TTI values must come with
fewer monitored E2-Nodes. Also, the red star in the same figure represents the setting used
in Figure 2.9a, i.e., 10ms TTI and 32 E2-Nodes, and this setting is confirmed to be functional
for 1ms latency restriction.

2.6.2 Benchmarking on Transport Mechanism

Setup andWorkloads. Different transport mechanisms between NearRT-RIC and xApp
are compared in this section. Since our focus is on the transport mechanism, a simple 1-to-1
relationship between xApp and FlexRIC is applied (similar to [122]), but with two different
TTI values, i.e., 250 µs and 10ms. Specifically, an xApp is used to measure the latency
by calculating the time difference from when the indication message is forwarded by the
NearRT-RIC to when it arrives at xApp callback function.

Latency and CPU Usage. In Table 2.3 and Figure 2.3a, both E2* interface and gRPC are
compared at different message rates, and the E2* interface outperforms at every percentile
value. Furthermore, in Figure 2.3b, we compare the CPU utilization of the xApp to receive
the transported messages among the E2* interface, the gRPC, and the RMR/SI95. We can
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Table 2.3: Latency comparison in
milliseconds.

Min. Max. 50% 95% 99%
Total

Rate
Sent

(Msg./s)
Msg.

gRPC 0.07 >1.0 0.15 0.18 0.20 100K 4K
E2* 0.02 0.39 0.11 0.11 0.11 100K 4K
gRPC 0.20 0.54 0.31 0.37 0.39 25K 0.1K
E2* 0.03 0.21 0.06 0.06 0.06 25K 0.1K

4K(msg/s)
gRPC
E2*

(a) Latency comparison: 100K mes-
sages sent at 4K rate (msg/s).

260

101.5

235

(b) CPU usage com-
parison.

Figure 2.10: Latency and CPU usage comparison of
transport mechanisms.

see that the E2* interface consumes considerably less CPU resources (i.e., 101.5% compared
with 260% and 235%) than the other two.

Key Observations. In summary, by design, the E2* interface can reach a lower latency
than the gRPC because it performs fewer work/abstractions, e.g., a raw SCTP connection
in the E2* interface versus an HTTP-based approach in the gRPC. Moreover, the E2* inter-
face consumes less CPU resource at the xApp owing to the simpler FlexApp architecture
and fewer messages exchanged between xApp and NearRT-RIC. To provide more details,
the xApp using RMR/SI95 must handle the message from the NearRT-RIC for routing man-
agement before handling the message, and the message must be encoded/decoded several
times between each micro-service.

2.6.3 Two-Level Abstract Control Logic

Setup and Workloads. To validate the multi-level abstract control logic approach de-
scribed in Section 2.4, we build a virtualization layer (see Figure 2.5) in the NearRT-RIC
platform and test its ability to interact with two separate slicing control xApps. Based on
the respective service requests from these xApps, radio resources from the E2-emulator,
i.e., 162 Resource Blocks (RBs) in a 60MHz bandwidth with numerology 1 can achieve up
to 200Mbps, will be assigned accordingly. Moreover, to compare different perspectives af-
ter and before the two-level abstractions (see xApp-II in Figure 2.4), two respective figures
are presented in Figure 2.11a and Figure 2.11b.

Abstract Radio Resource. Figure 2.11a (2nd level abstraction) shows the virtual RBs as-
signed to the xApp by the virtualization layer, whereas Figure 2.11b (1st level abstraction)
represents the physical RBs seen from the NearRT-RIC perspective. Initially, only xApp1 is
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‹App1-VRBs ‹App2-vRBs

(a) Percentage of virtual RBs from xApps’ perspective.

VRIC-s1-pRBs VRIC-s2-pRBs

(b) Percentage of physical RBs from NearRT-RIC’s perspective.

Figure 2.11: Assigned RBs percentage in two-level abstract
control logic.

Figure 2.12: Measured latency
of control loop.

present, and it needs 80Mbps for its service. Therefore, only 40% of the physical RBs are re-
quested by the virtualization layer from the E2-emulator (see vRIC-s1-pRBs in Figure 2.11b).
But from xApp1’s point of view, it assumes it receives 100% of the virtual RBs because of the
second-level abstraction (see xApp1-vRBs in Figure 2.11a). At the 7 s, xApp2 is deployed
and requests 120Mbps instead. In this regard, the virtualization layer requests 60% of the
physical RBs from the E2-emulator (see vRIC-s2-pRBs in Figure 2.11b), but xApp2 receives
100% of the virtual RBs (see xApp2-vRBs in Figure 2.11a), similar to xApp1. Then, at the
14 s, xApp2 lowers its request to 40Mbps, and thus the corresponding decreases by a factor
of three are made in both Figure 2.11a and Figure 2.11b. Finally, xApp2 releases its request
at the 21 s but has no effect on xApp1.

Control Loop Latency. Furthermore, we measure the control loop latency between the
E2-emulator and the xApp after considering the virtualization layer as the second-level ab-
straction. In specific, the measured latency as shown in Figure 2.12 represents the time
difference from when the xApp sends a control message until it receives the control ac-
knowledgement. Compared with the measurements conducted in Section 2.6.1, these re-
sults are more informative in terms of considering the second-level abstraction as well as
the latency statistics for the control loop. We can see that the latency after considering
the second-level abstraction is approximately three times higher than that of the first-level
abstraction case. However, it still fulfills the requirements for control loops in NearRT-RIC
(between 10 ms and 1 sec), implying that extra-level abstractions (e.g., third-level abstrac-
tion xApp-III in Figure 2.4) are potentially feasible.
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Figure 2.13: Control loop latency comparison.

Table 2.4: Memory consumption compari-
son.

Control Plane Cen. Dec. Dis.Topology
Control Logic xApp NearRT-RIC E2-NodesPlacement

Baseline Memory 3.41MB 3.50MB 1.19GB
Extra Memory 0.23MB 0.10MB 0.26MBof Control Logic

Number of Control Logic 1 1 NFor N E2-Nodes

2.6.4 Trade-Off Between Three Control Plane Topologies

Setup and Workloads. In this section, we quantify the trade-off between three distinct
CP topologies - Centralized (Cen.), Decentralized (Dec.), and Distributed (Dis.) - in terms
of control loop latency and resource consumption. In each topology, abstract control logic
is deployed in different components: the App, RAN controller, and RAN-Node. These cor-
respond to the O-RAN terminology for the xApp (App), NearRT-RIC (RAN controller), and
E2-Node (RAN Node), respectively. This control logic processes service requirements de-
fined in the SLA SM (received via service APIs) and translates them into slice configurations
in the Slice SM (communicated through RAN APIs).

Latency of Control Operation. First, the control loop latency is measured between the
location of abstract control logic and the corresponding Rf in Figure 2.13. We can see that
the distributed topology has the lowest mean value and least variation, the reason behind
this is that there is no need to leverage the protocol stack, i.e., Stream Control Transmission
Protocol (SCTP), between E2-Node and NearRT-RIC as well as between xAPP and NearRT-
RIC for communication. Such benefit is essential to realize time-critical business logic into
the real-time programmable functions in RAN UP for deterministic behavior. In contrast,
the decentralized and centralized topologies take 8x and 17x more latency, due to the extra
one-hop and two-hop operations, respectively.

MemoryUsage ofControl Logic. We thenmeasure thememory usage of xApp, NearRT-
RIC, and E2-Nodes in Table 2.4 before and after introducing the abstract control logic. First,
the extra memory incurred by realizing the abstract control logic in NearRT-RIC (decentral-
ized topology) is minimal. This is because the NearRT-RIC was originally designed to com-
municate with xApp and E2-Node via SLA SM and Slice SM, so no extra message handling
is required. Also, when we compute the ratio of the extra memory usage to the baseline
memory usage, the smallest result occurs in the distributed topology. This is because an
E2-Node already requires a larger baseline memory to accommodate all RFs. But when a
single business logic would like to control N E2-Nodes (N>1), this extra memory usage for
abstract control logic needs to be deployed in every E2-Node due to the distributed nature.
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Key Observations. To sum up, there are pros and cons to deploying control logic in
different locations. First, the centralized topology enables the xApp to directly define its
requirements for all RAN-Nodes, and it can naturally control multiple E2-Nodes without
additional resources (cf. Table 2.4), but at the cost of a higher control loop latency (cf.
Figure 2.13). In contrast, the decentralized topology requires minimal resources and can
control multiple underlying E2-Nodes without further resources (cf. Table 2.4). Also, the
control loop latency is reduced compared to the centralized one (cf. Figure 2.13). Finally, the
distributed topology shows minimal control loop latency with the smallest variance to en-
able deterministic business logic; however, control logic abstraction needs to be performed
at each E2-Node.

2.6.5 Use Case: Dynamic RAN Slicing

Setup andWorkloads. In this section, we aim to show the capability of FlexCtrl for the
use case - dynamic RAN slicing - when applying different algorithms and changing pa-
rameters on-the-fly. Specifically, a single E2-Node is used to serve UE1 and UE2, and its
maximum number of schedulable RBs is R=106. Moreover, due to radio condition, the max-
imum cell capacity is about 130Mbps, and we send fixed 120Mbps downlink User Datagram
Protocol (UDP) traffic to each UE. It is worth emphasizing that this scenario is created to
observe the impacts on dynamic RAN slicing even when RAN UPs is fully loaded. More-
over, six scenarios are described in Table 2.5 to serve both UE1 and UE2, with the number
of slices varying between zero (Scenario 1), one (Scenarios 2 and 5) and two (Scenarios 3, 4,
and 6). Also, both NVS [100] and EDF [86] algorithms apply different parameters in these
scenarios: NVS uses the cap parameter to identify the slice radio resource share in percent-
age, while EDF uses the d parameter to indicate the maximum delay and the n parameter
to denote the number of RBs provided during this period7.

As follows, we go through the results of each scenario in terms of RB utilization percent-
age and MAC scheduler processing time at E2-Node (Figure 2.14a), the perceived through-
put at UE (Figure 2.14b), and both one-way delay and packet loss percentage (Figure 2.14c):

Scenario 1. At 5 sec, both UE1 and UE2 consume 50% of RBs because no slicing is em-
ployed and the PF algorithm is used at the user-level. Since the sum of UP traffic (240Mbps)
is much higher than the cell capacity (130Mbps), the one-way delay and loss rate are high,
but seem fair to both UEs.

Scenario 2. At 22 sec, we use the NVS algorithm and set 70% of the radio resources to
slice 1, so that each UE takes 35% of the radio resources. Moreover, both one-way delay
and loss rate increase accordingly (around 1.3x) due to traffic overload of a finite queue size
(i.e., first-in, first-out blocking queue).

7The EDF algorithm creates a priority list of network slices based on their current deadline, but the number
of RBs will not exceed n.
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Table 2.5: Description of six scenarios (Here s1 and s2 represent slice 1 and 2, respectively).

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6
No s1 (NVS, cap=70): s1 (NVS, cap=70): UE1 s1 (NVS, cap=50): UE1 s1 (EDF, d=2, n=150): s1 (EDF, d=2, n=150): UE1

Slicing UE1, UE2 s2 (NVS, cap=30): UE2 s2 (NVS, cap=50): UE2 UE1, UE2 s2 (EDF, d=20, n=620): UE2

(a) RB usage and MAC scheduler processing time. (b) Downlink throughput of two UEs.

(c) One-way delay and packet loss percentage.

Figure 2.14: Network and user performance in a fully-loaded scenarios with RAN controlled
by an xApp in centralized control plane topology.

Scenario 3. At 40 sec, the second slice is set up with 30% of the radio resource for UE2;
thus, UE1 will occupy all 70% of the radio resource for slice 1. As for the one-way delay in
Figure 2.14c, it is inversely proportional to cap values, but UE1 has a larger latency than
in Scenario 1. This is because the NVS algorithm selects one slice at a time, so higher
throughput (cf. Figure 2.14b) does not imply lower delay (cf. Figure 2.14c).

Scenario 4. At 62 sec, both slices use cap=50, so compared to Scenario 1, both UEs use
a similar number of RBs and have similar throughput and loss rates. Due to the above
characteristic of the NVS algorithm, the one-way delay is slightly higher than Scenario 1.

Scenario 5. At 79 sec, the EDF algorithm is applied and the second slice is removed. Note
that the EDF algorithm will preserve n=150 RBs within the maximum delay of d=2 slots. So
about 70% of RBs will be allocated to Slice 1, similar to Scenario 2; however, this scenario
has a lower one-way delay because the preserved resources are fixed periodically, which is
not the case for the NVS algorithm.

Scenario 6. At 98 sec, the second slice is set up, and it requests about 30% of RBs in a
relaxed deadline d=20. In Figure 2.14a, UE1 takes about 60% of RBs, while UE2 occupies
30% of RBs. It is worth noting that about 10% of RBs are unused, since we do not over-
provide the values of n, which is smaller than the maximum number of schedulable RBs
per slot. We also see that UE1 now has a lower latency and loss rate than Scenario 1, because
it has a smaller deadline and thus takes precedence over UE2 most of the time, while both
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UEs are only handled by the PF algorithm in Scenario 1.

In short, the FlexCtrl framework enables dynamic RAN slicing no matter what algo-
rithms or parameters are changed on-the-fly. Also, the redesigned radio resource scheduler
has a very small footprint (cf. Figure 2.14a), even when RAN is fully loaded.

2.7 Discussion and Future Work

The performance evaluation of both the FlexApp framework and FlexCtrl architecture demon-
strates their combined potential to achieve the vision of a “Flexible Control Plane” for mod-
ern and future SD-RAN systems.

The FlexApp framework demonstrates its suitability for seamless integration with the
NearRT-RIC platform, outperforming other xApp frameworks by delivering lower latency
and reduced CPU usage while introducing novel functionalities like two-level abstraction.
These features simplify xApp development by abstracting raw data into business logic
through a virtualization layer, enabling ultra-low latency operations supported by the in-
novative E2* interface. Informative results, such as the feasible region (Figure 2.9b) and
control loop latency (Figure 2.12), provide valuable insights for optimizing xApp deploy-
ments across different RAN configurations.

Complementing FlexApp, the FlexCtrl architecture enhances flexibility by enabling dy-
namic RAN slicing with exceptional adaptability. It supports real-time changes to slicing
parameters, algorithms, and UE-slice associations without performance degradation or sys-
tem interruptions. Comparative analysis of three CP topologies reveals distinct trade-offs.
The centralized topology, widely adopted in current O-RAN architectures, offers full control
over business logic implementation but at the expense of higher latency and tighter App-
platform dependencies. The decentralized topology achieves lower control loop latency
and reduced resource usage while managing multiple E2-Nodes efficiently. The distributed
topology, with its minimal latency (<50 µs as shown in Figure 2.9a) and deterministic real-
time control, is ideal for time-sensitive applications in smaller E2-Node clusters. Together,
FlexApp and FlexCtrl work synergistically to deliver a flexible CP that meets the demands
of diverse use cases.

Looking ahead, future work will focus on scaling the northbound interface of control
applications to support more complex, multi-tier, and multi-RAT RAN topologies while
leveraging the virtualization layer for enhanced abstraction. This includes expanding the
flexibility of control applications and exploring new functionalities, such as interference
management, to improve RAN coordination. Additionally, porting existing control appli-
cations, such as traffic steering, will enhance compatibility and interoperability across RAN
controller platforms.
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2.8 Conclusions

In this chapter, we introduced the FlexApp framework and the FlexCtrl architecture as inte-
gral components for achieving a flexible CP in future O-RAN and SD-RAN systems, tailored
to meet emerging use cases.

The FlexApp framework is designed to support latency-sensitive RFs while enabling
multi-level abstractions and utilizing a future standardized E2* interface for seamless com-
munication between xApps and the NearRT-RIC. Its compatibility with various NearRT-RIC
platforms ensures broad applicability. Performance evaluations of the FlexApp prototype
highlight its key advantages, including ultra-low latency operation, high scalability, mini-
mal overhead, and advanced abstraction capabilities.

The FlexCtrl architecture extends control flexibility and enhances the real-time pro-
grammability of the RAN functions, surpassing the current limitations of the O-RAN archi-
tecture. By supporting three distinct CP topologies, FlexCtrl enables the customization of
control logic placement based on scenario-specific latency requirements. The redesigned
RAN functions further enable dynamic RAN slicing through abstracted control logic. Pro-
totype evaluation confirms that FlexCtrl supports all three topologies, achieves real-time
control capability (under 50 µs in the distributed topology), and enables dynamic RAN slic-
ing without performance degradation.

These contributions mark significant progress toward a flexible CP, setting a strong
foundation for innovations in 5G-Advanced networks and providing the essential building
blocks for future 6G systems.
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3.1 Introduction

The Fifth Generation (5G) system is designed with evolving principles, regularly upgraded
with each generation to support not only the Third-Generation Partnership Project (3GPP)
services but also IP-based services, such as web browsing and other forms of Internet ac-
cess [18]. However, with the rapid growth of the application ecosystem and the rise of
over-the-top services, application traffic has become the primary source of network usage
for end-users [80]. Unlike the relatively stable evolution of mobile network infrastructure,
application traffic characteristics often change faster due to frequent software updates and
new releases, outpacing the typical ten-year mobile network upgrade cycle.

In this context, we envision that next-generation mobile networks will embrace an
application-centric design, characterized by a flattened and routing/switching-based archi-
tecture, to enable a converged network [92]. This new focus will enhance interconnections
between points of presence and provide real-time information for application decision-
making. From an application perspective, it can interface with connected access network
technologies (e.g., WiFi) and network infrastructure elements (e.g., router), allowing appli-
cations to optimize traffic delivery path(s) and improve the efficiency.

As for today, achieving this goal in 5G faces three challenges: First, separating Radio
Access Network (RAN) functions, either by splitting the Distributed Unit (DU) and Cen-
tralized Unit (CU) or dividing the User Plane (UP) from the Control Plane (CP), can cause
inconsistencies between traffic control policies and radio resource scheduling. Second, RAN
operates on aggregated service data flows called Data Radio Bearers (DRBs), which limits
its ability to provide precise link-layer information of each flow to applications. Third, tun-
neling and encapsulation between CU-UP and User Plane Function (UPF) add processing
overhead, introduce latency, and hinder direct IP routing for local User Equipment (UE)
communications.

Beyond the challenges in 5G UP, enabling RAN programmability follows different ap-
proaches. Architecturally, theO-RAN framework [127] enables dynamic RAN control through
xApps on the Near-Real Time RAN Intelligent Controller (NearRT-RIC), handling tasks like
radio resource allocation [64]. From an optimization perspective, cross-layer coordination
improves traffic management, addressing issues like buffer bloat [90] and prioritizing short
flows [98]. However, achieving a fully programmable RAN that adapts to real-time network
conditions requires integrating both architectural control and optimization techniques.

Contributions. To this end, this chapter aims to foster a discussion on integrating UP
across RAN and UPF into a unified entity. As shown in Figure 3.1, we introduce the con-
cept of Integrated User Plane (IUP), envisioned as the out-of-the-box deployment for next-
generation mobile networks. IUP not only simplifies mobile network architecture by re-
ducing latency and protocol overhead, e.g., GPRS Tunneling Protocol User Plane (GTP-U),
but also enables programmability from IP flow traffic control to radio resource allocation.
In Section 3.3, we outline the implications and potentials of IUP for next-generation mobile
networks. Furthermore, in Section 3.4, the detailed design of IUP is provided and compared
with the current 5G system. We also elaborate on the programmability provided by IUP
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to other entities, e.g., NearRT-RIC and Core Network (CN). Finally, we explore some key
use cases (Section 3.5) of IUP deployment and evaluate its performance through a proof-
of-concept implementation (Section 3.7), showing how IUP can reduce network latency,
converge seamlessly with non-3GPP network, and provide UP programmability.

