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Abstract

Biometric face authentication leverages the unique biological features of an
individual’s face, providing a secure and convenient alternative to traditional
password-based authentication. With the widespread adoption of face verifi-
cation in remote authentication services and portable devices, ensuring the
robustness of these systems against spoofing attacks has become increasingly
critical. While traditional biometric threat models primarily focus on vul-
nerabilities within verification pipelines, the rise of Al-generated deepfake
technology introduces a new and sophisticated attack vector. Deepfakes
enable real-time manipulation of facial images, posing a significant challenge
to authentication security by spoofing verification systems.

This thesis addresses multiple aspects of face authentication, including face
verification and attacks such as deepfake and injection attacks. It contributes
to improving both the accuracy of biometric authentication systems and the
robustness of deepfake detection algorithms, enhancing overall security.

The first contribution of this thesis is the introduction of an advanced face
alignment method designed to improve verification accuracy by mitigating
the effects of variations in head pose, facial expression, and illumination.

The second contribution focuses on understanding the threats posed by
deepfake attacks. We analyze the quality of deepfakes generated by face
reenactment methods and introduce a novel deepfake quality assessment
protocol. This protocol systematically evaluates the video frame quality of
face-reenactment techniques. Given the lack of standardized datasets for such
assessments, we propose two video generation approaches utilizing 3D head
models to create diverse and controlled evaluation scenarios.

Furthermore, we analyze the impact of beautification filters on deep-
fake detection systems, revealing significant vulnerabilities in state-of-the-art
classifiers when subjected to such modifications.

To improve deepfake detection performance, we propose leveraging raw
domain data as input, thereby reducing the impact of common image process-
ing techniques such as compression and beautification filters. By constraining
the distribution of real images, our approach enhances the model’s ability to
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differentiate between genuine and manipulated content, improving detection
accuracy in challenging scenarios.

Lastly, we investigate the role of compression artifacts in detecting digital
replay attacks, where adversaries inject authentic video footage into the system
via virtual camera software. We explore a novel strategy of bypassing the
compression pipeline and directly capturing uncompressed image data from
the user’s device. This approach strengthens anti-spoofing mechanisms by
exploiting the differences between uncompressed sensor data and compressed
media typically used in injected attacks.

The findings and methodologies presented in this thesis contribute to the
ongoing efforts to secure biometric authentication systems against evolving
threats, advancing the field of deepfake detection and face verification security.



Résumé

L’authentification biométrique par reconnaissance faciale exploite les carac-
téristiques biologiques uniques du visage d’un individu, offrant une alter-
native sécurisée et pratique a ’authentification traditionnelle par mot de
passe. Avec 'adoption généralisée de la vérification faciale dans les services
d’authentification a distance et les dispositifs portables, il est devenu de plus
en plus crucial de garantir la robustesse de ces systemes face aux attaques par
usurpation. Tandis que les modeles traditionnels de menaces biométriques se
concentrent principalement sur les vulnérabilités des pipelines de vérification,
I’essor de la technologie des vidéos hyper-truquées générées par A introduit
un nouveau vecteur d’attaque sophistiqué. Les vidéos hyper-truquées permet-
tent la manipulation en temps réel des images faciales, posant un défi majeur
pour la sécurité de 'authentification en dupant les systemes de vérification.

Cette these aborde plusieurs aspects de 'authentification faciale, notam-
ment la vérification faciale et les attaques telles que les attaques par des vidéos
hyper-truquées et par injection. Elle contribue a améliorer a la fois la précision
des systemes d’authentification biométrique et la robustesse des algorithmes
de détection des vidéos hyper-truquées, renforcant ainsi la sécurité globale.

La premiere contribution de cette these est I'introduction d’une méthode
avancée d’alignement du visage, concue pour améliorer la précision de la
vérification en atténuant les effets des variations de la position de la téte, de
I’expression faciale et de 1’éclairage.

La deuxiéme contribution se concentre sur la compréhension des menaces
posées par les attaques par les vidéos hyper-truquées. Nous analysons la
qualité des vidéos hyper-truquées générés par des méthodes de réenactement
facial et proposons un protocole novateur d’évaluation de la qualité des vidéos
hyper-truquées. Ce protocole évalue systématiquement la qualité des images
vidéo générées par ces techniques de réenactement facial. En raison du manque
de jeux de données standardisés pour de telles évaluations, nous proposons
deux approches de génération de vidéos utilisant des modeles 3D de téte afin
de créer des scénarios d’évaluation diversifiés et controlés.

De plus, nous analysons l'impact des filtres d’embellissement sur les

iii
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systemes de détection de vidéos hyper-truquées, mettant en évidence des
vulnérabilités significatives dans les classificateurs de pointe lorsqu’ils sont
soumis a de telles modifications.

Pour améliorer les performances de détection des vidéos hyper-truquées,
nous proposons d’utiliser des données brutes comme entrée, réduisant ainsi
I'impact des techniques de traitement d’image courantes telles que la com-
pression et les filtres d’embellissement. En contraignant la distribution des
images réelles, notre approche améliore la capacité du modele a différencier
le contenu authentique du contenu manipulé, augmentant ainsi la précision
de détection dans des scénarios complexes.

Enfin, nous examinons le role des artefacts de compression dans la détection
des attaques par replay numérique, ou des attaquants injectent des vidéos
authentiques dans le systeme via des logiciels de caméra virtuelle. Nous
explorons une stratégie innovante consistant a contourner le pipeline de
compression et a capturer directement les données d’image non compressées
a partir de I'appareil de 1'utilisateur. Cette approche renforce les mécanismes
de lutte contre la fraude en exploitant les différences entre les données brutes
des capteurs et les médias compressés généralement utilisés dans les attaques
injectées.

Les résultats et méthodologies présentés dans cette theése contribuent aux
efforts en cours pour sécuriser les systemes d’authentification biométrique
contre les menaces évolutives et faire progresser le domaine de la détection
de deepfake et de la sécurité de la vérification faciale.
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Chapter 1

Introduction

In today’s fast-paced world, the way we interact with technology has trans-
formed many aspects of our daily lives. Tasks that once required physical
presence and effort, such as transferring money, scheduling a doctor’s appoint-
ment, or purchasing a ticket, can now be accomplished effortlessly with just
a few taps on a smartphone. This shift is part of a broader digital revolution
that has redefined convenience and accessibility, saving countless hours and
streamlining everyday processes. However, with this increased reliance on
digital systems, there arises a pressing need to address the security chal-
lenges associated with these conveniences. Whether it’s safeguarding financial
transactions, protecting personal data, or ensuring the integrity of remote
interactions, robust authentication mechanisms have become a cornerstone of
modern digital infrastructure. Without these measures, the very technologies
that empower us could become sources of vulnerability, exposing users to
risks like fraud, identity theft, and unauthorized access.

When designing an authentication system, it is crucial to consider both
the security of the system and the convenience of the user. Various methods
can be employed to secure authentication systems. The most basic method
is password-based authentication, where a user employs a password to gain
access to the system. Passwords should be strong, which can make them
difficult to remember, and should be changed regularly to ensure security.
Simple passwords are at risk of being stolen and used by impostors.

Another method is token-based authentication, where users receive a token
that serves as proof of identity. This token can be a physical device, like a
smart card, or a digital token generated by an authentication application.
While token-based authentication offers a higher level of security, it requires
additional actions from the user which can be inconvenient; users need to
carry a physical device, like a smart card, or use a digital token generated by
an authentication application, which may not always be user-friendly.



2 1.1. Background

Two-Factor Authentication (2FA) provides a balance of convenience and
security. It typically combines something the user knows, like a password,
with something the user has, such as a code sent to a mobile device. However,
the additional step can be cumbersome. Users must have access to the second
factor, such as a mobile device to receive the code, which can be inconvenient
if the device is unavailable or if the user is in an area with poor reception.

Finally, biometric authentication leverages unique biological characteristics
of an individual, such as fingerprints, face, or iris scans, eliminating the need to
remember anything. This method offers several significant benefits, including
enhanced security due to the difficulty of replicating biometric traits, improved
user convenience as it bypasses the need for passwords or tokens, and a
seamless user experience. As a result, biometric authentication is increasingly
integrated into remote authentication services and portable devices, including
laptops and smartphones, to provide a secure and user-friendly solution for
access control.

In this thesis, we focus on biometric authentication, with a particular em-
phasis on face authentication services. Our study examines the vulnerabilities
of face recognition systems to various external factors and attacks, with a
specific focus on deepfake attacks.

1.1 Background

The human face has served as the primary means of recognition among
individuals since the dawn of humanity. Beyond its pivotal role in social
interaction, it encodes a wealth of unique biometric information, including
facial structure, texture, and expressions, which together distinguish one
person from another. Facial authentication services utilize these distinctive
characteristics to perform both verification and identification tasks. Identity
verification seeks to answer the question, ‘Is this person who they claim to be?’
It involves confirming whether a face corresponds to the claimed identity. In
contrast, identity identification addresses the question, ‘Who is this person?’
by determining the identity of an unknown individual through comparison
with a database of known faces.

Early face verification techniques relied on geometric measurements of
facial features, such as the distances between the eyes, nose, and mouth. These
methods were later enhanced by statistical and texture-based approaches,
which relied on manually extracting features to enhance accuracy. The advent
of machine learning, particularly deep learning, revolutionized face recognition
by achieving exceptional accuracy and robustness.

The modern face recognition system utilizes Convolutional Neural Net-
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works (CNNs), converting face images into compact latent space represen-
tations, known as embeddings, that cluster similar identities together. This
powerful encoding effectively encapsulates the core characteristics of an indi-
vidual’s identity, enabling highly reliable recognition systems.

Despite significant advancements, challenges persist in face recognition
when images are affected by uncertainties arising from variations in head
pose, expression, illumination, and other external factors. These variations
can obscure critical identity-related features, resulting in unreliable and error-
prone representations. To address these challenges, recent approaches have
focused on enhancing the preprocessing of input images before they are passed
to face recognition models [1], [2]. Furthermore techniques such as optimizing
loss functions [3]-[5] have been explored to enhance the accuracy of the
models.

Security is a key consideration for biometric authentication systems. Au-
thentication service providers must ensure that the individual on the client
side is indeed the legitimate user and not an impostor. Without robust
security measures, sensitive client information can be compromised. As face
verification technology becomes increasingly integrated into authentication
systems, it has also become a more attractive target for malicious actors
aiming to impersonate legitimate users and bypass biometric authentication
mechanisms. One common form of attack is a presentation attack, where
attackers use physical media, such as printed photos or videos, to deceive the
system and gain unauthorized access [6]. Similarly, injection attacks leverage
authentic video footage, often sourced from social media, and use virtual
cameras or sophisticated software to inject it into the system, further compli-
cating detection as the video appears genuine and lacks typical manipulation
artifacts [7].

Alongside traditional attacks, the rise of deepfake technology has intro-
duced a more sophisticated and rapidly evolving threat. Deepfake attacks
utilize advanced deep learning methods, including adversarial training [8]
and, more recently, diffusion models [9], to create hyper-realistic synthetic
media capable of convincingly impersonating individuals. Modern deepfake
algorithms have advanced to the point where they can manipulate existing
images in real-time, further complicating the ability of remote authentication
systems to differentiate between genuine and fabricated content.

To effectively mitigate the risks posed by deepfakes, it is good practice
to first analyze deepfake content and evaluate its quality based on various
factors, such as face movements or lightening conditions. Additionally, it
is essential to examine how image post-processing techniques influence the
quality and characteristics of deepfakes.

In the recent years, a range of detection methods have been developed,
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evolving from early handcrafted feature-based techniques [10], [11] to modern
deep learning approaches [12]-[16], and more recently, hybrid models [17], [18].
Existing methodologies in deepfake detection typically rely on a supervised
approach. This involves developing a real vs fake image classifier by assembling
a large dataset of generated images from multiple generative models and
training a binary classifier. However, in practical scenarios, the specific
techniques used for facial manipulation are unknown beforehand, and access to
the attacker’s model is typically unavailable. Despite achieving high detection
accuracies, approaching 98%, these classifiers are prone to overfitting.

1.2 Motivation

In a remote face verification system, users capture an image or short video of
themselves, along with an image of their identity proof card, using potentially
untrusted devices and upload them to a secure, centralized server for veri-
fication. This trusted server processes, stores, and validates biometric data
using encryption protocols and robust access controls to ensure privacy and
data integrity. Unlike traditional local verification methods, such as iPhone’s
FacelD, which operates within a Trusted Execution Environment (TEE) on
the user’s device, this approach leverages a centralized infrastructure to handle
authentication securely. Figure 1.1 illustrates the generic remote verification
process.
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Figure 1.1: Diagram of a remote identity proofing process, where the user captures
identity data and sends it to a trusted server. Various algorithms are employed
to verify the authenticity of the data and protect against spoofing before the face
comparison algorithm (e.i. face verification) confirms the user’s identity. Upon
successful verification, the user gains access to the service. Image adapted from
[19].

Studies have highlighted the sensitivity of face verification systems to
variations in head pose, facial expressions, illumination, and other external
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factors. This vulnerability must be carefully considered in remote authentica-
tion systems, as data collected by the end users often exhibit different lighting
conditions, head pose, or expressions compared to their ID card images,
presenting significant challenges for accurate matching and verification

To address these challenges, an effective strategy is to optimize input
images before processing them with face recognition models. Among the
available preprocessing techniques, input image normalization stands out as a
robust solution, targeting critical issues such as lighting inconsistencies, varia-
tions in facial expressions, and differences in head poses between input image
pairs. Illumination normalization reduces the impact of lighting conditions
on facial appearance, ensuring consistent texture and color [1], [2], while head
pose normalization aims to frontalize the face, and expression normalization
seeks to neutralize facial expressions. In recent years, deep learning-based
solutions [20], [21] have addressed both face frontalization and neutralization
of facial expressions, leveraging the capabilities of neural networks. Despite
showcasing promising synthesis quality, these methods encounter challenges
in preserving face identity details, especially in scenarios with substantial
pose variations.

In this thesis we propose an innovative normalization algorithm designed
for preprocessing input images in the context of face verification. Diverging
from conventional methods, our approach places a distinctive emphasis on
achieving consistency in head pose, expression, and illumination conditions
between two images, avoiding an exclusive focus on the normalization of
extraneous elements at specific values. Specifically, our methodology involves
estimating the head pose, expression, and illumination conditions in one
image, followed by the reconstruction of the second image to align with the
same head pose, expression, and illumination conditions while preserving
its own unique identity features. By adopting this approach, our algorithm
allows the verification process to concentrate solely on identity evaluation,
unaffected by variations in non-essential extraneous and synthesized features.

In addition to ensuring the accuracy of the face verification algorithm, it
is crucial to prioritize the security of the authentication system. This means
that, before applying face verification, input images should be inspected by
anti-spoofing algorithms to ensure that the image sent by the end user is
authentic and unmodified. In other words, the system should verify that no
spoofing attack is being attempted from the client side.

Recent advancements in deepfake algorithms have enabled attackers to
create highly realistic images and videos, facilitating impersonation attacks
and posing significant challenges to authentication systems. By obtaining
a single image of a victim, often sourced from publicly available platforms
like social media, and leveraging deepfake technologies such as face swap
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and face-reenactment, attackers can generate real-time manipulated videos.
These videos mimic the facial expressions and head movements required by
authentication services and can be used for presentation or injection attack.

In a presentation attack scenario, the deepfake video is typically generated
on a separate device, such as a laptop, and then displayed to the authentication
sensor. This allows the attacker to deceive the system by presenting artificial
biometric traits, effectively simulating the victim’s appearance. Similarly,
injection attacks take this a step further by streaming these manipulated
videos directly to authentication systems via virtual camera software (e.g.,
OBS), bypassing physical camera sensors altogether.

These attack strategies exploit the vulnerabilities in traditional security
measures, making deepfake detection a critical and urgent area of research to
safeguard biometric authentication systems.

Effective deepfake detection begins with a thorough understanding of deep-
fake generators. Analyzing the image quality of deepfakes and distinguishing
these from genuine images is crucial, as it can significantly enhance the ability
to identify manipulation techniques.

Since deepfakes are entirely or partially synthetic images that did not exist
prior to their creation, evaluating their quality is inherently challenging. The
challenge lies in the lack of a ground truth, making direct comparison to real
images difficult. In recent research, efforts have been made to address this by
employing metrics that do not depend on explicit ground-truth comparisons.
These metrics often utilize pretrained network feature extraction and aim to
provide reliable assessments. However, despite their usefulness, these metrics
may not capture all relevant aspects of quality assessment. For instance, they
may overlook finer details, such as pixel-level quality, which are essential
for a comprehensive evaluation and effective detection of deepfakes artifacts,
including warping and blending irregularities.

To address this issue, this thesis introduces a novel protocol for the quan-
titative evaluation of images generated by face-reenactment techniques. This
protocol enable us to objectively assess the image quality of various face-
reenactment methods across different head poses and facial expressions. Our
analysis reveals that the quality of deepfake images has significantly improved
over time, with these images increasingly resembling real ones. Older deep-
fakes struggled to accurately replicate extreme head movements and facial
expressions. However, with recent advancements in this technology, our quan-
titative results demonstrate that modern deepfakes can now replicate facial
and head movements with remarkable accuracy, making them increasingly
difficult to distinguish from genuine images.

Another important aspect is assessing the impact of various image process-
ing steps on deepfake quality and characteristics. Specifically, it is crucial to
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analyze whether deepfake artifacts become more visible or are concealed when
applying processes such as compression, contrast adjustment, or beautification
filters. Understanding this relationship can provide valuable insights into how
post-processing affects deepfake detection. Recent studies have highlighted
vulnerabilities in deepfake detectors when exposed to certain post-processing
methods [22]-[25]. Building on these findings, this thesis focuses specifically
on examining the impact of beautification filters on the accuracy and robust-
ness of deepfake detection systems. Our findings reveal a significant decline
in detection accuracy and indicate that various image processing steps can
obscure key indicators of forgery, resulting in inaccurate decisions.

Several publicly available deepfake detection algorithms have been devel-
oped, spanning from early handcrafted feature-based techniques to advanced
deep learning approaches. While these methods have shown effectiveness in
identifying artifacts within the training data, they often suffer from overfitting,
which limits their generalizability to unseen scenarios.

Given the vulnerabilities of deepfake detectors to image processing tech-
niques and their tendency to overfit, coupled with the continuous advance-
ments in deepfake quality, this thesis proposes redefining the boundary be-
tween real and fake images. Specifically, we suggest narrowing the definition
of authentic samples to a stage closer to the raw radiance of the scene as
captured by the camera sensor, prior to any transformations introduced by
the Image Signal Processor (ISP).

Current detection models often struggle to differentiate between real and
fake images because the existing definition of real images includes both raw
content captured by camera sensors and content processed through various
stages of image and video enhancement, including both linear and nonlinear
adjustments. As a result, images are considered real even after undergoing
multiple processing operations such as denoising, compression, deblurring,
and white balance adjustments. These ISP processing steps are designed
to produce aesthetically pleasing images for human viewers, but they pose
significant challenges for deepfake detection. The issue arises from the fact
that each device employs a unique ISP pipeline with distinct enhancement
blocks, which obscure subtle cues that are crucial for detecting deepfakes.
This variability forces detection models to adapt to unseen ISP configurations,
making it more difficult to accurately identify real images.

In this thesis, we focus on deepfake detection in the context of injection
attacks. In such scenarios, an attacker may employ an embedded sensor and
a deepfake algorithm to generate manipulated video content in real-time.
Ideally, if the device’s sensor is genuinely used by the end user, the captured
images or videos should be free from any post-processing steps and retain
their original, unaltered form.
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We also analyzed the feasibility of detecting compression artifacts and
distinguishing between compressed and non-compressed frames. This inves-
tigation stems from the hypothesis that if the end user’s device captures
uncompressed frames, the absence of compression artifacts would facilitate a
clearer and more accurate distinction between authentic and injected frames.
Since most attacker-sourced videos—often obtained from the internet—are
typically compressed and inherently exhibit compression artifacts, detecting
these artifacts serves as a key indicator for identifying injection attacks.

1.3 Research Questions

The main contributions of this thesis focus on enhancing and fortifying
the performance of face verification systems in authentication applications.
This research aims to improve the robustness of these systems under diverse
conditions, including variations in head pose, facial expressions, and lighting
environments. Ensuring robustness under such challenges is critical for
maintaining the reliability of face verification systems in real-world scenarios.

In parallel, the accuracy of face verification systems is increasingly threat-
ened by the emergence of deepfakes. To address this growing concern, this
thesis also examines deepfake image quality from multiple perspectives, such
as variations in head pose and expressions. This analysis provides valuable
insights into the capabilities of deepfake generators, enabling a better under-
standing of their mechanisms and aiding in the development of robust defenses
for authentication systems. Furthermore, the impact of beautification filters
on the accuracy of deepfake detectors is investigated, highlighting how such
post-processing techniques can affect detection performance.

