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Diffusionmodels have recently emerged as a powerful

class of generative models, achieving state-of-the-art

performance in various domains such as image and

audio synthesis. While most existing work focuses

on finite-dimensional data, there is growing interest

in extending diffusion models to infinite-dimensional

function spaces. This survey provides a comprehen-

sive overview of the theoretical foundations and

practical applications of diffusion models in infinite

dimensions. We review the necessary background on

stochastic differential equations in Hilbert spaces, and

then discuss different approaches to define generative

models rooted in such formalism. Finally, we survey

recent applications of infinite-dimensional diffusion

models in areas such as generative modelling for

function spaces, conditional generation of functional

data and solving inverse problems. Throughout the

survey,we highlight the connections between different

approaches and discuss open problems and future

research directions.

This article is part of the theme issue ‘Generative

modelling meets Bayesian inference: a new paradigm

for inverse problems’.

1. Introduction
Diffusion models have emerged as a prominent class

of generative models, achieving notable success in vari-

ous fields such as image generation [1], audio synthesis

[2,3], video [4,5], molecular structures and general three-

dimensional shapes [6–9] and conditional generation

from open-ended text prompts [10–13]. For applications

involving stochastic processes and complex systems

where finite-dimensional approximations are insuffi-

cient, like weather forecasts or seismology [14,15] or

© 2025 The Authors. Published by the Royal Society under the terms of
the Creative Commons Attribution License http://creativecommons.org/licenses/
by/4.0/, which permits unrestricted use, provided the original author and source
are credited.
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extremely high-resolution point clouds [16], generative models which operate directly in func-

tion space are required. This survey aims to provide a structured overview of the theoretical and

practical developments in generative diffusion models operating in infinite dimensions.

A fundamental motivation for considering infinite-dimensional approaches arises from

Bayesian inverse problems in function spaces. The work in [17] established a rigorous math-

ematical framework for inference in such settings, emphasizing that naive finite-dimensional

approximations often introduce undesirable pathologies. Rather than discretizing early in the

modelling process, amore principled approach is to avoid discretization until the last possible moment

[17]. Numerous studies have demonstrated that working directly in infinite-dimensional spaces

leads to improved stability and accuracy in inference tasks [18,19].

The necessity of such models stems from the intrinsic limitations of finite-dimensional ap-

proximations, particularly their inconsistency across different resolutions. In empirical studies on

generative diffusion models, it has been widely observed that models trained at one resolution

often fail to generalize across different resolutions or scales unless carefully adapted [20–23]. This

issue extends beyond neural architecture design (e.g. parameter adjustments) and is fundamen-

tally linked to the role of trace-class noise in the perturbation process [24–31]. When the additive

noise has a flat spectral density, changing the sampling frequency (i.e. the resolution) typically

alters the effective signal-to-noise ratio, affecting consistency in generative models.

In contrast, infinite-dimensional methods allow for the construction of generative models that

generalize effectively across different resolutions and are not constrained by regular sampling

grids [24–33]. Additionally, infinite-dimensional generative models have been shown to provide

enhanced parameter efficiency [26]. These models inherently accommodate function spaces in

a way that ensures robustness and consistency in inference and generation tasks, making them

particularly well-suited for applications requiring flexibility across multiple scales.

The problemof generativemodelling in functional domains can be approached by adapting the

techniques valid for the finite-dimensional case to the one where observed data points are consid-

ered as finite-resolution realizations of underlying functions [34–36]. These approaches allow for

the incorporation of the notion of underlyingmanifold (whether Euclidean space or not) onwhich

the data is collected, without the need to explicitly consider themachinery of infinite-dimensional

stochastic calculus [37]. However, scaling these methods to arbitrary resolution is challenging. A

different approach, which has been incorporated by some of the purely functional domain diffu-

sion models, is to consider pseudo-invertible mappings from infinite-dimensional domains onto

finite-dimensional ones and consider classical diffusion in those finite spaces [38,39]. Given the

limitations of such approaches, a purely function space investigation of diffusion processes has

been explored by the community, which we describe in the following.

(a) An overview of existing methods and applications
Although the primary focus of this survey is the exploration of infinite-dimensional diffusionmod-

els, we first provide an overview of key generative models based on diffusion and related dynam-

ics in finite dimensions, to set the stage for a discussion of their infinite-dimensional counterparts

and applications.