3.2 Related Work

Building on the SDN paradigm, SD-RAN unlocks the programmability of RAN functions,
encompassing both the CP and User Plane (UP)1. Several SD-RAN platforms [83, 96, 134]
have been developed to enhance the real-time programmability and customizability of RAN
functions.

FlexRIC [134] supports both standardized and customized Service Models (SMs) using
technologies such as shared libraries, enabling a plugin-based SM architecture. This ap-
proach allows RAN and application vendors to select and load specific SMs at runtime,
enhancing the scalability of RAN functionalities while reducing the overhead of unused
SMs. Similarly, HexRAN [96] also introduces a plugin-based SM architecture and develops a
Programmable Mediation Layer to provide Application Programming Interfaces (APIs) that
simplify O-RAN related operations within 3GPP RANs. Meanwhile, JANUS [83] provides
a sandboxed execution environment based on eBPF [144], allowing customized codelets to
be deployed at runtime to enhance RAN telemetry, collect arbitrary statistics, and perform
real-time inference to assist in control decisions, while offering a secure mechanism for
user-defined telemetry collection.

However, existing solutions primarily focus on the programmability of functionalities
within the RAN node, while neglecting coordination with Core Network (CN) components,
such as the User Plane Function (UPF). This lack of integration limits the ability of mobile
system to optimize end-to-end network performance and effectively manage UP data flows.
Moreover, some efforts [60, 89, 110] have been made to optimize and enable programmbil-
ity of RAN backhaul data flows at the UPF level by leveraging technologies such as eBPF
or P4 [61]. However, these approaches lack coordination with real-time radio link informa-
tion, such as RLC buffer status and MAC radio resource scheduling, leading to unsynchro-
nized optimizations. Although some work [98] addresses this issue by analyzing packet
information within the RAN, its approach is limited to prioritizing small packets and lacks
the programmability needed to dynamically control RAN functionalities. To address these
challenges, programmability must be enabled for both the UPF and RAN, fostering a more
adaptive network capable of effectively managing UP data flows while adapting to fluctu-
ating radio conditions and dynamic application behavior. In contrast to existing solutions,
the proposed IUP architecture facilitates tight coordination between IP traffic flow control
and radio resource allocation by integrating UPF functionalities directly into the RAN node.

In parallel, recent work from the Internet Engineering Task Force (IETF) has proposed
mapping 5QI values to Differentiated Services Code Point (DSCP) markings to enforce 5G
network slice QoS within the DiffServ architecture [74, 87]. Additional studies have fo-
cused on improving the granularity of 5G QoS frameworks [139, 149]. Instead of relying on

1In telecom terminology, the UP corresponds to the data plane.
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static 5QI values to manage diverse application flows, the proposed IUP architecture han-
dles native IP packets through its Integrated Data Flow Control (IDFC) sublayer, enabling
consistent and adaptable QoS treatment. This design aligns with the PDU Set concept in-
troduced in 3GPP Release 18 [18], which offers finer granularity for managing IP flows. IUP
further supports this by leveraging its traffic control pipeline within the IDFC to segregate
individual PDU sets into separate queues.

In terms of user plane tunneling, 5G networks adopt various strategies to handle IP
fragmentation, including GRE, VXLAN, and Geneve [141]. As highlighted in [141], GTP-U
over the N3 interface introduces considerable overhead due to increasedMTU requirements
and additional header fields. This overhead can be mitigated by transmitting IP frames
over Ethernet using a switched tunnels controlled by SDN [78]. IUP eliminates N3-related
processing and tunneling, thereby simplifying the infrastructure and enabling native IP
support within the RAN.

3.3 Why IUP?

Based on the above vision provided by IUP, below we identify three key benefits and po-
tential improvements.
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networks.
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3.3.1 Reduced Protocol Overhead, Processing, and Latency

5G RAN UP includes not only sublayers for air-interface communication, e.g., Service Data
Adaptation Protocol (SDAP), Packet Data Convergence Protocol (PDCP), Radio Link Con-
trol (RLC), Medium Access Control (MAC) and Physical (PHY), but also functions like GTP-
U processing for tunneling to UPF over N3 interface. In 5G, centralized UPF and distributed
RAN are commonly used, resulting in a "long N3" (see gNB-1 and UPF-1 in Figure 3.1).
However, advances in RAN cloudification and Mobile Edge Computing (MEC) [2], enables
a distributed UPF that shortens N3 link by deploying UPF or Intermediate UPF (I-UPF) [18]
along with application servers at the edge/access sites (see gNB-2 and I-UPF, as well as
gNB-DU, gNB-CU-UP and UPF-2 in Figure 3.1).

Distributing the UPF closer to the edge is a key approach to enabling low-latency appli-
cations and achieving more efficient UP processing in the mobile network backhaul [125].
However, this approach does not eliminate the fundamental network delay caused by phys-
ical separation and instead introduces additional network hops and overhead. A detailed
comparison of these technologies is provided in Table 3.1.

Table 3.1: State-of-the-art comparison for mobile network deployment technology.

Deployment Solution Min. Network
Extra Overhead of Inner-IP App. Packet

Technologies Placement Hops in UP Path
Legacy UPF - 2 GTP-U, UDP, and Outer-IP Headers

Intermediate UPF (I-UPF) [18] Backhaul 3 GTP-U, UDP, and Outer-IP Headers
Mobile Edge Computing (MEC) [2] Backhaul 2 GTP-U, UDP, and Outer-IP Headers

Network In a Box (NIB) [128] Backhaul 2 GTP-U, UDP, and Outer-IP Headers
RAN Disaggregation (or Open RAN) [147] Midhaul & Fronthual 3 GTP-U, UDP, and Outer-IP Headers

Integrated Access Backhaul (IAB) [8] Midhaul 3 BAP Payload and GTP-U, UDP, and Outer-IP Headers

IUP Midhaul & Backhaul 1 None

One notable method, I-UPF [18], introduces an intermediary hop between the central-
ized UPF and the RAN. Similarly, MEC [2] supports edge-localized deployment of UPF and
application servers, though this can increase network overhead and complexity. Another
innovative solution, Network In a Box (NIB) [128], consolidates entire core network func-
tions with RANwithin the same physical unit at the access site, further pushing the bound-
ary of edge computing. Despite these advancements, the fundamental delay between UPF
and RAN persists, primarily due to the physical separation inherent in their deployment.

From another perspective, such delay negatively affects several emerging technologies,
including Open RAN [147] and Integrated Access Backhaul (IAB) [8]. Open RAN, also re-
ferred to as RAN disaggregation, splits the gNB into DU and CU, increasing the number of
hops in the UP. Similarly, IAB introduces another protocol, the Backhaul Adaptation Pro-
tocol (BAP) for communication between IAB nodes, adding an additional layer of protocol-
induced delay to the UP. In both cases, communication between network entities relies
on GTP-U tunneling, such as between CU and DU over the F1-U interface and between
IAB nodes. This dependency on GTP-U introduces additional processing overhead, adding
latency and reducing efficiency in the UP.

Building on this, the proposed IUP removes the need for the N3 interface and the corre-
sponding GTP-U processing (e.g., en/de-capsulation), as shown by IUP-1, IUP-DU, and IUP-
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CU-UP in Figure 3.1. Additionally, it avoids IP fragmentation caused by different Maximum
Transmission Unit (MTU) sizes between GTP Protocol Data Unit (PDU) and IP packet [78,
141]. IUP also supports the deployment with an extra hop to UPF and application server,
serving as an intermediate stage of deployment to prevent an overall network renewal (see
IUP-2 in Figure 3.1). In terms of latency reduction, solutions like network slicing have al-
ready shown their capability to meet the hierarchical Quality of Service (QoS) requirements
specified in Service Level Agreements (SLAs) [5]. Note that IUP operates independently of
network slicing, it reduces latency from two sources. First, by removing backhaul trans-
mission delays to centralized/distributed UPF, IUP better manages the Packet Delay Budget
(PDB) [18], not only from a RAN perspective but also across backhaul network. Second, it
bypasses N3-related GTP-U processing.

3.3.2 Programmable User Plane & Simplified Control Plane

Existing solutions for UP programmability typically focus on two approaches: (1) intro-
ducing programmability to the packet processing pipeline in the UPF [20], such as P4 on
programmable hardware platform [110, 60]; and (2) leveraging O-RAN framework to de-
velop control applications (e.g., xApps on NearRT-RIC [127]) for dynamically controlling
RAN functions [64]. Therefore, for programmable UP in mobile networks, these two com-
ponents must coordinate to avoid conflict control decisions. Thanks to the integration of
UPF into RAN, IUP addresses this challenge by enabling programmable IP packet process-
ing while simultaneously controlling lower-layer processing of the mapped DRBs.

Moreover, IUP is designed to be compatible with existing CP functions of the CN, as
shown in the right part of Figure 3.1. It retains Packet Forwarding Control Protocol (PFCP)
functionalities, allowing it to interact with Session Management Function (SMF) via the N4
interface and reuse PDU sessionmanagement procedures. Also, the N2 interface towardAc-
cess and Mobility Management Function (AMF) is preserved for connection management.
As IUP becomes an anchoring point for data delivery, it can avoid extra control messages
and data forwarding between UPFs and RANs in some scenarios, e.g., inter-gNB handover
and home-routed roaming.

3.3.3 Seamlessly Converged Network

Network convergence with non-3GPP networks can be achieved in different ways. One
approach is to design a compatibility layer or network function, such as Non-3GPP In-
terworking Function (N3IWF) [1], to connect 5G and non-3GPP networks (see non-3GPP
AP-1 in Figure 3.1). Alternatively, incorporating IP into RAN to reach Internet-wide routing
and addressing is another option that can provide interoperability regardless of underlying
link technologies. Therefore, IUP adopts this approach by natively supporting IP within
the RAN and functioning as a Layer 3 device, inherently facilitating seamless connectivity
with non-3GPP networks. This design enables real-time applications to be aware of latency
across multiple paths to destination, facilitating different traffic flows (e.g., extended reality
objects) using individual routes. As illustrated in Figure 3.1, IUP and non-3GPP AP-2 can
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seamlessly converge without requiring an additional gateway in between.

Overview of IUP Benefits. First, the proposed IUP reduces N3-related overhead and
processing while also simplifying the end-to-end data delivery path in the mobile network
(cf. Section 3.7.1). Additionally, IUP enhances UP programmability by extending control
from the IP layer (and above) to the radio link layer, providing a unified framework for
managing both packet flows and radio resources (cf. Section 3.7.3). Finally, IUP enables
universal connectivity by acting as a Layer 3 device, seamlessly integrating diverse access
technologies via the IP protocol (cf. Section 3.7.2).

3.4 IUP Architecture

In this section, as shown in the lower half of Figure 3.2, the architecture of IUP is pre-
sented, corresponding to IUP-1 in Figure 3.1. For comparison, the legacy deployment is
depicted in the upper half of Figure 3.2, corresponding to gNB-1 in Figure 3.1. The pro-
posed architecture enables native IP processing within RAN through the Integrated Data
Flow Control (IDFC) sublayer, allowing the execution of UPF functionalities directly on top
of RAN protocol stacks. Figure 3.2 highlights how user data are handled in the UP functions
and outlines its interaction with two key network entities: SMF, as defined in 3GPP CN, and
NearRT-RIC, as part of the O-RAN framework, via their respective CP interfaces.
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3.4.1 Bringing IP Flow Processing into RAN

The proposed architecture introduces an IDFC sublayer that not only consolidates UPF
functionalities into RAN but also extends the 3GPP-defined packet processing pipeline [20]
to allow for programmability through the whole UP, i.e., from IP traffic control to radio
resource allocation. IDFC operates at the same level as SDAP in the RAN protocol stack2. It
allows direct execution of UPF functionalities within IUP by eliminating GTP-U tunneling
and prioritizing IP flows as first-class citizens — unlike legacy gNBs, which primarily focus
on QoS flows. In particular, Figure 3.2 depicts how user data flows3 are delivered from the
application server, via several RAN sublayers, and finally to end-users.

5GDeployment. As seen in the upper half of Figure 3.2, user data is transmitted over the
PDU session, and the context of PDU session is addressed by PFCP session management to
determine how to process packets within the 3GPP-defined packet processing pipeline [20].
In details, SMF can control these pipelines by defining rules, e.g., QoS Enforcement Rules
(QERs) [20], to decide howUPF translates IP flows into QoS flows and assigns QoS attributes
(e.g., 5QI [18]). Subsequently, QoS flows are transmitted from UPF to gNB via GTP-U tun-
nels, and gNB assigns them toDRBs at the SDAP sublayer. Finally, the remaining processing
is performed by gNB, such as PDCP packet compression, RLC buffering, and MAC resource
allocation.

Note that while SMF can control the packet processing pipeline in the UPF by relying
on the rules and charging policies provided by Policy Control Function (PCF), it does not
have visibility of lower-layer information (e.g., RLC buffer status). As a result, SMF cannot
detect issues like bufferbloat, where increased queuing delays occur at gNB, despite effi-
cient packet handling in the mobile network backhaul. On the other hand, the MAC radio
resource scheduler lacks insight into each application flow because multiple IP flows are
aggregated into a QoS flow, and multiple QoS flows are mapped into a DRB (e.g., IP flow-2
and flow-3 are aggregated into QoS flow-2, and QoS flow-1 and flow-2 are mapped into
DRB-1, as shown in upper half of Figure 3.2). Therefore, the UP is not properly integrated
for unified programmability.

IUP Deployment. In contrast, as shown in the lower half of Figure 3.2, IUP integrates
UPF into RAN as the IDFC sublayer while maintaining certain UPF functionalities, such
as PDU session establishment, modification, and release via PFCP session management. In
this sense, similar to 5G deployment, user data is still sent over PDU sessions. Moreover,
the IDFC sublayer can directly handle IP flows, provide granular traffic control in the traffic
management pipeline, and map them into DRBs. This pipeline is inspired by Linux traffic
control [90], and it has three main stages with several programmable rules: (1) Ingress
pipe (classifier and policer), (2) Queuing, and (3) Egress pipe (shaper, scheduler, and pacer),
which will be discussed in the next paragraph. In short, IUP eliminates the need for extra
GTP-U processing and intermediate QoS flow translation.

2The IDFC sublayer replaces the current SDAP sublayer and is not backward compatible; however, such
compatibility can be maintained by deploying extra GTP-U and SDAP processing in IUP (cf. Section 3.5.5).

3For simplicity, only the downlink user data flows are depicted, since the uplink one are not affected.
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3.4.2 Programmable Functions and Rules in User Plane

IUP provides programmability that enables holistic control and monitoring of user data
within a single network entity, spanning from the IP level down to the radio resource level.
This programmability is achieved via O-RAN framework, in a manner similar to the pro-
grammability offered by P4 [110]. While P4 focuses mainly on packet processing within
UPF, IUP extends programmability to interact with radio link functions, such as RLC buffer
status and radio resource allocation.

IP Level. The traffic management pipeline in IDFC consists of three main stages and can
be programmed with six different rules. First, in the ingress pipe, incoming IP flows are
identified by classifiers based on Packet Detection Rules (PDRs) and then forwarded or
dropped by policers based on Forwarding Action Rules (FARs). Afterwards, packets will
be buffered in queues, and each queue will be managed according to the Buffer Operating
Rules (BAR). Finally, in the egress pipe, the rate of each queue will be controlled by the
shaper using Queuing Rate Rules (QRR), the scheduler will use Packet Scheduling Rules
(PSR) to determine which flows can be transmitted, and the Transmission Rate Rule (TRR)
is used by the pacer to decide how to pace packets out. In particular, these six rules are
elaborated as below:

• PDRs identify IP flows using given information, such as five tuples, deep packet
inspection, or machine-learning-based models. Within multiple PDRs, the classifier
can analyze the packet to find a matching PDR (and destination queue) and then send
it to the policer if a matching PDR is found. Otherwise, the packet will be discarded
if no default PDR is provided.

• FARs are linked to a queue and determine the actions to be taken by the policer
before entering the queue, e.g., forwarding or dropping. If no FAR is provided, the
packet will bypass this stage and go directly to the destination queue.

• BARs provide queue management rules for each queue, e.g., First-In-First-Out (FIFO)
and Controlled Delay (CoDel) [113]. And there is a default queue for processing
packets that match default PDR.

• QRRs are used by the shaper to limit the maximum egress rate of corresponding
queue.

• PSR provides the approach, such as round-robin or priority-based, to schedule pack-
ets across multiple queues by the scheduler.

• TRR is used by the pacer to control inter-packet time to avoid unnecessary queuing
or even packet dropping in lower layer (e.g., RLC buffer).

Some rules — such as PDRs, FARs, and BARs — are the same as those used in the 3GPP-
defined packet processing pipeline specified by SMF. In IUP, these rules are extended for
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use in the traffic management pipeline controlled via O-RAN framework. Despite this ex-
tension, SMF retains control over these rules to perform the necessary CP actions deter-
mined by CN (e.g., charging policy). Moreover, IUP offers extensibility in the traffic man-
agement pipeline, which can be implemented using advanced technologies such as DPDK
or eBPF/XDP to enable fast in-kernel packet processing.

Radio Bearer and Radio Resource Levels. Subsequently, IP flows are assigned to the
corresponding DRB (programmable in the O-RAN framework) for the transmission of the
radio link. To ensure consistent management from IP flows to DRBs, this cross-layer con-
trol logic can be integrated into upper-layer control applications (e.g., xApps) that monitor
states like application types, buffer status, and radio resource usage to direct flows to ap-
propriate DRBs. For example, in Figure 3.2, IP flow-1, IP flow-2, and flow-3 are mapped to
the same DRB because they have similar traffic management rules; however, IP flow-4 and
IP flow-5 are mapped separately due to their distinct rules. Finally, the MAC radio resource
scheduler, which allocates radio resources to DRBs and UEs, can also be programmed using
DRB Scheduling Rule (DSR) and UE Scheduling Rule (USR), respectively.

To summarize, the whole UP, from IP flows to radio resource scheduling, can be pro-
grammed using both SMF and/or NearRT-RIC to fulfill a variety of application needs while
optimizing resource utilization and flexibly managing traffic.

3.4.3 Control Plane Interfaces

An important aspect of IUP is its approach to handling control messages, which operates
over two CP interfaces: (1) N4 interface between SMF and IUP for 3GPP control messages
to manage PDU sessions, and (2) E2 interface between NearRT-RIC and IUP for O-RAN
control messages to manage the aforementioned programmable rules.

3GPP N4 Interface. As for the first interface, after UE association and authentication,
SMF selects an IUP to allocate IP addresses during the establishment of the PDU session.
Once an IUP is selected, SMF communicates with it via PFCP functionalities for tasks such
as PDU session establishment, modification, and release, as well as IP anchoring, while also
enforcing policies set by PCF. From the perspective of SMF, IUP acts as a common UPF.
Additionally, SMF can choose different IUP instances based on service requirements and
send control messages to the source or target IUP to perform roaming and mobility man-
agement operations. In this case, the control procedures for IUP are simplified by avoiding
extra messaging between UPF and RAN (see details in Section 3.5).