Building on these findings, this thesis proposes a novel deepfake detec-
tion algorithm tailored for injection attack scenarios, addressing a critical
vulnerability in authentication systems.

Comprehensive experiments are conducted, and the results are analyzed,
utilizing diverse evaluation metrics to align with international standards and
facilitate meaningful comparisons with prior work.

The central objectives of this thesis are outlined in the following Research

Questions(RQ):

o RQI: Does aligning the head pose, expression, and lighting conditions
of image pairs improve the face verification model’s accuracy under
diverse scenarios?

« RQ2: How can we leverage 3D environments to address the lack of
ground truth in deepfake detection and facilitate the evaluation of fine
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details in deepfake images?

« RQ3: Do beautification filters undermine the effectiveness of existing
deepfake detection systems?

e RQ4: Can the use of RAW image data help in developing a more robust
deepfake detector that remains resilient to various image processing
techniques, such as compression, beautification, and stylization?

o RQ5: Can we distinguish between raw uncompressed video frames and
compressed video frames by analyzing compression artifacts, to enhance
the detection of digital replay attacks in face authentication?

1.4 Main Contributions and Thesis Structure

Thanks to the growing interest in biometric authentication systems, significant
research efforts have been devoted to enhancing the accuracy and security
of face verification systems. In this thesis, we propose a novel alignment
algorithm aimed at improving the accuracy of face verification models under
varying head poses, facial expressions, and lighting conditions.

Given the growing threat posed by deepfakes, this thesis also evaluates the
quality of deepfakes from multiple perspectives, including head pose and facial
expression, to better understand their characteristics and the capabilities
of modern deepfake generation algorithms. Furthermore, we analyze the
vulnerabilities of current deepfake detectors, with a specific focus on their
susceptibility to post-processing techniques such as beautification filters, which
can obscure deepfake artifacts. Based on our findings, we introduce a new
deepfake detection approach that demonstrates robustness against various
image processing techniques, addressing critical challenges in distinguishing
between authentic and manipulated content.

The thesis is organized into eight chapters, with a brief summary of each
provided below:

e In Chapter 1, we introduced the thesis and presented the research
questions that motivated this work.

e In Chapter 2, we provide a comprehensive literature review on ad-
vancements in face recognition systems and the potential attacks that
can occur during remote authentication. Special emphasis is placed on
deepfake attacks, including their generation, quality assessment, and
detection methods. Additionally, we explore the various stages of the
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Image Signal Processing (ISP) pipeline and position our contributions
in the context of the current state-of-the-art.

In Chapter 3, We present our proposed face alignment algorithm
designed for preprocessing input images in the context of face verification.
our methodology involves estimating the head pose, expression, and
illumination conditions in one image, followed by the reconstruction of
the second image to align with the same head pose, expression, and
illumination conditions while preserving its own unique identity features.
By adopting this approach, our algorithm allows the verification process
to concentrate solely on identity evaluation, unaffected by variations in
non-essential extraneous and synthesized features.

— [P1] S. Husseini and J. -L. Dugelay, “Alignface: Enhancing
face verification models through adaptive alignment of
pose, expression, and illumination,” in 2024 ITEEE Interna-
tional Conference on Image Processing (ICIP), IEEE, 2024, pp.
3243-3249.

In Chapter 4, we introduce our proposed dataset and protocol for
assessing the quality of face-reenactment deepfakes. Using this protocol,
we evaluate various deepfake generation methods with well-established
metrics such as SSIM and LPIPS. Additionally, we conduct a subjective
evaluation to determine whether quantitative results align with qualita-
tive assessments. To gain a comprehensive understanding of deepfake
image quality, we further analyze the performance of these generators
under varying movements and lighting conditions.

— [P2] S. Husseini, J. -L. Dugelay, F. Aili, and E. Nars, “A
3d-assisted frame-work to evaluate the quality of head
motion replication by reenactment deepfake generators,”
in ICASSP 2023-2023 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), IEEE, 2023, pp. 1-5.

— [P3] S. Husseini and J. -L. Dugelay, “Metahumans help to
evaluate deepfake generators,” in 2023 IEEE 25th International
Workshop on Multimedia Signal Processing (MMSP), IEEE, 2023,
pp. 1-6.

— [P4] S. Husseini and J.-L. Dugelay, “A comprehensive frame-
work for evaluating deepfake generators: Dataset, metrics
performance, and comparative analysis,” in Proceedings of
the IEEE/CVF International Conference on Computer Vision,
2023, pp. 372-381.
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o In Chapter 5, we present our study analyzing the impact of beautifi-
cation filters on three deepfake detectors. Our findings reveal a notable
drop in video-level AUC performance, demonstrating how social media
beautification filters can either enhance the perceived authenticity of
fake videos or make real videos appear fake based on these detectors.
Additionally, we conducted a user study to assess whether beautification
filters pose challenges for human observers in distinguishing between real
and deepfake videos, further highlighting the complexities introduced
by such post-processing techniques.

— [P5] A. Libourel, S. Husseini, N. Mirabet-Herranz, and J. -L.
Dugelay, “A case study on how beautification filters can fool
deepfake detectors,” in IWBF 2024, 12th IEEE International
Workshop on Biometrics and Forensics, 2024.

e In Chapter 6, we present our proposed method for deepfake detection in
the context of injection attacks. This approach builds on the evaluation
results and experiments conducted on deepfake generation and detection.
Our method redefines the boundary between real and fake images by
narrowing the definition of authentic samples. Specifically, we advocate
for focusing on a stage closer to the raw radiance captured by the camera
sensor, prior to any transformations introduced by the Image Signal

Processor (ISP).

— [P6] S. Husseinil and J. -L. Dugelay, “Raw data: A key
component for effective deepfake detection,” in ICASSP
2025 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), IEEE, 2025, pp. 1-5.

e In Chapter 7, we present our proposed method which investigates
whether providing uncompressed video access to face anti-spoofing ser-
vice providers can enhance the detection of injected versus authentic
video streams. Building upon this, we propose bypassing the compres-
sion step and directly capturing uncompressed image data from the
user’s device during authentication.

— [P7] S. Husseini and J. -L. Dugelay, “Towards secure au-
thentication: Detecting replay attacks via compression
artifacts,” Submitted to IWBF, 2025.

Finally, in Chapter 8 we conclude the thesis by summarizing the key findings
and contributions of this work. We also discuss potential future directions,
including improving alignment algorithms, refining datasets and protocols
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for deepfake quality assessment, and addressing emerging threats posed by
advancements in deepfake generation techniques. These directions aim to
provide a solid foundation for further research in improving the security and
reliability of face verification and deepfake detection systems.



Chapter 2

Literature Review

In this chapter, we describe the background topics relevant to this thesis. We
begin with an overview of face recognition systems, followed by a discussion
on various types of spoofing attacks targeting facial authentication systems,
with a particular emphasis on deepfake generation, quality assessment, and
detection.

2.1 Face Recognition System

Facial Recognition (FR) technology leverages images or video frames to
identify or verify a person’s identity. This technology facilitates two primary
functions: verification and identification, which are distinguished by their
matching techniques. Verification employs a one-to-one matching process to
confirm if the query face, known as the probe, matches a claimed identity.
On the other hand, identification employs a one-to-many matching process
to define the actual identity of the probe by comparing it against multiple
identities enrolled in the system.

The face recognition process is composed of several steps, categorized
into two phases: the enrollment phase and the recognition phase. During
the enrollment phase, biometric data is captured and securely stored. In
the recognition phase, newly captured biometric data is compared against
the previously stored data to either verify or identify the individual. The
operational steps of FR systems are detailed below and visualized in Figure
2.1

1. Data capture: A camera sensor captures an image or video of an
individual, referred to as the probe.

2. Face detection: A face detector locates the face within the captured

13
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image.

3. Image preprocessing: The detected face is adjusted—typically cropped
and aligned—to accommodate variations in head pose, facial expressions,
and lighting conditions, making it suitable for recognition.

4. Feature extraction: Distinctive facial features are extracted from
the preprocessed image to create a template which is, also known as
a feature embedding or latent space representation. The recent FR
systems commonly employ Convolutional Neural Networks for this task.

5. Template matching: In the verification phase, the FR system com-
pares the probe’s template to the corresponding target template based
on a predefined similarity metric and a threshold. For identification,
the system compares the probe’s template against all stored templates
and selects the best match based on similarity scores.

Face recognition technology has advanced significantly in recent years, with
various methods proposed to enhance different aspects of the process. Addi-
tionally, numerous feature extraction techniques have been developed. Among
these, State-of-the-Art (SoTA) approaches stand out by focusing on mapping
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Figure 2.1: Overview of facial recognition workflow: from registration to the
authorization phase, including verification and identification.
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facial images to latent space representations that accurately capture an indi-
vidual’s identity, effectively clustering the representations of the same person
together. Challenges arise when face images contain uncertainty, arised from
variations in extraneous elements such as head pose, expression, and illumi-
nation between image pairs, which can obscure crucial identity information,
resulting in learned representations unreliable and error-prone. To enhance
face recognition algorithms and tackle challenges posed by these factors, recent
approaches have adopted a variety of strategies, which generally fall into two
main categories:

« Incorporating image quality factors, such as head pose and illumination,
into the loss function during the training of the feature extractor.

o Implementing preprocessing techniques before feature extraction to
normalize elements such as head pose, facial expression, and illumination
conditions in image pairs.

In the first approach, various loss functions, including contrastive loss [26],
triplet loss [27] are investigated, to enhance the discriminative power of the
algorithms under varying image conditions. However, a notable transformation
has taken place more recently, as researchers have shifted their focus towards
optimizing loss functions to reduce the demand for extensive training data.
Central to these innovative methods is the adoption of margin-based softmax
loss functions for training Face Recognition models. The incorporation of a
margin is crucial in these loss functions, as it empowers the learned features to
become more discerning and discriminative. Pioneering contributions to this
field include SphereFace [3], CosFace [4], and ArcFace [5], each introducing
distinct variations of margin functions. However, these loss functions share a
common limitation: they rely on fixed margin values that do not account for
inherent variations, such as differences in image quality, within the same class.
This limitation has prompted the development of solutions based on adaptive
margin loss. MagFace [28] integrates the quality attributes of a face image
sample—such as head pose, sharpness, and illumination—directly into the
margin calculation. This approach aims to cluster high-quality samples (e.g.,
frontal faces) in a compact region around the class centers, while positioning
low-quality samples farther from these centers. This approach helps prevent
the algorithm from overly emphasizing noisy or difficult samples, which could
otherwise compromise its effectiveness and lead to overfitting.

In the second approach the focus have been on optimizing input images
before they are fed into the FR model or subjected to feature extraction.
A crucial preprocessing step in this regard is face normalization, which
addresses various aspects, including illumination, expression, and head pose
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normalization. Illumination normalization seeks to reduce the impact of
lighting conditions on facial appearance, ensuring that the texture and color
of the face remain consistent [1], [2]. On the other hand face frontalization is
aimed at transforming facial images into a frontal view, even in the presence
of potential occlusions. In recent years, deep learning-based solutions [20], [21]
have addressed both face frontalization and neutralization of facial expressions,
leveraging the capabilities of neural networks. Despite showcasing promising
synthesis quality, these methods encounter challenges in preserving face
identity details, especially in scenarios with substantial pose variations.

In Chapter 3, we present the results from one of the author’s publications
[P1], which introduces a normalization algorithm for preprocessing input
images prior to face verification. This approach emphasizes achieving consis-
tency in head pose, facial expression, and illumination conditions between
two images. Instead of merely normalizing extraneous elements to predefined
values, the head pose, illumination, and expression of the first image are
normalized to match those of the second image.

2.2 Points of Attack in Biometric Remote
Authentication

The integration of biometric authentication, particularly face verification
algorithms, into remote authentication systems has gained significant popu-
larity due to their user-friendliness and ease of use. However, the growing
adoption of such systems has also made them an appealing target for attackers,
underscoring the importance of implementing robust security measures.

Attacks can occur at various stages of the system’s operation, including
biometric registration and authorization processes. Given the similarity be-
tween these phases, especially the incorporation of anti-spoofing mechanisms,
this analysis primarily focuses on the authorization stage.

Figure 2.2 provides a visual representation of the threat model for a
biometric system integrated with cloud computing, highlighting potential
points of vulnerability within the system.

During the authorization phase, the user’s device sensors capture bio-
metric data from the physical environment and transform it into digital
representations. These representations are subsequently processed by data
processing systems, such as machine learning algorithms, which operate within
the application and on the server.

Attacks during the data capture process can occur in either the physical
or digital domain [29], [30]. In the physical domain, a presentation attack



Chapter 2. Literature Review 17

involves an attacker using physical objects such as printed photos, masks, or
3D models to deceive the sensor and mimic the legitimate user. Conversely,
in the digital domain, attackers bypass the device’s embedded hardware
sensor entirely. This type of attack may involve a virtual camera or advanced
manipulation software to inject fabricated or manipulated biometric data
directly into the system.

While these attacks predominantly occur on the client side, vulnerabilities
also exist on the application or server side. For instance, biometric data stored
in the database can be overridden or modified, potentially compromising
the system’s integrity. Additionally, processors such as anti-spoofing method
or face verification algorithms can be overridden or have their effectiveness
undermined, leaving the system susceptible to exploitation.

In this thesis, we assume that both the application running on the user’s
device and the server managing the data are securely protected through
established security engineering practices. With a focus on authentication
services and the escalating threat posed by deepfakes, this work specifically
addresses deepfake digital injection attacks.

To build a comprehensive understanding of deepfakes, the subsequent
subsections provide an overview of the deepfake generation process, quality
assessment methods, and delve into deepfake attacks alongside detection
techniques.
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Figure 2.2: Possible attacks on biometric systems (best viewed in color). Image
adapted from [30].
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2.3 Deep Generative Models

Artificial Intelligence Generated Content (AIGC) has drawn significant atten-
tion in both academic and industrial domains in recent years, particularly
with the notable advancements in deepfake technology within the generative
domain. Generative models possess an extraordinary ability to create highly
realistic images, videos, and other forms of visual media, continuously pushing
the boundaries of synthetic content creation and redefining what is achievable
in this field.

Unlike discriminative models such as Convolutional Neural Networks, logis-
tic regression, or Support Vector Machines (SVMs), which focus on classifying
data by learning to identify decision boundaries between different classes,
generative models are designed to learn the underlying distribution of the
data itself. By modeling this distribution, generative models can create new
data points that closely resemble the original dataset, effectively synthesiz-
ing realistic samples that capture the same patterns and characteristics as
the training data. Among the various approaches to generative modeling,
three major techniques stand out: Generative Adversarial Networks (GANs),
Variational Autoencoders (VAEs), and Denoising Diffusion Models.

Generative Adversarial Networks introduced by Goodfellow et al. in 2014,
which have rapidly become one of the most influential and widely adopted
generative models in computer vision [31]. GANs operate based on a dual-
network architecture that pits two neural networks against each other in a
zero-sum game. The generator network’s goal is to produce synthetic images
that are indistinguishable from real ones, while the discriminator network
attempts to correctly differentiate between real and fake images.

This adversarial training process drives both networks to improve continu-
ously. As the generator learns to create more realistic images, the discriminator
becomes more adept at identifying subtle imperfections. This iterative refine-
ment enables GANs to generate highly detailed and realistic images, making
them the go-to choice for tasks such as image synthesis, style transfer, and
super-resolution.

Variational Autoencoders (VAEs), introduced by Kingma and Welling in
2013, offer a different approach to generative modeling. VAEs are designed to
learn a probabilistic latent space representation of the data, which can then
be used to generate new samples [32]. The architecture of a VAE consists
of two primary components: an encoder and a decoder. The encoder maps
input data, such as images, into a lower-dimensional latent space, while the
decoder reconstructs the data from this latent representation.

A key feature of VAEs is their ability to generate new, coherent data by
sampling from the latent space. Unlike GANs, which focus on adversarial
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training, VAEs optimize a variational lower bound, balancing the trade-off
between reconstruction accuracy and the smoothness of the latent space.
This makes VAEs particularly well-suited for tasks where interpretability and
smooth transitions in the latent space are important, such as in anomaly
detection, data compression, and generation of variations on a theme.

While VAEs may not always produce images as sharp and realistic as those
generated by GANs, they excel in providing a continuous and interpretable
latent space. This makes them ideal for applications that require a clear
understanding of the underlying data distribution and the ability to generate
diverse outputs.

Denoising Diffusion Models represent a newer and increasingly popular
class of generative models that have shown exceptional promise in recent
years [33]. Unlike GANs and VAEs, diffusion models are based on a stochastic
process that involves gradually adding noise to data and then learning to
reverse this process to recover the original data. This iterative denoising pro-
cess allows the model to capture complex, high-dimensional data distributions
effectively.

In practice, diffusion models start with a simple, known distribution—such
as gaussian noise—and progressively refine it into a realistic image or data
point through a series of denoising steps. This approach differs from the direct
adversarial training of GANs or the latent space optimization of VAEs. The
gradual refinement process allows diffusion models to produce images with
high fidelity, capturing fine details and textures that are often challenging for
other models.

Recent advancements [9], [34] have demonstrated the impressive capabili-
ties of diffusion models in generating not only images but also audio, videos,
and 3D objects that closely resemble real-world data. One significant benefit
of diffusion models is their ability to handle missing data. Because they model
the entire data generation process as a sequence of small, reversible steps,
they can easily be adapted to tasks like inpainting or data completion, where
parts of the data are missing or corrupted.

2.4 Face Manipulation in the Era of Deepfakes

Deepfake technology, has demonstrated extraordinary capabilities in produc-
ing highly realistic and convincing facial media content, transitioning from
traditional graphics-based methods to sophisticated deep learning approaches
by initially employing advanced techniques such as variational autoencoders
[35], generative adversarial networks [8] and diffusion models [33]. Figure 2.3
illustrates the range of deepfake generation methods; each can be understood



20 2.4. Face Manipulation in the Era of Deepfakes

¢|sp

*  Black Level Correction *  Noise Reduction

*  Demosaicing *  Edge Enhancement
*  Vignetting correction *  Lens Correction

*  White Balance *  Image Stabilization

*  Color Correction *  JPEG Compression
*  Gamma Correction LI,

C : Manipulative Conditions

4“%“«—4%%
Enhance digital trust with our cutting-edge
method that detects deepfakes by analyzing

raw images for authenticity...

Gender Hairstyle

Face Swap Face Reenactment Talking Head Generation Facial Attribute Editing
A Identity Preservation Head Pose / Movement @ Temporal Continuity @ Multiple Attribute Editing

Figure 2.3: Various deepfake generation methods ¢¢ manipulate the input image
I,.4 based on conditions like audio, video frames, or text. Typically, detection
models process ISP-transformed images. The ISP process starts with light focused
on the CFA sensor, producing raw pixel values Igaw, which undergo stages ¢rsp
such as white balance and noise removal to yield the final RGB output.

as a controlled content creation problem, where an RGB image I, is manip-
ulated based on specific conditional information C = {Image, Audio, Text,
...}. The generation process can be mathematically formulated as follows:

Io = ¢G(Irgba C)v (21)
where ¢¢ represents the specific generative network, I, = {Ifgb, Ijgb, cee ]T]\gfb_ !

denotes the sequence of generated contents and N is the total number of
frames. This technology is broadly categorized into four main research areas:

« Face Swapping: Swaps the identity information of a face I,y with
that of a source face C' = I, preserving ID-irrelevant attributes such
as skin color and expressions.

« Face-Reenactment: Alters the facial movements of an image I,
without changing its identity or other attributes, influenced by external
factors such as driving image or video.
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o Talking Face Generation: Generates a video sequence where the
character in I, 4 engages in conversation driven by external modalities
such as text, audio, or video. This involves synchronizing lip movements
and facial expressions to match the conversational content.

o Facial Attribute Editing: Modifies specific semantic attributes of
the face I,4, such as age, gender, or expressions, based on individual
preferences.

Among the various deepfake techniques, face reenactment and face swapping
have gained significant popularity. These methods pose a particularly high
risk to authentication services, making them a focal point of this thesis.
Accordingly, our work places greater emphasis on analyzing and addressing
these two techniques.

2.4.1 Overview of Face-Swapping Methods

Face-swapping algorithms can be broadly categorized into traditional graphics-
based methods and more recent approaches leveraging GANs and diffusion
models.

Traditional face-swapping methods primarily relied on region-based feature
matching or the construction of a 3D prior model for facial parameterization
[36]. The region-based approach focuses on identifying and aligning specific
facial features, such as the eyes, nose, and mouth, within Regions Of Interest
(ROIs) in both source and target images. Once aligned, techniques such as
boundary blending and lighting adjustments are applied to create a seamless
transition between the swapped regions. For example, Sunkavalli et al. [37]
introduced lighting adjustments to enhance the realism of blended regions,
while Bitouk et al. [38] developed an automated face replacement system
that relied on a comprehensive face database to find suitable substitutes
with matching poses and lighting conditions. On the other hand, the 3D
prior model approach leveraged 3D Morphable Models (3DMM) to provide
more robust and dynamic face-swapping capabilities. By constructing a
3D facial parameter model using a database of facial images, this method
enabled the matching of the source image’s parameters to the model and
allowed for modifications that generated realistic face swaps. This approach
outperformed in scenarios requiring adaptations to pose and lighting variations,
as demonstrated by works such as those by Blanz [39] and Dale et al. [40].
While more adaptable, these methods were computationally intensive and
less effective in handling extreme occlusions or lighting conditions.