On the left column of table 1, we summarize the major classes of finite-dimensional generative

models. Among these, discrete-time diffusion models, commonly referred to as DDPM [5,40,41],

learn to approximate the reversal of a forward Markov chain with a finite number of steps. This

forward process perturbs the original data, typically through additive Gaussian noise, which

smooths the data distribution. A related approach, annealed Langevin dynamics, replaces single-

step transitions with multiple runs of Langevin dynamics, using the perturbed score function as

the drift term to iteratively refine the noisy samples [42,43].

As the number of steps tends to infinity, the Markov chain formulation converges to a

continuous-time setting, leading to score-based SDEs [1], which model the forward and reverse
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Table 1. Finite-dimensional generative models and infinite-dimensional counterparts.

finite-dimensional infinite-dimensional position in survey

DDPM [5,40,41] [28] §4a
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

annealed-LD [42,43] [30] §3a
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

score-SDE [1] [27,31,44,45] §2a
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

flowmatching [46,47] [29] §3b
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

diffusion bridges and stochastic control [48,49] [32,33,50] §5a
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Bayesian inverse problems [51,52] [24,25] §5b
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

evolution through stochastic differential equations. Another approach, known as Flow Matching

[46,47], models the perturbation dynamics deterministically, inducing transport flows that map

between the initial noisy distribution and the target data distribution.

Beyond generative modelling, diffusion models have been applied to stochastic control prob-

lems and Bayesian inverse problems. In finite dimensions, diffusion bridges provide a framework

for modelling stochastic paths conditioned on endpoints, making them useful in molecular dy-

namics and controlled trajectory planning [48,49]. Similarly, diffusion-based priors have been

leveraged in Bayesian inverse problems, where they help reconstruct unknown samples from

noisy measurements [51,52]. By providing strong probabilistic priors, these models enhance

inference accuracy and enable uncertainty quantification in complex systems.

The transition to infinite-dimensional settings introduces additional mathematical and com-

putational challenges, which we explore in later sections. In particular, we discuss the infinite-

dimensional counterpart of score-SDEs [27,31,44,45] in §2a, where they appear as specific cases

of equation (2.4). Alternative formulations, including annealed Langevin dynamics [30] and flow

matching [28], are examined in §3a,b, in connection with equations (3.1) and (3.4). Applications

of diffusion bridges and Bayesian inverse problems in infinite dimensions are covered in §5a,b,

particularly in equations (5.2)–(5.4).

(b) Structure of the manuscript
In §2, we delve into the formal definition of diffusion models in infinite dimensions, focus-

ing on Hilbert spaces. We introduce the necessary mathematical foundations, such as SDEs in

Hilbert spaces, the properties of infinite-dimensional diffusion processes and key concepts like

time-reversal of SDEs and the formulation of probability measures. Special attention is given to

generative processes driven by these models, alongside theoretical considerations such as exis-

tence and uniqueness of solutions. In §3, we explore alternative methodologies for constructing

generative models in infinite-dimensional settings, contrasting themwith the diffusion-based ap-

proaches discussed earlier. We review methods like annealed Langevin dynamics and functional

flow matching and connect their mathematical underpinnings to diffusion models, highlighting

both their strengths and limitations. In §4, we outline the loss functions and training objectives

associated with these parametric methods, particularly in terms of denoising and likelihoodmax-

imization. We also briefly overview neural architectures suitable for functional data and analyse

their ability to handle resolution invariance. In §5, we provide an overview of various real-world

applications of infinite-dimensional diffusion models. Other than purely generative use cases, we

discuss the solution of Bayesian inverse problems, stochastic bridges and optimal control.

Finally, in §6, we summarize the key takeaways from this survey, highlighting the theoretical

advancements and practical applications of diffusion models in infinite dimensions. We also out-

line open problems and future research directions, suggestingways to further refine thesemodels

and explore their broader use in generative modelling and related fields.
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2. Diffusion-based generative models in Hilbert spaces
We considerH to be a real, separable Hilbert spacewith inner product ⟨⋅, ⋅⟩, norm ||⋅||H. Let L(H) be
the set of bounded linear operators onH, B(H) be its Borel �-algebra, Bb(H) be the set of bounded
B(H)-measurable functions H→ℝ and P(H) be the set of probability measures on (H,B(H)).