O-RAN E2 Interface. For the second interface, xApps on NearRT-RIC control both pro-
grammable functions and rules within IUP, as mentioned in the previous subsection. xApps
act as intermediary, managing the complex control logic between the diverse application
traffic flows and fluctuating radio conditions, making real-time control decisions to meet
the requirements of each application. By integrating UPF into RAN, IUP enables decision-
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making across multiple layers simultaneously, i.e., from trafficmanagement rules of each IP
flow to radio resource scheduling of each DRB/UE, and can be simply combined with other
schemes, e.g., network slicing. In consequence, decision conflicts can be largely avoided,
allowing for efficient processing of IP flows and improved overall network performance.

3.5 Use Cases

This section examines the benefits of IUP by detailing its procedures and architecture, il-
lustrating how it reduces overhead and complexity in next-generation mobile networks
through four key use cases: (1) Handover, (2) Roaming, (3) RAN disaggregation and non-
3GPP network interworking, and (4) Compatibility with existing UPF.

3.5.1 Handover Procedure

The handover process [11] in mobile networks enables the transfer of ongoing data sessions
from one cell to another. However, as the corresponding UPF may be reallocated, both han-
dover processes are analyzed as below, i.e., with or without UPF reallocation4 as depicted
in Table 3.2. In details, the handover process consists of three stages: (1) preparation, (2)
execution, and (3) completion, as shown on the left side of Figure 3.3. Our focus is on the
UP procedure; hence, the CP procedures involving AMF and SMF are briefly explained, and
the details can be found in [15].

Table 3.2: Xn-based handover scenarios in 5G and IUP deployments.

Xn-based Handover Scenarios 5G Deployment IUP Deployment
Without UPF Reallocation Indirect data forwarding from source UPF x
With UPF Reallocation Indirect data forwarding from source UPF Direct data forwarding from source IUP

In the case of UPF reallocation for 5G deployment, the source gNB uses GTP-U tunnels
over the Xn-U interface (cf. interface between gNB-1 and gNB-2 of Figure 3.1) to forward
data from the source UPF to the target gNBs. Such indirect data forwarding will continue
until the target UPF is applied as the new anchoring point (i.e., the N3 end-marker is used
to identify the last forwarding packet). In contrast, the IUP deployment uses a peer-to-peer
connection to forward packets since each IUP can act as the anchoring point, allowing IP
packets to be forwarded directly between source and target IUPs. Moreover, because IUP
already integrates UPF, there is no scenario without UPF reallocation. Finally, the CP pro-
cedure for IUP handover is similar to the one in [15], relying on N2 path switching done
by AMF, as well as PDU session management, IP address allocation, and IUP selection han-
dled by SMF. The SMF can mitigate service disruptions based on the supported Session and
Service Continuity (SSC) mode [18], either preserving the existing IP address or assigning
a new one as needed.

4There are further sub-categories within these two cases, but they have few variations in the UP procedure.
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Figure 3.3: Xn-based handover with UPF re-allocation scenario in 5G and IUP deployments.

3.5.2 Roaming Architecture

In 5G home-routed roaming scenario [15], as shown in Figure 3.4, traffic is sent from an
application server at Data Network (DN) in Home Public Land Mobile Network (HPLMN)
to a UE in Visited PLMN (VPLMN). User data is traversed through UPF in HPLMN (H-UPF),
UPF in VPLMN (V-UPF), gNB of VPLMN, and finally to UE. This procedure involves extra
CP messages between network functions in HPLMN and VPLMN, e.g., SMF in HPLMN (H-
SMF) and VPLMN (V-SMF) for session management via the N16 interface. Also, user data
is forwarded between H-UPF and V-UPF over the N9 interface using GTP-U tunnels. These
CP messages and UP forwarding add extra overhead and processing. For the local-breakout
roaming scenario, user data is sent through the application server, UPF, gNB in VPLMN,
making the procedure similar for both 5G and IUP deployments.

Conversely, IUP reduces these overheads, as shown in Figure 3.4, where the UE obtains
its IP from the V-SMF and communicates directly with the application server in the HPLMN
over IUP, bypassing H-UPF and V-UPF as well as eliminating the procedures between H-
SMF and V-SMF. By serving as the default deployment, IUP simplifies traffic routing in
roaming scenarios, making home-routed roaming similar to local-breakout roaming, with
the only difference being the location of the application server while maintaining the re-
spective traits: low latency for local-breakout roaming and better control for home-routed
roaming.
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Table 3.3: Roaming scenarios in 5G and IUP deployments.

Roaming Scenarios 5G Deployment IUP Deployment
Home Routed Indirect data transmission from DN in HPLMN Direct data transmission from DN in VPLMN
Local breakout Direct data transmission from DN in VPLMN
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Figure 3.4: Home-Routed roaming scenario in 5G and IUP deployments.

3.5.3 RAN Disaggregation

The deployment of IUP aligns with the principles of Open RAN [127], supporting RAN
disaggregation, where the RAN is divided into a CU and one or more DU(s) that communi-
cate via the F1 interface. In 5G, the F1-U interface transmits user data over GTP-U tunnels
(see gNB-CU-UP and gNB-DU in Figure 3.1), while the F1-C interface handles control sig-
naling over SCTP. In the case of IUP, the F1-C interface continues to manage connections
between CU-CP and DU, while IP protocol replaces GTU-U in the F1-U interface for user
data transmission between CU-UP and DU (see IUP-CU-UP and IUP-DU in Figure 3.1). IUP
enables user data flows and Downlink Data Delivery Status (DDDS) to be transmitted di-
rectly with an extra IP header, eliminating the need for GTP-U header between gNB-CU-UP
and gNB-DU. Note that the IPSec protocol can be applied for encrypted transportation in
between.

3.5.4 Non-3GPP Interworking

For interworking with non-3GPP networks, IUP can communicate directly with these net-
works (see Y2 interface between IUP-CU-UP and non-3GPP AP-2 of Figure 3.1), which is
impossible in 5G deployment. This capability removes the need for additional network
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Figure 3.5: IUP interworking with various networks for universal connectivity.

functions, enabling real-time control across various access network technologies in the fu-
ture. By eliminating the overhead associated with GTP-U tunnel processing and enhancing
interoperability with non-3GPP networks, IUP not only reduces complexity but also im-
proves scalability across various networks, as illustrated in Figure 3.5.

Moreover, IUP enables universal connectivity by functioning as a Layer 3 device, seam-
lessly integrating diverse wireless and wired technologies via the IP protocol without re-
quiring additional network functions to bridge 3GPP and non-3GPP networks, as depicted
in Figure 3.5. These networks range in scale from Personal Area Networks (PAN) to Lo-
cal Area Networks (LAN), Campus Area Networks (CAN), Metropolitan Area Networks
(MAN), and Wide Area Networks (WAN), supporting technologies like cellular, Ethernet,
Wi-Fi, and Bluetooth across terrestrial, aerial, and non-terrestrial infrastructures.

3.5.5 Backward Compatibility

To maintain compatibility between IUP and 5G deployments, a key challenge is handling
the interface between IUP and the existing UPF. Therefore, both GTP-U processing and
SDAP sublayer are still required during the early deployment. Specifically, the GTP-U pro-
cessing ensures that the existing UPF recognizes IUP as an I-UPF, utilizing the N9 interface
between UPF and IUP. While in the event when the existing UPF would prefer to view IUP
as a gNB via the N3 interface, the SDAP sublayer is needed to map incoming QoS flows
into DRBs and the IDFC sublayer will be omitted, since the 3GPP-defined pipeline is done
at the existing UPF. Once existing UPFs are upgraded, the additional GTP-U processing and
SDAP sublayer in the IUP can be removed.

3.5.6 Collaborative Networking

In a collaborative network, a form of information-centric networking [27], multiple users
need to seamlessly share data with each other to achieve a collective outcome whether
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as in perception (e.g., collaborative spatial computing) or content (e.g., media sharing, dis-
tributed caching). In particular, in collaborative spatial computing [109, 88] using VR, AR or
XR, both physical and virtual environments are processed to render shared 3D objects, re-
quiring reliable performance with minimal lag and maximum responsiveness. Meanwhile,
in media sharing, the users transmit high-definition video streams, real-time audio, and
interactive media with application in IP telephony and Closed-Circuit Television (CCTV)
with less stringent latency requirements but high concerns for data locality, security, and
privacy [132]. Finally, in distributed caching [125], strategical placement of data caches
across the network is of interest to store frequently accessed content closer to end users,
reducing the load on the external links of the network.

Current wireless technologies struggle to support the seamless interactions and immer-
sive experiences demanded by the above applications due to the limitation of latency and
bandwidth, as well as inefficient data processing and storage across distributed networks.
Proposed solutions like Device-to-Device (D2D) communication and sidelink aim to en-
hance user experience by reducing reliance on centralized network infrastructure [145, 57].
However, ensuring sufficient reliability remains a challenge, especially when dealing with
frequent exchanges and larger packets to accommodate richer sensor data and intended
maneuvers.

3.5.7 Cloud Continuum

Cloud computing in 5G enables greater flexibility, scalability, and efficiency in network
management while also supporting a diverse range of applications through edge comput-
ing [56, 94]. However, to meet the demands of emerging applications that require low
latency or higher computational power and storage capacity, a unified and flexible infras-
tructure is necessary. This evolution is exemplified by offloading computing tasks closer to
the endpoints, leveraging in-network computing, as highlighted by studies like [136]. The
cloud continuum, integrating cloud computing resources seamlessly across various tiers of
the mobile network from endpoints to the CN, is imperative for optimizing hardware and
software resource allocation, as well as enhancing overall performance and user experience
in the future mobile network systems.

3.6 Proof-of-Concept Implementation

In this section, we elaborate on how we integrate our proposed IUP architecture into a
modern 5G mobile network, focusing on (1) GTP-U tunneling takeover, (2) programmable
rules, and (3) a built-in routing mechanism. The IUP prototype is implemented based on
OpenAirInterface (OAI) [114], an open-source software that provides an end-to-end 5G
mobile network stack - from CN, RAN to UE. This implementation adds 7K lines of code,
primarily to the RAN, with minimal modifications to the UPF. To validate the feasibility of
IUP, we conducted experiments using commercial off-the-shelf UEs. Finally, we provide an
overview of the hardware and software configurations used in our testbed.
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3.6.1 Integrating IUP in a Contemporary 5G Mobile Network

GTP-U Tunneling Takeover. In 5G deployment, packets arriving at the N6 interface
of UPF are processed through the 3GPP-defined packet processing pipeline [20], encapsu-
lated with a GTP-U header, and sent to the RAN over the N3 interface via GTP-U tunnel(s).
However, the job done by the GTP-U tunnel can be replaced with more efficient means
such as direct function calls, memory mapping, or a Unix domain socket between UPF and
RAN functionalities. In contrast, an IUP deployment integrates UPF functionalities directly
into RAN, eliminating the need for a GTP-U tunnel and enabling direct data transmission
from the N6 interface to the traffic management pipeline in IUP, allowing native IP flow
handling within the RAN protocol stack. Avoiding packet encapsulation required by the
GTP-U protocol accelerates the evolution of mobile networks, enabling faster communica-
tion compared to traditional network sockets [112]. Moreover, a transparent networking
layer helps prevent common issues in higher layers, such as Head-of-Line (HOL) blocking,
out-of-order delivery, or TCP meltdown, which can hinder flow control and retransmis-
sions. These problems, inherent to encapsulation, significantly degrade the performance of
applications demanding low latency or high throughput.

Programmable Functions and Rules. To enable the programmability of IUP, various
approaches can be employed, including plug-in architectures, dynamic loading, and call-
backs. IUP adopts a dynamic loading mechanism using shared libraries, allowing rules to
be loaded and applied at runtime. This approach also supports plug-in architectures, en-
abling developers to seamleslly extend it. For the traffic management pipeline at the IDFC
sublayer, an OSI-based PDRs are implemented in the classifier, which relies on information
reported from layer-3 to layer-7 using the 5-tuple information in conjunction with a deep
packet inspector, enabled through the open-source nDPI [79]. In the queuing stage, BARs
are implemented with FIFO and CoDel [113]. The PSR in the scheduler uses a round-robin
algorithm, while the TRR in the pacer is implemented with the 5G Bandwidth-Delay Prod-
uct (5G-BDP) [91]. On the other hand, for the radio resource scheduler at theMAC sublayer,
the DSR is implemented with Network Virtualization Substrate (NVS) [100], Early Deadline
First (EDF) [86] and enhanced EDF (eEDF) algorithms, while the USR applies a proportional
fair algorithm.

Built-in Routing Mechanism. By embedding IP processing within the RAN, IUP func-
tions as a Layer 3 device, requiring a robust routing mechanism to manage various IP flows.
To achieve this, IUP incorporates a BGP v4 agent [131], based on the BIRD Internet Rout-
ing Daemon [103], to advertise the routes for its served UEs within the designated network
slices to other nodes. These nodes can be other IUPs, UPFs, or application servers run-
ning in the infrastructure, and the routes are advertised by peering the IUP to the other
node agents. In a non-cloud-native environment, this peering can be done directly with
other network instances (e.g., routers). However, in a cloud-native environment, the peer-
ing is made with the BGP agents on the cluster nodes based on the Kubernetes networking
stack providers such as Calico or Cilium [140, 73]. Moreover, the Kubernetes networking
provides the inter-container routing via BGP route advertisement. IUP extends its routing
lists to include routes to the UEs and shares these routes with other containers in a sim-
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ilar manner to how inter-container routing is advertised. The main difference is that the
IUP advertises routes directly to its own host node. For other nodes in the cluster, the IUP
advertises the route with a “next-hop" parameter [131] set to its own host node, which is
not supported by BGP v3 [59]. This ensures routing remains consistent with the existing
infrastructure.

3.6.2 Testbed Configurations

Hardware. In our testbed, we have two setups: an IUP deployment and a 5G deployment.
In the IUP deployment, we use four physical machines: machine 1 hosts the CN (excluding
UPF), machine 2 hosts the IUP, andmachine 3 and 4 are designated for UEs. The CNoperates
on machine 1, equipped with 8 CPUs and an Intel Core i5-8250U at 1.60GHz. The IUP runs
on machine 2, which has 24 CPUs powered by an AMD Ryzen 9 5900X 12-Core processor
at 3.7GHz and is connected to a USRP B210 SDR. For the UEs, we use Quectel RM500Q-GL
modules, each connected to a separate machine: machine 3 with 8 CPUs and an Intel Core
i7-8550U at 1.80GHz, andmachine 4 with 40 CPUs and an Intel Xeon E5-2640 v4 at 2.40GHz.
In the 5G deployment, the gNB runs onmachine 2 (same as IUP in the previous setup), while
the CN (including UPF) run on machine 1. Moreover, to test non-3GPP interworking, we
set up a WiFi Access Point (AP) with 802.11g (WiFi generation 3), connected to a Google
Pixel 5 smartphone.

Software. The operating system for the machines running IUP and CN is Ubuntu 20.04
with Linux kernel 5.15.0. For the machines running Quectel UEs, it is Ubuntu 18.04 with
Linux kernel 5.4.0. The IUP is implemented based on the latest release versions from OAI
RAN v2.1.0 and OAI UPF v2.0.0. For CN, we used OAI CN v1.5.0, which includes AMF, SMF,
and UDM. In the 5G deployment, OAI UPF v1.5.0 operates on the samemachine as other CN
components. Additionally, for the O-RAN framework, we used the NearRT-RIC and xApp
from FlexRIC v2.0.0 [134, 70], which is an open-source and compliant with O-RAN speci-
fication. We developed our xApp based on FlexRIC to control the IUP through customized
service models [64, 90]. Moreover, the clock of machines running UEs are synchronized
with IUP and CN using the Network Time Protocol (NTP). For the radio configuration, IUP
is set with 40 MHz bandwidth , subcarrier spacing 30 kHz and operates on a Time Division
Duplex (TDD) pattern with 7 downlink slots, 2 uplink slots, and onemixed slot within every
5 ms frame. The maximum theoretical throughput is 175 Mbps, achieved with 256-QAM
modulation and a single-input single-output (SISO) antenna configuration.

3.7 Experiment Evaluation

In this section, we present preliminary results by the over-the-air testbed, demonstrating
how IUP can (1) reduce latency and overhead in UP performance, (2) seamlessly converged
with non-3GPP network, and (3) provide programmability for IP flow traffic control and
radio resource allocation.
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3.7.1 Latency and Overhead Reduction

Setup and Workloads. As shown in Figure 3.6a, we measure the UP performance be-
tween two UEs in three scenarios: (a) Scenario a deploys the CN (including UPF) on a server
next to the local gNB, creating a “short N3"; (b) Scenario b places the CN in a public cloud,
connecting the local gNB via a “long N3"; (c) Scenario c deploys part of the CN (excluding
UPF) in a public cloud with a local IUP, resulting in “no N3." In each scenario, we utilized
a ping tool to measure the average RTT between two UEs connected to the gNB or IUP
through an over-the-air testbed, with the results presented in Figure 3.6b. This experiment
assumes local routing between UEs is enabled within both the UPF and IUP.
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Figure 3.6: Latency measurement in local 5G, cloud 5G, and cloud IUP scenarios.

5G vs. IUP Deployments. While 3GPP provides several deployment options to support
low-latency scenarios, such as placing UPF closer to the edge, the fundamental network
delays still persist. As an example, Figure 3.6b compares latency when deploying UPF lo-
cally near gNB (see Scenario a) versus deploying UPF in a public cloud (see Scenario b). The
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Table 3.4: Protocol header overhead in VoIP and UDP for Legacy and IUP deployments.

Scenarios User Packet
OverheadIP Packet

Use Cases Network Deployment GTP Header IP Header User Data (Headers % of User Packet)Between RAN and UPF

IPv4 VoIP
Legacy IPv4 44 bytes

40 bytes 31 bytes

73.0%
IPv6 64 bytes 77.0%

IUP
No physical separation 0 bytes 56.3%and network transmission

IPv4 TCP
Legacy IPv4 44 bytes

40 bytes

1416 bytes 5.6%
IPv6 64 bytes 1396 bytes 6.9%

IUP
No physical separation 0 bytes 1460 bytes 2.6%and network transmission

average RTT between two UEs significant increases when UPF is located farther from gNB,
confirming that physical proximity of endpoint devices does not necessarily ensure low-
latency network connections, as additional hops introduce notable delays. IUP addresses
this by offering an integrating solution that reduces the network hops to a minimum of
one. As shown by Scenario c in Figure 3.6b, UP data only traverses within IUP, resulting
in a lower RTT of 39.58ms compared to Scenario a, which experiences non-negligible net-
work delays between UPF and gNB. The improvement is also seen in P99 latency, due to
the removal of N3 interface.

Efficient Data Delivery. Moreover, IUP removes the GTP-U protocol processing and
its associated headers in each packet, including outer IP, UDP, and GTP-U headers. This
enables user data to be delivered efficiently without requiring a smaller MTU size to avoid
IP fragmentation [141]. Specifically, for IPv4 and IPv6 protocols, these headers consume 44
bytes and 64 bytes, respectively. For instance, when delivering a 60-byte G.729 VoIP packet,
the extra GTP header would consume up to 64 bytes, resulting in a total packet size of 124
bytes. In this case, IUP removes the need for a GTP header, efficiently delivering the 60-byte
packet and reducing overhead by 50%, as depicted in Table 3.4.