With advancements in CNN models, the generation of face-swapping videos
saw significant improvements [41], [42]. The advent of GAN-based methods



22 2.4. Face Manipulation in the Era of Deepfakes

marked a major breakthrough in face-swapping technology. Early GAN
approaches enhanced traditional algorithms by improving alignment, adapting
to head pose variations, and addressing lighting inconsistencies between source
and target images [43], [44]. However, these methods often required training
for each identity, limiting their ability to generalize across diverse identities.
To address this, researchers combined GANs with variational autoencoders
(VAEs), significantly enhancing model generalizability [45], [46]. More recent
GAN-based advancements have further refined face-swapping by incorporating
techniques such as facial masking artifacts [47] and methods to decouple
identity and attribute information [48], [49].

More recently, diffusion-based models have emerged as powerful tools for
creating highly realistic face-swapping deepfakes. Zhao et al. [50] redefined
the face-swapping process as a conditional inpainting task, reconstructing
altered or missing facial regions based on predefined conditions. Similarly, Liu
et al. [51] proposed a multi-modal face generation framework that integrates
balanced identity and expression encoders within a conditional diffusion model.
This approach achieves a harmonious balance between identity replacement
and attribute preservation, producing exceptionally realistic outputs.

2.4.2 Overview of Face-reenactment Methods

Traditionally, facial reenactment or animation was achieved by fitting a 3D
Morphable Model (3DMM) and modifying its estimated parameters. Early
methods utilizing 3DMM incorporated high-detail features in animated frames
either through detailed 3D scans or by learning 3DMM parameters directly
from RGB images. However, these approaches involved additional steps to
accurately transfer finer details, which made the process more complex and
resource-intensive [52].

With advancements in deep learning, particularly in GANs, new methods
emerged for generating facial animations. The literature is rich with both
supervised and self-/unsupervised approaches. Supervised approaches aim to
control facial animations by modeling factors of variation—such as lighting,
pose, and expression—Dby conditioning the generated images on known ground-
truth information, such as head pose, expressions, or landmarks [53], [54].
However, these methods require annotated datasets with detailed pose or
expression information, which can be expensive to obtain or rely on subjective
judgment (e.g., labeling expressions).

To address these challenges, self-supervised and unsupervised approaches
have been developed to automatically learn factors of variation, such as
optical flow and pose, without relying on labeled data. These methods often
maximize mutual information or train networks to predict video frames [55].
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A notable example is X2Face [56], which utilizes a two-stage training
process. In the first stage, self-supervised learning is employed. Given
multiple frames from a video, one frame is designated as the source frame,
while the remaining frames serve as driving frames to control the source.
During this stage, the model learns a bilinear sampler that encodes the
pixel-wise flow (dx,dy) and maps pixels from the source frame to the driving
frame. In the second stage, a convolutional neural network pre-trained for
face identification is incorporated to impose additional constraints based on
the identity of the faces in the source and driving frames. This fine-tuning
step helps the model better preserve the identity of the source face while
adapting to the pose and expression of the driving frames.

Furthermore, Soumya et al. [57] proposed an interpretable and controllable
face reenactment network, ICface. Similar to X2Face, their model employs a
two-stage training process based on self-supervised learning. In the first stage,
facial attributes such as emotion and pose are extracted from the driving
image in terms of Action Units (AUs). In the second stage, these extracted
attributes are transferred to the frontalized source image using a conditional
generative model, specifically CycleGAN. This approach enables the synthesis
of a source image with the pose and expression of the driving image while
maintaining the identity of the source.

Siarohin et al. [58] proposed a self-supervised approach where sparse key-
points are extracted in an unsupervised manner. These keypoints, combined
with local affine transformations, are used to generate dense motion vectors
and an occlusion map. The source image, along with the dense motion vectors
and occlusion map, is then utilized to render the target image, enabling
realistic animation of the source image based on the motion of the driving
image.

To enhance emotion transfer, micro-expression accuracy, and background
quality, Hong et al. [59] introduced the Depth-Aware Generative Adversarial
Network (DaGAN). This approach leverages self-supervised learning to recover
dense 3D facial geometry through pixel-wise face depth maps, eliminating the
need for expensive 3D annotations. DaGAN integrates depth information into
the generation process using two innovative mechanisms. First, it combines
geometric features from depth maps with appearance features from RGB
images to predict more accurate facial keypoints, effectively capturing critical
head movements. Second, it employs a 3D-aware cross-modal attention
mechanism to seamlessly fuse depth and RGB information, allowing the
model to capture subtle expression-related micro-movements and generate
finer facial details.

Keypoint information plays a vital role in transferring motion from driving
videos to still images. However, such methods often struggle when there are
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significant appearance variations between the source image and the driving
video. To overcome this challenge, Wang et al. [60] introduced the Latent
Image Animator (LIA), a self-supervised autoencoder that transfers motion
from driving videos to source images by leveraging linear transformations
within the latent space.

LIA achieves animation by linearly navigating the source latent code
along a learned trajectory to reach the target latent code, which encodes
the high-level transformations needed for animating the source image. To
enhance this process, the authors propose a Linear Motion Decomposition
(LMD) approach, which represents the latent path as a linear combination of
learned motion directions and their respective magnitudes. Importantly, these
directions are constrained to form an orthogonal basis, where each vector
corresponds to a fundamental visual transformation. By encapsulating the
entire motion space within this learned basis, LIA eliminates the reliance
on explicit structural representations, thereby streamlining the animation
process.

2.5 Evaluation Techniques for Face Manipu-
lation Methods

In this section, we review algorithms and metrics for assessing the quality of
deepfake-generated frames. Sections 2.5.1 and 2.5.2 outline different evaluation
approaches used in current methods.

2.5.1 Evaluation Techniques for Face-Swapping Meth-
ods

Identity preservation is considered a key metric in the evaluation of face-
swapping methods, ensuring that the identity of the source subject is main-
tained in the generated face. This is typically achieved by pretrained face
recognition models, which compute similarity using metrics such as cosine
similarity or euclidean distance. In addition to identity preservation, expres-
sion and pose errors are critical for assessing the quality of face-swapping
methods. These metrics measure how accurately the generated face replicates
the target subject’s facial expression and head pose. Expression and pose
accuracy are commonly evaluated using pose estimators [61] or 3D facial
models [62], which extract expression and pose vectors.

Natsume et al. [45] utilized OpenFace [63] to evaluate identity preservation
by calculating the squared euclidean distance between feature vectors of the
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input and face-swapped images. Nirkin et al. [64] employed dlib [65] to extract
identity embeddings and compare the face-swapping result of each frame to
its nearest neighbor in pose from the source subject’s face views, ensuring
identity consistency across frames. Pose error was computed as the euclidean
distance between the Euler angles of the generated and target images, while
expression error was measured as the pixel-wise euclidean distance between
corresponding 2D landmarks.

Visual quality is another important aspect of face-swapping evaluation.
The Structural Similarity Index (SSIM) has been used in several studies,
including [64], to assess the visual similarity between images. However, SSIM
evaluations can be limited by misalignment between corresponding pixels in
the compared images. The Fréchet Inception Distance (FID) [66] is another
widely used metric to assess the overall quality of generated images. FID
measures the similarity between the distributions of real and generated images
in feature space, with lower FID scores indicating higher visual fidelity and
closer resemblance to real data. The aforementioned metrics are discussed in
greater detail in Subsection 4.4.

2.5.2 Evaluation Techniques for Face Manipulation
Methods

Evaluation techniques for face-reenactment can be classified into three cate-
gories: self-reenactment evaluation, cross-reenactment evaluation, and subjec-
tive test evaluation. The self-reenactment evaluation protocol, as depicted in
Figure 2.4a, involves selecting a single frame from a video as the source image
and using the remaining frames from the same video sequence to animate it.
Since the source and driver identities originate from the same video sequence,
the driver frames serve as a reliable ground-truth reference for comparing the
generated images. This ensures a consistent and controlled evaluation of the
reenactment process.

To assess the quality of the generated images in self-reenactment studies,
image quality metrics such as SSIM and Peak Signal-to-Noise Ratio (PSNR)
[67] are commonly employed [56], [58], [60], [68], [69]. These metrics rely on
ground-truth data and provide objective measures of image similarity and
fidelity. Additionally, the self-reenactment technique enables the measurement
of facial keypoint error such as Average Keypoint Distance (AKD) and Missing
Keypoint Rate (MKR) which offers further insights into the accuracy of the
reenactment process [60], [68]. To quantitatively evaluate the quality of
generated frames, Siarohin et al. [68] utilizes self-reenactment to measure
the L1 error, AKD, and Average Euclidean Distance (AED) between the
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Figure 2.4: Face-reenactment evaluation protocols: self-reenactment (a), cross-
reenactment (b), and our proposed evaluation protocol (c). In this illustration, X
and Y represent identities, while S, D, T, and GT correspond to source, driving,
target, and ground-truth, respectively. Additionally, m; and ms indicate the
movement of the source and driving, respectively

generated frames and the ground-truth frames. Similarly, Gao et al. [70]
reports the L1, SSIM, PSNR, FID and AKD error between the generated
frames and the corresponding ground-truth frames for the self-reenactment
scenario. Wang et al. [60] and Yang et al. [71] utilized the LPIPS to compute
the similarity score between generated and ground-truth frames.

To quantitatively evaluate the generated frames in cross-reenactment
scenarios and address the absence of ground-truth data, researchers employ
a set of metrics that do not rely on explicit ground-truth comparisons. For
the evaluation, researchers commonly utilize a cross-reenactment protocol,
as illustrated in Figure 2.4b. In the existing cross-reenactment protocol, a
prevalent method involves utilizing a pretrained network to extract identity
features from the source and reenacted images [60], [68]. Alternatively,
geometric features can be extracted from the driving and reenacted images
[72], [73]. These extracted embeddings capture essential characteristics of the
face, such as appearance and face pose. The quality of the generated frames
can be assessed by computing the distance or dissimilarity between these
embeddings. For instance recent face-reenactment methods [70], [74]-[76]
evaluate the identity preservation by computing Cosine Similarity (CSIM)
of embedding vectors between the generated frame and the source face [5].
Furthermore, Ha et al. [74] leverage pretrained networks to estimate the head
pose angles and Facial Action Units (FAU) of generated image and compare
these estimates with the corresponding driver’s head pose and action units,
providing insights into the accuracy of the reenactment process.

Subjective test form the third category of evaluation techniques for cross-
reenactment. In these evaluations, human observers play a crucial role by
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providing judgments on various aspects such as the visual quality, realism,
and coherence of the generated cross-reenactment frames. For instance,
Siarohin et al. [68] and Wang et al. [60] conducted a user study in which
participants were presented with a source image, a driving video, and the
corresponding results of their method and a competitive method. Participants
were asked to select the most realistic image animation. Despite the significant
advancements in cross-reenactment evaluation, there is still a need for an
automated protocol that can compute errors for metrics relying on explicit
ground-truth data. The establishment of such a protocol would contribute
to a comprehensive and robust evaluation of cross-reenactment methods,
enabling a deeper understanding of their performance and fostering further
advancements in the field.

In Chapter 4, we present the evaluation technique illustrated in Figure
2.4c, designed to assess image quality for face-reenactment methods. This
chapter outlines the proposed evaluation protocol and discusses the results
from the three author’s publications [P2]-[P4].

2.6 Deepfake Attacks and Countermeasures

Deepfake attacks can occur in various forms, with one of the most common
being the media content attack. In this type of attack, the attacker obtains
an image of the victim, often sourced from social media platforms, and uses
it to create a deepfake video. These attacks typically happen offline and pose
significant risks to the victim. For instance, the victim may be depicted in
a compromising situation or made to say things he/she have never actually
said. Such attacks can result in severe consequences, including damage to
reputation and personal harm.

Another form of deepfake attack is the real-time deepfake attack, where
the attacker targets an authentication system in real time. This can take the
form of a presentation attack or an injection attack.

In a presentation attack scenario, the deepfake video is usually generated
on a separate device, such as a laptop, and then presented to the authentication
sensor. This allows the attacker to deceive the system by showcasing artificial
biometric traits, effectively simulating the victim’s appearance. Injection
attacks take this a step further by streaming the manipulated videos directly
to authentication systems using virtual camera software (e.g., OBS), bypassing
the need for physical camera sensors entirely.
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2.6.1 Deepfake Detection

To address the challenges posed by deepfakes, several deepfake databases have
been developed [77]-[79], offering extensive datasets that feature a diverse
range of individuals with varying facial attributes and expressions.

Researchers have approached deepfake detection from multiple perspectives
to enhance detection methods. Some techniques focus on the image level,
aiming to identify fake images by recognizing spatial artifacts within individual
frames [13], [14], while others focus on the video level, leveraging temporal
information by analyzing multiple frames to detect deepfake videos [80], [81].
Furthermore, certain detection methods utilize frequency information, which
proves particularly effective on highly compressed videos. The LRL [82] and
FRDM [15] combine representations from both RGB and frequency domains
to learn inconsistencies in the video frames.

Another direction in deepfake detection involves the use of training data
synthesis, generating synthetic data that includes common deepfake artifacts.
These techniques do not rely on existing fake data but generate their own.
For instance, DSPFWA [83] focuses on identifying artifacts that arise during
face warping, where a source face undergoes transformations such as scaling,
rotation, and shearing to match the pose of target face it aims to replace. These
transformations create artifacts and resolution inconsistencies between the
warped face area and the surrounding context. During training, the algorithm
generates synthetic data containing these affine face warping artifacts to
improve detection accuracy. Similarly, Face X-ray [84] generates synthetic
fake samples, called BI, by blending two images from different videos and
attempts to detect deepfakes by segmenting the blending boundaries between
the source and target images. SBI [85] follows a comparable approach but
blends faces from the same frame to produce higher-quality images, making
them more challenging for deepfake detectors to identify.

Several deepfake detectors focus on image patches rather than the entire
image. PCL [16] detects deepfakes by assessing consistencies between patches
of input images. The model is trained with an Inconsistency Image Generator
(I2G), akin to BI [84]. CADDM [14] identifies that the stumbling block
of deepfake detectors’ generalization ability lies in the mistakenly learned
identity representation in images. Therefore, they propose a model containing
an anchor-based detector which detects deepfake artifacts in local areas.
Other notable directions for deepfake detection involves focusing on specific
representations such as head pose [86], eye blinking [87], mouth movements
[88], and heart rate estimation [89]. While many current methods perform well
in detecting known manipulations, certain studies [14], [85] have identified
limitations in their ability to generalize to fake faces forged by unknown
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manipulations.

To assess the good generalization of the deepfake detectors to different
image processing algorithms, studies have been conducted in real-case scenar-
ios, i.e. detecting deepfake uploaded online with video compression [42], [90],
[91]. The higher the compression rate, the lower they can correctly classify.
Indeed, the effect of compression can be seen in the classification Area Under
the Curve (AUC) of the deepfake detectors with the low-quality videos of
FaceForensics++ [92]-94].

2.6.2 The Image Signal Processing (ISP) Pipeline and
Its Impact on Deepfake Detection

Current detection models often struggle to differentiate between real and
fake images because the existing definition of real images includes both raw
content captured by camera sensors and content processed through various
stages of image and video enhancement, including both linear and nonlinear
adjustments. As a result, images are considered real even after undergoing
multiple processing operations such as denoising, compression, deblurring,
and white balance adjustments. These ISP processing steps are designed
to produce aesthetically pleasing images for human viewers, but they pose
significant challenges for deepfake detection. The issue arises from the fact
that each device employs a unique ISP pipeline with distinct enhancement
blocks, which obscure subtle cues that are crucial for detecting deepfakes.
This variability forces detection models to adapt to unseen ISP configurations,
making it more difficult to accurately identify real images.

Modern digital cameras aim to capture and render images that are both
visually pleasing and accurate to human perception. However, the raw
sensor data initially captured by these cameras does not resemble a finished
photograph. To convert this noisy, linear intensity data into a polished
image, an in-camera image ISP pipeline is employed. This pipeline transforms
the sensor’s raw image into the standard RGB (sRGB) format, producing
perceptually pleasant RGB images suitable for the human visual system
[95]. The ISP methods can generally be categorized into two main types:
model-based and learning-based approaches. Model-based methods rely on
conventional blocks and learning-based methods directly acquire raw-to-RGB
conversion from paired RGB and raw images via end-to-end training [96]-[98].

The common blocks of a model-based ISP pipeline include demosaicing,
denoising, White Balance(WB), and Lens Shading Correction (LSC). The de-
mosaicing is used to convert a single-channel raw image into a full-color RGB
image by interpolating the raw Color Filter Array (CFA) patterned image [99].
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Denoising aims to eliminate acquisition noise from images while maintaining
their details to enhance quality. This is achieved through techniques such as
spatial filtering, frequency domain filtering, and wavelet-based methods [100],
[101]. Furthermore, white balance removes undesirable color casts caused by
environmental lighting, allowing objects to be perceived as the same color re-
gardless of the scene’s lighting. WB involves estimating the scene’s illuminant
color using an algorithm and then correcting the captured image based on this
estimation [102], [103]. In addition to accurate color reconstruction, ensuring
uniform light distribution is essential for high-quality image processing. Lens
shading correction addresses the radial decrease in light intensity towards the
edges caused by sensor optics, resulting in a vignetting effect. LSC adjusts for
this uneven light distribution using a pre-calibrated mask to ensure uniform
light response across the sensor [104], [105].

While model-based ISP methods generally provide superior interpretability
and control, they often require manual parameter adjustments and depend
on camera metadata, such as color correction matrices. On the other hand,
learning-based methods eliminate the necessity for such metadata but require
significant amounts of data. Despite this requirement, they generally achieve
superior reconstruction accuracy compared to model-based approaches [106].

Inverse ISP

A sensor raw image captured by a digital camera retains all the information
captured by the sensor. The relationship between ambient light, pixel intensity,
and noise distribution in the raw domain is typically much simpler compared
to that in the RGB domain [107]. Hence, leveraging raw images directly
for subsequent tasks can potentially yield superior performance compared
to methods based on RGB images, across both low-level and high-level
computer vision tasks. Recent research indicates that raw image-based
approaches for tasks such as image recognition [107], [108] and denoising [109]
have demonstrated higher performance levels than their RGB image-based
counterparts. The use of raw images is expected to improve performance
especially in difficult scenes such as extremely dark or blurry scenes that should
be covered in practical application. However, the scarcity of annotated raw
data has been a barrier to machine learning-based approaches. Consequently,
several reversed ISP methods that convert existing large-scale RGB datasets
into pseudo raw datasets have been studied [104], [106], [109], [110].

Inverse ISP methods based on deep learning can be categorized into
end-to-end methods and hybrid methods. Hybrid methods offer greater
interpretability for intermediate representations and enable better control
over the ISP layout. MBISPLD [104] employs a hybrid approach that combines
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classical reversible ISP blocks with shallow CNNs to transform RGB images
into raw images, In this framework, each ISP block possesses learnable
parameters that are optimized using RGB and raw image pairs. On the
contrary, CycleISP [109] and InvISP [98] perform RGB-to-raw (forward) and
raw-to-RGB (reverse) mapping in an end-to-end fashion. CycleISP adopts
cycle consistency to learn both the forward reverse directions of the ISP
using two different networks. These networks are jointly fine-tuned to ensure
cycle consistency. On the other hand, InvISP learns a reversible ISP using
normalizing flow techniques, such as those introduced in Glow [111], to
generate an invertible RGB image from the original raw image. Further more,
MiAlgo [110] introduces an end-to-end encoder-decoder network. During
training, it gets a full-resolution RGB image as input and leverages its
corresponding paired raw image to optimize the network. The network adopts
a UNet-like structure, comprising multiple sampling blocks and residual
groups, to extract deep features and reconstruct the raw image data.

In Chapters 5 and 6, we present the results from two of the author’s
publications focused on deepfake detection. The first publication, [P5], inves-
tigates the impact of image processing techniques, particularly beautification
filters, on the performance of deepfake detection. The second publication,
[P6], introduces a novel pipeline that utilizes raw domain data as input to
enhance deepfake detection. In light of the scarcity of large-scale datasets for
training on raw images, the MiAlgo framework is employed to preprocess the
input images by converting them into a raw image format, a crucial step prior
to performing deepfake detection. By focusing on raw data, this approach
seeks to constrain the distribution of real images, making it easier for the
model to learn distinctive features and generalize effectively to authentic
images.