Our focus is to survey existing generative modelswhich leverage the properties of diffusion pro-

cesses inHilbert spaces. Informally, given a finite collection of samples drawn from an underlying

probability measure � ∈ P(H), we consider different, but strictly related techniques, to transform

a sample drawn from an easy measure into a sample whose measure coincides with the desired

�. Consider the following H-valued SDE whose initial conditions are drawn from �

⎧

⎨
⎩

dXt = (AXt + f (Xt, t))dt + dWt,

X0 ∼ �= � ∈ P(H),
(2.1)

where t∈ [0,T], Wt is a R-Wiener process on H (of trace class) defined on the quadruplet(

,ℱ, (ℱt)t≥0,ℚ

)
. In our definitions, 
,ℱ are the sample space and canonical filtration, respec-

tively: we consider 
 to be C1([0,T]), that is the space of all continuous mappings [0,T]→H,

and Xt(!) =!(t), !∈
 to be the canonical process. The domain of f is D(f ) ∈ B([0,T] ×H), where

f ∶D(f )⊂ [0,T] ×H→H is a measurable map. f is assumed to be Lipschitz continuous. The neg-

ative, symmetric operator A ∶D(A)⊂H→H is the infinitesimal generator of a C0-semigroup

exp(tA) in H(t≥ 0), and � is a probability measure in H. By definition, the measure associated

with equation (2.1) is indicated withℚ. The law induced at time � ∈ [0,T] by the canonical process
on the measure ℚ is indicated with �� ∈ P(H), where ��(S) =ℚ({!∈
 ∶X�(!) ∈ S}), and S is any

element of B(H). We define the law associated with the process defined in equation (2.1), when

initial conditions are deterministic (X0 = z) as �z�. Notice that, by disintegration properties,

d��(x) = ∫ d�z�(x)d�(z). (2.2)

Given a countable orthonormal basis {ek}k∈ℕ for the Hilbert space H, we can always construct an

isomorphismwith the space of square summable sequences l2(ℕ). Since R is a trace class operator,

there exists a complete orthonormal system in H [37] that diagonalizes R, i.e. Rek = rkek, with rk a

positive scalar, where we leverage the fact that R is a symmetric operator being a covariance. The

covariance operator can be used to define the Cameron Martin space HR

def
= R

1
2H associated with

H, where the corresponding induced scalar product is ⟨⋅, ⋅⟩HR = ⟨R− 1
2 ⋅,R− 1

2 ⋅⟩.
Then, it is useful to notice that equation (2.1) can also be expressed as an (infinite) system of

stochastic differential equations, in terms of Xk
t = ⟨Xt, ek⟩, as:

dXk
t = ak(Xt) + f k(Xt, t)dt + dW k

t , k∈ℕ, (2.3)

where we introduced the projection ak(x) =
∞∑

j=1
ak,jxj, with ak,j

def
= ⟨Aej, ek⟩ and f k(x, t) = ⟨f (x, t), ek⟩.

Moreover, dW k
t = ⟨dWt, ek⟩ with covariance given by Eℚ[W k

tW
j
s] = �(k − j)rk min(s, t), � in the Kro-

necker sense. Under condition 2.1, the SDE equation (2.1) admits a strong solution [37].

Condition 2.1. (i)R
1
2H ⊂D(A), (ii)AR

1
2 is a Hilbert–Schmidt operator, and (iii)�(D(A)) = 1.Notice

that this condition is trivially satisfied whenever A is a bounded operator.

(a) Time reversal of SDEs
The idea of generative models based on SDEs in the form of equation (2.1) is to consider the time-

reversal of the stochastic process Xt, namely the process X̂t

def
= XT−t. Under certain conditions, the
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process X̂t can be shown to be a solution of a new SDE. When this is the case, simulation of its

dynamics allows obtaining a sample from the desired measure (X̂T =X0 ∼ �).
More formally, we require that the time reversal of the canonical process, X̂t =XT−t, is again

a diffusion process, with distribution given by the path-reversed measure ℚ̂(!), along with the

reversed filtration ℱ̂. In the finite-dimensional case (which corresponds to the case where the

Hilbert space has finite dimensionality), several results exist which prove (under appropriate

technical conditions) that the time reversal of SDEs in the form of equation (2.1) (although fi-

nite dimensional) has again expression in terms of an SDE, with a new drift term composed as

−ak(x) − f k(x, t) + rk
)

)xk
log

(
d�� (x)

dx
)
)
, where

d�� (x)

dx
is the density of the measure w.r.t. the Lebesgue

measure dx [53,54]. However, the time reversal of an infinite-dimensional process is more in-

volved than for the finite-dimensional case. Indeed, in infinite-dimensional spaces, there is no

equivalent of the Lebesgue measure to obtain densities from measures (i.e. dx in ℝℕ does not

exist [55]). However, in the infinite-dimensional case, we can consider the single-dimensional

conditional density
d�� (xi|xj≠i)

dxi
(provided its existence), dxi being the single-dimensional Lebesgue

measure. At a rather informal level, the reader can understand why considering such objects can

alleviate the problem of non-existence of the desired densities in infinite dimensions: in the finite-

dimensional case, thanks to disintegration of measures, the second term of the time-reversed drift

can be simplified as
)

)xk
log ( d�� (xk | xj≠k)

dxk

d�� (xj≠k)

dxj≠k
)= )

)xk
log ( d�� (xk | xj≠k)

dxk
).