3.7.2 Converged with Non-3GPP Network

Setup and Workloads. To showcase the benefits of IUP, we set up a scenario with UE1
connected to IUP and UE2 connected to a Wi-Fi AP, as shown in Figure 3.7a. This setup
demonstrates that IUP can provide connectivity even when one UE is served by a non-3GPP
network (compared to Scenario c in Figure 3.6a, where IUP serves both UEs). We utilized
ping tool to measure the average RTT between two UEs, with detailed latency breakdown
results presented in Figure 3.7b. Additionally, we used VLC media player to transfer a live
MPEG4 video via UDP from UE1 to UE2.

Direct Communication via IP. As discussed before, IUP can be converged with non-
3GPP networks without the need for extra network functions. As illustrated in Figure 3.7a,
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Note:

Non-3GPP3GPP

UE1 UE2
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Quectel RM500-GLUE1
Google Pixel 5UE2

Linksys Wireless-G 802.11gWi-Fi AP

Radio Link

User Data Flow

(a) Experiment setup.

(b) Measured RTT between two UEs.

Figure 3.7: Scenario that two UEs served by IUP and Wi-Fi AP respectively.

we set up a scenario where UE1 connects to an IUP and UE2 connects to a Wi-Fi AP, with
an Ethernet connection between IUP and Wi-Fi AP. In this sense, IUP works as a Layer 3
router, facilitating direct communication with Wi-Fi AP via IP protocol and shortening the
UP path between UE1 and UE2 by avoiding the need to route user data to the CN.

LatencyBreakdown. The average RTT betweenUE1 andUE2 is approximately 42.57ms,
as shown in Figure 3.7b, which is slightly larger than the result in Scenario c of Figure 3.6b.
Additionally, we break down the average RTT between UE1 and UE2 into three compo-
nents. First, the RTT between IUP and Wi-Fi AP over Ethernet is negligible, whereas the
major components are the air-interface delays between IUP and UE1 as well as betweenWi-
Fi AP and UE2. Additionally, the average RTT between IUP and UE1 is about 5ms lower
than that between Wi-Fi AP and UE2. This difference might due to the contention window
in the Wi-Fi standard, which requires competition for transmission opportunities, unlike
the scheduling-based approach in 3GPP.
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Peer-to-Peer Video Streaming. Additionally, to validate the feasibility of this setup,
we successfully streamed a live video from UE1 to UE2 at 720 p resolution with a bitrate
of 2119 kbps5. The video was transmitted via the uplink channel of IUP, configured with a
TDD frame structure of 7 downlink slots, 2 uplink slots, and 1 mixed slot. As a result, the
uplink bandwidth was lower compared to the downlink.

3.7.3 Programmability over IP Flows and Radio Resources

Setup and Workloads. To demonstrate the programmability of IUP, a new xApp is de-
signed to control both IP flows and radio resources, as illustrated in Figure 3.8. This xApp
enforces rules for the traffic management pipeline at the IDFC sublayer and the radio re-
source scheduler at the MAC sublayer. For the traffic management pipeline, we modify
PDRs, BARs, and QRRs to adjust the classifier, queuing, and shaper, respectively. For the
radio resource scheduler, the scheduling policy is adjusted according to the applied USRs,
including the maximum scheduling rate and scheduling deadline. Moreover, in our exper-
iment setup, two UEs are connected to the IUP. Each UE receives two TCP traffic flows,
generated using Netperf, with different Differentiated Services Code Point (DSCP) values
in the IP header, which are mapped to the same DRB, i.e., only one DRB per UE. Specif-
ically, Flow 2 on UE1 requires low-latency service (DSCP: AF11) with lower bandwidth,
while Flow 4 on UE2 demands higher throughput (DSCP: AF21); Flow 1 on UE1 and Flow
3 on UE2 are low-priority services (DSCP: CS1). Latency for each flow is measured using
fping, which sends 84 bytes ICMP packet every 200 ms. Additionally, IUP operates the RLC
in Acknowledgment Mode (AM), with the TCP congestion control algorithm set to Cubic
for the machine, running the Netperf clients. Then, we modify the rules in four different
scenarios (see detailed of applied rules in Table 3.5) and measure network statistics such
as Resource Block (RB) usage and RLC queue size, as well as application performance like
data rate and end-to-end latency of each flow.

Note:

Machine 2
O-RAN 
Framework

NearRT-RIC  
xApp

App. Server (TCP Cubic)

Machine 1 AMF SMF

User Data Flows
Flow 1: TCP Low Priority
Flow 2: TCP Low Latency
Flow 3: TCP Low Priority
Flow 4: TCP High Throughput

IU
P

Machine 3

Machine 4

UE1

UE2
E2 Control Message

App. ServerNeaRT-RIC, xAppUE1, UE2AMF, SMF, IUPComponents
NetperfFlexRICQuectel RM500-GLOpenAirInterfacePlatform/Hardware Used

Radio Link

Figure 3.8: Experiment setup for scenarios with xApp on NearRT-RIC controlling IUP.

Radio Resource Control. At the start of our experiment (from 0 s to 60 s in Figure 3.9
and Figure 3.10 ), the xApp is not configured, and a fair share of radio resource is allocated

5Demo video available at:https://youtu.be/SsEyCUoTc5M
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Table 3.5: Applied rules in each scenario.

Scenarios
Applied Rules

Radio Resource Scheduler Traffic Management Pipeline
UE USR Classifier Queuing Shaper

1 UE1 Bitrate: 50 Mbps xUE2 Bitrate: 110 Mbps

2
UE1 Bitrate: 50Mbps

xDeadline: 2.5ms

UE2 Bitrate: 110Mbps
Deadline: 5ms

3
UE1

same rules as previous scenario

PDR1: Flow1 BAR1: CoDel QRR1: 10Mpbs
PDR2: Flow2 BAR2: CoDel QRR2: 50Mpbs

UE2 PDR3: Flow3 BAR3: CoDel QRR3: 10Mpbs
PDR4: Flow4 BAR4: FIFO QRR4: 110Mpbs

4
UE1 Bitrate: 50Mbps

same rules as previous scenario

QRR1: 10Mpbs
Deadline: 2.5ms QRR2: 30Mpbs

UE2 Bitrate: 120Mbps QRR3: 10Mpbs
Deadline: 5ms QRR4: 120Mpbs

to both UEs to make each flow share the same rate (∼40Mbps). The xApp then applies
the USR (Scenario 1 in Table 3.5) to the MAC radio resource scheduler at 60 s (Scenario
1), where radio resources are scheduled proportionately based on the defined maximum
scheduling rates. Thus, each flow of UE1 and UE2 achieves throughput of 25Mbps and
55Mbps, respectively. Note that such proportional scheduling approach does not consider
any scheduling deadline; therefore, all available resources are allocated to either UE per
time slot, leaving few unused RBs. In comparison, when scheduling deadlines are intro-
duced in Scenario 2 (from 120 s to 180 s in Figure 3.9), radio resources of each slot are al-
located accordingly, resulting in more unused RBs. This difference arises because the USR
applied in Scenario 2 dynamically adjusts radio resources based on the required bitrate,
deadline, and channel quality of the scheduled UE, ensuring efficient resource allocation
without over-provisioning (see [64] for details on the EDF scheduling algorithm).

It is evident that controlling only the radio resource allocation does not differentiate
application performance, e.g., flows 1 and 2 of UE1 as well as flows 3 and 4 of UE2 have
the same data rate and end-to-end latency. Although the USR applied to each UE results
in different latency for UE1 and UE2, flow 2 still experiences high RLC queue sizes, as
depicted in Figure 3.10, causing a higher latency (∼1000ms) that does not meet its low-
latency requirement. In the next two scenarios, the traffic management pipeline at the
IDFC sublayer is also controlled to address this issue.

IP Flow Control. To differentiate IP flows within each DRB, the xApp applies PDRs,
BARs, and QRRs along with the previous USR in Scenario 3 (from 180 s to 240 s in Figure 3.9
and Figure 3.10). Specifically, as shown in Scenario 3 of Table 3.5, these PDRs classify each
flow into individual queues, each of which is controlled by a respective BAR. For instance,
flow 2 uses CoDel active queue management for lower latency, configured with a target
delay of 50ms6, while flow 4 utilizes a FIFO queue to maximize throughput. Both flows 1
and 3 are assigned to individual CoDel queues with a relaxed target delay of 100 ms This

6RFC 8289 recommends a target delay of 5-10% of RTT [113].
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No xApp.    Scenario 1.    Scenario 2.    Scenario 3.   Scenario 4.

Figure 3.9: Measured application bitrate and radio resource usage in different scenarios.

No xApp.    Scenario 1.    Scenario 2.    Scenario 3.   Scenario 4.

Figure 3.10: Measured application latency and network queuing size in different scenarios.

configuration helps prevent excessive queue sizes (∼3Mbytes) and delays (∼2 s) that may
occur with FIFO queues. Afterwards, QRRs limit the egress rate of each queue, and a default
round-robin scheduler is used in PSR to schedule packets across queues. As shown in the
results from Figure 3.9 and Figure 3.10, each flow now behaves differently. First, due to
the applied QRRs, flows 1 and 3 have lower data rates, while flows 2 and 4 have higher
data rates. Additionally, CoDel makes a major contribution to reducing the end-to-end
latency of flow 2 by over 80%. Furthermore, the RLC queue size for both UEs decreases
significantly due to the default 5G-BDP pacer [90] applied to TRR, while the RB allocation
remains unchanged due to the same USRs.

Coordinated Control. In the final scenario (from 240 s to 300 s in Figure 3.9 and Fig-
ure 3.10), both USRs and QRRs are updated to coordinate traffic control and resource allo-
cation. We observe that the updated QRR reduces the end-to-end latency of flow 2. This
adjustment lowers the egress rate of flow 2 to ensure that the overall egress rates for UE1
(i.e., QRR1 and QRR2) remain within the maximum scheduling rate specified by the corre-
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sponding USR. Also, both the egress rate of flow 4 and the maximum scheduling rate for
UE2 are increased, allowing for more radio resources to be allocated to flow 4. Note that
even more RBs are unused, but we can better satisfy the needs of user data flows, i.e., lower
latency for flow 2 and higher throughput for flow 4.

In summary, IP traffic control and radio resource allocation are equally essential to meet
the diverse needs of applications. IUP provides programmability from both perspectives,
making it a versatile solution for a wide range of use cases.

3.8 Discussion and Future Work

5G aims to deliver higher data rates, lower access latency, and greater deployment flexibil-
ity compared to prior generations. This evolution expands business models (e.g., neutral
hosts [116], vertical industries) and creates new use cases (e.g., private 5G, Industry 4.0).
However, the full potential of 5G has not yet be fully realized [80]. One reason is that the
control options in 5G are too complex for application developers to use effectively, unlike
the quick process of releasing new software versions. For example, several 5G QoS Indica-
tors (5QIs) [18] are standardized from a mobile network viewpoint, but applications often
operate on a best-effort basis due to limited visibility into their performance impact within
network. On the other hand, applications prefer network to act as simple data pipe(s), fo-
cusing on efficient packet forwarding and routing for their traffic flows, as they are already
resilient to IP address changes and capable of handling multiple connections.

Therefore, in this chapter, the concept of IUP introduces IP flow processing into RAN at
the access side, unifying the traditionally separate flow management functions of UPF and
RAN. This advancement streamlines mobile network infrastructure and enables seamless
interworking with non-3GPP networks. However, embedding UPF within RAN presents
several challenges that must be carefully addressed.

One major concern is the limited understanding of the additional processing overhead
introduced when embedding the traffic management pipeline, or even parts of it, within
the RAN. A key concern is scalability, as its per-flow operations may lead to computational
overhead. However, unlike conventional centralized UPFs that manage traffic across multi-
ple cells, IUP operates at the per-cell level, significantly reducing scalability demands. While
implementation challenges exist, they can be mitigated through optimized techniques (e.g.,
tree-based structures) and hardware acceleration (e.g., SmartNICs).

Our proof-of-concept implementation demonstrates that deploying IUP increases mem-
ory usage to approximately 4.6%, compared to 4.2% in a standard 5G deployment. Similarly,
CPU consumption rises to 66.9% for IUP, compared to 55.1% for a 5G deployment encom-
passing both RAN and UPF. This increase stems from the overhead introduced by pro-
grammable functions and rules implemented through shared libraries, as well as the use of
Unix domain sockets, which incur non-negligible CPU and memory costs [112]. The extent
of this additional resource consumption is closely tied to the implementation methods used
for IUP, suggesting that it can be optimized by exploring alternative approaches.

Beyond computational efficiency, a trade-off analysis between the IUP deployment and
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the current N-to-1 RAN-UPF design is required to verify both cost and energy efficiencies
in a scalable IUP deployment. Additionally, the mapping from IP flows to DRBs is still an
open issue, which was done jointly by UPF and RAN in the past, but is now done only on
IUP. As 3GPP and non-3GPP networks converge, it is critical to analyze the present QoS
framework and determine how it might be applied to non-3GPP link technology. Finally,
further research is needed to explore how the orchestration and management can enable
xApp programmability, allowing the network to automatically adjust rules based on real-
time observations to enhance IUP’s adaptability and performance.

3.9 Conclusions

In this chapter, we introduce IUP for next-generation mobile networks that integrates UPF
functionalities into the RAN. It provides programmability through a new traffic manage-
ment pipeline in the IDFC sublayer, as well as multiple programmable rules for IP traffic
control and radio resource allocation. Key benefits of IUP include reduced latency and
overhead, enhanced programmability of the UP, simplified CP operations, and seamless in-
terworking with non-3GPP networks. Additionally, several key use cases are analyzed to
address how IUP operates in CP procedures, such as handover and roaming, and how it
is compatible with existing deployments. Finally, our real-world testbed results highlight
several benefits of IUP, including reduced network latency and overhead, seamless con-
vergence between 3GPP and non-3GPP networks, and programmability across IP traffic
control and radio resource allocation to serve different applications.
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Autonomous Radio Access Network 4.1 Introduction

4.1 Introduction

The modern mobile network infrastructure relies not only on 3GPP-defined architectures
but also incorporates O-RAN architectures to enhance the programmability and interop-
erability of the Radio Access Network (RAN) while addressing the growing demands of
emerging technologies, such as Augmented Reality (AR) or Virtual Reality (VR). However,
these two ecosystems contribute to the mobile network from different perspectives, as il-
lustrated in Figure 4.1, , potentially posing challenges for network operators in managing
and integrating both systems.

As depicted by the green blocks in Figure 4.1, 3GPP establishes the global foundation for
mobile networks by developing standardized protocols that ensure seamless connectivity
and global interoperability 1. Additionally, it provides specifications for network operators
to manage and optimize their networks, as well as generic design and study reports for
emerging use cases. In contrast, as depicted by the blue blocks in Figure 4.1, O-RAN focuses
specifically on the RAN, introducing open interfaces to enable interoperability between
RAN components from multiple vendors while relying on 3GPP-defined architectures.

By fostering openness and vendor neutrality, O-RAN empowers network operators with
greater adaptability and reduced vendor dependency. Moreover, it allows the dynamic pro-
gramming of RAN functionalities using advanced technologies such as Artificial Intelli-
gence (AI) and Machine Learning (ML) models, further enhancing flexibility for operators
to optimize RAN performance. However, this enhancement also introduces additional over-
head and complexities to the network, increasing the burden on network operators.

Autonomous 
Control Loop

Abstracted O-RAN 
Architecture

Real-Time 
Network

Adaptability
Seamless 

Integration of 
Innovations

Autonomous & 
Intent-Driven Control 

Optimization N
etw

ork C
om

plexity for O
perator

Open Interface

Open & 
Disaggregated 
Architecture

RAN
Programmability

Intelligent 
Network 

Management

Standardized 
Protocol

System & Network 
Architecture

Network 
Management

Emerging 
Concepts & 
Innovations

Logical
Frameworks

&
Mechanisms

Practical 
Specifications

&
Implementation 

Guidelines

AUTO-RAN

O-RAN

3GPP

Low

High

Low

Figure 4.1: Overview of 3GPP, O-RAN and AUTO-RAN contributions in mobile networks.

1This allows endpoint devices from various manufacturers to operate across 5G networks provided by
different operators and vendors.
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Challenges. The coexistence of 3GPP and O-RAN ecosystems presents significant chal-
lenges for mobile network operators. While 3GPP provides globally standardized archi-
tectures, O-RAN introduces additional components, such as the RAN Intelligent Controller
(RIC), to enable programmability and real-time optimization. Integrating these components
into existing 3GPP-based systems increases operational complexity, particularly due to lim-
ited coordination between the two ecosystems. Additionally, O-RAN technologies often fall
outside the scope of 3GPP standards, requiring operators to adopt and manage new frame-
works and tools. This dual-system approach imposes technical and operational burdens,
especially on operators not mandated to implement O-RAN architectures, and complicates
end-to-end network optimization.

Contributions. In this chapter, we introduceAutonomous RadioAccess Network (AUTO-
RAN), illustrated by the orange blocks in Figure 4.1, a novel concept that enhances the cur-
rent O-RAN architecture with an autonomous control loop, simplifying the network op-
timization process for operators controlling infrastructures that integrate both 3GPP and
O-RAN ecosystems. AUTO-RAN abstracts the underlying complexities of O-RAN, enabling
operators to interact with the network using familiar 3GPP-defined logic, while leveraging
O-RAN technologies to enable real-time adaptability and performance optimization. It also
facilitates the smooth integration of new features introduced by either 3GPP or O-RAN, of-
fering a future-proof foundation that bridges both architectures. We detail the motivation
behind AUTO-RAN (Section 4.2), describe its architecture and autonomous control loop
(Section 4.3), and present a proof-of-concept implementation, including examples of xApps
and rApps that provide a declarative mechanism for operator interaction (Section 4.4.3).
Finally, we demonstrate two key use cases — automated RAN slicing and mobility manage-
ment — showcasing AUTO-RAN’s real-time adaptability to improve both network and user
performance, while abstracting control complexity for network operators (Section 4.5).

4.2 Why AUTO-RAN

In this section, we highlight the role of AUTO-RAN by addressing the challenges network
operators face with dual ecosystems — 3GPP and O-RAN. These include increased com-
plexity of mobile networks, limited real-time adaptability, and difficulties in integrating
new features. The following subsections provide details on how AUTO-RAN effectively
tackles these challenges.

4.2.1 Reduced Complexity for Operators in Dual Ecosystems

In 5G, the mobile network landscape is defined by two major ecosystems: 3GPP and O-
RAN, as illustrated in Figure 4.2. While both aim to optimize network and service perfor-
mance, they adopt fundamentally different approaches. 3GPP provides a comprehensive
framework for end-to-end network operations, ensuring global interoperability and seam-
less connectivity for endpoint devices. This enables operators to optimize network and
service performance from an end-to-end perspective, as illustrated in the right side of Fig-
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Figure 4.2: Increased complexity for network operators in managing autonomous networks
across two ecosystems.

ure 4.2. In contrast, O-RAN focuses specifically on RAN programmability, introducing open
interfaces and software-driven flexibility. This approach allows network operators to opti-
mize network and service performance in real-time andwithin multi-vendor environments,
as illustrated in the left side of Figure 4.2. However, the coexistence of these two ecosys-
tems adds complexity for network operators, who must manage and integrate two distinct
operational logics. The following section delves into these ecosystems in greater detail.