2.7 Digital Replay Attack Detection

Digital replay attacks involve injecting a genuine video stream of the victim
into a facial recognition system, often using webcam simulation tools like
OBS Studio on computers. On mobile devices, more sophisticated software
solutions are required to achieve similar results [7], [112]. Detecting these
attacks is challenging, as the biometric data used is authentic and lacks
detectable anomalies. As a result, defense strategies against digital replay
attacks remain underexplored, with limited research addressing this issue
within the biometric community.

Some studies have proposed methods to counter digital replay attacks
by leveraging external signals to verify the presence of a live user in front
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of the camera. The authors of [113] and [114] suggest using a smartphone
screen to emit randomly flashing colors onto the user’s face. These flashes
serve as a dynamic watermark within the video sequence, as the light is
reflected off the user’s face and captured by the camera. By analyzing the
reflected light colors, these methods aim to distinguish between a live face and
a replayed video or image. Similarly, [115] and [116] propose utilizing specific
light patterns as an authentication mechanism for the captured content.
However, the effectiveness of these approaches is limited due to their reliance
on external signals, which are often too weak to detect, especially under
strong ambient lighting conditions or on individuals with low skin reflectance.
These constraints highlight the need for more robust and practical solutions
to combat digital replay attacks.

2.8 Compression Detection for Video Foren-
sics: Effectiveness in Replay Attacks and
Deepfake Detection

A significant area of research in digital video forensics involves the detection
and analysis of compression artifacts, which provide valuable insights into
the editing history of videos. These artifacts are typically examined through
spatial statistics within individual frames and temporal statistics embedded
in the Group of Pictures (GOP) structure. The GOP defines the types and
sequence of frames in a video, establishing the foundation for compression
analysis.

Video manipulation often entails decompression, editing, and recompres-
sion, making the detection of double compression artifacts particularly impor-
tant. These artifacts serve as crucial evidence for identifying the sequence of
edits and determining whether a video has been tampered with. Techniques
such as the analysis of quantization artifacts or blockiness patterns have been
developed to detect traces of recompression in both images and videos. For
example, the authors of [117] propose a SVM-based classifier to determine
the number of compression steps applied to a video sequence. Their method
relies on Benford’s law, analyzing the statistics of the most significant digit
in quantized transform coefficients. Similarly, Jiang et al.[118] apply Markov
statistics to identify double quantization artifacts in MPEG-4 videos. Other
studies, such as[119] and [120], focus on periodicity analysis and the GOP
structure to detect double compression in videos.

Despite the significant body of research on detecting double or multi-
ple compressions, most existing methods are limited to identifying double-
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compressed videos for specific codecs or compression parameters. Both replay
and deepfake injection attacks remain unresolved challenges. The ideal so-
lution to this challenge is to cryptographically sign biometric data at the
hardware level, enabling hardware manufacturers to verify the authentic-
ity of the captured content. However, implementing this approach requires
seamless collaboration among hardware manufacturers, operating system
developers, software providers, and face anti-spoofing service providers, a
level of coordination that has not yet been achieved.

In Chapter 7, we present the results from the author’s publication focused
on digital replay attack detection. The publication, [P7], investigates whether
providing uncompressed video access to face anti-spoofing service providers
can enhance the detection of injected versus authentic video streams. Building
upon this, we propose bypassing the compression step and directly capturing
uncompressed image data from the user’s device during authentication.



Chapter 3

Enhancing Face Verification
Algorithm

This chapter presents the challenges a face verification system may encounter
during authentication and introduces a novel face normalization algorithm
designed for preprocessing in face verification. The proposed method adap-
tively aligns head pose, expression, and illumination, resulting in significant
performance improvements.

Section 3.1 provides an overview of the current state-of-the-art face verifi-
cation methods and outlines our motivation. Section 3.2 details the proposed
approach, while Section 3.3 presents the experimental evaluation and results.
Finally, Section 3.4 summarizes the key contributions of this chapter.

3.1 Introduction

Face Verification (FV) has gained significant attention due to its great poten-
tial value in practical applications such as access control and video surveillance.
Recent progress in face verification heavily depends on the utilization of deep
convolutional neural networks, consistently showcasing notable accuracy that
frequently exceeds human-level performance. In face verification models,
where two images are used as input, effectiveness is indeed influenced by
several factors, including scene illumination during image capture, camera
parameters, image quality, alterations in facial expressions, and changes in
the head pose of the subjects. Hence, it is crucial to direct the model’s focus
exclusively towards distinctive features crucial for individual recognition while
neglecting extraneous elements. For this purpose, diverse strategies have been
investigated, falling into two primary categories: incorporating image quality-
related factors, such as head pose and illumination, into the loss function
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Figure 3.1: Overview of Face Normalization by AlignFace: For each image,
3DMM coefficients, including identity («), expression (), texture (7), illumination
(7), and head pose (p) are extracted using the R-Net model. The image xy is
then normalized to produce zy, aligning its expression, head pose, and lighting
conditions with those of x,. During normalization process xy/’s identity and texture
coefficients are iteratively updated (n iterations) while keeping the parameters of
the FR and R-Net models frozen. Although images generated as x closely follow
the distribution of real images, discrepancies might exist between the distributions
of generated xy and real faces x,. To ensure accuracy at the face verification phase,
the FR model used for extracting face embeddings for zy is fine-tuned, denoted as
FR,. x4 and zy represent different identities.

[28]. The other approach focuses on the implementation of preprocessing
techniques to normalize elements such as head pose and expression [20], and
to address variations in illumination [1].

Recent advancements, focusing on enhancing performance through im-
proved loss functions, often involve the incorporation of margin-based loss
functions [121], with the primary objective of minimizing intra-class variation
and maximizing inter-class distinction. A widely adopted margin-based loss
function is ArcFace [5], which introduces an angular margin term into the
standard softmax classification loss, significantly enhancing class separability.
Nevertheless, recent investigations have pointed out that ArcFace exhibits
a degree of quality-agnostic behavior, leading to instability in within-class
distributions [28]. To address these challenges and improve performance,
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AdaFace [121] integrates image quality information into the loss function.

In parallel, another crucial technique for improving face verification is
face normalization. This involves synthesizing and transforming a face with
arbitrary pose, illumination, and expression into a desired pose, balanced
illumination, and neutral expression to enhance recognition. Through the
normalization of images to a shared representation, the model is enabled
to concentrate its discriminative capacity on the intrinsic characteristics of
individuals, thereby fostering more reliable and accurate face verification
outcomes.

Normalization of face pose is widely adopted in the field, typically with the
desired pose specified as frontal [122]. In [21], a combination of a 3D morphable
model and a generative adversarial network is employed to generate frontal
face images from input profile images. Likewise, in [20], face frontalization is
accomplished entirely through a generative adversarial network. The DVN
[123] utilizes two layers of dual-view generators to normalize a face in dual
views - one in frontal view and the other in a yaw 45° side view. MVN [122]
is designed to learn the transformation from an input set to seven output
sets, encompassing seven face poses from 0° to 90° in yaw with a 15° interval,
utilizing seven generators. However, transferring faces to specific head poses
is not always advisable due to several reasons:

e Training Data Distribution: The majority of the training data may
not be centered within the frontal pose range and could be distributed
across various angles. As illustrated in the DVN [123] framework, the
face encoder exhibits greater expertise with faces within a 45° range,
reflecting the predominant distribution of training data in their database.
Therefore, to ensure effective of face verification in diverse scenarios, it
is essential not to exclusively rely on normalization at specific poses, as
optimal results may vary.

« Photo-Realism and Texture Loss: Generated frontalized (or at any
other specific degree) face images from GANs may lack photo-realism and
exhibit artifacts and texture loss, especially in occluded regions. Coun-
terfeiting features in synthetic generated images may degrade recognition
performance. For example, if a particular facial feature, such as a birth-
mark or mole, is obscured in the original image and remains ungenerated
by the GAN model during frontalization, while being visible in the second
image, the face verification model may incorrectly categorize these two
images as representing different identities.

The reasons mentioned above could also be applicable to the normalization
of illumination, expression, and other extraneous elements.
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In this thesis, we introduce an innovative normalization algorithm designed
for preprocessing input images in the context of face verification. Diverging
from conventional methods, our approach places a distinctive emphasis on
achieving consistency in head pose, expression, and illumination conditions
between two images, avoiding an exclusive focus on the normalization of
extraneous elements at specific values. Specifically, our methodology involves
estimating the head pose, expression, and illumination conditions in one
image, followed by the reconstruction of the second image to align with the
same head pose, expression, and illumination conditions while preserving its
own unique identity features. This ensures the constancy of real features in
one of the images, providing a more authentic representation of the facial
distribution. By adopting this approach, our algorithm allows the verification
process to concentrate solely on identity evaluation, unaffected by variations
in non-essential extraneous and synthesized features. This refined focus
contributes to a more accurate and reliable assessment of facial identity in
face verification scenarios.

3.2 Methodology

In face verification, a pair of images {x,, 2} C X is examined using a face
recognition model denoted as f(z) : X — R? This model extracts feature
embeddings from the faces in the images, placing them in the R? space. The
similarity between a pair of images can be commonly calculated using the
cosine similarity formula:

- f(ma) : f(xb>
@) £@0)) = G T T el (3.1)

where (-, -) represents the inner product of the vectors. The function J denotes
the cosine similarity between the feature embeddings of x, and x;, with values
ranging from 0 to 1. The prediction for face verification is formulated as:

Lt J(f(wa), f2)) = 0

0 otherwise

C(xq, 1) = { (3.2)

Here, § represents the threshold. When C/(z,, ) equals 1, the two images
are considered to depict the same identity; otherwise, they represent different
identities.
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3.2.1 3D Face Model Reconstruction

Given a facial image, denoted as x, R-Net model [62] is employed to regress the
3D Morphable Model (3DMM) coefficients denoted as v € R¥, 3 € R and
7 € R® corresponding to the image x. Once these coefficients are obtained,
the 3D face shape (S) and texture (T) can be represented by an affine model:

S = S(a, ) = S+ Biga + BeyplB

_ (3.3)

T=T() =T+ BiexT
where S and T denote the averages of face shape and texture, while B,
Bier, and B, represent the Principal Component Analysis (PCA) bases of
identity, texture, and expression, respectively. The values of S, T, B;4, and
B, are derived from the well-established 2009 Basel Face Model [124] and
the expression bases B, are sourced from [125], which constructed using
data from Face-Warehouse [126]. Furthermore, the R-Net model regresses
the illumination coefficients v € R?, and the head pose p € RS.

With access to both the facial texture and shape, we are able to represent
the complete 3D mesh model of the face as M, = (S,T), where S € R"*3
represents the XY7Z coordinates of n vertices, and T' € R™*3 corresponds to
the RGB values of these vertices [127].

3.2.2 Proposed Method

The face verification system operates on a pair of facial images as its input.
In environments without constraints, these images may exhibit variations in
head pose, facial expressions, and lighting conditions, thereby significantly
impacting the system’s performance. To effectively tackle this challenge, we
propose a dedicated pipeline designed specifically for face verification, as
illustrated in Figure 3.1. Our primary objective is to normalize one of the
faces within the pair, ensuring alignment in terms of head pose, expression,
and illumination. This normalization process optimizes the system’s workload,
enabling it to concentrate exclusively on identity verification. Specifically,
given an image pair, our methodology entails selecting one image, denoted as
x,, which possesses a head pose closest to the frontal pose, to serve as the
reference. Subsequently, the second image, x;, undergoes normalization to
become xy, aligning its expression, head pose, and lighting condition with
those of the original image x,. To achieve this, we follow these steps:

o Utilize the R-Net to extract 3DMM coeflicients for both provided images.
As face verification models exhibit more sensitivity to pose variations
than to scene illumination and facial expression [21], we specifically focus
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Same identity Distinct identities

Figure 3.2: AlignFace Efficacy in Normalizing Pose, Expression, and
INlumination. Displayed are the original image x,, the comparative image xy,
and AlignFace’s reconstructed image x;. This demonstrates AlignFace’s ability
to effectively transfer the extraneous conditions of x, to x; while preserving the
unique identity features in x. Note that in the examples on the left, the identities
are the same, whereas in the examples on the right, the identities are different.

on the head pose coefficient p. An image with the closest deviation from
the frontal pose is denoted as x,, while the second image x;, undergoes
normalization. The coefficients for these image pairs are as follows:

L - {O./a, 5a7 Tas ’Yaapa}a Ty - {aba 51)7 Th, fybapb}

o To reconstruct the 3D face model x;, with the same illumination, head
pose, and expression as x,, we initialize the 3D mesh model using the
following coefficients:

0 0 0 0 0
{Oéé/], l[)/}, Tlg/},’yl[)/],pg/]} < {ab7 Baa Tbh, ’)/aapa}

o Since the regressed 3DMM coefficients are all differentiable, we employ
Ly = —J(f(xy), f(xp)) as loss function and update coefficients ay, 7y
for n iterations. The objective function can be expressed as:

min Ly (zy, zp) (3.4)

Qyt Tyt
where,

w=M0oz,+(1-M)0Ouz, (3.5)



40

3.2. Methodology

and z,, M are computed using the rendering function R(S + Bgoy +
Bexpﬁa,T + BiexTy's Yas Pa)- The symbol ® denotes element-wise mul-
tiplication, and R represents the rendering function, which takes into
consideration factors such as camera position and illumination. The

variable M signifies the binary mask used in this process.

After successfully reconstructing zy, the next step involves conducting
face verification between the image pair x, and xy using a trained FR
model as a feature extractor and computing the cosine distance between
their feature vectors. Models such as ArcFace [5], MagFace [28], or
AdaFace [121] can be employed for this purpose, considering that our
algorithm serves as a face normalization tool.

The images generated as xy follow the distribution of real images; how-
ever, FR models are typically trained on real datasets, and a potential
discrepancy may exist between the distributions of generated z;, and real
faces x,. To ensure result precision, we created a training dataset nor-
malized by our proposed normalization tool. Subsequently, we fine-tuned
the selected FR model with the generated x; data, denoted as F'R,.

After completing the fine-tuning process, the face recognition models
FR, and FR, are employed to extract feature embeddings from z, and
xy, followed by computing the cosine similarity distance between these
embeddings.

R-Net: In this thesis, we employ R-Net [62], a CNN-based model, to

perform 3D face reconstruction from a single image. This model is trained
using a hybrid-level loss function that seamlessly integrates both low-level
and perception-level information, enhancing its reconstruction capabilities.
The model’s strength lies in its robustness in handling challenges such as
occlusion and extreme poses. It achieves this robustness by incorporating a
skin color-based photometric error attention strategy, making it adaptable
to scenarios with occlusions and other intricate appearance variations, such
as beards and heavy makeup. The backbone of this model is the ResNet-50
network, which plays a crucial role in regressing the 3D Morphable Model
(3DMM) coefficients required for accurate 3D reconstruction.
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3.3 Experimental Evaluation

3.3.1 Datasets

In our experiment, the MS1M-V2 dataset [5], containing 5.8 million images
and 85,000 identities, was utilized to fine-tune face recognition model. For
the evaluation purposes, we selected four widely recognized unconstrained
face verification benchmarks, namely Labeled Faces in the Wild (LFW) [128],
Celebrities in Frontal-Profile (CFP) [129], AgeDB [130], and ITARPA Janus
Benchmark-B (IJB-B) [131] dataset. The LFW dataset comprises 13,233 facial
images from 5,749 individuals, showcasing various poses, facial expressions,
and lighting conditions. The CFP dataset, with 7,000 facial images, empha-
sizes extreme head poses, such as profiles, leading to significant occlusion.
AgeDB, consisting of 16,516 images, focuses on age-related variations. The
[JB-B dataset features 21.8K still images and 55K frames from 7,011 videos,
representing 1,845 subjects with diverse qualities. All images are resized to
112 x 112 dimensions before the verification step.

3.3.2 Face Normalization

We employ a PyTorch implementation of R-Net [62] to acquire the 3SDMM
coefficients for image pairs. Within our pipeline, the FR encoder model is
utilized to extract feature embeddings from both x;, and ;. It’s important
to note that the FR model is pretrained and fixed under the normalization
framework. Since the entire pipeline, including the rendering procedure, is
differentiable, x; can be iteratively updated through backpropagation on the
low-dimensional identity («) and texture () coefficients of the 3DMM. We
set the number of iterations to N = 300, the learning rate to o = 1.5, and
the decay factor to u = 1. This iterative process results in the reconstruction
of xp, aligning its expression, head pose, and lighting conditions with those of
the image x, while preserving its unique identity features.

3.3.3 Face Verification Models

In our experiments, we benchmark and utilize the encoders of two SoTA
face recognition models: MagFace [28] and AdaFace [121], to serve as facial
feature extractors. We employed the official implementations of MagFace
and AdaFace, both utilizing ResNet100 backbones trained on the MS1M-
V2 dataset. The encoder used for z, feature extraction does not require
fine-tuning. However, since a potential discrepancy may exist between the
distributions of generated x, and real faces, on which the original face
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Table 3.1: Comparative analysis on benchmark datasets: Accuracy metrics
for 1:1 verification are presented for LEFW, CFP, and AgeDB datasets. For the
IJB-B dataset, we report the TARQFAR=0.01%. Red: best, blue: second-best.

Method Dataset
Hethoc LFW [128] CFP [129] AgeDB [130] AVG | LJB-B [131]
LFW CosFace [4] 99.81 98.12 98.11 98.68 94.80
ArcFace [5] 99.83 98.27 98.28 98.79 94.25
MV-Softmax [132] 99.80 98.28 97.95 98.68 93.60
MagFace[28] 99.83 98.46 98.17 98.82 94.51
AdaFace [121] 99.82 98.49 98.05 98.79 95.67
R-Net a coefficient 92.76 84.65 87.25 86.22 87.13
R-Net « coefficient after normalization 97.46 95.32 94.11 95.63 93.46
AlignFace+MagFace 99.82 98.73 98.33 99.29 94.46
AlignFace+AdaFace 99.82 98.85 97.95 98.87 96.02

recognition models are trained, we ensure result precision by creating a
training dataset. This dataset, normalized using our proposed normalization
tool and derived from MS1IM-V2, serves as the basis for fine-tuning the
selected FR model. The fine-tuned model, denoted as F'R, in Figure 3.1, is
trained with the generated x, datatype. The fine-tuning process follow the
same parameters and instructions specified in the official implementation.

3.3.4 Comparisons With State-of-The-Art Methods

To assess the efficacy of our proposed method, we conducted a comprehensive
comparative analysis with SOTA methods. The results, encompassing 1:1 ver-
ification accuracy for LFW, CFP, and AgeDB, as well as TARQFAR=0.01%
for the 1JB-B dataset, are showcased in Table 3.1. Notably, all models
featured in this table were trained utilizing the MS1M-V2 dataset and the
ResNet100 backbone. In our evaluation, we incorporated our novel normal-
ization method as a preprocessing step for two specific models: AdaFace and
MagFace. These modified models are referred to as "AlignFace+MagFace" and
'AlignFace+AdaFace," respectively. The results presented in Table 3.1 for the
LFW, CFP, and AgeDB datasets demonstrate that, although face verification
performance is approaching saturation on these benchmarks, our proposed
enhancements have yielded significant improvements. However, this increased
accuracy results in higher processing times and resource consumption.

In particular, on the CFP benchmark, the incorporation of our normaliza-
tion technique with MagFace (denoted as AlignFace+MagFace) led to an im-
provement in performance by 0.24% in accuracy compared to the previous best
method. Additionally, when combined with AdaFace (AlignFace+AdaFace),
there was a further increase of 0.36% in accuracy, thereby exceeding the
capabilities of the previously established best-performing method. This im-
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provement can be attributed to the distinct advantages of our normalization
method in minimizing head pose differences between image pairs. This is
particularly significant in the CFP dataset, which comprises images with both
frontal and profile head poses.

The results from the IJB-B dataset indicate that the integration of Align-
Face with AdaFace (AlignFace+AdaFace) yields a 0.36% increase in perfor-
mance compared to using AdaFace alone. The [JB-B dataset is specifically
designed to incorporate low-quality images within its validation protocol.
The improvement underscores our algorithm’s robustness with varying image
qualities. Additionally, the average values (AVG) presented in Table 3.1
indicate that the accuracy for the LFW, CFP, and AgeDB datasets generally
improves when our normalization method is incorporated, further validating
the efficacy of our approach. Figure 3.2 highlights the efficacy of the proposed
method in normalizing faces in scenarios with variations in pose, expression,
and illumination between input pairs.