It is then possible to derive results for the infinite-dimensional case which are analogous to the

finite-dimensional one. There are two major approaches to guarantee the existence of the reverse

diffusion process. The first approach [56] relies on a finite local entropy condition. The second

approach is based on stochastic calculus of variations [57], which we use to claim what follows.

Theorem 2.1. Consider equation (2.1). Suppose that the conditions listed in Theorem 4.3 of [57] hold.

Then X̂t, corresponding to the path measure ℚ̂(!), has the following SDE representation:

⎧

⎨
⎩

dX̂t =
(
−AX̂t − f (X̂t,T − t) + R( log �T−t(X̂t)

)
dt + dŴt,

X̂0 ∼ �T ,
(2.4)

where Ŵ is a ℚ̂R-Wiener process and the notation R( log �t(x) stands for the mappingH→H that, when

projected, satisfies ⟨R( log �t(x), ek⟩= rk
)

)xk
log( d�t(xk |xj≠k)

dxk
). By projecting onto the eigenbasis, we have

an infinite system of SDEs:

dX̂k
t = (−ak(X̂t) − f k(X̂t,T − t) + rk

)
)xk

log(
d�T−t(X̂k|X̂j≠k)

dxk
))dt + dŴ k

t , k∈ℕ. (2.5)

Notice that strictly speaking, using the symbol ( is an abuse of notation, since we cannot identify

it with the gradient (in Hilbert space) of a single function.

The result in [57] is remarkably general and elegant, but this generality comes at the cost of

increased complexity in verifying that the necessary technical conditions hold. Although not the

most general case, a concrete example of conditions that satisfy the coefficient assumptions out-

lined in [57] are those considered in [26], which we report hereafter, as discussed in detail in

appendix A:

Condition 2.2. f = 0 and A is diagonal in {ei}, i.e. ai,j = �i,jai.

Condition 2.3.Condition 2.2 is satisfied, andA is bounded:−ai ≤M, withM a finite positive constant.

It is worth mentioning that much effort has been put in by the authors in [31] to generalize

the settings considered here for the dynamics in equation (2.1), in particular with the possibility

of considering non-constant operators Gt, which precondition the Wiener process via GtdWt. In
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their work, they focus on the time reversal formula at the level of the generator directly: in gen-

eral, the existence of time reversal of a process and the validity of time reversal formulas do not

imply each other. Such an approach is useful for investigating the relationship between different

methodologies, as we will explore later.

For the validity of the methodologies described above, it is required that the conditional den-

sities exist. Next, we introduce a different condition, which will be used to prove the existence of

such densities and is at the root of the different generative modelling techniques explored in this

survey, the trait d’union between all the technical requirements of infinite-dimensional diffusion

models.

Condition 2.4. For each t∈ (0,T], the measure �t is absolutely continuous with respect to the

measure �0t .

In our introduction, we considered the generic nonlinear (f ≠ 0) SDE equation (2.1). However,

in almost all actual applications in the literature, the simple linear case where f = 0 is considered.

This assumption allows a simpler investigation of the validity of time reversal equations (see ap-

pendix A). Furthermore, this has tremendous practical benefits, as under such conditions, there

exists a weak solution to equation (2.1) as

Xt = exp(tA)X0 +

t

∫
0

exp((t − s)A)dWs, (2.6)

which is typically amenable to cheap simulation. In this case, the conditional distribution admits

a simple expression d�zt (x) =Nexp(tA)z,S(t)(x), where S(t) = (
t

∫
0

exp(sA)R exp(sA)ds).

Condition 2.2 is particularly helpful in practical implementations, simplifying the computa-

tion of terms in the form AR, which would generally require working with a different basis and

consequently induce extremely high computational cost. For simplicity of exposition in relating

different works, we will often consider this assumption in our writing.