4.2.1.1 3GPP

As a key organization in global telecommunications, 3GPP develops comprehensive techni-
cal specifications (TS) that define protocols, radio technologies and architectures, as sum-
marized in Table 4.1 These protocols include examples such as Medium Access Control
(MAC) [10], Radio Link Control (RLC) [13], Packet Data Convergence Protocol (PDCP),
among others. Beyond protocols, 3GPP defines the foundational system and network ar-
chitectures, including the 5G Core Network (CN) [18] and RAN [8], as shown in the right
side of Figure 4.2. Furthermore, it provides frameworks for network management and op-
timization, such as Self-Organizing Networks (SON) [7], Management and Orchestration
(OAM) [4], which are essential for efficient and flexible network operations.
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In parallel, 3GPP provides technical reports (TR) to explore and evaluate emerging tech-
nologies and trends. These include the integration of Artificial Intelligence (AI) and Ma-
chine Learning (ML) in mobile networks [17, 16], the definition of Key Quality Indicators
(KQIs) for assessing 5G service experience [24], advancements in digital twins [22], and the
development of Non-Terrestrial Networks (NTN) [25], among other innovative areas.

Table 4.1: Overview of 3GPP contributions.

Category Description (Example) Technical Specification/Report

Standardized Protocol

Medium Access Control Protocol TS 38.321 [10]
Radio Link Control Protocol TS 38.322 [13]

Packet Data Convergence Protocol TS 38.323 [12]
Radio Resource Control Protocol TS 38.331 [14]

Session Initiation Protocol TS 24.229 [19]

System and Network Architecture
5G Core Network TS 23.501 [18]

5G Radio Access Network TS 38.401 [8]
IP Multimedia Subsystem TS 23.228 [9]

Network Management and Optimization

Self-Organizing Networks TS 28.313 [7]
Management and Orchestration TS 28.533 [4]

Network Slicing TS 28.530 [5]
Autonomous Networks TS 28.100 [6]

Management Control Loops TS 28.535 [21]

Emerging Concepts and Innovations

Artificial Intelligence and Machine Learning TR 38.743 [17], TR 38.908 [16]
Key Quality Indicators TR 28.863 [24]

Digital Twins TR 28.915 [22]
Non-Terrestrial Networks TR 28.874 [25]

3GPP defines “logical frameworks andmechanisms” to provide a standardized foundation
for implementing advanced network concepts while avoiding prescriptive implementation
details. This flexibility allows vendors to design innovative solutions and enables opera-
tors to deploy customized implementations tailored to their network environments. For
example, 3GPP introduces the concept of management control loops for network optimiza-
tion but leaves the specifics of decision-making, such as enabling network slicing, traffic
steering, or load balancing, to vendors or network operators.

However, this approach poses challenges for operators managing heterogeneous net-
work functions from multiple vendors. A lack of visibility into proprietary vendor mecha-
nisms often leads to vendor lock-in, making it difficult for operators to integrate andmanage
multi-vendor networks. Moreover, as 5G evolves, the increasing number of features (e.g.,
dynamic spectrum sharing, beamforming), applications (e.g., AR/VR), and new use cases
(e.g., NTN) further compounds the complexity. To address these vendor-specific challenges,
O-RAN emerges as a solution, which we explore further in the next subsection.

4.2.1.2 O-RAN

The O-RAN Alliance [36] was established to address the challenges posed by traditional,
proprietary mobile network architectures (e.g., vendor lock-in and limited interoperability).
By focusing on the RAN domain, O-RAN provides TS and TR to define the open interfaces
and disaggregated architectures based on the 3GPP specifications, enabling interoperability,
intelligent network optimization and programmability, as summarized in Table 4.2
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Table 4.2: Overview of O-RAN contributions.

Category Description (Example) Technical Specification/Report

Open Interface

A1 Working Group 2 [29]
E2 Working Group 3 [42]
O1 Working Group 10 [39]

Open F1,W1,E1,X2,Xn Working Group 5 [32, 47]
Open Fronthaul (Split 7-2x) Working Group 4 [48]

Open and Disaggregated Architecture

O-RAN Architecture Working Group 1 [117]
Open X-Haul Working Group 9 [33]

White-box Hardware Working Group 7 [34, 35]
Interoperability Test Working Group 4 & 8 [31, 49]

Intelligent Network Optimization

rApp & Non Real-Time RAN Intelligent Controller Working Group 2 [30]
xApp & Near Real-Time RAN Intelligent Controller Working Group 3 [40]

Operations and Maintenance Working Group 10 [38]
Intents-Driven Management Working Group 1 [37]

RAN Programmability
RAN Control Service Model Working Group 3 [46]

Cell Configuration and Control Service Model Working Group 3 [44]

Key interfaces such as A1 [29], E2 [42], and O1 [39] play vital roles in the O-RAN archi-
tecture, as illustrated in the left side of Figure 4.2, by enabling centralized control and man-
agement across E2-Nodes (denoted as RAN components in 3GPP terminology, such as eNB,
gNB, gNB-CU, or gNB-DU). Additionally, the open fronthaul [48] enables interoperability
between DU and RU, while the open F1, E1, and Xn concepts [32, 47] promoted by O-RAN
build upon 3GPP specifications to enable multi-vendor interoperability between disaggre-
gated RAN components (E2-Nodes). Based on these open interfaces, O-RAN introduces a
fully open and disaggregated architecture [117] that not only focuses on communication
interfaces between/across E2-Nodes but also extends to the transport domain (e.g., open
x-haul [33]). Furthermore, O-RAN enables decoupling of software and hardware platforms
with solutions such as white-box hardware [34, 35], while ensuring seamless multi-vendor
integration through interoperability test specifications [49, 31].

Moreover, a key innovation in O-RAN is the RAN Intelligent Controllers, which in-
cludes the NonRT-RIC [30] and NearRT-RIC [40], as shown in Figure 4.2. O-RAN introduces
components such as rApps on the NonRT-RIC and xApps on the NearRT-RIC, which can
integrate advanced functionalities (e.g., AI/ML models) to bring intelligence into mobile
networks. These components optimize network performance and enable emerging capa-
bilities, such as intent-driven management [37]. Inspired by the SDN concept, the RIC en-
ables dynamic programmability of the RAN at runtime. This programmability is facilitated
through O-RAN-defined Service Models (SM), such as the RAN Control (RC) [46], the Cell
Configuration and Control (CCC) [44] and the Low Layers Control (LLC) [45]. These mod-
els standardize the structure of control messages exchanged between the SDN controllers
(e.g., NonRT-RIC, NearRT-RIC) and the controlled entities (e.g., E2-Nodes). As a result,
control applications (e.g., xApps and rApps) can manage various RAN functions (e.g., MAC
scheduler) across E2-Nodes from different vendors, enabling a unified and interoperable
control framework.

O-RAN defines“practical specifications and implementation guidelines” to enable open,
disaggregated, and multi-vendor RAN solutions that dynamically optimize network perfor-
mance, while preserving the functionalities and architecture defined by 3GPP. For example,
while 3GPP define the QoS framework for optimizing the service performance, O-RAN en-
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ables vendors to develop and provide xApps implemented with RC SM. These xApps allow
operators to dynamically perform QoS management (e.g., radio bearer control and radio
resource allocation control) in near-real-time (with control loop latency of 10ms to 1 s).
Importantly, these optimizations can be applied directly within the RAN, often without
requiring extensive network-wide changes or reconfiguration.

However, this approach focuses solely on RAN optimization, which creates inconsis-
tencies in achieving a cohesive end-to-end network perspective. It lacks explicit provisions
for managing the integration of CN and RAN, placing this burden on the network opera-
tors. This, in turn, increases complexity for network operators as they must navigate and
manage two ecosystems. To address this, we introduce the concept of AUTO-RAN in this
chapter, as illustrated in Figure 4.3. AUTO-RAN bridges these two ecosystems, enabling
seamless integration and facilitating end-to-end network and service optimization. This
approach delivers a unified and streamlined solution, reducing operational challenges for
network operators. Further details are elaborated in Section 4.3.

4.2.2 Enabled Real-Time Network Adaptability

Real-time network adaptability has become increasingly crucial in mobile networks dues to
the complex and dynamic nature of modern network conditions. Factors such as fluctuating
channel quality and the increasing diversity of applications running simultaneously on user
devices challenge traditional service-based network optimization approaches, which rely
on broad traffic categories (e.g., voice, messaging, or data). In modern use cases, users often
run multiple high-demand applications simultaneously, which may be grouped into the
same category, leading to resource contention and performance degradation. For example,
live video streaming of a sports event and video calls with friends often compete for shared
resources, as network operators typically allocate only one DRB for data service.

This shift from predictable service-level traffic to dynamic application-level demands
introduces variability and unpredictability in network performance. Current approaches,
such as manual or semi-automated QoS reconfigurations, are reactive, costly, and struggle
to keep pacewith real-time changes, underscoring the need formore adaptive and proactive
solutions.

Emerging technologies like AI and ML offer promising pathways to enable real-time
adaptability. Frameworks like O-RAN [36] enable the capability and deployment of AI/ML
through xApps on the NearRT-RIC and rApps on the NonRT- RIC, allowing for dynamic and
efficient resource optimization. Additionally, initiatives such as the RAN Intelligence and
Automation (RIA) [129] subgroup within the Telecom Infra Project (TIP) aim to foster an
ecosystem that enhances RAN performance by leveraging AI/ML applications on O-RAN
RIC frameworks. Similarly, the AI-RAN [28] community is working to create an AI-native
RAN, focusing on optimizing RAN performance through AI applications (AI for RAN), in-
tegrating non-RAN AI workloads with RAN infrastructure (AI and RAN), and identifying
key RAN requirements to deliver and benchmark AI applications over RAN connectivity
and infrastructure (AI on RAN).

However, these approaches not only heavily depend on O-RAN architectures, requir-
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ing operators to navigate O-RAN-specific logic alongside 3GPP network standards, but
also primarily focus on the RAN domain, overlooking the need for holistic optimization
across the entire network, including CN and User Equipment (UE), as seen in use cases like
end-to-end slice management. These limitations hinder the ability to achieve the real-time
adaptability needed to meet evolving network demands. To address these challenges, the
proposed AUTO-RAN enables real-time network adaptability by integrating a closed-loop
autonomous mechanism within the O-RAN architecture while simplifying network opti-
mization process for operators. By exposing only 3GPP logic, AUTO-RAN allows operators
to optimize the network and service performance as they would in a traditional 3GPP sys-
tem, without the need to handle O-RAN logic.

4.2.3 Seamless Integrating New Features and Use Cases

As new applications and technologies emerge, next-generation mobile networks are ex-
pected to evolve to meet their diverse and demanding requirements. For instance, eXtended
Reality (XR) applications [23] in collaborative networks rely on ultra-low latency and high-
bandwidth connections to provide seamless user interactions. To address these demands,
3GPP Release 18 introduced the concept of a PDU Set [18], which groups one or more
Protocol Data Units (PDUs) carrying application-level information (e.g., video frames or
slices for XR services). This approach enables the network to manage all PDUs within a
Set cohesively while applying differentiated handling across PDU Sets, ensuring precise
performance for XR applications.

In addition, technologies like digital twin, which creates virtual replicas of physical
systems to simulate real-world environments (e.g., manufacturing, smart cities, and trans-
port systems), are gaining prominence. Integrating digital twin technologies into mobile
networks [107] requires highly reliable, low-latency, and synchronized data collection to
enable faster-than-real-time simulation capabilities. 3GPP has studied scenarios involving
digital twins [22], focusing on their integration with network management functions, iden-
tifying challenges, potential requirements, and possible solutions. Similarly, the O-RAN
research group has published reports exploring use cases and enablers for digital twins in
the RAN domain [76, 75].

Furthermore, the O-RAN architecture has facilitated the introduction of a range of in-
novative features such as control applications with capabilities like real-time control (e.g.,
dApp [81] and ChARM [54]) and embedded learning models (e.g., PandORA [142]), as well
as FlexCtrl and IUP, discussed in Chapter 2 and 3. These advancements leverage O-RAN’s
flexibility to enhance the network optimization process. However, these advancements are
introduced by either 3GPP, O-RAN, or both, with each ecosystem evolving independently
and focusing on its own architecture for their implementation. This lack of coordination
between the two ecosystems creates significant challenges for network operators, who have
to manage separate systems to deploy new features and use cases.

The proposed AUTO-RAN simplifies this complexity by abstracting the O-RAN archi-
tecture while aligningwith 3GPP standards. This design ensures that, regardless of whether
new features or use cases originate from 3GPP or O-RAN, AUTO-RAN can seamlessly sup-
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port them, as illustrated in Figure 4.1, thanks to its foundation on both 3GPP and O-RAN
concepts. By abstracting complexities, AUTO-RAN simplifies the optimization process for
network operators, enabling the natural adoption of new features and use cases. For ex-
ample, FlexCtrl can be deployed within the O-RAN architecture without requiring network
operators to determine where the control logic resides. Operators can optimize the per-
formance by simply sending their policies to optimize performance based on 3GPP logic,
or relying entirely on the automated mechanisms within AUTO-RAN without providing
instructions.

4.3 Architecture

In this section, we present the high-level architecture of AUTO-RAN, as illustrated in Fig-
ure 4.3, with an example scenario where operator aims to optimize network and service
performance. The proposed architecture extends and enhances the O-RAN architecture by
introducing a novel autonomous control loop. Figure 4.3 outlines the message flows be-
tween network components within the proposed control loop and how operators can op-
tionally interact with AUTO-RAN. Additionally, the figure highlights the responsibilities
of vendors and operators in providing or managing the details of each network component.

4.3.1 Overview

The proposed AUTO-RAN introduces an autonomous control loop based on the O-RAN
architecture, significantly simplifying network optimization tasks by abstracting the com-
plexities of O-RAN. This enables network operators to focus on their 3GPP expertise with-
out needing to understand detailed O-RAN specifications, as illustrated in Figure 4.3. More-
over, AUTO-RAN provides operators with the flexibility to control both legacy (without
O-RAN) and integrated (with O-RAN) infrastructures seamlessly. In integrated infrastruc-
tures, it enables network operators to optionally interact with O-RAN components through
3GPP logic (represented by the dashed brown arrow in Figure 4.3) to observe network per-
formance and enforce specific policies while leveraging advanced O-RAN functionalities.

The transformation between 3GPP and O-RAN network logic is achieved through the
proposed autonomous control loop, which involves four key steps executed across network
control applications (e.g., xApp, rApp) and underlying RAN nodes (e.g., E2-Node) through
O-RAN specified interfaces (e.g., E2, A1). The messages transmitted between these network
components carry content represented in either 3GPP or O-RAN logic. As illustrated in
Figure 4.3, these four steps can be realized through four example control applications, and
their details are outlined as follows:

Step 1: Awareness. The awareness xApp collects raw data (O-RAN logic) fromE2-Nodes,
processes it, and abstracts it into aggregated information from a 3GPP perspective. For
example, latency data from individual packets (O-RAN logic) is translated into the average
latency for a specific service (3GPP logic).
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Figure 4.3: High-level architecture of AUTO-RAN for optimizing network and service per-
formance scenarios.

Step 2: Analysis. This aggregated information is then passed to the analysis rApp, im-
plemented entirely with 3GPP logic. The analysis rApp interprets the data and generates
meaningful insights for the decision-making rApp. For example, it can calculate the per-
centage of packets exceeding a specific delay threshold (3GPP logic). Moreover, these in-
sights can optionally be exposed to the Network Management System (NMS) , as shown in
Step a of Figure 4.3, providing the operator with key observations about network perfor-
mance for monitoring or further action.

Step 3: Decision-Making. The decision-making rApp determines the necessary actions
to optimize the network based on the received insights and then passes these decisions to
the execution xApp. For example, if the average delay for a specific service exceeds its delay
budget (3GPP logic), the rApp generates a decision to address the issue (O-RAN logic) using
methods such as predefined rules or ML models. Additionally, network operator can op-
tionally influence the decision-making process by specifying policies (Step b in Figure 4.3)
that guide the decisions made by the decision-making rApp.

Step 4: Execution. The execution xApp, implemented fully with O-RAN logic, executes
the corresponding actions with required parameters to implement the control mechanism
at the RAN function(s) within the E2-Node(s).
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With its autonomous control loop, AUTO-RAN independently handles network op-
timization tasks, allowing O-RAN components to operate transparently within the inte-
grated infrastructure, hidden from the operator’s view. This seamless integration of the two
ecosystems (3GPP and O-RAN) allows network operators to perform autonomous control
optimizations while continuing to use familiar 3GPP-compliant management interfaces, ef-
fectively mitigating the complexities introduced by the O-RAN architecture.

4.3.2 Details of Autonomous Control Loop

Building on the overview of AUTO-RAN presented earlier, we now delve into the detailed
functionalities of each step in the proposed autonomous control loop, which can be real-
ized through control applications (referred to as Apps), as illustrated in Figure 4.4. These
functionalities can be implemented within a single App or distributed across multiple Apps,
depending on the preferences of the developer and vendor.

Data Collection and Abstraction. The first App - Awareness App - includes two pri-
mary functions: Data Collection and Data Abstraction. The Data Collection function gath-
ers raw data from the E2-Node(s) via O-RAN APIs (e.g., E2-related APIs [40]), which is
in compliance with O-RAN specifications. Meanwhile, the Data Abstraction function pro-
cesses the collected data and transforms it into higher-level information that aligns with the
3GPP standards (e.g., 3GPP-defined 5G end-to-end key performance indicators [3]). These
two functions can be further enhanced by incorporating an external database to store raw
data and processed information, facilitating future analysis and extended use cases.

Issue Detection and Prediction. Based on the information provided by the first App,
the second App — Analysis App — can detect current issues and predict potential future
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issues. The Issue Detection function focuses on past and/or present events, identifyingwhat
is or has happened. This function can be implemented using rule-based methods to detect
specific conditions or patterns. The Issue Prediction function, on the other hand, focuses on
future events, estimating what might happen next. This function typically requires AI/ML
technologies to project future outcomes accurately. Both functions rely on historical and
current information to perform their tasks effectively.

Network Status Reporting. Additionally, the Analysis App can report the network sta-
tus via the Network Status Reporting function, which provides network insights (e.g., de-
tected issues) to the next App for further evaluation and the development of solutions to
resolve or mitigate these issues. It can also report the network status to the operator via
the NMS, which seamlessly integrates O-RAN network information with the status of other
components in the 3GPP network (e.g., UPF). Since the information is already translated
into a 3GPP-compatible format (e.g., management interface), the operator can focus on
processing 3GPP-related information without dealing with the complexities of the O-RAN
architecture.

Solution Evaluation. Building on insights provided by the previous App, the third App
— Decision-Making App — evaluates potential solutions and determines the most suitable
one to address current or future issues. The Solution Evaluation function can leverage
advanced technologies, such as digital twins, to simulate potential solutions in a virtual
environment, assessing their effectiveness in resolving issues and optimizing network per-
formance. Alternatively, it can use static methods, such as lookup tables, which record
impacts of each solution on the network.

Solution Determination. Once the evaluation is complete, the Solution Determination
function selects the optimal solution for the current network, ensuring alignment with pre-
defined network policies and Service-Level Agreements (SLAs). This function plays a criti-
cal role in determining the final decision to be implemented within the O-RAN architecture
by translating the solution from 3GPP logic (e.g., 3GPP-defined policy) into O-RAN logic
(e.g., A1 policy). In other words, it takes the solution defined in 3GPP logic and identifies
how to realize it within the O-RAN architecture, such as selecting the appropriate rAp-
p/xApp to execute the control mechanism. Furthermore, operators can enforce additional
policies on this function to influence the final decision.