3.3.5 Ablation Study

Assessment of Verification Accuracy via 3DMM Identity Coeffi-
cients: To assess verification accuracy using 3DMM identity coefficients,
we conducted an ablation analysis in this study. We compared the identity
coefficients directly extracted from the input pairs using the R-Net, labeled as
‘R-Net « coefficient” in Table 3.1, with those coefficients post-normalization,
termed ‘R-Net a coefficients after normalization’. Initial results indicated
that the verification accuracy with ‘R-Net a coefficients’ was lower than that
of SOTA methods. Nevertheless, upon updating these coefficients to derive
(‘R-Net « coeflicients after normalization’), a significant improvement was ob-
served. It is crucial to note that even with the enhanced coefficients from the
R-Net post-normalization, the verification accuracies did not exceed those of
SoTA methods. The further improvement was observed only after processing
the normalized faces, utilizing optimized identity coefficients, through the FR
model for feature embedding. This advancement can be attributed to the
training of FR models (such as AdaFace) and the evolution of margin-based
loss functions, which have markedly increased the discriminative power of
face embeddings.

3.4 Conclusions

Our proposed solution, AlignFace, introduces a novel approach to face nor-
malization, specifically designed for preprocessing input images within the
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context of face verification. AlignFace stands out by focusing on aligning
head pose, expression, and illumination conditions between two images. It
proficiently estimates these conditions in one image and reconstructs the other
to match, while carefully preserving the unique identity features of each image.
This method ensures the preservation of genuine facial features in one image,
providing a more accurate representation of facial characteristics. Our experi-
mental results underscore AlignFace’s superiority over existing state-of-the-art
methods in face verification across multiple benchmark datasets.



Chapter 4

Deepfake Quality Assessemnet

This chapter focuses on the evaluation techniques for face-reenactment meth-
ods. In Section 4.1, we introduce various face manipulation techniques, with
a particular emphasis on face-reenactment. We also discuss the challenge
of deepfake quality assessment and present our motivation for this study.
In section 4.2, we propose a method for assessing images generated by face-
reenactment techniques. Section 4.4 details our experiments and results, while
Section 4.5 and 4.6 concludes the chapter with a summary of our findings
and future research directions.

4.1 Introduction

Ground-truth video sequence
ource

4.

A L

o A _
Reenacted Ground-truth

riving

(a)

Figure 4.1: Proposed protocol (a). Examples of the source image, driving video
frame, generated frame, and corresponding ground-truth provided by our proposed
protocol for both the real (b) and synthesized (c) datasets.

The face serves as a highly expressive and complex nonverbal commu-
nication channel for humans. The advancements in Al-generated synthetic
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faces, known as Deepfakes, have brought about significant benefits in various
domains, including education, film production, and dubbing.

Among the fundamental techniques in DeepFake face manipulation are
face swapping and face-reenactment. Face swapping involves transforming
a face from a source image to seamlessly replace the face in a target image,
achieving a result where the replacement blends naturally into the target
image. Face-reenactment methods, on the other hand, aim to generate
a synthesized video that animates a target face based on the movements
captured from a driving video, while preserving the identity conveyed by the
source image. This process involves treating the person in the source image as
a controllable puppet, with the facial expressions, head pose, and movements
from the driving video defining the corresponding actions in the synthesized
video.

Recent face-reenactment techniques [56], [68], [74], [133]-[135] have lever-
aged generative models such as Encoder-Decoder (ED) networks [60], Vari-
ational Auto-Encoders (VAEs) [32], and Generative Adversarial Networks
(GANSs) [8] to generate images that push the boundaries of realism, making it
increasingly challenging to discern between what is real and what is artificially
generated. Despite the progress made in the development and application
of face-reenactment methods, evaluating the realism and accuracy of the
generated images, particularly in cross-reenactment scenarios where a differ-
ent individual’s face is used to reenact the source face, remains a significant
challenge. Directly employing image based quality metrics, such as Structural
Similarity Index (SSIM) [67] or facial keypoint errors is impractical due to
the absence of ground-truth data.

To address this challenge and quantitatively assess the quality of images
generated through cross-reenactment, researchers have investigated the ex-
traction of feature embeddings from both the source and generated faces.
Subsequently, they calculate the errors or discrepancies between these ex-
tracted features [70], [75], [76]. Although this approach offers partial solutions
for cross-reenactment evaluation, it is confined to specific metrics and lacks a
comprehensive assessment.

consuming, especially when dealing with a large number of samples. There-
fore, there is an urgent need to develop a new evaluation protocol that can
effectively assess the fidelity of cross-reenactment images.

This work introduces a novel protocol for the quantitative evaluation of
images produced by face-reenactment techniques, particularly in cross-reenact
scenarios. The protocol enables assessment of cross-reenactment images
using metrics that rely on explicit ground-truth such as SSIM and LPIPS. To
overcome the limited availability of appropriate datasets, two video generation
approaches are proposed. The first approach involves the utilization of 3D
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models of real heads acquired using a multi-view system. In the second
approach, realistic synthesized head models are employed, encompassing a
wide range of human subjects, facial expressions, pose variations, and lighting
conditions.

Our proposed protocol is applied using these datasets, along with estab-
lished metrics such as SSIM [67], Cosine Similarity (CSIM) [136], Learned
Perceptual Image Patch Similarity (LPIPS) [137], Average Keypoint Distance
(AKD), Fréchet Inception Distance (FID) [66], and Fréchet Video Distance
(FVD) [138] to assess the quality of four well known and state-of-the-art
reenactment methods: FOMM [68], X2Face [56], LIA [60], and DaGAN [59].

In addition to quantitative evaluation, a series of user studies are conducted
to investigate the effectiveness of our proposed protocol. These studies
analyze the generated images in terms of identity preservation, head pose and
facial expression replication, and overall image similarity, providing further
validation of our quantitative results.

4.2 Proposed Methodology

This section presents our proposed protocol for evaluating the image quality
of reenactment methods, with a focus on cross-reenactment scenarios.To fulfill
this objective, we generate video sequences comprising different identities
with precisely controlled and known head pose and expression for each frame.
These video sequences are then employed in conjunction with our proposed
protocol and a set of quantitative metrics to measure the fidelity of images
generated by various reenactment methods. In the following subsections, we
provide a detailed description of the proposed protocol and the process of
data generation.

4.2.1 Protocol

The pipeline of our proposed protocol is depicted in Figure 4.1. The protocol
involves two video sequences, denoted as A and B, representing distinct
identities. For each frame, the head pose and expression are identical in both
sequences. Initially, any frame can be selected from video sequence A as the
source image, representing the face to be reenacted. Subsequently, the video
frames of identity B are utilized to animate the source image, resulting in
frames of identity A that simulate the expressions and movements of identity
B. These generated frames, known as deepfake frames, are then compared
with the original frames of identity A in the ground-truth video sequence
to evaluate the accuracy of the cross-reenactment process. The evaluation
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protocol can be summarized as follows:

1. Select a frame from video sequence A as the source image. In our
experiments, we begin with frames displaying a frontal head pose and a
natural expression, gradually introducing extreme variations in head
pose and expression.

2. Select a driving video sequence, comprising video frames of identity
B, to animate the source image. The head pose and expression in all
frames of the driving video correspond to those of the source face.

3. Input the source image and driving video frames into a face-reenactment
method to generate a new video sequence representing source identity
A. This generated video sequence should accurately reflect the facial
expressions and movements that match those of the driving video
sequence.

4. Assess the accuracy of the generated frames by comparing them to the
ground-truth video using metrics such as SSIM, CSIM, LPIPS, AKD,
FID, and FVD.

4.2.2 Dataset Generation

Two video datasets were generated for evaluating face-reenactment techniques:
one comprised real face models generated from the Facescape dataset [139],
and the other consisted of synthesized MetaHumans [140].

4.2.3 Real Face Dataset

To create a dataset comprising real human subjects, we employed the Pyrender
3D environment and utilized FaceScape [139], a well-established 3D face
dataset. The FaceScape dataset consists of multi-view RGB images and
intrinsic and extrinsic camera parameters, which were captured using 68
DSLR cameras. Leveraging this data, we generate 3D head point clouds
with RGB values for various individuals exhibiting a neutral expression. By
placing these 3D head models in desired scenes and defining specific camera
parameters, we render them in the desired head poses. Figure 4.2 illustrates
the rendering process.

In our study, we generated a total of 40 video sequences to investigate the
impact of head rotations on face-reenactment. These sequences included five
unique identities, and for each identity, we incorporated eight specific head
rotations. The primary objective was to highlight different head rotation
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(a)
Figure 4.2: Multiview RGB images and their corresponding depth maps utilized

to inverse project pixels into point clouds (a). The resulting reconstructed 3D head
model (b). Rendered images of 3D models from desired angles(c).

(b) (@

scenarios, namely a rotation around the pitch axis, a rotation around the
yaw axis, and a combined rotation involving both pitch and yaw axes. To
ensure consistent evaluation, each video began with the frontal head position
in the initial frame and gradually transitioned the head towards the desired
rotation axis in the final frame. Throughout the duration of the clips, the
facial expression of the subjects remained constant. Each video clip consisted
of 100 frames with a resolution of 512x512 pixels.

4.2.4 Synthesized Dataset of MetaHumans

Evaluating the performance of face-reenactment methods solely using real data
has limitations in assessing their ability to handle different facial expressions,
as the individuals in the real dataset maintain a neutral expression throughout
all the videos. To establish accurate ground-truth for facial expressions in
the context of real datasets, image matching techniques like optical flow can
be employed to reconstruct different expressions [141], [142]. However, the
potential errors associated with these techniques necessitate an alternative
approach. Therefore, we propose utilizing synthesized data, which provides
complete control over the scene, allowing precise manipulation of geometry and
appearance. This approach ensures data reliability and creates a controlled
and accurate evaluation environment.

We utilized the Unreal Engine and the MetaHuman asset from the Quixel
Bridge library [143] to generate a realistic synthesized face video dataset.
MetaHumans are 3D human models created with advanced scanning, rigging,
and animation technology, featuring high-quality photo scans of real skin
textures and additional artificial textures for details like light reflection
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Figure 4.3: Head (left) and Face (right) Control Rig Boards enabling adjustment
of pose and facial expression (a). Two MetaHumans with identical facial expressions
and head poses (b).

and surface roughness. Their riggability enables precise control over facial
expressions and movements. To generate the video dataset, the scene was
set up in the Unreal Engine with adjusted lighting conditions and configured
camera properties. MetaHuman characters were placed within the scene
and animated using the Control Rig Board as shown in Figure 4.3a. The
resulting animations were rendered, capturing the desired facial expressions
and movements.

In Unreal Engine, the process of applying animations from one MetaHuman
character to another is straightforward. By substituting the model references
in the scene, the animations originally designed for the first character can be
effortlessly transferred to the second character. This replacement ensures that
both characters share the same expression setting, resulting in identical head
pose and facial expression. Leveraging this capability, it becomes possible to
generate multiple videos, each showcasing a different identity, while preserving
consistent head pose and expression across all videos. Figure 4.3b illustrates
two MetaHuman identities with the exact same head pose and expression.

The video sequences were meticulously designed to ensure a structured
progression, starting with a frontal head position and neutral expression and
culminating in expressive facial expressions or head rotations, or a combination
of both. These sequences encompassed a diverse set of facial expressions,
including amusement, anger, disgust, laughter, sadness, and surprise. The
head rotations in the dataset covered 8 rotations around the yaw axis, pitch
axis, and combinations of the pitch and yaw axes, including various directions
such as up, down, left, right, and diagonal directions. A total of 20 distinct
face movement animations were produced for each of the 10 MetaHuman
identities, resulting in a dataset comprising 200 videos (10 identities x 20
face animation). All videos were rendered at a resolution of 1920x 1080 pixels,
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ensuring a high level of visual quality and detail for the evaluation process.

4.3 Subjective Evaluation

Table 4.1: Summary of subjective evaluation methods.

Evaluation Objective Videos/ Number of Blind Subjective Test
name Images scenarios | comparison Example
VR Assess perceived Test Includes

"Realism’ of generated Videos 46 Ground-
videos Truth
Evaluate users .
1S "Satisfaction’ with . EXPhCltly
Images 132 Informed
generated outputs for (On To )
specific head rotations P
Assess quality focusing
VI on 'Identity’ preservation
(VI), ..
VPE head "Pose and . Explicitly
., . Videos 20 Informed
Expression’ preservation
Vs (VPE) (On Top)
and overall "Satisfaction’
(VS)

Three subjective evaluations were conducted to assess the proposed proto-
col and evaluate the strengths and weaknesses of each reenactment method.
These evaluations utilized a set-wise ranking method, where participants were
presented with a set of videos or frames and tasked with directly comparing
and organizing them based on specific criteria. Table 4.1 provides a sum-
mary of the three evaluation methods along with an example of each test
conducted with the participants. The evaluations involved the participation
of 23 professionals specializing in computer vision, ensuring their expertise
in accurately assessing the fidelity of the generated frames produced by face-
reenactment methods. Prior to the evaluation, participants were provided
with detailed explanations of each test and completed practice tests to ensure
their comprehension of the procedures. To optimize the evaluation time per
participant, the test dataset was divided randomly into two batches, allowing
participants to complete half of the test. On average, each evaluation session
lasted approximately one hour.

In the first evaluation, titled "Realism Assessment," participants were
presented with sets of five videos that included one ground-truth video and
four reenacted videos. The videos were carefully selected to cover a wide
range of facial expressions and head rotations. Participants were asked to
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rank the videos based on their perceived realism, using a scale from 1 to 5.
To minimize bias, the order of the videos within each set was randomized,
and participants were unaware of which video was the ground-truth.

The second evaluation, titled "Overall Satisfaction with Head Rotation,"
aimed to assess users’ overall satisfaction with the generated outputs at
specific head rotations. Participants were presented with sets of four frames
generated by the reenactment methods, along with a ground-truth image
depicting a specific head pose. Participants were explicitly informed about the
identity of the ground-truth image and instructed to compare each generated
image to the ground-truth. They were then asked to assign a rank to each
image on a scale of 1 to 4, indicating their overall satisfaction relative to the
ground-truth image.

The third evaluation aimed to assess the quality of the generated videos,
focusing on three aspects: 1) identity preservation, 2) head pose and expression
preservation, and 3) users’ overall satisfaction. Participants were presented
with sets of four videos alongside the ground-truth video and were asked to
rank each video in relation to the ground-truth. The rankings were reported
separately for the preservation of identity, head pose and expression, and
overall satisfaction. Participants provided scores ranking from 1 to 4, with 1
indicating the highest satisfaction. The first test consisted of 46 scenarios,
the second test had 132 scenarios, and the third test comprised 20 scenarios.

Statistical analysis of subjective evaluation: To assess the distance
between reenactment methods through subjective evaluation, each technology
is assessed by a group of observers using a set of images and videos. We utilize
the outlier detection and scaling method described in the study by Perez et
al.[144], which is based on Thurstone’s model and its assumptions [145]. This
method, given a matrix that includes the results for all participants, measures
the probability of observing the data of each observer in comparison to the
rest of the observers.

The method uses Maximum Likelihood Estimation (MLE) to compute
an inter-quartile-normalized score for each subject. Let’s suppose we aim to
compare n conditions Oy, ..., O, (i.e., n technologies) with unknown underlying
true quality scores ¢ = (qi, ..., ¢n), where g; € R represents the quality score
for condition O;. The goal of this analysis is to estimate scores § = (¢4, -.-, q,,)
that approximate the true quality q.

The perceived quality of a condition O; is modeled as a random variable:
r; ~ N(g;, o), where the mean of the distribution is assumed to be the true
quality score ¢;. When scaling the data, the focus is primarily on recovering
the distance ¢; — ¢; between underlying quality scores ¢; and g¢; (as scores are
relative). If we know the true probability of selecting O; as better than O;
(P(r; > r;)), the probability that O; was selected over O; in exactly ¢;; trials
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Table 4.2: Evaluation results for cross-identity reenactment for real dataset.

Method Quantitative Evaluation using the Proposed Protocol Subjective Evaluation (JOD) Traditional
SSIMt  LPIPS] CSIMT AKDJ] FID] FVDJ VRt ST VIt  VPEt VST CSIM?T
X2Face [56] 0.749 0.260 0.695 3.892 394 224.0 1.065 1 1 1 1 0.52

FOMM [68] 0.788 0.222 0.867 1.983 32.2 202.4 1 1.264 1.244 1.843 2.096 0.71
DaGAN [59] 0.803 0.159 0.833 2.883 346 217.1 1.964 2.654 2.139 2.640 2.164 0.66
LIA [60] 0.818 0.133 0.847  2.137  30.9 210.5 3.154 3.989 4.053 4.532 4.165 0.64
Ground-truth 5.071

out of the total number of n;; = n;; = ¢;; + ¢;; trials is given by the binomial
distribution.

L(fh - Qj | Cija”ij) =

n;J i i

. P(?"l > Tj) Z](l — P(T’,L > Tj)) e —

CiJ

nZ "/L'_A,C., A,L.—A4 Mi—cid
() ety ot ypes (1)

CiJ i) ¥
Where, ¢;j represents the count of cases where condition O; was chosen as
better than condition Oj;, out of a total number of trials n;; = nj; . The true
probability of choosing condition O; over condition O; can be computed using

the cumulative normal distribution ®, given two Gaussian random variables
r; and r;.

P(r; > 1)) = P(ry —r; > 0) = o(L %), (4.2)

giJ
The parameter o;; represents the noise parameter in Thurstone’s model
[145]. It is typically determined based on the probability p;; of a 1 Just-
Objectionable-Difference (JOD) unit, as described in Perez et al. [144]. The

scaling of the comparisons is then performed by maximizing the products of
the likelihoods.

argqmag( = H L(g; — a; | cij, mij) (4.3)

29 qdn i,jEQ

where {2 denotes the number of pairs with at least one made comparison.
Subjects with an inter-quartile-normalised score above a threshold of 1.5 are
tagged as outliers and discarded.

4.4 Experiment and Results

Dataset: Two video datasets were compiled to assess face-reenactment
techniques. The first dataset included 40 videos of real face models, featuring
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Table 4.3: Evaluation Results for Cross-identity Reenactment for synthesized
MetaHuman Dataset.

Method Quantitative Evaluation using the Proposed Protocol Subjective Evaluation (JOD) Traditional

SSIMt LPIPS] CSIMt AKD| FID| FVDJ] VRt ISt VIt  VPEt VSt CSIMt
X2Face [56] 0.656 0.190 0.652  4.821  50.6 293.5 1 1 1 1 1 0.61
FOMM [68] 0.687 0.182 0.838 3971 41.6 257.7 2.159 2918 1.805 2.187 2.293 0.67
DaGAN [59] 0.821 0.147 0.865 1.902 454 271.5 3.075 4.034 2.557 2789  3.320 0.64
LIA [60] 0.836 0.142 0.874 2.159 43.6 255.2 | 4.004 5.438 2.996 3.300 3.490 0.68
Ground-truth 5.269

five identities with 8 head rotations each. The second dataset comprised
200 synthesized videos of MetaHumans, exhibiting 10 identities with 20
variations of head movement and facial expressions. A systematic approach
was employed for both datasets, selecting first frame of one video as the
source for each identity and utilizing the remaining videos from the same face
animation type but different identities as driving videos. This methodology
yielded a total of 1960 scenarios, with 160 scenarios derived from the real
dataset and 1800 scenarios from the synthesized dataset. Table 4.1 provides
an overview of the scenario distribution in the three subjective tests, ensuring
an equal representation of synthesized and real scenarios in each test. These
datasets offer a comprehensive and diverse range of scenarios, providing
valuable insights into the performance of face-reenactment methods.

Methods and Metrics: In our evaluation, we compare the performance
of four face-reenactment methods: FOMM [68], X2Face [56], LIA [60], and
DaGAN [59]. The effectiveness of these methods is evaluated using six widely
recognized metrics: SSIM [67], CSIM [136], LPIPS [137], FID [66] and FVD
[138]. The CSIM metric utilizes facial embeddings extracted through the
ArcFace [5] face recognition model to measure content similarity between
generated and ground-truth images. The AKD metric quantifies keypoint
discrepancies by extracting 468 facial landmarks using the MediaPipe library
[146]. To interpret subjective evaluation results, we employ Thurstone’s model
assumptions to scale the ranking scores, as detailed in Section 4.3. The scores
are represented on the Just-Objectionable-Difference (JOD) scale, where a
difference of 1 JOD signifies that 75% of observers favored one condition over
another.

Evaluation and Analysis of Protocol Performance: Table 4.2
presents the performance evaluation results of cross-reenactment methods on
real datasets, while Table 4.3 showcases the results on synthesized Metahuman
datasets. The evaluation is conducted using various quantitative metrics,
including SSIM, AKD, and LPIPS, which are computed based on 1960 sce-
narios derived from 240 videos. These metrics are employed to measure the
disparities between the reenacted images and the corresponding ground-truth
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images provided by our protocol design. Additionally, our evaluation protocol
incorporates the utilization of CSIM, FID, and FVD, which are commonly
employed in existing face-reenactment evaluation.

FID assesses the photo-realism of the generated samples by comparing
them to the ground-truth images at a deep feature level, while FVD, a
modified version of FID, accounts for temporal coherence by considering
spatial-temporal features. Notably, these metrics operate at the data distri-
bution level, rather than focusing on individual frames. The calculation of
FID and FVD metrics remains consistent with existing approaches since the
ground-truth comprises data distributions of the Metahumans and real head
videos.