Under condition 2.2, ⟨S(t)ej, ei⟩
def
= sij(t) =

exp
(
2ait

)
−1

2ai
ri�ij. This simplified expression is central in the

works [24,27,45] where reverse time dynamics are proved directly with approaches that do not

explicitly require the existence of the conditional densities. Furthermore, in this particular case,

the measures d�0
t (x) have a simple Gaussian expression dN0,S(t)(x). In particular, in the works

[24,25,27], it is assumed that Ax=− x

2
, and consequently, RS−1(t) = 1 − exp(−t), R( log �T−t(x) =

−(1 − exp(−t))−1
(
x − exp

(
− t

2

)
Eℚ [X0 |Xt = x]

)
. The proof strategy in these works revolves around

the conditional expectation directly, without the need to explicitly define conditional densities.

This is an advantage over the conditions imposed, e.g. in [56,57], which are designed for gener-

ally nonlinear processes. In particular, the key idea adopted for the proofs is to define projected,

low-dimensional dynamics for the process Xt, via P
D(Xt), where PD is the projection operator on

the firstD basis vectors ofH. Then, the existence of a backward process with a finite-dimensional

expected value is proven using classical results. The core technical contribution is to show that

as D→∞ the processes remain well-behaved and converge to the original infinite-dimensional

dynamics, allowing us to claim that equations in the form of equation (2.4) (with the substitution

of equation (2.7)) are valid generative models. Summarizing, the linear case has the following

important property

Theorem 2.2.Assume that �(R
1
2H) = 1 and condition 2.2 holds. Then

(i) Condition 2.4 holds (
d�t

d�0
t

exists).

(ii) The conditional densities
d�t(xi | xj≠i)

dxi
exist.
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(iii) R( log �t(x) = −RS(t)−1
(
x − exp(tA)Eℚ [X0 |Xt = x]

)
, (2.7)

(iv)
R( log(

d�t

d�0t
)(x) = exp(tA)Eℚ[X0 |Xt = x]. (2.8)

Proof.

(i) Consider temporarily the assumptions �(R
1
2H) = 1 and exp(tA)R

1
2H ⊆ S

1
2 (t)H. Condition

2.4 is equal to �0t (B) = 0⇒ �t(B) = 0 for any measurable set B and any t∈ (0,T]. Since
�t(B) = ∫ �zt (B)d�(z) = 0, the implication is true if �zt ≪�0t for � a.e. z. Given that both

measures are Gaussian with means exp(tA)z and 0, respectively, and covariance S(t)
the absolute continuity holds if exp(tA)z∈ S

1
2 (t)H for � a.e. z. Given that �(R

1
2H) = 1,

this is equivalent to exp(tA)R
1
2 y∈ S

1
2 (t)H for all y∈H, which is exactly the assumption

exp(tA)R
1
2H ⊆ S(t)H. We now prove that exp(tA)R

1
2H ⊆ S

1
2 (t)H holds true if condition

2.2 holds. First, let us notice that the assumption is equivalent to assuming that ∀y∈

H,∃z∈H ∶ exp(tA)R
1
2 y= S

1
2 (t)z. In this case, S

1
2
t = ((1 − exp(2tA))(−2A)−1R)1∕2. Given a sin-

gle y∈H, clearly z= (−2A)
1
2 (1 − exp(2tA))−

1
2 exp(tA)y satisfies the equality. Furthermore,

its norm is equal to ‖z‖2 = ⟨y,−2A(1 − exp(2tA))−1 exp(2tA)y⟩= ⟨y, 2A(exp(−2tA) − 1)−1y⟩=
∑

i

2ai

exp
(
−2tai

)
−1
(yi)2 ≤

∑
i
(yi)2 <∞.

(ii) Condition 2.4 implies that the Radon–Nikodym derivative exists and is well defined.

By restriction,
d�t(xj≠i)

d�0
t
(xj≠i)

exists and is uniquely defined as well. Then, by disintegration

d�t(x)

d�0
t
(x)
= d�t(xi | xj≠i)

d�0
t
(xi | xj≠i)

d�t(xj≠i)

d�0
t
(xj≠i)

, from which we conclude the existence of
d�t(xi | xj≠i)

d�0
t
(xi | xj≠i)

. Based on this,

�0t (xi | xj≠i) =N0,si (xi). Since d�t(xi | xj≠i)≪ dN0,si (xi)≪ dxi, the existence of the densities is

proven.