Solution Implementation. Finally, the fourth App — Execution App — is responsible
for processing the decisions provided by the previous App and and implementing the cor-
responding control actions to optimize network and service performance through the So-
lution Implementation function. This function specifies the detailed parameters required
for control mechanisms, ensuring alignment with O-RAN APIs. Additionally, it manages
conflicts in the underlying network by recording previously applied actions to prevent po-
tential conflicts and adjusting parameters when necessary.

82



Autonomous Radio Access Network 4.3 Architecture

Real-Time
Domain
(< 10ms)

Non-Real-Time
Domain
(> 1s)

Near-Real-Time
Domain
(> 10ms)

Network Management System (e.g., OAM, SMO)

Analysis
App

Decision-Making 
App

Awareness
App

Execution
App

Analysis
App

Decision-Making 
App

Awareness
App

Execution
App

Analysis
App

Decision-Making 
App

Awareness
App

Execution
App

E2-Node (s)

PolicyObservation

Information

Action

Insight Decision

Data

Information

Decision

DecisionInformation

Insight

Insight

Optional Message Flow 
Carring 3GPP-Specific Content

Message Flow Carring
O-RAN-Specific Content

Message Flow Carring
3GPP-Specific Content

Network Functions Based
on O-RAN Specifications

Network Functions Based
on 3GPP StandardsLegend

Figure 4.5: Deployment options of autonomous control loop.

4.3.3 Deployment Flexibility

The proposed autonomous control loop not only abstracts the complexities introduced by
O-RAN architecture, but also provides the deployment flexibility, allowing the Apps to be
deployed in various domains depending on the required control latency (following the con-
cept of FlexCtrl introduced in Section 2.5), as shown in Figure 4.5. For latency requirements
in the non-real-time domain (>1 s), Apps can be implemented as rApps on the NonRT-RIC
or as functions within OAM/SMO. For near-real-time latency requirements (>10ms), Apps
can be deployed as xApps on the NearRT-RIC. Finally, for real-time latency requirements
(<10ms), Apps can be realized as internal functions, such as dApps [81], on the E2-Node(s).

For example, the autonomous control loop illustrated in Figure 4.3 is implemented us-
ing two xApps on the NearRT-RIC and two rApps on the NonRT-RIC. To achieve real-time
network adaptability, operators can deploy all four steps/Apps in the real-time domain, or
network vendors can implement them directly within the E2-Node(s). While this approach
enhances adaptability, it may increase the computational load on the E2-Node(s). Alterna-
tively, real-time network adaptability can be enabled by moving more complex Apps, such
as analysis and decision-making Apps capable of handling 3GPP-specific content, to the
near- or non-real-time domains. This allows the execution App to remain close to the E2-
Nodes, enabling efficient real-time action while offloading intensive processing to higher
domains.
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Figure 4.6: Control application lifecycle in AUTO-RAN: integration with the O-RAN
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4.3.4 Control Application Lifecycle

Control applications, referred to as Apps, play a crucial role in establishing the proposed
autonomous control loop, which consists of four key functionalities: awareness, analysis,
decision-making, and execution, as discussed in Section 4.3.1. To implement these function-
alities efficiently, AUTO-RAN introduces a hierarchical control application lifecycle with
three levels of abstraction: Base Apps, Service Apps, and Intent Apps. As illustrated in
Figure 4.6 and detailed in Table 4.3, this progression simplifies operations for network op-
erators by gradually abstracting O-RAN logic — from low-level control in Base Apps to
higher-level abstraction in Service Apps and full automation in Intent Apps. By adopting
this structured approach, AUTO-RAN enables fully automated and intent-driven control,
ensuring scalability and adaptability in dynamic network environments.

4.3.4.1 Base App: Low-Level Development with Full Control

Base Apps are developed using the Base SDK, which is built on top of E2 APIs. These E2
APIs include standardized E2AP procedures, such as RIC subscription and RIC control, and
E2SM data structures, including KPM and RC. Since Base Apps are tightly coupled with
these standardized procedures, developers, such as App vendors, must have strong exper-
tise in E2AP and E2SM to properly utilize the Base SDK. To develop Base Apps, developers
need to generate subscription data following KPM SM specifications to perform report ser-
vices and collect specificmeasurement data, while also constructing control messages based
on RC SM specifications to execute control services, such as triggering handover operations
in underlying E2-Nodes.
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Table 4.3: Characteristics of control application in AUTO-RAN.

Attributes Base App Service App Intent App
Provided By App Vendor App Vendor Network Operator
Built On Base SDK Service SDK Kubernetes CRD
Operator
Interaction

Imperative Imperative Declarative

Purpose E2-related functions Service-based & A1-related
functions

High-level intents

Examples Data collection and control
execution

Data analysis and control
decision-making

Policy enforcement

Lines of Code 150+ 40+ 15+
O-RAN/RIC
Expertise

Proficient Basic None

3GPP/NMS
Expertise

None Basic Proficient

Configuration
Method

Manual Manual Automatic

Deployment
Model

Static Static Dynamic

Although Base Apps offer fine-grained control and ensure compliance with standard-
ized data collection and control execution methods, they require significant development
effort, often involving more than 100 lines of code for a single control procedure. From the
perspective of network operators, Base Apps are not easily scalable since each implemen-
tation typically supports only a single scenario, such as collecting throughput metrics from
one specific E2-Node. If network operators need to scale data collection across multiple E2-
Nodes or adjust the collected metrics, they must request App vendors to modify the code
accordingly and find a way to automate deployment instead of relying on manual inter-
vention. This limitation makes Base Apps less flexible for large-scale deployments where
network conditions frequently change.

4.3.4.2 Service App: Simplified Development with High-Level Abstraction

Service Apps are developed using the Service SDK, which builds on the Base SDK and
introduces A1 APIs. The Service SDK provides a higher-level abstraction of the Base SDK,
allowing developers to focus on the development of service-based and A1-related functions
without dealingwith E2-level complexities. Unlike Base Apps, which require deep technical
knowledge of E2AP and E2SM, Service Apps prioritize usability by shifting the focus from
how to write low-level procedures to how to use pre-built functions efficiently. Developers
only need basic knowledge of RIC platforms, as the Service SDK encapsulates underlying
E2 functionalities, enabling them to concentrate on advanced tasks such as data processing,
traffic analysis, and control decision-making.

Service Apps also allow network operators to define A1 policies, which are deployed
manually through the Network Management System (NMS). Once deployed, a Service App
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processes the defined policies and executes the corresponding actions based on its built-
in service-based functions. For example, if a network operator provides a slice policy, the
Service App can dynamically manage slice control operations. However, despite this ab-
straction, network operators must still have knowledge of the A1 interface, as they are
responsible for manually configuring policies and interacting with the O-RAN ecosystem.
While Service Apps significantly reduce the development effort required compared to Base
Apps, they still require some level of operator involvement for policy configuration and
execution.

4.3.4.3 Intent App: Fully Automated, Code-Free Deployment

Intent Apps are defined using Kubernetes Custom Resource Definitions (CRDs), allow-
ing network operators to express high-level intent through a YAML file instead of writing
code. This further abstracts the complexities of both Base and Service Apps, enabling net-
work operators to interact with the O-RAN ecosystem declaratively, without requiring any
knowledge of RIC platforms. By leveraging cloud-native technologies, Intent Apps auto-
mate network configuration and deployment, enable policy-driven service orchestration,
and dynamically deploy applications based on network intent.

Once an Intent App is defined and deployed, it automatically triggers the necessary Ser-
vice App based on the specified intent. The Service App then translates this intent into an
A1 policy and executes the corresponding actions. If required, the Service App can dynam-
ically deploy a Base App to execute specific low-level control actions. For example, if an
Intent App defines an intent to collect resource usage metrics from a specific gNB, the de-
ployed Service App interprets the policy, selects the appropriate Base App, and dynamically
programs it to carry out the data collection process.

4.4 Proof-of-Concept Implementation

This section elaborates on the implementation of AUTO-RAN, integrating the proposed
autonomous control loopwithin the O-RAN architecture to automate network optimization
process.

4.4.1 Platforms and Validation

The proposed autonomous control loop is built on FlexRIC [134], an open-source platform
that provides O-RAN-compliant interfaces (e.g., E2) and frameworks for monitoring and
controlling RAN nodes (referred to as E2-Nodes in O-RAN terminology). The choice of
RAN and CN technologies depends on the use case. For the RAN slicing use case, we
leverage OpenAirInterface (OAI) [114], an open-source platform that provides 5G end-to-
end systems compliant with 3GPP standards. OAI also integrates O-RAN compliant inter-
faces, enabling seamless communication with O-RAN components such as xApps on the
NearRT-RIC. For the mobility management use case, we utilize the Amarisoft Callbox [51],
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a commercial 5G system also compliant with 3GPP standards. However, Amarisoft does
not natively support O-RAN interfaces, instead providing a WebSocket-based network API
for operator control. To bridge this gap, we implemented a proxy agent based on FlexRIC,
allowing the Amarisoft RAN to be controlled in compliance with O-RAN specifications. Ad-
ditionally, AUTO-RAN is validated using Commercial Off-The-Shelf (COTS) UEs, ensuring
its applicability in real-world scenarios.

4.4.2 Implementation Details

The detailed implementation of autonomous control loop functionalities in AUTO-RAN is
outlined below, covering two use cases: RAN slicing and mobility management. RAN slic-
ing operates without network operator interaction, while mobility management involves
operator input, demonstrating that AUTO-RAN can both autonomously optimize the net-
work and incorporate operator-defined policies when needed.

4.4.2.1 Use case: Automated RAN Slicing

As illustrated in Figure 4.7, a proof-of-concept for AUTO-RAN is implemented by integrat-
ing the autonomous control loop within a single xApp on the NearRT-RIC. To avoid addi-
tional latency caused by message exchanges across the network between multiple xApps
and rApps, the four key steps — Awareness, Analysis, Decision-Making, and Execution —
are consolidated within a single xApp. Although these functionalities could be embedded
directly within the E2-Node, as detailed in Section 4.3.3, implementing the autonomous
control loop at the xApp level enables effective control of scenarios involving multiple E2-
Nodes.

Multi-Threading. The implemented autonomous control loop, as illustrated in Figure 4.7,
demonstrates its applicability through the use case of automatically enabling network slic-
ing to optimize network and service performance. An xApp was developed with two
threads to handle monitor and control tasks simultaneously. A thread-safe queue facilitates
communication between these threads, storing information such as traffic types and radio
resource utilization for further analysis. This design allows the control thread to analyze
data, make decisions, and send the necessary control messages to the E2-Nodes without
waiting for the monitor thread to complete its tasks. Meanwhile, the monitor thread con-
tinuously collects underlying data in parallel.

Monitor Thread. The monitor thread includes the first step (Awareness) and its asso-
ciated functions, which are capable of processing O-RAN specific content (e.g., E2AP and
E2SM). These functions subscribe to RAN functions via corresponding SMs, following the
RIC report service procedure, and periodically receive RIC indication messages containing
raw data from E2-Nodes. Upon receiving RIC indication messages, these functions decap-
sulates the raw data and aggregates it into 3GPP-specific information. This includes metrics
such as per-second radio resource utilization for each UE and the types of traffic received
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Figure 4.7: Implementation details of AUTO-RAN in RAN slicing use case.

during that time. The abstracted information is then pushed to the thread-safe queue, where
it can be queried by the control thread for further processing.

Control Thread. The control thread includes the rest three steps of the autonomous
control loop: Analysis, Decision-Making, and Execution. In the second step (Analysis), the
functions retrieve data from the thread-safe queue, identify issues such as new traffic types
or SLA violations, and generate network insights for the next step, including identifying
active services and their required performance. For example, the systemmay detect that UE
1 is using a uRLLC service (e.g., online gaming), while UE 2 is using an eMBB service (e.g.,
video streaming). During the third step (Decision-Making), the functions determine final
control decisions based on predefined rules to address issues, such as handling the arrival
of a new service through slicing policy control. These decisions, grounded in O-RAN spe-
cific logic, include selected control options for traffic management and resource allocation.
In the fourth step (Execution), the functions generate control actions based on the given
decisions, encapsulate them into RIC control messages, and execute the RIC control service
procedure with the underlying RAN functions, following O-RAN specifications. Finally,
the gNB carries out the control actions, creating two slices: UE 1 is assigned to the slice for
uRLLC service, and UE 2 is assigned to the slice for eMBB service.
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Figure 4.8: Implementation details of AUTO-RAN for mobility management in a load bal-
ancing scenario.

4.4.2.2 Use Case: Automated Mobility Management

In this use case, AUTO-RAN is implemented by integrating the autonomous control loop
within two xApps on the NearRT-RIC, as illustrated in Figure 4.9 and Figure 4.8. The first
xApp monitors network and user performance, handling awareness and analysis tasks,
while the second xApp manages handover control, covering decision-making and execu-
tion tasks. To demonstrate mobility management use cases through handover control, two
scenarios are implemented: intra-handover control for load balancing and inter-handover
control for energy saving. Moreover, both scenarios allow seamless interaction with the
network operator.

Load Balancing. Figure 4.8 illustrates five steps in the load balancing scenario. In Step
1, the monitoring xApp collects network and user metrics, including Radio Resource Block
(RB) usage, the bitrate of connected UEs, and (neighbor) cell information. It then processes
this data to identify potential issues. In Step 2, if a network issue is detected, such as RB
usage nearing 100% for Cell 1a in gNB-1, the monitoring xApp reports it to the network
operator. In Step 3, the network operator responds by sending a policy directive to AUTO-
RAN, instructing it to balance the load on gNB-1. In Step 4, the control xApp processes
the policy and decides to initiate handover control, moving UE 2 from Cell 1a to Cell 1b in
gNB-1 to redistribute the load. It then generates the required control message following O-
RAN RC SM specifications and sends it to gNB-1. In Step 5, the gNB-1 receives the control
action and executes the intra-handover, seamlessly transferring UE 2 from Cell 1a to Cell
1b without service interruption. Unlike conventional handover mechanisms, where the UE
triggers the handover, this approach enables the network operator to proactively optimize
network performance based on real-time network conditions.
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Figure 4.9: Implementation details of AUTO-RAN for mobility management in an energy-
saving scenario.

Energy Saving. The energy-saving scenario is implemented in five steps, as shown in
Figure 4.9. In Step 1, the monitoring xApp collects network metrics, similar to the load
balancing scenario, and processes this data into higher-level insights before reporting to
the network operator. In Step 2, the network operator observes a low-traffic period (e.g.,
nighttime), during which a high-powered gNB is not needed to support extensive coverage
and multiple UEs. In Step 3, recognizing the low UE density, the network operator sends
a policy directive to turn off gNB-1 to reduce energy consumption. In Step 4, the control
xApp processes the policy and initiates handover control, transferring all UEs from gNB-
1 to gNB-2 before shutting down gNB-1. It then generates the required control messages
and sends them to gNB-1. In Step 5, the gNB-1 executes the handover procedure (Xn han-
dover), seamlessly transferring all UEs from gNB-1 to gNB-2 without service disruption.
Afterward, it reduces the transmission power of gNB-1 to zero. Compared to the tradi-
tional approach of directly turning off gNB-1, which may cause UEs to lose service and
reconnect independently, this method ensures seamless service continuity while enabling
the network operator to optimize performance and reduce energy consumption efficiently.

4.4.3 Reduced Control Application Development Complexity: Ex-
amples of xApp and rApp

In this section, we present example code for control applications, as discussed in Sec-
tion 4.3.4, including Base, Service, and Intent Apps. We demonstrate two scenarios: one
for data monitoring and another for slice control. For each scenario, we showcase three
Apps to highlight their differences and illustrate how they progressively abstract the un-
derlying logic. The Base and Service Apps, functioning as xApps, are developed based on

90



Autonomous Radio Access Network 4.4 Proof-of-Concept Implementation

FlexRIC[134], while the Intent Apps, acting as an rApps, are built on MAESTRO [63]2.

4.4.3.1 Data Monitoring Apps

To collect the required metrics, we follow the standardized RIC report service procedure
for KPM SM and develop the corresponding Apps, as detailed below.

Base App (xApp). Developing a Base App requires four key steps, as shown in List-
ing 4.1:

1. Start: Initialize the xApp and retrieve information about connected E2-Nodes.

2. RIC Report Service: Prepare the necessary details, such as the event trigger and action
definition, for the KPMSM subscription requestmessage, which specifies the required
measurement data.

3. Data Collection: Process the received indication messages within the callback func-
tion, which was defined during the subscription request.

4. Stop: Send a subscription delete request to terminate data collection from E2-Nodes
and stop the xApp.

For simplicity, the code related to the callback function is not included in Listing 4.1. Further
details can be found in the FlexRIC repository3.

Service App (xApp). Developing a Service App involves three key steps. However, com-
pared to the Base App, it simplifies much of O-RAN’s complexity, allowing developers to
avoid dealing with intricate data structures and procedures. As shown in Listing 4.2, the
required steps are as follows:

1. Start: Initialize the xApp, specify the current use case, and retrieve information about
connected E2-Nodes.

2. Data Collection: Obtain measurement data directly by calling a function provided by
the Service SDK and specifying the required measurement name.

3. Stop: Terminate the xApp.

Intent App (rApp). Unlike the Base and Service Apps, an Intent App4 allows operators to
define measurement data without coding by using a YAML format, as shown in Listing 4.3.

2A cloud-native platform that includes SMO and provides an intent-based framework leveraging Large
Language Models (LLMs) for network automation.