In our analysis, we also incorporate the calculation of CSIM using the
existing protocol depicted in Figure 2.4b, referred to as CSIMy,.q. This
metric evaluates the cosine similarity between the source and reenacted faces.
However, the presence of distinct head poses between the source and reenacted
faces poses a challenge, resulting in lower CSIM scores in traditional evaluation
compared to the measurements obtained through our protocol.

Furthermore, the subjective test results are reported in both Table 4.2
and Table 4.3. The subjective evaluation serves multiple objectives in our
study: firstly, it allows for the identification of strengths and weaknesses
of each face-reenactment method, providing qualitative insights into their
performance. Secondly, it enables the assessment of the effectiveness of our
proposed protocol compared to existing evaluation approaches. Lastly, the
subjective results aid in determining the most informative quantitative metrics
within our protocol that best describe the quality of reenacted images, thereby
facilitating the identification of suitable metrics for future evaluations.

During the subjective tests, the reenactment methods are evaluated based
on their performance in generating realistic content (VR op), preserving
identity (VI;op), transferring pose and expression (VPE; op), and overall
satisfaction (VS op). Statistical analysis reveals that the LIA method consis-
tently achieves the highest scores in all subjective tests, slightly surpassing
DaGAN. Both LIA and DaGAN consistently outperform X2Face and FOMM.
A significant finding emerges from the blind comparison between the ground-
truth and reenacted videos. The VR ;op scores, calculated based on blind
comparisons where the ground-truth is questioned alongside the reenacted
videos, indicate that all four reenactment methods fail to generate sufficiently
realistic content. Human subjects were able to distinguish reenacted content
from the ground-truth images. FID and FVD are commonly used metrics
to assess image and video realism. It is noteworthy that although FOMM
demonstrates a good FID score, it does not align with the qualitative results

(VR op).
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Furthermore, FOMM exhibits good scores in CSIM and AKD, which
are considered identity preservation metrics in the literature. For example,
its CSIM and CSIM;,.q scores in real dataset evaluation outperform other
methods. It should be noted that FOMM employs relative keypoint locations
to address the identity preservation problem, which seemingly increases CSIM,
CSIM;,qq, and AKD scores. However, its subjective score VI op is lower
than both LIA and DaGAN. To determine which quantitative metrics better
describe the quality of reenacted images, the Pearson correlation coefficient
is presented in Figure 4.5. The results demonstrate that the frame-based
metrics within our protocol, where the ground-truths are provided, exhibit
the strongest correlation with subjective evaluations.

Pose Transferability Evaluation Using Our Proposed Protocol:
Supplementing the results in Tables 4.2 and 4.3, we conducted a comprehensive
analysis encompassing subjective and quantitative results using both the real
head dataset and the synthesized dataset. A dedicated subjective test was
conducted to assess overall satisfaction with image-based reenactment, with
a specific focus on head rotation at different degrees. The driving sequences
were incrementally rotated up to 50 degrees while maintaining natural facial
expressions. The resulting overall scores, denoted as IS;op scores, were
calculated for various head rotation scenarios, including rotations around the
pitch axis, yaw axis, and combinations of pitch and yaw axes. The obtained
scores are presented in Table 4.2 for the real head dataset and in Table 4.3
for the synthesized MetaHuman dataset.

To further analyze the quality of generated images under specific rotation
conditions, we provide results for yaw rotation (right) and yaw-pitch rotation
(up and left) in Figure 4.4. In addition to the subjective evaluations, quantita-
tive scores such as SSIM, CSIM, and AKD were computed using ground-truth
data as per our proposed protocol. Based on the findings presented in Tables
4.2 and 4.3, both the LIA and DaGAN methods demonstrate comparable
performance in generating animated faces. However, based on Figure 4.4 they
exhibit distinguishable sensitivities to head rotation. Through the subjective
tests and SSIM evaluation, it is evident that LIA performs better in scenar-
ios with more significant head movement in the driving video. Conversely,
DaGAN exhibits superior performance in scenarios involving minimal head
rotation, particularly those closer to the frontal head pose. Notably, DaGAN’s
quality deteriorates gradually, and beyond a certain threshold (approx. 30°),
it becomes comparable to or even worse than FOMM. In contrast, the FOMM
method showcases resilience to head rotation, as the quality of reenacted
images remains relatively unaffected and comparable to scenarios with a
frontal head pose. When evaluating the CSIM and AKD metrics, FOMM
achieves scores on par with those of LIA and DaGAN. However, its SSIM
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Figure 4.4: Pose transferability evaluation using our proposed protocol. The
figure presents the results of the image-based overall satisfaction subjective test
scores (ISjop) for different head degrees, along with the corresponding quantitative
scores such as SSIM, CSIM, and AKD, computed using ground-truth data following
our proposed protocol.

score is notably lower.

4.5 Future Work

The application of our proposed protocol to face swapping methods shows great
promise for future research. To implement our protocol for face swapping, we
recommend utilizing our MetaHumans dataset and creating a comprehensive
ground-truth by integrating elements generated from diverse sources. Specifi-
cally, the backgrounds, body and hairstyles can be preserved and rendered
similarly to the driving videos, while the face identities should be derived
from the source images.
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Figure 4.5: Confusion matrix depicting the correlation of metrics within Real
(left) and synthesized (right) datasets

4.6 Conclusion

This work presents a novel protocol for evaluating the realism and accuracy
of face-reenactment generators in cross-reenactment scenarios. Comparative
analysis with existing evaluation approaches demonstrates the effectiveness
of our protocol, supported by user studies validating its efficacy in analyzing
identity preservation, head pose, and facial expression replication. The results
reveal a strong correlation between subjective evaluations and frame based
metrics (e.g., SSIM and LPIPS) within our protocol.



Chapter 5

Effect of Beautification Filters
on Deepfake Detectors

5.1 Introduction

Artificial Intelligence Generated Content has drawn significant attention in
both academic and industrial realms in recent years, particularly with the
notable advancements in deepfake technology within the generative domain
[147]. This technology performs remarkably well at creating highly realistic
facial media content, transitioning from traditional graphics-based methods
to sophisticated deep learning approaches by initially employing advanced
techniques such as Variational Autoencoders (VAEs) [35] and Generative
Adversarial Networks (GANs) [8].

Recent advancements in diffusion models [9] have significantly enhanced
the capability to generate high-quality images and videos, advancing deepfake
technology into various practical applications such as entertainment, art,
and education. However, these technological advancements also introduce
substantial risks [148], [149]. Deepfakes create opportunities for criminal
misuse, such as impersonating individuals to commit fraud or deceive others
into divulging sensitive information. For example, deepfake audio or video calls
can convincingly mimic trusted contacts like family members or professionals,
exploiting established trust. Additionally, deepfakes pose a threat to security
systems by potentially circumventing facial recognition and fooling biometric
authentication software, thereby granting unauthorized access to restricted
areas or sensitive data. This vulnerability is particularly concerning for mobile
devices used for secure unlocking, financial transactions, or access to medical
records, posing significant security risks for both users and applications.

To mitigate the risks posed by deepfakes, detection methods have evolved

29
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from early handcrafted feature-based techniques [10], [11] to modern deep
learning approaches [12]-[16] and more recent hybrid models [17], [18]. De-
tection tasks are typically framed as classification problems, applied either
at the image level or the video level, depending on the practical application.
These models can be represented as:

So = ¢D(Io)a (51)

where ¢p abstracts the specific detection network, and .S, represents the fake
score of the generated content I,,.

Existing methodologies in deepfake detection typically rely on a supervised
approach. This involves developing a real vs fake image classifier by assembling
a large dataset of generated images from multiple generative models and
training a binary classifier. However, in practical scenarios, the specific
techniques used for facial manipulation are unknown beforehand, and access to
the attacker’s model is typically unavailable. Despite achieving high detection
accuracies, approaching 98%, these classifiers are prone to overfitting. This
limitation restricts their effectiveness to the manipulation techniques on which
they were originally trained, resulting in significant performance degradation
when confronted with forgeries generated by new, previously unseen methods.

Recent studies have recognized this challenge and aimed to enhance the
robustness of detection algorithms by focusing on intrinsic indicators of forgery
that go beyond relying solely on known manipulation characteristics. For
example, methodologies such as Face X-ray [84] and SBIs [85] target blending
artifacts directly rather than general forgery traces, thereby significantly
improving generalization capabilities. Nevertheless, these approaches remain
vulnerable to common perturbations, as blending artifacts can be influenced
by various image and video processing operations such as compression.

In practical settings, content captured by cameras often undergoes vari-
ous digital image and video processing operations, including post-processing
such as stylization filters [150] before dissemination. Recent efforts have
systematically quantified the impact of such operations on detection accu-
racy [22]-[25]. These investigations consider factors such as noise, resizing,
compression, denoising, contrast and brightness adjustments, and changes in
resolution. Consequently, strategies like stochastic degradation-based aug-
mentation, driven by typical image and video processing operations, have
been proposed [151] to enhance the generalization of deepfake detection tasks.
Among these operations, compression has garnered particular attention, as
applying deepfake detectors to compressed videos often results in decreased
detection performance [152], [153].

Recently, beautification filters have gained widespread popularity, enabling
users to enhance their facial appearance through integrated social media tools.
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Figure 5.1: Pipeline of the proposed method. A subset of 464 videos (50% Real
and 50% Fake) are selected. Each video is uploaded to the social network Instagram,
where one of the four different filters is randomly selected and applied to it. The
four filters uniformly appear in the Celeb-DF-B database. The final database has
a size of 928 videos and it is used to perform a human-based deepfake detection
and to evaluate the robustness of three SotA Al-based detectors.

This raises the question of whether such filters amplify manipulation artifacts
in deepfake videos or suppress them, potentially affecting the performance of
deepfake detection algorithms. In this section, we describe our approach and
experimental analysis.

Social media platforms offer a diverse range of tools referred to as "filters'
designed to automatically enhance user’s image, demanding minimal or no
user proficiency [154]. Certain types of filters are designed to tweak different
facial features such as skin, lips, eyes, and nose to enhance the beauty
of the user. We will refer to those filters as beautification filters. Some
common modifications are makeup addition, narrow noses, skin tanning and
smoothening. Beautification filters have been demonstrated as a disturbance
factor for AI facial processing tasks such as face recognition and gender
classification [154]. Despite deepfake detection technology being challenged
against several video processing operations [155], its robustness against social
media beautification effects has not yet been tested.

In this work, we study the behavior of 3 SotA passive deepfake detectors
trained on the FaceForensics++ (FF++) dataset [77]. Our objective is to test
the robustness of deepfake detectors against beautified videos and measure
the impact of the beautification filters on the classification score. Moreover,
we compare the performance of those detectors with the ability of an average
user to classify real and fake videos when they are beautified. The pipeline is
presented in Figure 5.1. The key contributions of this study include:

o We introduce a new benchmark dataset, the Celeb-DB-B database based



62 5.2. Dataset

on a subset of videos from the Celeb-DF dataset and composed of 928
videos balanced in terms of four categories Real, Real-Beautified, Fake,
Fake-Beautified;

« We study the impact of those filters on three deepfake detectors finding a
drop in performance for video-level AUC and revealing how social media
beautification can be used to make fake videos look more authentic;

o Finally a subjective evaluation is conducted to investigate whether
the utilization of beautification filters presents challenges for human
observers when distinguishing between the authenticity of deepfake and
real videos.

The rest of this work is organized as follows. Section 5.2 presents the
creation of the Celeb-DF-B dataset. In Sections 5.3 and 5.4, we present
the performance of deepfake detectors and users on the Celeb-DF-B dataset.
Finally, conclusions are summarized in Section 5.5

5.2 Dataset

In this section, we introduce the protocol employed in the creation of the
Celeb-DF-B database, its composition, and the specific social media filters
chosen for face beautification.

The Celeb-DF [156] dataset consists of 590 real videos and 5639 DeepFake
videos. The average duration of all videos is approximately 13 seconds, with a
standard frame rate of 30 frames per second. The real videos are sourced from
publicly accessible YouTube content corresponding to interviews featuring
59 celebrities. Among these, for the creation of the Celeb-DF-B database,
we chose a subset consisting of 232 real and 232 fake videos. The selection
of videos followed three criteria: 1) an equal sampling from each identity in
the real videos; 2) pairing each real video with a fake counterpart created
through FaceSwap; and 3) maintaining a balance in the number of time one
identity is used as source and target.

Once the data was sampled, beautification filters were applied to the videos
as depicted in Figure 5.1. Instagram was selected as the filter provider due to
its large selection of available beautification filters which users regularly apply
to enhance their multimedia content. In Table 5.1 we present the selected
beautification filters along with the facial traits modified by them. Each of
the 464 non-beautified videos is beautified with one of the four selected filters
resulting in the creation of 928 videos that constitute the Celeb-DF-B dataset.
Example frames of the videos belonging to the Celeb-DF-B database are
displayed in Figure 5.2.
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Table 5.1: Characteristics of the selected Instagram filters. Traits modifications
were assessed by visual inspection of pixel differences between original and filtered
images.

Filter Color | Skin | Makeup | Eyes | Nose | Lips
BROWN X X X X
California dreamin
Relax! You Pretty!
Hawaii Grain

X
X
X

MR e
A
A ]

Not beautified

Beautified

Figure 5.2: Frames extracted from four distinct videos within the Celeb-DF-B
database are depicted here.

5.3 Experimental Setup and Results

5.3.1 Deepfake Detectors

We selected 3 different passive deepfake detectors for this experiment: CADDM [14],
RECCE [93], and FTCN [157].

CADDM detects traces of forgery on the frame level. First, the image is
passed through an EfficientNet-b4 [158] backbone to extract useful features
for the classification task. Then, it detects forgery locations on different scales
through an artifact detection module trained with a custom Multi-scale Face
Swap algorithm to generate forgery location ground truth. The average of
the scores between the individual frames becomes the classification score of
the video. With this architecture, the model focuses more on local forgeries
instead of learning face distribution to perform better while detecting fakes
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of unseen faces.

RECCE is an encoder-decoder-based model. The encoder is based
on Xception [159]. The reconstruction network has been trained in an
unsupervised manner to learn the representation of real faces. The face
frames are passed through the encoder-decoder architecture. Then, encoder
and decoder features are agglomerated together with the residual images (i.e.
the difference between the reconstructed and the original frame) to classify
each frame as fake or genuine. The video’s classification score is computed as
the average score between each frame.

FTCN is a model trained to detect temporal inconsistencies in videos.
Because deepfakes are generated frame by frame, they are likely to present
temporal incoherences. FTCN network has a Resnet50 3DCNN [160] backbone
to extract temporal features and a Temporal Transformers [161] as a classifier.
Therefore, FTCN does not look for manipulations on each image independently
but on a sequence of frames.

5.3.2 Experimental Setup

Metrics: To evaluate the three selected deepfake detectors, we compute the
video-level AUC of the Receiver Operating Characteristic (ROC) curve and
the False Negative Rate (FNR), i.e., the proportion of fake videos recognized
as genuine, which, in a real-case scenario, is desirable to minimize. Addition-
ally, we analyze the histogram of the classification scores before and after
beautification to gain a better understanding of the behavior of deepfake
detectors on beautified videos.

Evaluation protocol: We follow the evaluation process defined in [14].
We extract 32 frames at equal intervals to obtain 32 classification scores.
Each evaluation score represents a real number between 0 and 1 for real and
fake videos, respectively. The video score is then computed as the average
of all the individual scores. FTCN, on the other hand, extracts a sequence
of N consecutive frames from the video. To maintain consistency with the
evaluation of CADDM and RECCE, we set N = 32. In our study, we define
the positive class as 'fake videos’” and the negative class as 'genuine videos’.

Implementation details: Our implementations of CADDM! RECCE?
and FTCN? are based on publicly available GitHub projects. All three
deepfake detector models are trained on FaceForensics++ [77] and use a
backbone trained on ImageNet to extract features from images. FF-++

thttps://github.com/megvii-research/CADDM
Zhttps://github.com/VISION-SJTU/RECCE
3https://github.com /yinglinzheng /FTCN
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Table 5.2: Type of data from FF++ seen by each deepfake detectors

Model Compression | Seen Face Manipulation | Training strategy
CADDM [14] Raw DF, F2F, FSh, FS, NT supervised
RECCE [93] c23 DF, F2F, FSh, FS, NT semi-supervised
FTCN [157] c23 DF, F2F, FS, NT supervised

contains respectively 5000 and 1000 fake and real videos divided into three
subsets: train, val, and test. Five manipulation techniques were used to
generate the fake videos. They are either face reenactment (Face2Face: F2F,
NeuralTexture: NT) or FaceSwap (Deepfake: DF, FaceSwap: FS, FaceShifter:
FSh) based methods. All the 6000 videos exist in 3 versions: raw, High-Quality
(¢23), and Low Quality (c40). Table 5.2 gives a summary of the specific data
seen by each model during their training on FF++. For more information
about the training of the three models, please refer to their corresponding
publications.

5.3.3 Experimental Results

In Table 5.3 and Figure 5.3, we present various results of our experiments.
From Table 5.3, we can observe that all detectors suffer a drop of approximately
15% in AUC when tested with beautification filters. In Figure 5.3 (a), we see
the impact of the beautification process on the FNR. Specifically, beautified
videos reduce the FNR for CADDM and FTCN. However, the False Negative
Rate for RECCE is higher for beautified videos. This presents a significant
issue, as fake videos may appear authentic due to the simple application of
a beautification filter. In contrast to CADDM and FTCN, RECCE did not
encounter any fake videos during the training of its reconstruction network
as mentioned in Section 5.3.1. Thus, RECCE did not learn any specific
features associated with face manipulation. Even if beautification introduces
minor artifacts, it removes some of the manipulation introduced by deepfakes.
However, supervised trained models such as CADDM and FTCN can detect
these minor artifacts.

To better understand the behavior of deepfake detectors on beautified
videos, we analyzed the histogram of the classification scores before and after
beautification. In Figure 5.4, we illustrate the difference in the distribution of
the classification scores of the deepfake detectors on Celeb-DF-B for beautified
and non-beautified videos. A score of 0 is the lowest probability that a video is
fake according to a deepfake detector while a score of 1 represents the highest
probability. For CADDM and FTCN, we can observe higher confidence scores
for the beautified videos, indicating they are more likely to be detected as
fake. On average, all the confidence scores of the videos are shifted by +0.1
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Table 5.3: AUC score of each detector w/o and w/ beautification on Celeb-DF-B

Model AUC (1)
w/o beautification [ w/ beautification
CADDM [14] 0.01 0.76 (1 0.15)
RECCE [93] 0.81 0.66 (1 0.15)
FTCN [157] 0.80 0.64 (1 0.16)

and +0.3, respectively, for CADDM and FTCN after beautification. This
behavior was expected since beautification may present manipulation clues.
However, the behavior is slightly different for RECCE. On average, beautified
videos appear more authentic than the original ones, with an average score
shift of -0.07. In summary, for RECCE, beautified videos tend to appear
more real than their non-beautified counterparts.
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Figure 5.3: Result of the evaluation on Celeb-DF-B with the the 3 detectors.
a) The video-level AUC of the ROC curve and b) The False Negative Rate for
different classification score thresholds

5.4 Subjective Evaluation

In this section, we present the subjective evaluation conducted to assess the
impact of applying a beautification filter to both deepfake and real videos.



Chapter 5. FEffect of Beautification Filters on Deepfake Detectors 67
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Figure 5.4: The histograms of the classification score for each deepfake detector
on real and deepfake videos. In blue (resp. orange) the non-beautified (resp.
beautified) subset of Celeb-DF-B. CADDM and FTCN tend to see beautification
as additional face manipulation (histogram shifted to the right) whereas RECCE
finds fake videos more realistic after the beautification process (histogram shifted
to the left)

We performed a subjective evaluation of deepfake videos, using a web-based
framework for crowdsourcing experiments. The primary objective of this
subjective test was to investigate whether the utilization of such filters presents
challenges for human observers when distinguishing between the authenticity
of deepfake videos and real videos. To achieve this goal, we selected a total
of 112 videos (56 real and 56 deepfakes) from the Celeb-DF-B database. The
selection process involved the following steps:

Fake Video Selection: We randomly picked 7 videos for each type of
beautification filter from the fake video category, resulting in 28 videos. These
same videos were included without the filter in the subjective test dataset.

Real Video Selection: Subsequently, we chose 7 videos for each filter
type from the real video dataset, and once again, we incorporated these same
videos without filters into the subjective test dataset.

Test protocol: To establish a consistent benchmark for comparison
with typical deepfake detection algorithms, we presented human subjects
with cropped face regions. Furthermore, we extended the boundary by an
additional 100 pixels into the background to assess the algorithms’ ability to
handle background information.

Before the evaluation, participants received comprehensive explanations of
the test procedures and completed practice tests to ensure their understanding.
To optimize efficiency and prevent fatigue during the evaluation, we divided the
test dataset randomly into three batches. This approach allowed participants
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to complete each test in separate sessions, with breaks in between. On
average, each test batch lasted approximately 15 minutes, consistent with
the standard recommendations [162]. The evaluation involved 21 participants
with diverse backgrounds. Each video was shown to the participants three
times consecutively. After viewing each video, following a procedure similar
to that of Korshunov et al. [163], participants were asked, "Is the person’s
face in the video real or fake?". Then, they were then asked to identify the
specific features or characteristics that influenced their judgment regarding
the video’s authenticity. The available feature options included: 1. Face
contour, 2. Shadow inconsistency, 3. Inconsistency between eyes, 4. Eye
blinking, 5. Mouth, 6. Teeth, 7. Lip motion, 8. Head motion, 9. Face/body
mismatch, 10. Contextual mismatch, 11. Skin texture, and 12. Video quality.

5.4.1 Subjective Evaluation Results

Table 5.4 displays the results of the subjective assessment outlined in Section
5.4. The data within the table offers valuable insights into human performance
in discerning deepfake videos from authentic ones, explaining the influence
of beautification filters on human accuracy. The results suggest that human
accuracy for non-beautified videos is higher (69%) than for beautified videos
(66%), implying that human judgments are more effective at distinguishing
between real and fake videos when no beautification is applied. Furthermore,

Table 5.4: Subjective evaluation results on Celeb-DF-B dataset for Beautified
and Non-beautified videos

[ Metric [ Non-beautified [ Beautified |

Accuracy 0.69 0.66
Recall 0.70 0.76

our analysis uncovers a significant contrast in recall rates between beautified
(76%) and non-beautified (70%) videos. Recall, also known as sensitivity or
true positive rate, measures the ability of a classifier to correctly identify
positive instances among all actual positive instances. In the context of
deepfake detection, a higher recall implies that the deepfake detection model
or human evaluators are better at spotting deepfakes when the videos are
beautified.

The increased recall rate in our study implies that evaluators are slightly
better at identifying deepfakes when beautification filters are present. However,
the observed accuracy rates suggest that while human subjects improve in
detecting deepfakes with applied filters, they also tend to misclassify more
genuine videos as fake in this scenario. This underscores the impact of
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Figure 5.5: Each user’s accuracy before and after applying filters.

beautification filters on human detection capabilities: they not only aid in
recognizing deepfakes but may also lead to a higher rate of false positives,
where non-deepfake videos are mistakenly identified as deepfakes.

In the subjective evaluation, participants were also tasked with identifying
the specific features or characteristics that played a role in shaping their
judgment regarding the video’s authenticity. Among the provided feature
options, the inconsistency between eyes stood out as the most frequently
noted feature in both beautified and non-beautified videos. An interesting
finding is that many participants highlighted modifications in skin texture
as a factor influencing their categorization of videos as fake, with a notably
higher percentage observed in beautified videos, as depicted in Figure 5.5.

5.5 Conclusion and Discussion

In this work, we investigate the ongoing trend of digital face beautification
through social media filters and its implications for deepfake detection. The
application of filters to facial multimedia is a user-friendly practice, as it does
not demand any prior expertise, unlike other image editing techniques. This
accessibility makes filters highly approachable for the average social media
user. This study extends beyond Al-based detection, assessing three state-of-
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the-art deepfake detectors and the impact that the use of filters on deepfake
videos has on human detection via a subjective evaluation. Experiments are
conducted in our proposed Celeb-DF-B database showing how the application
of filters significantly shifts the scores of the assessed deepfake detectors and
changes the perceived information for human subjects.

Our findings reveal that, depending on the classifier used, even easy-to-use
social media filters can significantly increase the likelihood of a deepfake video
being wrongly classified as authentic. This not only challenges the robustness
of current deepfake detection methods but also raises important questions
about the reliability of these systems in real-world scenarios, where such
filters are commonly used. We highlighted that deepfake detection is not just
a matter of identifying sophisticated manipulations but also understanding
how common alterations can impact these systems. Future challenges include
mitigating the effects of beautification filters. In scenarios requiring access
to secure locations or sensitive information, such as government facilities,
financial institutions, or military installations, it becomes imperative to
minimize the risk of an impersonation attack. Retraining deep learning-based
detectors with beautified data might not guarantee a solution, as filters are
being created daily, making generalization difficult. Given the substantial
impact of beautification filters, the use of a dedicated filter detection method
is strongly advisable.



Chapter 6

RAW Data: A Key Component
for Effective Deepfake Detection

6.1 Introduction

Image processing operations, such as compression or beautification filters,
can obscure forgery indicators, leading to inaccurate deepfake detection.
Detection models often struggle to differentiate between real and fake images
because the current definition of real images encompasses both raw content
captured by camera sensors and content processed through various stages
of image and video processing, including linear and nonlinear adjustments.
Consequently, images are considered real even after undergoing multiple
processing operations such as denoising, compression, deblurring, and white
balance adjustments. This work aims to redefine the boundary between real
and fake images by narrowing the definition of authentic samples to a stage
closer to the radiance of the scene as captured by the sensor, prior to any
transformations by an Image Signal Processor (ISP).

The ISP is designed to convert raw sensor data from Bayer Color Filter
Arrays (CFA) into visually appealing RGB output images. This transforma-
tion process, begins as the camera lens focuses light onto the CFA sensor,
producing a digital representation of the scene in raw pixel values. These raw
images undergo several ISP stages, including white balance, noise removal,
deblurring, and tone mapping, to produce the final RGB output. The primary
goal of each stage in an ISP is to produce images that are aesthetically pleasing
to the human eye, this often involves nonlinear modifications that enhance
certain visual aspects at the expense of the original data’s fidelity. These
enhancements are typically tuned based on subjective human ratings, aiming
to maximize visual appeal rather than preserving the true characteristics

71
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of the imaging scene. While this approach is beneficial for applications like
photography, it introduces significant challenges in the context of deepfake
detection, as outlined below.

o Advantages of raw data for deepfake detection: Raw data, as
a linear representation of scene radiance, captures the original light
distribution without alteration. This unaltered preservation makes raw
data an ideal starting point for deepfake detection, as it retains essential
details and the distribution of facial features crucial for accurately
distinguishing authentic images from forgeries.

o Effects of different ISP pipelines on detection accuracy: Trans-
formations in the ISP pipeline introduce nonlinear alterations to raw
input images, enhancing visual appeal but modifying the geometric
and color distribution of facial features. Each device employs a unique
ISP pipeline configuration with distinct enhancement blocks, further
complicating detection by obscuring subtle cues needed for accurate
identification of deepfakes. Moreover, the proprietary nature and hard-
ware integration of these pipelines vary significantly across different
manufacturers. This variability poses a challenge for detection models,
as they must adapt to novel and previously unseen ISP configurations,
which can obscure the essential cues for effectively identifying and
classifying real images.

Our research makes significant contributions to the field of deepfake
detection through the following key innovations:

1. Utilization of raw data for enhanced model performance: We
propose a novel pipeline that utilizes raw data as input for deepfake
detection. This approach allows for easier learning and better generaliza-
tion on authentic images. Incorporating raw data as input necessitates
a modification in the existing detection formula (2), now represented as:

So = ¢p(Iraw), (6.1)

where ¢p denotes the deepfake detection function, and Igaw signifies
the raw image data.

2. Proposal for training on raw data using an RGB-to-raw auxil-
iary model in response to dataset limitation: Given the scarcity
of large-scale datasets for training on raw images, we propose a method-
ological approach, detailed in Section 6.2, to train our model on raw
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images for deepfake detection. This approach addresses the limita-
tions posed by the absence of appropriate resources and establishes
a foundation for future research. Our primary objective is to focus
on detection in the raw domain, assuming that attacks occur in this
worst-case scenario. However, if the model encounters processed RGB
images, and it is determined that the examination should be conducted
in the RGB domain, our proposed methodology includes an auxiliary
model to convert these images to raw format for examination.

6.2 Proposed Method

We optimize a binary classifier using cross-entropy loss, L, to perform deepfake
detection defined as:

L= _zlv S {tidog Fa) + (1 - 1) log(1 — F(x)}. (6.2)

where F'(x) denotes the probability of = being classified as "fake", and
t; represents the binary label associated with the input image, indicating
whether it is fake (1) or real (0). To enhance the generalization and robustness
of our detection algorithms, we utilize synthetic raw samples that embody
common forgery traces. These include blending boundaries, source feature
inconsistencies, and statistical anomalies in the frequency domain. All of
these present significant challenges for detection. The samples undergo a
conversion process from raw to RGB using ¢isp, are manipulated within
the RGB domain, and subsequently reconverted to raw using ¢isp iny. This
novel synthetic training data, called Raw Self-Blended Images (Iraw sB), is
designed to improve model robustness.

Our key observation is that as deepfake generation techniques evolve,
synthesized images will increasingly resemble pristine target images in terms
of facial landmarks and pixel statistics. Based on this insight, we have utilized
a synthetic data generation pipeline similar to [85] that creates fake images
by blending pseudo source and target images derived from a single image
(Ibase). This presents models with a more complex and generalized task for
face forgery detection. To produce (Iraw sg), we develop a Source-Target
Generator (STG) and a Mask Generator (MG). The STG starts by generating
pairs of pseudo source and target images from single pristine images using
straightforward image processing techniques, and the MG creates various
blending masks based on the facial landmarks of the input images.

As illustrated in Figure 6.1, the generation of raw synthesized training
data begins with converting a raw image (Iraw) to RGB format (Iys.) using
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Figure 6.1: Overview of generating a RAW Self-Blended Image (Iraw sp). A
base image Ip.se is fed into the Source-Target Generator (STG) and the Mask
Generator (MG). The STG produces pseudo source and target images from the
base image using various image augmentations, while the MG creates a blending
mask from facial landmarks and deforms it to enhance mask diversity. The source
and target images are then blended with the mask and input into the Inverse ISP
pipeline to reconstruct the raw format of the RGB input image.

¢1sp- The bounding box and facial landmarks of the face in the input image
are then detected, leading to the cropping of the face area. This cropped
image serves as both the source and target image for further processing. To
introduce inconsistencies between the source and target images, a series of
augmentations, such as brightness and contrast adjustments, are applied to
either source or target image. The source image is also resized and translated
to replicate blending boundaries and landmark mismatches. Additionally, the
Mask Generator (MG) produces a grayscale mask specifying the manipulated
region.
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The initial mask is defined as the convex hull of the facial landmarks in
the input image. Given that face manipulation techniques may target various
areas of the face, resulting in diverse shapes of manipulated regions (e.g.,
affecting only the mouth, eye, or entire face region), the mask is altered to
accommodate these variations using landmark augmentation [84]. The mask
is then smoothed using a Gaussian filter. Finally, the mask is applied to
blend the source and target images according to Equation 6.3, resulting in
the creation of the self-blended image (Isp).

Isg=1,60M+1;,o(1—-M) (6.3)

Where, I, I;, and M represent the source image, target image, and the
generated mask, respectively. After preparing the self-blended image, we use
an inverse ISP model, ¢isp iny to transform the RGB image (Isg) back into
the raw image domain (Igraw sg). Finally, this synthesized raw data, along
with the original raw image (Iraw), is input to the detection algorithm for
training.

6.3 Experiment

Our proposed methodology employs raw domain data as the primary in-
put for deepfake detection. Recognizing the scarcity of large-scale datasets
specifically designed for training on raw domain images, we have developed a
methodological approach appropriate to train deep neural networks directly
on raw images. To implement this, our method reverses the data processing
flow during the training phase. Instead of converting raw data into RGB
images as depicted in Figure 6.1, we initiate with RGB images from a publicly
available dataset, labeled as [,.s.. These images are then transformed into
raw format, labeled as Igaw. The generated Irxaw and synthetically created
fake images in raw format (Iraw sp) are utilized for training. It is noteworthy
that during inference, our model processes raw data directly. In cases where
RGB images are received, they are converted to raw as a preprocessing step
before being input into our model. This reversal strategy provides multiple
strategic benefits:

1. It allows us to leverage the existing wealth of large-scale RGB data
while still capitalizing on the advantages of training in the raw domain.

2. Additionally, by training our model directly on raw data, we are enabled
to benchmark our methodologies against existing RGB-based state-
of-the-art models. This setup not only offers a direct comparison of
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the effectiveness of our raw-based approach but also underscores its
adaptability and robustness, particularly in scenarios where RGB images
are received.

6.3.1 Experimental Setup

Training Dataset: We trained our model on the widely used benchmark
dataset, Face-Forensics (FF++) [10], which contains 1,000 real videos and
4,000 fake videos forged by four manipulation methods, i.e., Deepfakes (DF)
[164], Face2Face (F2F) [165], FaceSwap (FS) [166], and NeuralTextures (NT)
[167]. For the purpose of training and validation, we exclusively utilized the
real videos from the FF++ dataset, comprising 720 videos for training and
140 videos for validation. Both the training and validation sets included the
raw real videos as well as their corresponding synthesized self-blended images.
Evaluation Dataset:

To evaluate the performance of our approach, we utilized the test set from
the FaceForensics++ (FF++) dataset, which includes both authentic and
manipulated videos. For cross-dataset evaluation, we employed three recent
deepfake datasets to assess the generalizability and robustness of our model
across various sources and manipulation techniques:

» Celeb-DF v2 (CDF) [78] applies more advanced deepfake techniques to
celebrity videos sourced from YouTube, providing a realistic benchmark
that reflects higher quality deepfake generation.

» Deep-Fake Detection (DFD) [168] offers thousands of deepfake videos
created with the consent of the actors, aiming to represent a diverse set
of facial expressions and lighting conditions.

« DeepFake Detection Challenge public test set (DFDC) [79] include
videos with various disturbances such as compression, downsampling,
and noise, presenting challenges typical of real-world scenarios.

Each dataset offers unique challenges and helps in validating the effectiveness
and adaptability of our detection system across different domains and attack
vectors.

Data Preprocess: We utilize Dlib and RetinaFace [169] for extracting facial
landmarks and bounding boxes from individual video frames, respectively.
Within Dlib, we employ an 81-point facial landmarks shape predictor [170].
The dimensions of the face, computed from the bounding box, determines
the cropping of the facial region. Facial landmarks are required during the
training phase for generating self-blended images and they are dispensable
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during inference.

Data Augmentation: During the generation of synthesized fake raw images,
we employ various frequency and color transformations using the Albumen-
tations toolbox [171] to introduce variations between the source and target
images. In the Source-Target Generator (STG) phase, augmentations such
as image compression, RGB shift, Hue Saturation Value (HSV) adjustments,
and random brightness and contrast transformations are applied either to
the source or the target image. These modifications enhance the robustness
of our model by simulating a range of potential distortions encountered in
practical scenarios.

Raw Data Generation: In the absence of authentic raw image data, and
to facilitate the generation of synthetic raw domain images via our proposed
pipeline, we employ the state-of-the-art inverse ISP model, known as MiAlgo
[110]. This method is trained to recover raw data from the RGB Huawei
P20 model; however, it can effectively generalize to noisy and unseen similar
sensors. Moreover, the method doesn’t require any metadata or specific
camera parameters (e.g., correction matrices, digital gains), which are typi-
cally inaccessible. MiAlgo utilizes an end-to-end encoder-decoder UNet-like
structure, incorporating key components such as the residual group [109] and
the enhanced block [104]. The algorithm takes a full-resolution RGB image
and converts the input image to a raw RGGB pattern. Consequently, we
perform demosaicing on the RGGB image and then feed this raw data into a
binary classifier for deepfake detection.

Evaluation Metrics: We utilize the video-level area under the receiver
operating characteristic curve (AUC) for comparison with previous research.
Normally, predictions at the frame level are averaged across video frames.
Training details: We utilize the state-of-the-art convolutional network
architecture EfficientNet-b4 (EFNB4) [174], pretrained on ImageNet, as our
classifier and train it for 100 epochs using the SAM optimizer [175]. We
set the batch size to 32 and the learning rate to 0.001. During training, we
sample only eight frames per video. Each batch includes both real images
and their self-blended counterparts.

6.3.2 Experimental Results and Analysis

The use of raw data as an input for deepfake detection represents a novel
approach within this field, where no directly comparable methods currently
exist. Consequently, we assess the performance of our proposed method
by comparing it with established methods that operate within the RGB
domain. This comparison not only facilitates a direct evaluation of the
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Table 6.1: Cross-Dataset Evaluation on CDF, DFD, and DFDC Datasets Using
raw data for deepfake detection is a novel approach with no direct comparisons in
the field. We compare our method’s performance against established RGB domain
techniques. Our methodology includes an inverse ISP model to convert RGB images
to raw format for analysis. The model is trained exclusively on the high-quality
FF++ dataset using only real data. Results from previous methods are cited from
their original papers. Bold values indicate the best performance, while underlined
values denote the second-best performance.

Method Input Type Training set Test Set AUC (%)

Real  Fake CDF DFD DFDC
DSP-FWA [83] Frame v v 69.30 - -
Face X-ray + BI [84] Frame v - 93.47 -
Face X-ray + BI [84] Frame v v - 95.40 -
LRL [82] Frame v v 78.26 89.24 -
FRDM [15] Frame v v 79.4 91.9 -
PCL + I2G [16] Frame v 90.03 99.07 67.52
EFNB4 + SBIs [85] Frame v 93.18  97.56 72.42
Two-branch [172] Video v v 76.65 - -
DAM [173] Video v v 75.3 - -
LipForensics [88] Video v v 824 - -
FTCN [157] Video v v 86.9 9440  7L00
EFNB4 + Igaw sp (ours) Frame v 94.23 98.46 69.42

effectiveness of our raw-based approach but also highlights its versatility
and robustness, especially in scenarios involving the receipt of RGB images.
For this comparative analysis, our methodology is benchmarked using the
public dataset described in Section 6.3.1, against other RGB-domain deepfake
detection techniques [15], [16], [82]-[85], [88], [157], [172], [173].

Quantitative Results:

Table 6.1 presents the Area Under the Curve (AUC) evaluation metrics of our
method compared with existing methods to benchmark against prior works.
Our method, EFNB4 + Iraw,,, demonstrated state-of-the-art performance
on the CDF dataset and showed competitive results across other deepfake
detection datasets, as detailed below:

On the CDF dataset, our approach achieved an impressive AUC of 94.23%,
surpassing EFNB4 + SBIs, which obtained 93.18%. For the DFD dataset,
PCL + I2G attained the highest AUC of 99.07%, while our method followed
closely with an AUC of 98.46%. In the DFDC dataset, EFNB4 + SBIs led
with an AUC of 72.42%, and FTCN, which utilized both fake and real sets
during training, achieved 71.00%. Our method secured an AUC of 69.42%,
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Table 6.2: Cross-manipulation evaluation on FF++-.

Test Set AUC (%)

Method

DF F2F FS NT | FF++
Face X-ray + BI [84] ~ 99.17 9857 9821 9813 | 9852
PCL + 12G [16] 100 9897 9986  97.63 | 99.11

EFNB4 + SBIs [85] 99.99 99.88 99.91 99.79 99.64
EFNB4 + Iraw sB 99.92 99.16 99.46 99.72 ‘ 99.56

ranking as the third-best performer on this dataset. Table 6.2 presents our
cross-manipulation evaluation results on FF4++. We can see that even if
our method is not trained on specific artifacts within the FF++ dataset,
still our method performs well in recognizing different deepfake artifacts
generated by different methods or nearly matches existing methods across
four manipulations (99.92% on DF, 99.16% on F2F, 99.46% on FS, and
99.72% on NT) and achieves 99.56% the overall performance on the entire
FF++ dataset.

Qualitative Analysis of Inverse ISP:

Figure 6.2 presents examples of Iyase, Iraw, IsB, Iraw s and blending mask.
The Ipase samples are sourced from FF++ dataset [10]. Igxaw and Iraw sp
are transformed from I},,s and Isp respectively, using inverse ISP model (see
Figure 6.1). Although the inverse ISP model was not specifically trained
for face images, it successfully reconstructs the raw domain data with high
fidelity. Furthermore, we observe that the artifacts in synthetic images (Isp),
generated from Iy, are distinctly visible and can also be recognized in
Iraw sB, indicating effective transformation and consistency across image
representations.

6.3.3 Limitations and Future Work

While our approach shows promise, particularly in cross-dataset evaluations,
several limitations merit attention and set the direction for future research.
Firstly, our methodology primarily utilizes raw domain data for deepfake
detection to mitigate the impact of nonlinear transformations caused by ISP
processes. However, the scarcity of large-scale facial datasets specifically
tailored for training on raw domain images presents a significant challenge.
Currently, we rely on an inverse ISP model to generate raw data during
the training phase. Future work could explore the development of large-
scale datasets directly from sensor outputs, which would likely enhance the
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effectiveness and authenticity of the training data. Additionally, the inverse
ISP currently employed is trained predominantly on non-facial images and
from a limited set of sensor samples. Expanding the diversity of sensor types
in the training set and tailoring the model to better handle facial images
could substantially improve its utility and accuracy. One potential approach
involves utilizing a camera source identification algorithm [176] to detect the
sensor model and applying the appropriate inverse ISP method to reconstruct
the raw data.