3https://gitlab.eurecom.fr/mosaic5g/flexric/-/blob/br-flexric/examples/xApp/c/monitor/
4Demo video available at:https://youtu.be/3oHtkL39eo0
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1
2 /*********************************/
3 //* 0. Define parameters *//
4 /*********************************/
5 uint64_t const const e2node_nbid = 50;
6 uint64_t const report_period_time_ms = 1000;
7 char* const measurement_name[3] = {
8 "DRB.PdcpSduVolumeDL",
9 "DRB.UEThpDl",
10 "RRU.PrbTotDl"};
11
12 int main(int argc, char *argv[])
13 {
14 /*********************************/
15 //* 1. Start the xApp *//
16 /*********************************/
17 // 1a. Initialize xApp
18 fr_args_t args = init_fr_args(argc, argv);
19 init_xapp_api(&args);
20 // 1b. Get connected E2-Nodes infroamtion
21 e2_node_arr_xapp_t nodes = e2_nodes_xapp_api();
22
23 /*********************************/
24 //* 2. Start RIC Report Service *//
25 /*********************************/
26 // 2a. Define a handler to store the RIC Request ID
27 sm_ans_xapp_t* oran_sm_handle = calloc(nodes.len, sizeof(sm_ans_xapp_t));
28 // 2b. Subscribe KPM SM on specified E2-Node
29 for (int i = 0; i < nodes.len; i++) {
30 if (nodes.n[i].id.nb_id.nb_id == e2node_nbid) {
31 // 2d. Generate KPM subscription data: event trigger
32 kpm_sub_data_t kpm_sub = {0};
33 kpm_sub.ev_trg_def = gen_kpm_ev_trig(report_period_time_ms);
34 // 2e. Generate KPM subscription data: action definition
35 kpm_sub.sz_ad = 1;
36 kpm_sub.ad = calloc(1, sizeof(kpm_act_def_t));
37 *kpm_sub.ad = gen_kpm_act_def(measurement_name,
38 report_period_time_ms,
39 FORMAT_4_ACTION_DEFINITION);
40
41 // 2d. Send KPM subscription request, and indicate the callback function to get the return indicaiton message
42 oran_sm_handle[i] = report_sm_xapp_api(&nodes.n[i].id,
43 SM_KPM_ID,
44 &kpm_sub,
45 sm_cb_kpm);
46 }
47 }
48
49 /*********************************/
50 //* 3. Get the measurement data from the callback function sm_cb_kpm() *//
51 /*********************************/
52
53 /*********************************/
54 //* 4. Exit *//
55 /*********************************/
56 // 4a. Send subcription delete request
57 for(int i = 0; i < nodes.len; ++i)
58 rm_report_sm_xapp_api(oran_sm_handle[i].u.handle);
59 free(oran_sm_handle);
60 // 4b. Stop the xApp
61 while(try_stop_xapp_api() == false)
62 usleep(1000);
63 }

Listing 4.1: Base xApp Example (C) for monitoring required measurement data.
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1
2 /*********************************/
3 //* 0. Define parameters *//
4 /*********************************/
5 uint64_t const const e2node_nbid = 50;
6
7 int main(int argc, char *argv[])
8 {
9 /*********************************/
10 //* 1. Start the xApp *//
11 /*********************************/
12 // 1a. Initialize xApp
13 init_xapp_sdk(argc, argv);
14 // 1b. Specify the current use case and get connected E2-Nodes information
15 arr_node_data_t arr = node_data_xapp_sdk(MONITOR_USE_CASE_e);
16
17 /*********************************/
18 //* 2. Get the measurement data on specified E2-Node *//
19 /*********************************/
20 for(int i = 0; i < arr.sz; ++i) {
21 global_e2_node_id_sdk_t const* node = &arr.n[i].node;
22
23 if (arr.n[i].node.nb_id.nb_id == e2node_nbid) {
24 // 2a. Get the measurement data related to E2-Node
25 float pdcp_sdu_vol_dl = e2_node_mntr_xapp_sdk(node, PDCP_SDU_VOLUME_DL);
26 // 2b. Get the measurement data related to UEs
27 for(int j = 0; j < arr.n[i].sz_ue; ++j) {
28 ue_id_e2sm_sdk_t const* ue = &arr.n[i].ue[j].ue;
29
30 float thp_dl = ue_mntr_xapp_sdk(node, ue, UE_THP_DL);
31 int prb_tot_dl = ue_mntr_xapp_sdk(node, ue, PRB_TOT_DL);
32 }
33 }
34 }
35
36 /*********************************/
37 //* 3. Exit *//
38 /*********************************/
39 free_arr_node_data (&arr);
40 return EXIT_SUCCESS;
41 }

Listing 4.2: Service xApp Example (C) for monitoring required measurement data.

1 apiVersion: ric.trirematics.io/v1
2 kind: MonitoringJob
3 metadata:
4 name: intent
5 namespace: trirematics
6 spec:
7 tasks:
8 - networksMetricsMap:
9 gnb1.regionname:
10 - Physical Resource Utilization
11 - Data Volume
12 gnb2.regionname:
13 - Physical Resource Utilization
14 - Data Volume
15 - Throughput

Listing 4.3: Intent rApp Example (YAML) for specifying required measurement data.
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4.4.3.2 Slice Control Apps

Tomanage slices within the RAN, we follow the standardized RIC control service procedure
for RC SM and develop the corresponding Apps, as detailed below.

BaseApp (xApp). Similar to themonitoring case, developing a Base App for slice control
requires three key steps, as shown in Listing 4.4:

1. Start: Initialize the xApp and retrieve information about connected E2-Nodes.

2. RIC Control Service: Prepare the necessary details, such as the control header and
message, for the RC SM control request, which specifies the slice configurations.

3. Stop: Terminate the xApp.

Service App (xApp). Similar to the monitoring case, developing a Service App also in-
volves three key steps, as shown in Listing 4.5:

1. Start: Initialize the xApp, specify the current use case, and retrieve information about
connected E2-Nodes.

2. Control Execution: Perform slice control by calling a function provided by the Service
SDK and specifying the slice configurations.

3. Stop: Terminate the xApp.

Moreover, the Service App can be further extended to expose interactive APIs, enabling
operators to use it5 without needing to write code from scratch.

Intent App (rApp). Unlike the Base and Service Apps, an Intent App allows operators
to define slice policies using a YAML format, as shown in Listing 4.6.

5Demo video available at:https://youtu.be/kbh31hSxVFI
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1
2 /*********************************/
3 //* 0. Define parameters *//
4 /*********************************/
5 uint64_t const const e2node_nbid = 50;
6 uint32_t const control_service_style = 2; // Radio resource allocation control
7 uint16_t const control_action_iud = 6; // Slice level PRB quota
8 typedef struct {
9 char* sst;
10 char* sd;
11 int max_ratio;
12 int min_ratio;
13 int dedicated_ratio;
14 } rrm_policy_ratio_t;
15 rrm_policy_ratio_t const nssai_configs[3] = {
16 {"1", "0", 20, 20, 20},
17 {"1", "1", 40, 20, 0},
18 {"2", "1", 100, 0, 0}
19 };
20
21 int main(int argc, char *argv[])
22 {
23 /*********************************/
24 //* 1. Start the xApp *//
25 /*********************************/
26 // 1a. Initialize xApp
27 fr_args_t args = init_fr_args(argc, argv);
28 init_xapp_api(&args);
29 // 1b. Get connected E2-Nodes infroamtion
30 e2_node_arr_xapp_t nodes = e2_nodes_xapp_api();
31
32 /*********************************/
33 //* 2. Start RIC Control Service *//
34 /*********************************/
35 // 2a. Generate RC control header
36 rc_ctrl_req_data_t rc_ctrl = {0};
37 rc_ctrl.hdr = gen_rc_ctrl_hdr(control_service_style,
38 control_action_iud, FORMAT_1_E2SM_RC_CTRL_HDR);
39 // 2b. Generate RC control message
40 rc_ctrl.msg = gen_rc_ctrl_msg(nssai_configs,
41 FORMAT_1_E2SM_RC_CTRL_MSG);
42
43 // 2c. Send control request to specific E2-Node
44 for (int i = 0; i < nodes.len; i++) {
45 if (nodes.n[i].id.nb_id.nb_id == e2node_nbid) {
46 control_sm_xapp_api(&nodes.n[i].id,
47 SM_RC_ID,
48 &rc_ctrl);
49 }
50 }
51
52 /*********************************/
53 //* 3. Exit *//
54 /*********************************/
55 // 3a. Stop the xApp
56 while(try_stop_xapp_api() == false)
57 usleep(1000);
58 }

Listing 4.4: Base xApp Example (C) for slice control.
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1
2 /*********************************/
3 //* 0. Define parameters *//
4 /*********************************/
5 uint64_t const const e2node_nbid = 50;
6 typedef struct {
7 char* sst;
8 char* sd;
9 int max_ratio;
10 int min_ratio;
11 int dedicated_ratio;
12 } rrm_policy_ratio_t;
13 rrm_policy_ratio_t const nssai_configs[3] = {
14 {"1", "0", 20, 20, 20},
15 {"1", "1", 40, 20, 0},
16 {"2", "1", 100, 0, 0}
17 };
18
19 int main(int argc, char *argv[])
20 {
21 /*********************************/
22 //* 1. Start the xApp *//
23 /*********************************/
24 // 1a. Initialize xApp
25 init_xapp_sdk(argc, argv);
26 // 1b. Specify the current use case and get connected E2-Nodes information
27 arr_node_data_t arr = node_data_xapp_sdk(SLICE_USE_CASE_e);
28
29 /*********************************/
30 //* 2. Send control request to specific E2-Node *//
31 /*********************************/
32 for (int i = 0; i < arr->sz; i++) {
33 if (arr.n[i].node.nb_id.nb_id == e2node_nbid) {
34 slice_xapp_sdk(&arr.n[i].node, nssai_configs);
35 }
36 }
37
38 /*********************************/
39 //* 3. Exit *//
40 /*********************************/
41 free_arr_node_data(&arr);
42 return EXIT_SUCCESS;
43 }

Listing 4.5: Service xApp Example (C) for slice control.

1 apiVersion: ric.trirematics.io/v1
2 kind: PolicyJob
3 metadata:
4 name: intent
5 namespace: trirematics
6 spec:
7 tasks:
8 - policyStatements:
9 gnb1.regionname:
10 - sliceid:
11 - nssaiId:
12 - sst: "1"
13 - sd: "000000"
14 - maxDlThptPerUe: 35
15 - sliceid:
16 - nssaiId:
17 - sst: "1"
18 - sd: "000001"
19 - maxDlThptPerUe: 65
20 - sliceid:
21 - nssaiId:
22 - sst: "2"
23 - sd: "000001"
24 - maxDlThptPerUe: 160

Listing 4.6: Intent rApp Example (YAML) for specifying slice policy.
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Figure 4.10: Experiment setup for slicing scenarios with and without AUTO-RAN.

4.5 Experimental Evaluation

In this section, we present preliminary results from our over-the-air testbed, demonstrat-
ing how AUTO-RAN enables automated control mechanisms for two use cases: RAN slic-
ing6 and mobility management7. These are achieved through xApps that support real-time
adaptability and abstract O-RAN complexities, enabling declarative optimization process.

4.5.1 Enabled Real-Time Traffic Detection and RAN Slicing

Setup and Workload. We demonstrate the real-time network adaptability of AUTO-
RAN by developing an xApp (Figure 4.7) that implements the proposed autonomous control
loop mechanism8. The xApp supports real-time traffic detection and dynamic enforcement
of slicing policies, enabling fully automated slice and traffic control within the RAN. To
evaluate its effectiveness in a practical scenario, we set up two experimental configurations,
illustrated in Figure 4.10, comparing network and user performancewith AUTO-RAN xApp
(Scenario b) and without it (Scenario a). In Scenario a, two UEs connect to the gNB, each
running two user applications with downlink traffic from the Data Network (DN). UE 1 runs
an iPerf TCP flow and the YouTube application streaming video, while UE 2 runs the same
iPerf flow and the Twitch application streaming live content. In Scenario b, the AUTO-
RAN xApp is deployed to autonomously detect traffic types, make control decisions, and
dispatch corresponding slice and traffic policies (Table 4.4) to the gNB. These policies en-
able real-time traffic segregation and dynamic RAN slicing with appropriate radio resource
allocation, tailored to application-level requirements.

6Demo video available at: https://youtu.be/iwwC9Tw21OM
7Demo video available at: https://youtu.be/hlLt--WSQPc
8We utilize the standardized KPM SM, along with two customized SMs from FlexRIC: Traffic Control (TC)

and Slice Control (SC).
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Table 4.4: Slice and traffic policies applied by the xApp in AUTO-RAN.

UE
Radio Resource Scheduler Traffic Management Pipeline
Slice Scheduling Rules Classifier Rules Queuing Rules Shaper Rules

UE 1
Slice 1 Rule 1: Unknown TCP traffic (User App1: iPerf) Rule 1: FIFO Rule 1: 10 Mbps

Bitrate: 50 Mbps Rule 2: Live video streaming traffic (User App2: Twitch) Rule 2: CoDel Rule 2: 40 Mbps
Deadline: 2.5 ms Rule 3: Other traffic (User App2: Web, Advertisement ...) Rule 3: CoDel Rule 3: 10 Mbps

UE 2
Slice 2 Rule 4: Unknown TCP traffic (User App3: iPerf) Rule 4: FIFO Rule 4: 10 Mbps

Bitrate: 120 Mbps Rule 5: Video streaming traffic (User App4: YouTube) Rule 5: FIFO Rule 5: 120 Mbps
Deadline: 5 ms Rule 6: Other traffic (User App4: Web, Advertisement ...) Rule 6: FIFO Rule 6: 10 Mbps

Network Configurations. The gNB operates on band 41 with 20MHz bandwidth and
a TDD frame of 7 downlink slots, 2 uplink slots, and 1 mixed slot. To minimize latency,
the NearRT-RIC and xApp run on the same machine as the gNB. Two Pixel phones (UEs)
connect to the gNB over-the-air, as shown in Figure 4.10.

Slice and Traffic Policies. The AUTO-RAN xApp implements a set of predefined rule-
based policies that enable an autonomous control loop. Upon detecting application-specific
traffic (awareness and analysis), the xApp identifies the relevant rules (decision-making)
and generates control messages (control execution) to be applied at the gNB. These policies
fall into two categories: traffic control and slice control, as summarized in Table 4.4. The
details of the traffic control policies are elaborated below:

• For iPerf traffic (labeled as unknown) in both UEs, the xApp applies a conservative
policy to prevent it from monopolizing bandwidth. It creats a classifier rule to isolate
the traffic, assigns a FIFO queue for basic scheduling, and sets a shaper to cap the
bandwidth at maxiumum 10 Mbps.

• For Twitch traffic in UE 1, which represents live video streaming and is highly sen-
sitive to latency and jitter, the xApp applies a classifier rule, assigns a CoDel queue
(with a 100 ms target delay) to actively manage latency, and configures a shaper to
allocate 40 Mbps, ensuring smooth, real-time streaming performance.

• For YouTube traffic in UE 2, which is bursty and more tolerant to delay, the xApp uses
a classifier rule, assigns a FIFO queue, and configures a shaper to allocate 120 Mbps.
This higher bandwidth supports efficient buffering during bursts without affecting
other traffic.

• Background traffic, such as web services and advertisements, is treated as low prior-
ity. For both UEs, the xApp applies a classifier rule and sets the bandwidth limit to
10 Mbps. However, queuing policies differ by service type: UE 2 (eMBB) uses a FIFO
queue, while UE 1, which supports uRLLC, employs a CoDel queue to reduce latency
even for background flows.

While applying traffic control rules, the xApp applies slice control policies at the gNB. It
creates two slices: Slice 1 for UE 1, optimized for uRLLC services with tighter scheduling
deadlines, and Slice 2 for UE 2, configured for eMBB services with greater bandwidth al-
location. This design ensures that each UE receives resources aligned with its application
requirements and QoS demands.
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(a) UE 1.

(b) UE 2.

Figure 4.11: Timeline of packet reception (left) and data volume (right) per application
protocol for both UEs.
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Traffic Analysis. Figure 4.11 presents the detailed traffic information received by the
gNB for each UE and compares two scenarios: Scenario a (without AUTO-RAN xApp) and
Scenario b (with AUTO-RAN xApp activated at 33 seconds). In Scenario b, the deployed
xApp gains access to fine-grained packet-level data, including Layer 7 protocol information,
enabling it to classify traffic within each UE. In contrast, Scenario a lacks this capability,
limiting traffic visibility within gNB. In Scenario b, each packet is analyzed using the nDPI
library in gNB and reported to the xApp, which classifies traffic into four categories: (1)
background traffic, (2) iPerf traffic9, (3) Twitch traffic, and (4) YouTube traffic. The right
side of Figure 4.11 shows the data volume of each arrived packet over the time. Among
them, iPerf and Twitch traffic exhibit the highest arrival rates (approximately 850 packets
per second) and are transmitted using the MTU size of 1500 bytes. In contrast, YouTube
traffic, as observed for UE 2 in Figure 4.11b, follows a bursty transmission pattern, sending
groups of 500 to 1200 packets roughly every 5 seconds. This behavior is distinct from
the continuous flow seen in live Twitch video or iPerf traffic. Meanwhile, low-frequency
packets such as web service requests, connection checks, and advertisements are classified
as background traffic due to their infrequent arrival.

Network and User Performance. Figure 4.12 evaluates both network- and user-level
performance metrics across two scenarios. The metrics include RB utilization, bitrate, RLC
buffer delay, and the average latency of each control message.

Figure 4.12: Measurement of network and user performance.

9iPerf lacks Layer 7 signatures and is marked as unknown by nDPI.
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(1) Scenario a: From 0 to 33 s, both UEs show approximately 50% RB usage. This is
primarily due to iPerf traffic consuming a large portion of the bandwidth, which in turn
leads to elevated RLC buffer delays10 (up to 100ms) for both UEs. The bitrate shown in this
phase represents the total bitrate, without visibility into individual application flows.

(2) Scenario b: Starting at 34 s with AUTO-RAN xApp activated, RB usage drops sig-
nificantly: to around 12% for UE 1 and 6% for UE 2. This reduction is primarily due to traffic
shaping applied to iPerf traffic, which is capped at 10Mbps. UE 1 also runs live video stream-
ing, which requires continuous data transmission and results in slightly higher RB usage
than UE 2, which streams buffered video with a bursty pattern. Following the xApp deploy-
ment, RLC buffer delay drops sharply to approximately 0.5ms, mainly due to the pacer11
introduced by the traffic control mechanism (as detailed in Section 3.4). The pacer regulates
packet flow from upper layers to the RLC buffer, helping prevent buffer bloat and reducing
delay. Additionally, per-application bitrate statistics become available, as the TC SMenables
the xApp to identify and monitor individual traffic flows, providing finer-grained visibility
for network operators. Results show that iPerf maintains a steady 10 Mbps, in line with
the shaping policy. YouTube exhibits a lower bitrate (≈5 Mbps) compared to Twitch (≈10
Mbps), reflecting its bursty traffic behavior versus Twitch’s continuous stream. Finally, the
average control loop latency is measured at 1.6ms, including both traffic and slice control
messages. Traffic control messages are triggered upon detection of new traffic types. Slice
control is executed only once - when the xApp detects two UEs with different service types,
it sends two control messages to create slices and associate each UE accordingly. The slice
configuration then persists at the gNB.

Control LatencyBreakdown. Wepresent a detailed latency breakdown, includingmon-
itoring, control logic, and end-to-end control loop latencies, as illustrated in Figure 4.13,
with measurement results shown in Figure 4.14.

(1) Monitoring and Control Loop Latencies: The P99 monitoring latency is ap-
proximately 1.27ms across all traffic types, with low variance, highlighting the xApp’s
stable and responsive monitoring of the RAN. In contrast, the control loop latency varies
across traffic types due to the different control policies applied. Specifically, traffic types
requiring the creation of FIFO queues experience higher latency. This is because the traffic
control mechanism within the RAN leverages shared libraries to dynamically load queue
implementations. Loading and instantiating a FIFO queue takes approximately 1ms, while
a CoDel queue can be created in under 50 µs. For instance, UE 1’s Twitch and background
traffic are managed using CoDel queue policies, resulting in much lower latencies. As a re-
sult, the P99 control loop latency is around 0.4ms for traffic types using CoDel queues, and
can reach up to 11ms for those using FIFO queues. Additionally, the slice control latency
achieves 0.31ms, demonstrating the xApp’s ability to real-time configure and assign slices
efficiently.

10RLC buffer delay is the time a packet remains in the buffer. Each UE has one RLC buffer, as only a single
DRB is configured.

11The pacer is initialized when the xApp is deployed.
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Figure 4.13: Latency breakdown: From gNB reception of the first application packet to xApp
receiving the monitoring data and completing control execution for specific traffic types.

(a) Monitor latency of each type of traffic.

(b) Control loop latency of traffic and slice control.

(c) Total latency including control logic processing time within xApp.

Figure 4.14: Latency breakdown for controlling different traffic types.