Figure 6.2: Example images of Ipase, IrRAW, IsB, and Igaw sp. The Ij,s samples
are sourced from FF+4+ dataset. Ixaw and Izaw sp are transformed from Iyse
and Igp respectively, using inverse ISP model.

6.4 Conclusion

This study introduces a novel pipeline that leverages raw domain data as
input to enhance deepfake detection. Our approach addresses the limitations
of current models, which often struggle with genuine images modified by ISP
pipelines. By focusing on raw data, we simplify the detection process and
improve generalization, effectively bounding the distribution of real images.
This method allows for easier learning and better generalization on authentic
images. Given the scarcity of large-scale datasets designed for training on
raw images, we propose a methodological approach to train our model on
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raw image data. Our primary objective is to focus on detection in the
raw domain, however, if the model encounters processed RGB images, our
proposed methodology includes an auxiliary model to convert these images
to raw format for examination. Our method demonstrated state-of-the-art
performance on the CDF dataset and showed competitive results across
other RGB domain deepfake detection datasets. Future work could explore
the development of large-scale datasets directly from sensor outputs, which
would likely enhance the effectiveness and authenticity of the training data.
This approach holds promise for advancing deepfake detection technologies,
contributing to more reliable defenses against the malicious use of digital
imagery in various domains. Specially, it enhances the security of devices
with authentication systems by allowing manufacturers to use raw data for
identification, making impersonation attacks more challenging.



Chapter 7

Towards Secure Authentication:
Detecting Replay Attacks via
Compression Artifacts

7.1 Introduction

Advancements in biometric techniques and the increasing demand for seamless
identity verification have led to the widespread adoption of remote face
verification systems. As these systems become more popular, they also
become increasingly attractive targets for malicious actors attempting to
spoof the system and impersonate legitimate users. These attacks can occur
on both the client side, where users interact with the system, and the server
side, where data is processed and validated. In this work, we assume that
both the application running on the device and the server handling the data
are securely protected. Our focus is on addressing client-side vulnerabilities,
particularly injection attacks, where attackers bypass the sensor and directly
inject malicious digital content into the data stream [7]. Figure 7.1 provides
an illustration of injection attacks, which can be broadly categorized into two
types: deepfake attacks and digital replay attacks.

1. Deepfake Attacks: In this type of attack, the adversary begins by
obtaining images of the victim. Using a deepfake algorithm, the attacker
generates a manipulated video in real time, replicating the facial ex-
pressions and head movements required by an active liveness detection
system [25]. This deepfake video is then streamed to the authentica-
tion system via virtual camera software (e.g., OBS), which acts as an
intermediary to bypass the physical camera sensor.
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2. Digital Replay Attacks: In these attacks, adversaries leverage au-
thentic video footage of the victim, often sourced from publicly available
platforms such as social media, and inject it into the system using vir-
tual camera software. Since the video is genuine and lacks manipulation
artifacts, it poses significant challenges for the system to distinguish
between a live user and a replayed video.

To mitigate deepfake attacks researchers have proposed various detection
methods, ranging from early handcrafted feature-based techniques to modern
deep learning-based approaches [10], [12], [14]. These detection methods
aim to identify subtle inconsistencies or artifacts introduced during video
synthesis and they often rely on supervised learning, where models are trained
to recognize known deepfake artifacts.

To address digital replay attacks, remote face authentication systems
commonly implement active liveness detection, which requires users to perform
specific actions such as nodding, blinking, or opening their mouth to verify
their physical presence and confirm they are alive. While this approach is
effective in countering replayed videos, it is not always user-friendly and may
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Figure 7.1: Illustration of various input streams to a remote face au-
thentication service. The input can originate from different scenarios. In the
first scenario, the face of a genuine user is provided to the service, granting access
to the application upon successful authentication. In the second scenario, a deep-
fake injection attack is performed. Here, the attacker generates a real-time video
mimicking the victim’s expressions and head movements using a single image. This
video is streamed via virtual camera software to imitate a legitimate webcam feed,
deceiving the authentication system. In the third scenario, the attacker uses either
a single image or a pre-recorded video of the victim. The virtual camera streams a
genuine video of the victim that lacks visible artifacts. Our main goal is to exploit
compression artifacts for detecting digital replay attack.
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be perceived as inconvenient, potentially impacting the overall usability of
the system. Another method for detecting replay injection attacks involves
analyzing the metadata of the user’s device and camera, flagging suspicious
camera names as potential indicators of an injection. However, this method
is highly vulnerable, as attackers can easily manipulate the camera metadata
to bypass detection algorithms. This type of attack is the focus of our
investigation in this work. To the best of our knowledge, no machine learning-
based approaches currently exist to mitigate digital replay attacks, as the
injected video is authentic and lacks detectable artifacts.

Content captured by cameras in practical scenarios often undergoes various
digital image and video processing operations, including post-processing
techniques such as stylization filters and beautification [154], before being
disseminated. Recent studies have systematically evaluated the adverse
effects of these operations on the performance of biometric algorithms [22],
[25]. Hence in this work we investigate whether providing uncompressed
video access to face anti-spoofing service providers can improve the detection
of injected versus authentic video streams. Building on this, we propose
bypassing the compression step and directly capturing uncompressed image
data from the user’s device during authentication, rather than relying on
video content that has passed through the complete post-processing stages
of the Image Signal Processing (ISP) pipeline [102]. This strategy enables
the detection system to better differentiate between authentic and injected
video streams, as injected videos are often sourced from the internet and
are typically compressed using widely-used algorithms. By ensuring that
the user’s camera captures uncompressed images during authentication, the
detection model can focus on identifying compression artifacts. The presence
of such artifacts strongly indicates that the image frame has been injected,
thereby significantly improving the system’s ability to detect and prevent
injection attacks.

For this purpose, we utilize raw video datasets in their original, uncom-
pressed form to simulate real-world scenarios. To generate corresponding
compressed versions, widely-used video compression algorithms are applied.
A classifier is then designed and trained on both compressed and uncom-
pressed frames. Through this process, we aim to evaluate the classifier’s
ability to detect compression artifacts and assess its effectiveness in accu-
rately distinguishing between compressed and uncompressed frames. This
analysis provides valuable insights into the role of compression artifacts as
distinguishing features in video authentication tasks.
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7.2 Proposed Method

This work investigates whether providing uncompressed video access to face
anti-spoofing service providers can improve the detection of injected versus
authentic video streams. We hypothesize that uncompressed video frames from
a user’s device would lack compression artifacts, while injected videos, such
as deepfakes or replays, would show detectable artifacts due to compression
during their creation or transmission. The aim of this study is to analyze
these compression artifacts for effective differentiation.

To achieve this, we propose a machine learning-based model trained on
both compressed and uncompressed video frames. Videos are compressed
using four widely used algorithms—H.264, H.265, VP8, and VP9—chosen
for their popularity. Both compressed and uncompressed video versions are
converted into individual frames.

For training, random patches of size 224 x 224 are extracted from the frames,
ensuring balanced representation from both compressed and uncompressed
frames. By focusing on image patches rather than full frames, the model
captures localized compression artifacts, which are key for accurate detection.
These patches are then used to train a binary classifier. The model is optimized
using cross-entropy loss, L, defined as:

I— _]1[ Z_j {t;log F(z;) + (1 — t;) log(1 — F(z:))}

where F'(x) represents the probability of classifying a patch x as compressed,
and t; is the binary label associated with the input patch, where t; = 1 for
compressed and t; = 0 for uncompressed.

7.3 Experiment

7.3.1 Experimental Setup

To train and test a classifier for compression detection, we utilize six well-
established video datasets that are commonly employed in video quality
assessment and coding algorithm evaluation.

« Xiph.org Video Test Media Dataset [177]: contains a diverse
collection of video clips with varying resolutions (240 to 2160), frame
rates (25-60 fps). A subset of 47 videos, featuring resolutions of CIF
(352x288), HD (1280x720), and Full HD (1920x1080), is selected from
this dataset.
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Table 7.1: Performance metrics of the model on trained codecs (H.264, H.265,
VP8, VP9) and an unseen codec (MPEG-4), demonstrating its detection accuracy
and generalization capability.

Codec ‘ AUC Precisio Recall F1

H.264 | 0979 0.868 0.970 0.916
H.265 | 0.986 0.870 0.986 0.924
VP8 0.993 0.871 0.998 0.930
VP9 0.988 0.869 0.982  0.922

Mpeg4 | 0.965 0.864 0.939  0.900

« SJTU-4K Video Sequence Dataset [178]: contains 15 4K (3840x2160)
sequences captured with a Sony F65 camera at 30 fps. For our experi-
ments, we utilize the 8-bit YUV 4:2:0 format videos.

« SJITU-HDR Video Sequence Dataset [179]: contains 16 High
Dynamic Range video sequences, captured at 60 fps using Sony F65 and
F55 cameras. The sequences, originally provided in 16-bit OpenEXR
format. We convert videos to 8-bit YUV 4:2:0 for our experiments.

« UVG-Dataset [180]: comprises 16 4K video sequences captured at 50
or 120 fps in raw 8-bit and 10-bit YUV 4:2:0 formats. We utilize the
4:2:0 YUV format for this study.

« USTC-TD Video Dataset [181]: This dataset contains 10 video
sequences, captured at 30 fps using Nikon D3200 and Nikon Z-fc cameras.
The videos are provided in Full HD and were converted to the YUV
4:2:0 format using FFmpeg library [182].

« MCL-JCV [183]: Comprises 30 HD/Full HD uncompressed video
sequences. Additionally, it includes encoded videos produced using the
H.264/AVC codec, with their quality determined by the quantization
parameter (QP), which varies from 1 to 51. For this study we utilize

HD videos.

We use the videos from the first five datasets for training. The data is
split into 70% for training, 20% for evaluation, and 10% for testing. To assess
the model’s ability to generalize to datasets beyond the training set, we use
the MCL-JCV [183] dataset as a cross-test set.
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Figure 7.2: ROC curves for different codecs

We leverage both compressed and uncompressed video frames to train our
classifier. Uncompressed frames are generated by converting raw videos into
.png format without any compression. Compressed frames are obtained by
applying compression algorithms (H.264, H.265, VP8, and VP9) to the raw
videos, followed by saving the resulting frames in .png format. The default
compression parameters of FFmpeg for each algorithm are used to simulate
typical compression scenarios. We ensure an equal number of uncompressed
and compressed frames for training. To introduce greater variability during
training, we randomly crop image patches of size 224x224 and apply both
horizontal and vertical flipping as augmentations. The ResNet-50 model
architecture, pretrained on ImageNet, is applied and trained for 20 epochs
using the Adam optimizer. A batch size of 128 is used, with an initial learning
rate of 0.001.

7.3.2 Experimental Results

In our experiment, the MCL-JCV dataset is employed as a cross-test dataset
to evaluate the model’s performance on previously unseen data. Table 7.1
highlights the model’s performance on the codecs it was trained on, using the
default parameters of the FFmpeg library. Furthermore, the table evaluates
the model’s generalization capability by testing its performance on an unseen
codec, specifically the MPEG-4 compression method.

The results in Table 7.1 and AUC curves in Figure 7.2 reveal outstanding
performance for the H.265, VP8, and VP9 codecs, with AUC values near
or equal to 0.99. Among these, the VP8 codec achieves the best results
across all metrics, suggesting that its compression artifacts are the most
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distinguishable by the detector. In contrast, the H.264 codec demonstrates
slightly lower performance across all metrics, indicating that its compression
artifacts are less prominent and harder for the model to detect. For the
unseen MPEG-4 codec, the results show a decline in performance compared
to the seen codecs. Nevertheless, the model maintains a reasonably high level
of accuracy, showcasing its adaptability to compression methods it was not
explicitly trained on.

Table 7.2 and Figure 7.3 showcase the model’s capacity to generalize
to compressed frames across a range of quantization parameters, despite
being trained with FFmpeg’s default quantization values. The H.264 codec
is tested with Quantization Parameters (QP) ranging from 1 to 50. A QP
value of 1 represents the highest image quality, while 50 corresponds to the
lowest. The results in Table II reveal that at QP=1, the model struggles to
distinguish between compressed and uncompressed frames, as the quality is
nearly indistinguishable from uncompressed images. From QP=20 onward,
the model’s performance improves significantly, with metrics approaching
near-perfect values. This trend indicates that higher compression levels
introduce more noticeable artifacts, making them easier for the model to
detect.

To gain qualitative insights, Figure 7.4 visualizes the results of guided
backpropagation [184], which highlights all contributing features that influence
the prediction. Additionally, we use Grad-CAM [185] to visualize the regions
where the model’s attention is concentrated, specifically for the compressed
category. As seen in the visualizations, the model’s attention is more sparse
when analyzing uncompressed frames, whereas on compressed frames (e.i.
H.264, H.265, VP8, VP9 and Mpeg4) the attention is more concentrated and
coarser, focusing on areas where compression artifacts are most prominent.

Based on the quantitative and qualitative results, we can conclude that
all compression methods introduce artifacts that are distinguishable from
uncompressed frames. Notably, even under moderate compression with a
quantization parameter (QP) of 20—where image quality remains nearly
flawless—the model reliably detects compression artifacts.

If the authentication service can access uncompressed frames directly
from the device, it can focus exclusively on identifying compression artifacts.
The presence of such artifacts would indicate that the frame is injected,
simplifying the detection process. This approach eliminates the need for
the algorithm to recognize specific artifacts left behind by various deepfake
generators. Furthermore, in digital replay attacks, where virtual cameras
often apply video compression, injected videos should be distinguishable from
genuine videos due to the compression artifacts they inevitably contain. This
distinction significantly facilitates the task of detecting injected content.
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Table 7.2: Performance metrics of the model for H.264 compression across varying
quantization parameters (QP).

Codec-QP  AUC  Precision  Recall F1

H.264-Q01  0.498 0.492 0.143  0.221
H.264-Q20  0.948 0.859 0.903  0.881
H.264-Q30  0.984 0.869 0.981  0.922
H.264-Q45  0.994 0.871 0.997  0.930
H.264-Q50  0.995 0.871 0.999 0.931
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Figure 7.3: ROC curves for H.264 codec with different QP levels

7.4 Conclusion

This study introduces a novel approach for mitigating replay attacks by
utilizing compression artifacts to differentiate between compressed and un-
compressed video frames. These artifacts act as reliable indicators of injected
content, thereby facilitating the detection process. In the context of digital
replay attacks, where virtual cameras typically apply video compression,
injected videos can be distinguished from genuine ones based on the inherent
compression artifacts. By using raw video datasets and applying common
video compression algorithms, a classifier was trained to differentiate between
compressed and uncompressed frames. Experimental results demonstrate that
the model effectively performs this distinction, highlighting the significance
of compression artifacts in video authentication.
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Figure 7.4: Guided Backpropagation and Grad-CAM visualizations for uncom-
pressed and compressed video frames, highlighting the areas of support for the
compressed category.
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Conclusion and Future
Directions

8.1 Conclusion

Biometric face authentication leverages the unique biological characteristics
of an individual’s face, eliminating the need to remember passwords or carry
physical tokens. This method offers significant advantages, including enhanced
security due to the difficulty of replicating biometric traits, improved user
convenience, and a seamless authentication experience. As a result, face
authentication is increasingly integrated into remote authentication services
and portable devices, such as laptops and smartphones, to provide a secure
and user-friendly solution for access control.

Traditional biometric threat models primarily considered different attack
points within biometric verification systems. However, with advancements
in Al-generated algorithms, a new type of attack—deepfake—has emerged.
Deepfake technology enables real-time manipulation of a victim’s facial images,
posing a significant challenge to biometric security by spoofing authentication
systems. To better understand the vulnerabilities of face verification systems,
the threats posed by deepfake attacks, and to enhance both the accuracy and
security of face verification systems, the following contributions are made in
this thesis:

Enhancing Face Verification Algorithm
Given that face verification systems are highly sensitive to variations in head
pose, facial expressions, and illumination conditions, factors that often differ
between ID card images and real-world user data, this thesis introduces a
novel face alignment algorithm designed to enhance preprocessing for face
verification. The proposed approach estimates the head pose, expression, and
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illumination conditions from the first image pair and reconstructs the second
image pair to align with these attributes while preserving its unique identity
features.

Deepfake Quality Assessement
To better understand the threat posed by deepfake attacks, this thesis analyzes
the quality of deepfake video frames generated by face reenactment techniques,
with a focus on variations in facial expressions and head movements. This
analysis helps to identify the weaknesses of different deepfake generators.
Additionally, a gap in the literature is identified regarding the assessment
of face reenactment quality. To address this, a novel protocol is introduced
for the quantitative evaluation of images produced by face reenactment
techniques, particularly in cross-reenactment scenarios. The protocol enables
the assessment of cross-reenacted images using metrics that rely on explicit
ground truth, such as SSIM and LPIPS. Given the limited availability of
suitable datasets, two video generation approaches are proposed. The first
approach utilizes 3D models of real human heads captured through a multi-
view imaging system. The second approach employs realistic, synthetically
generated head models that encompass a diverse range of human subjects,
facial expressions, pose variations, and lighting conditions.

Effect of Beautification Filters on Deepfake Detectors
To assess the vulnerabilities and strengths of state-of-the-art deepfake detec-
tion methods against image processing techniques, the robustness of deepfake
detectors was analyzed in this thesis when applied to beautified videos.
Specifically, the impact of beautification filters on detection performance was
measured by evaluating classification scores before and after applying these
filters. Furthermore, the effectiveness of automated detectors was compared
with the ability of an average human user to distinguish between real and
fake videos, providing insights into both machine and human susceptibility
to such alterations.

Finding Key Components for Effective Deepfake Detection
The performance of current deepfake detectors significantly degrades when
common image processing techniques such as compression, resizing, and beau-
tification filters are applied. To address this challenge, this thesis introduces
a novel pipeline that leverages raw domain data as input to enhance deepfake
detection. By focusing on raw data, the aim is to constrain the distribution
of real images, making it easier for the model to learn distinctive features and
generalize effectively to authentic images. This approach improves robustness
against image alterations, leading to more reliable deepfake detection.

Detecting Replay Attacks via Compression Artifacts
In digital replay attacks, adversaries leverage authentic video footage of the
victim, often sourced from publicly available platforms such as social media,



Chapter 8. Conclusion and Future Directions 93

and inject it into the system using virtual camera software. Since the video
is genuine and lacks manipulation artifacts, it poses significant challenges for
the system to distinguish between a live user and a replayed video. This thesis
investigates whether providing uncompressed video access to face anti-spoofing
service providers can improve the detection of injected versus authentic video
streams. This strategy enables the detection system to better differentiate
between authentic and injected video streams, as injected videos are often
sourced from the internet and are typically compressed using widely-used
algorithms.

Participation in Deepfake Detection Challenges and Projects
In addition to the contributions mentioned above, I, along with other group
members, participated in and won the Défi Hermes Deepfake Challenge [186].
In this competition, we developed an ensemble model that made decisions
based on multiple specialized detectors, each expert in identifying different
types of manipulations, including color modifications, splicing, face alterations,
and entirely synthesized images. The final classification was determined by
agreement among these detectors on an unseen dataset.

Furthermore, we contributed to a project defense in SPRIN-D [187] on
deepfake detection, which successfully secured a grant. This project focuses
on developing a deepfake detection system based on the JPEG Al compression
algorithm, leveraging its ability to reconstruct real images with higher fidelity
while degrading fake images, thereby enhancing detection accuracy.

8.2 Directions for Future Research

The field of deepfake generation is evolving rapidly, presenting an ongoing
challenge for detection systems. Despite significant advancements in deepfake
detection, the problem remains far from fully resolved. Based on the findings
and contributions of this thesis, several promising directions for future research
emerge.

One key avenue for improvement in authentication services lies in lever-
aging device sensors more effectively. If device manufacturers allow authen-
tication providers to access raw sensor data, detection capabilities could be
significantly enhanced. This access would enable more precise differentiation
between genuine and manipulated content, strengthening security in biometric
authentication systems.

This thesis highlights the potential of raw sensor data in deepfake detection.
However, a major limitation is the absence of large-scale facial datasets
specifically designed for training deepfake detection models on raw-domain
images. To address this, an inverse Image Signal Processing (ISP) model was
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introduced in this work to generate raw data during training. Future research
could focus on developing extensive datasets captured directly from sensor
outputs. Such datasets would enhance both the authenticity and robustness
of deepfake detection models, improving their generalization across real-world
scenarios.

Improving deepfake detection technologies is crucial for strengthening
digital security, particularly in biometric authentication systems. As deepfake
attacks become increasingly sophisticated, they pose significant threats to
identity verification and access control mechanisms. By developing more
robust detection methods, we can enhance the reliability of face authen-
tication systems, preventing unauthorized access and mitigating security
risks in applications such as online banking, identity verification, and secure
communications.
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