(2) Control Logic Latency: The control logic latency within the xApp is further
derived by subtracting the average monitoring and control loop latencies from the total
latency, as shown in Figure 4.14c. Here, total latency is defined as the time interval be-
tween the reception of the first application packet at the gNB and the completion of the
corresponding control action for that traffic type. The variation in control logic latency
(ranging from under 1ms to up to 15ms) stems from the internal thread design of the
AUTO-RAN xApp, which currently lacks support for parallel execution of control poli-
cies (see Figure 4.7). When multiple traffic types trigger control decisions simultaneously,
thread contention occurs, leading to latency spikes (UE 2 iPerf traffic) in our measurements.
This highlights the need for design improvements, particularly to enable concurrent policy
handling. Moreover, incorporating more advanced techniques such as ML-based decision
models could further increase control latency, underscoring a key trade-off: while a more
intelligent or feature-rich xAppmay enhance decision quality, it can also add computational
overhead that challenges real-time adaptability.
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Finally, this experiment demonstrates that the proposed AUTO-RAN xApp can au-
tonomously optimize network behavior without requiring direct operator interaction with
O-RAN control mechanisms. Once deployed, the xApp dynamically applies traffic and slice
control policies based on current network conditions, thereby streamlining the performance
optimization process for network operators.

4.5.2 Enabled Network-Driven Mobility Management

Setup andWorkload. To demonstrate the real-time network adaptability of AUTO-RAN
through the dynamic handover control , we set up three scenarios, as shown in Figure 4.15,
to compare network and user performance with andwithout AUTO-RAN. Scenario 1 serves
as the baseline without AUTO-RAN, while Scenarios 2 and 3 incorporate AUTO-RAN for
dynamic network optimization. This experiment focuses on two key use cases that benefit
from automated handover control: load balancing and energy saving. In the load balancing
use case (Scenario 2), when both UEs are connected to the same cell, RB usage reaches 100%,
causing potential congestion. To alleviate this, the operator can leverage intra-handover
control to move UE 2 from Cell 1a to Cell 1b in gNB-1, redistributing the load while main-
taining service quality. In the energy-saving use case (Scenario 3), the operator aims to shut
down a high-powered gNB during low-traffic periods to reduce energy consumption. To
ensure seamless service continuity, the operator initiates inter-handover control, transfer-
ring all UEs from gNB-1 to gNB-2, which operates with lower power and resource usage.
During scenario transitions, each UE continuously receives a TCP traffic flow, generated by
iPerf from the CN. Network and user performance metrics — including bitrate, RB usage,
and cell states — are collected by the monitoring xApp (as illustrated in Figure 4.8) using
KPM and RC SMs. Additionally, control loop latency is measured within the control xApp,
as depicted in Figure 4.8.

AUTO-RAN

CN

gNB-1

Cell 1a Cell 1b

UE1 UE2

Radio Link

CN

gNB-1

Cell 1a Cell 1b

UE1 UE2

Scenario 2

NearRT-RIC

xApps

Radio Link

AUTO-RAN

CN

gNB-1

Cell 1a Cell 1b

NearRT-RIC

xApps

Radio Link

gNB-2

Cell 2

UE1 UE2

NearRT-RIC, xAppsUE1, UE2CN, gNB-1, gNB-2Components

FlexRICPixel 5Amarisoft Callbox UltimatePlatform/Hardware Used

Scenario 1 Scenario 3

Figure 4.15: Experiment setup for mobility scenarios with and without AUTO-RAN.
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Figure 4.16: Measurement of network and user statistics across scenarios and evaluation of
handover control loop latency.

Network Configurations. In our experimental setup, gNB-1 is configured on band 78
with Cell 1a (40 MHz) and Cell 1b (40 MHz), while gNB-2 operates on band 41 with a single
20 MHz cell. The CN and gNBs run on the Amarisoft Callbox, and NearRT-RIC and xApps
are deployed on the samemachine tominimize network latencywhen controlling the gNBs.
Additionally, two Pixel phones (UEs) are connected to gNB-1/gNB-2 over-the-air by placing
them, along with the output antenna of gNB-1/gNB-2, inside a Faraday cage to isolate the
test environment.

Load Balancing. In Scenario 1, as shown in Figure 4.16, from 0s to 77s, both UEs are
connected to Cell 1a in gNB-1, causing RB usage to reach 100%. At 78s (Scenario 2), the
xApp sends a control message to initiate intra-handover, transferring UE 2 to Cell 1b. Af-
ter the handover, the bitrate of each UE increases from 150 Mbps to 300 Mbps since each
UE can now utilize the full 40 MHz bandwidth of its respective cell. Additionally, RB us-
age decreases to approximately 95%, likely due to more efficient resource allocation and
reduced contention within each cell. The cell state information updates with a 2-second
delay compared to the bitrate and RB usage statistics, as cell information is refreshed every
2 seconds.
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Energy Saving. At 115s (Scenario 3), the xApp sends an inter-handover control message
to gNB-1, instructing it to move UE 2 to gNB-2. At 120s, the xApp issues a second control
message, this time moving UE 1 to gNB-2. Once all UEs have been successfully transferred,
the xApp sends a final control message to reduce the transmission gain of gNB-1 to zero,
effectively simulating a power-off state12. By 120s, both UEs are connected to gNB-2, with
bitrate reduced to approximately 50 Mbps due to the 20MHz bandwidth limitation of gNB-
2. This transition ensures seamless service continuity by actively managing the handover
process, transferring UEs to another gNB before shutting down while maintaining service
availability.

Control and Indication Message Latencies. The average control loop latency is ap-
proximately 10ms, primarily due to the delay between the proxy agent and the WebSocket
server of the gNB, where the use of HTTP services adds additional latency. The latency for
generating the control message is minimal, taking only 14 µs. The latency for transmitting
the RC handover control message between the xApp and the proxy agent is around 2ms,
while the remaining 8ms of latency occurs between the proxy agent andWebSocket server
of gNB. Additionally, the indication message, used for real-time data collection, is encapsu-
lated in the KPM format and has an average one-way latency of approximately 0.442 ms,
demonstrating its capability to monitor and analyze network conditions in real time.

4.6 Discussion and Future Work

The proposedAUTO-RAN architecture enables operators to shift from imperative to declar-
ative control of mobile networks, significantly reducing operational burden. While this
approach simplifies interaction with the system, the introduction of an autonomous con-
trol loop opens a wide range of research opportunities in the area of self-optimizing and
self-adaptive RAN architectures.

For example, the analysis step within the proposed autonomous control loop could be
enhanced with ML models to predict potential network issues, such as congestion dur-
ing peak hours or signaling storms. The decision-making step could be augmented with
emerging technologies like digital twins, allowing the system to simulate and evaluate pos-
sible control actions before execution. Moreover, Large Language Models (LLMs) could be
integrated to allow operators to define policies in natural language, which would then be
translated into machine-executable control logic—further lowering the barrier to managing
complex mobile infrastructures.

However, integrating such an autonomous mechanism within the O-RAN architecture
presents several challenges that require careful consideration. A primary concern is the
lack of standardized communication mechanisms between control applications, such as
between xApps or between rApps. Unlike the A1 interface between the NonRT-RIC and
xApps, interfaces for peer-to-peer coordination among control applications remain under-
specified. As networks adopt more modular and hierarchical control logic, relying on a

12This strategy can be further extended by leveraging OAM/SMO to completely shut down gNB-1 by un-
deploying the network, rather than just decreasing the transmission gain.
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single monolithic application becomes insufficient. This calls for either the introduction of
an upper-layer orchestration framework to manage control logic distributed across appli-
cations, or the development of new protocols or mechanisms to support inter-application
coordination and conflict resolution.

Another critical issue is the uncertainty surrounding control latency in different de-
ployment scenarios. AUTO-RAN offers the flexibility to distribute the four key steps of the
autonomous control loop across multiple applications and time domains, based on specific
use case requirements. For instance, tightly coupled deployment near E2-nodes can reduce
latency, but embedding advanced logic such as ML models may introduce processing over-
head that compromises real-time responsiveness. Distributing these steps across separate
applications and time domains may help mitigate this, but it introduces coordination com-
plexity, further reinforcing the need for standardized inter-application communication.

These challenges highlight the importance of future research on control orchestration
and latency-aware deployment strategies, both of which are critical for advancing pro-
grammable and autonomous RAN architectures.

4.7 Conclusions

In this chapter, we introduce AUTO-RAN, a novel concept that enables autonomous pro-
grammability through a robust SD-RAN application design for next-generation mobile net-
works. AUTO-RAN extends the existingO-RANarchitecture by incorporating an autonomous
control loop that abstracts underlying complexity of O-RAN and supports declarative in-
teractions for network operators. This innovation simplifies network optimization and sig-
nificantly reduces operational overhead. AUTO-RAN offers several key benefits: it hides
the underlying complexity of O-RAN, supports real-time adaptability to dynamic network
conditions, and enables seamless integration of new features and advancements from both
3GPP and O-RAN ecosystems. Its feasibility has been demonstrated through two represen-
tative use cases, namely RAN slicing and mobility management, highlighting its ability to
autonomously optimize both network and user performance in real time.
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5.1 Summary

The evolution of 5G and beyond has shifted themobile network paradigm toward openness,
programmability, and application-centric design. These trends aim to reduce vendor lock-
in and enable more flexible, customizable deployments that can adapt to diverse service
requirements and dynamic network conditions. In this context, the concept of Open RAN
(particularly through the efforts of the O-RAN Alliance) plays a crucial role by introducing
a disaggregated architecture centered around the RIC, which supports both non-real-time
(rApps) and near-real-time (xApps) control applications. This architecture empowers ven-
dors and operators to tailor deployments and implement intelligent control mechanisms,
unlocking new opportunities for innovation and network optimization.

Despite these advancements, the shift toward open and programmable RAN architec-
tures introduces significant challenges. As mobile networks continue to evolve to support
emerging applications such as AR/VR and haptic communication, the need for greater con-
trol flexibility, unified coordination of UP functions, and scalable system integration be-
comes increasingly critical. However, centralized control mechanisms introduced by SD-
RAN and O-RAN often constrain vendors and operators from customizing their networks
due to limited standardization and platform-specific implementations. This also makes
x/rApps more difficult to develop, port, and reuse. In addition, the 5G RAN, often func-
tioning as a “fat Layer 2,” creates disparities between IP flow control and radio resource
allocation. The integration of O-RAN technologies into existing mobile infrastructures fur-
ther compounds this complexity. Operators face increasing operational overhead due to
fragmented control domains defined separately by 3GPP and O-RAN.

In light of these challenges, this thesis explores the design of a programmable RAN
architecture for next-generation mobile networks, with the goal of enhancing flexibility
and programmability across both the control and user planes, while simplifying network
infrastructure. Our contributions are organized into three key areas:

Flexible Control Plane. In Chapter 2, we introduced the FlexCtrl architecture, which
supports three control plane topologies (including centralized, decentralized, and distributed)
by evolving the control capabilities of both O-RAN and SD-RAN systems to address the
challenges of control flexibility and real-time programmability. Within the decentralized
topology of FlexCtrl, the FlexApp framework is proposed to further address the complex-
ity of xApp development in O-RAN. FlexApp mitigates NearRT-RIC platform lock-in and
improves xApp reusability through the introduction of the E2* interface, which reduces
both latency and CPU utilization, thereby enhancing portability and enabling ultra-low-
latency control operations. To validate the real-time programmability offered by FlexCtrl,
we redesign the radio resource scheduler to support recursive operations, facilitating virtu-
alization and multi-level control. Prototype evaluations demonstrate that FlexApp, through
the proposed E2* interface, achieves ultra-low latency (less than 10ms), high scalability, and
minimal overhead in xApp operation, while also supporting two-level abstraction to sim-
plify xApp development. Likewise, the FlexCtrl prototype confirms its ability to support
flexible control topologies and real-time programmability for dynamic RAN slicing.
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Our evaluation of FlexCtrl shows that customizable placement of control logic across
centralized, decentralized, and distributed topologies is feasible in practice. It maintains
ultra-low-latency operation even as the number of xApps increases and during the
recursive deployment of two-level abstract control logic, suggesting its potential for
hierarchical control deployment in future intent-driven mobile networks.

Integrated and Programmable User Plane. In Chapter 3, we introduced IUP, an in-
novative RAN system that integrates UPF functionalities into the RAN, serving as a foun-
dational component for next-generation mobile networks. IUP addresses two major chal-
lenges: the lack of coordination between UP functions across the CN and RAN, and the in-
creasing complexity of distributed UP functions. To this end, we propose the IDFC sublayer,
positioned above the SDAP layer, which introduces a new traffic management pipeline
along with programmable rules for both IP traffic control and radio resource allocation.
IUP reduces N3-related overhead and processing costs while simplifying the end-to-end
data delivery path. It also enhances UP programmability by extending control from the IP
layer to the radio link layer, providing a unified framework for managing packet flows and
radio resources. Furthermore, IUP enables universal connectivity by operating as a Layer
3 device, seamlessly integrating diverse access technologies through the IP protocol. We
also analyze IUP’s implications for key mobility scenarios such as handover and roaming,
including its interaction with existing CP functions to support backward compatibility and
RAN disaggregation. Finally, prototype evaluations demonstrate that IUP reduces latency
and overhead by up to 50%, supports seamless integration of 3GPP and non-3GPP networks,
and enables real-time programmability of both traffic control and resource allocation.

Prototype evaluation of IUP reveals that coordinating IP flow control and radio resource
allocation within the RAN node is practically realizable, without introducing signaling
overhead or latency spikes. The implementation also confirms the viability of seamless
IP-based convergence across heterogeneous access technologies, suggesting that IUP
could support future real-time applications with strict performance requirements and
promote broader adoption and integration of 3GPP networks.

Autonomous Radio Acces Network. In Chapter 4, building on the foundations estab-
lished by FlexCtrl and IUP, we introduced AUTO-RAN, a novel concept that abstracts the
complexities of O-RAN and enables autonomous programmability through a robust SD-
RAN application design. AUTO-RAN addresses the growing complexities of managing
mobile network infrastructures that span both 3GPP and O-RAN ecosystems. It simplifies
network optimization process and reduces operational overhead through an autonomous
control loop, allowing operators to interact with the network in a declarative manner,
eliminating the need to manage the internal complexity of O-RAN technologies directly.
AUTO-RAN also facilitates the seamless integration of evolving standards and capabilities
from both 3GPP and O-RAN ecosystems, providing a future-proof foundation for future
mobile networks. We further discuss the lifecycle of control applications in AUTO-RAN
and present examples demonstrating how they evolve and abstract O-RAN complexities
to support high-level, intent-based network control. Finally, the prototype of AUTO-RAN
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showcases its real-time adaptability through two key use cases. First, in the automated RAN
slicing use case, the system effectively handles diverse application flows and maintains av-
erage latencies below 1ms for both traffic monitoring and slice control. In the mobility
management use case, AUTO-RAN demonstrates its ability to handle declarative operator
intents for load balancing and energy-saving scenarios, performing handover control while
ensuring service continuity.

Prototype evaluation of AUTO-RAN confirms that autonomous, declarative control of
mobile networks spanning both 3GPP and O-RAN ecosystems is practically achievable.
The system reduces x/rApp development complexity, maintains sub-1ms latency for
trafficmonitoring and slice control, and demonstrates real-time adaptability to dynamic
network conditions, indicating its potential for future self-optimizing and AI-native
mobile networks.

In addition to themain contributions presented above, this thesis includes several demon-
strations (summarized in Table 1.2) as well as various technical developments. Specifically,
the maintenance of the FlexRIC1, its integration with srsRAN2, and the implementation of
RAN slicing in OAI3 have enabled numerous researchers to build and extend their work in
the context of 5G and Open RAN [55, 58, 63, 105, 106].

5.2 Future Work

A programmable RAN architecture offers significant potential for future exploration, it is
enabled by the proposed flexible control plane (FlexCtrl), integrated and programmable user
plane (IUP), and autonomous control mechanisms (AUTO-RAN). These building blocks aim
to deliver customizable, fine-grained, and automated programmability across both control
and user planes. This not only enables real-time network and user performance optimiza-
tion but also supports autonomous operation, helping to reduce complexity for network
operators. Future work related to each contribution has been discussed individually within
their respective chapters (see Sections 2.7, 3.8, and 4.6). In the following, we focus on high-
level directions for future research.

As emerging applications become more diverse and complex, and the number of con-
nected devices continues to grow, new requirements are pushing beyond the capabilities of
the original usage scenarios defined in IMT-2020 (5G), namely eMBB, uRLLC, and mMTC.
To address these limitations, IMT-2030 (6G) introduces three new usage scenarios: ubiqui-
tous connectivity, AI-native communications, and Integrated Sensing and Communication
(ISAC) [130]. Among them, ubiquitous connectivity aims to provide seamless and con-
tinuous access to communication networks across all environments (e.g., urban, rural, re-
mote, airborne, maritime, and underwater), including underserved and hard-to-reach areas.
Achieving this goal will require the integration of diverse wired and wireless technologies
and ensuring reliable device connections under varying network conditions.

1https://gitlab.eurecom.fr/mosaic5g/flexric/-/tree/br-flexric?ref_type=heads
2https://docs.srsran.com/projects/project/en/latest/tutorials/source/near-rt-ric/source/index.html
3https://gitlab.eurecom.fr/oai/openairinterface5g/-/merge_requests/2458
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Multi-RAT Interworking. In this context, the proposed IUP is a promising direction
for future network infrastructure. By incorporating UPF functionalities directly within the
RAN node, IUP acts as a Layer 3 device, enabling flexible, IP-based interworking across
multiple access technologies (as shown in Figure 3.5). This not only simplifies the integra-
tion process for heterogeneous networks but also facilitates their convergence. Moreover,
the deployment of IUP in technologies such as Unmanned Aerial Vehicles (UAVs) and Non-
Terrestrial Networks (NTNs) could enhance network resiliency during natural disasters
by enabling local communication within isolated regions without relying on external net-
works. However, to fully realize these benefits, further research is needed. In particular,
efficient data convergence and routing mechanisms must be developed for scenarios where
devices simultaneously connect to multiple access technologies (e.g., 5G and Wi-Fi) to sup-
port collaborative networking [27]. As IUP introduces programmability from the IP layer
down to the radio link, future research should explore methods for coordinating data flows
and managing radio resources across heterogeneous technologies to optimize overall per-
formance and user experience [93]. Furthermore, the role of IPv6 deserves attention [143],
as its advanced addressing and routing capabilities are fundamental for enabling large-scale,
flexible, and programmable networking in IUP-enabled environments.

Intent-Driven and AI-Native Control. While the previous discussion centers on the
UP, future research in the CP domain will be equally essential to enable intelligent and
adaptive RAN architectures. Building on the modular foundation provided by FlexCtrl and
AUTO-RAN, there are promising opportunities to develop intent-driven CP frameworks,
where high-level service goals can be dynamically translated into low-level control poli-
cies. This also opens avenues for designing telecom-grade APIs that support the plug-
and-play integration of new control applications, aligning with the goal of achieving net-
work operational simplicity [93]. In addition, the rise of AI-native communications and
ISAC introduces new demands on the CP to make intelligent, real-time decisions based
on dynamic network conditions. Future work may explore the integration of digital twin
frameworks, multi-agent reinforcement learning, and graph-based control representations
to support more autonomous and predictive control. There is also potential in investigat-
ing cross-domain orchestration, where control decisions span not only 3GPP networks, but
also non-3GPP access, edge computing platforms, and application-layer services. Finally,
these research directions lay the foundation for a new era of intelligent and adaptive RAN
architectures, bringing the vision of 6G networks closer to reality.
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