(iii)
)

)xi
log

d�t(xi | xj≠i)

dxi
= ( d�t(x

i | xj≠i)

dxi
)−1 )

)xi
( d�t(x

i | xj≠i)

dxi
). Furthermore, d�t(xi | xj≠i) = ∫ d�t(xi | x0, xj≠i)

d�(x0 | xj≠i), where d�t(xi | x0, xj≠i) = dNexp
(
tai
)
xi
0
,si(t)(x

i) which has density w.t.t dxi. Then,

d�t(xi | xj≠i)

dxi
= ∫ Nexp

(
tai
)
xi
0
,si(t)(x

i)d�(xi0 | x
j≠i), and

)

)xi
( d�t(x

i | xj≠i)

dxi
) = − ∫

xi−exp
(
tai
)
xi
0

si(t)
Nexp

(
tai
)
xi
0
,si(t)(x

i)

d�(xi0 | x
j≠i). Upon simple algebraic manipulation, we can get the desired result (the proof is

based on the content of [24,26,33]).

(iv) Due to the Feldman–Hajek theorem [37]

d�zt
d�0t

(x) = exp
(⟨
R−1x, exp(tA)z

⟩
− 1∕2 ‖‖‖‖R

−1∕2 exp(tA)z‖‖‖‖
2)
.

Then, R(
d�z

t

d�0
t

(x) =
d�z

t

d�0
t

(x) exp(tA)z. Consequently, R( d�t

d�0
t

(x) =R( ∫
d�z

t

d�0
t

(x)d�(z) =

∫
d�z

t

d�0
t

(x) exp(tA)zd�(z) = ∫ exp(tA)zd�(z |Xt = x) d�t
d�0

t

(x) and equation (2.8) holds (see [30]

for further insights).

■

If the linear operatorA satisfies determinate spectral conditions, then �zt ∼ �∞, for all z∈H and

t> 0, where both measures have known Gaussian form [37,58–60]. Consequently, �zt ∼ �∞ ∼ �
0
t for

all z∈H, which implies �0t (B) = 0→ �t(B) = ∫ �zt (B)d�(z) = 0, i.e. §2.4 holds (
d�t

d�0
t

exists). Unfortu-

nately, this result, which is stronger than condition §2.4, does not hold for the most commonly

used operators A, like −I, as it is required exp(tA)z∈ S
1
2
t H, for z∈Hgeneric ([60]).

Theorem 2.1 stipulates that, given some conditions, the reverse time dynamics of equation (2.1)

exist in the form of SDE. However, for generative modelling purposes, the content of theorem 2.1

is stronger than necessary. What suffices is that there exists a new SDE whose time-varying law
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corresponds to the backward in time of the original �t. Clearly, if a time reversal exists, such a

process satisfies the weaker measure matching condition.

To expand on this point and connect together the different generative modelling techniques

discussed in the literature, it is necessary to introduce the Kolmogorov operators [31,61–64]

ℒ0u(x, t) =Dtu(x, t) +
1

2
TrRD2

xu(x, t) + ⟨Ax + f (x, t),Dxu(x, t)⟩
⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

ℒu(x,t)

, x∈H, t∈ [0,T], (2.9)

where Dt is the time derivative, Dx,D2
x are first- and second-order Fréchet derivatives in space

(since both the scalar product and the trace are defined on the Hilbert space H, and not its dual,

the quantities in the equation above should be interpreted after Riesz mappingM◦). The domain

of the operator is assumed to be the set of smooth cylinder functions of finite support [31,61].

Provided appropriate conditions are satisfied, see for example [61,62], the time-varying mea-

sure d�t(x) exists, is unique, and solves the Fokker–Planck equation

∫
H

u(x, 0)d�(x) + ∫
T

0

ds ∫
H

ℒ0u(x, t)d�s(x) = 0. (2.10)

The result of theorem 2.1 can be thus understood at the level of time reversal of measures: by sim-

ply considering the negative of the operator ℒ, we obtain 1

2
Tr{−RD2

xu(x)} + ⟨−Ax,Dxu(x)⟩. While

−A can be associated with a new drift term, it is not possible to construct a Brownianmotion term

with covariance −R. However, − 1

2
Tr{RD2

xu(x)} = −Tr{RD2
xu(x)} +

1

2
Tr{RD2

xu(x)}. As shown in [31,

App. B.2],

− ∫
H

Tr{RD2
xu(x, t)}d�s(x) = ∫

H

⟨R( log �s(x),Dxu(x, s)⟩d�s(x), (2.11)

which allows us, as anticipated, to prove in a simpler way a weaker form of the content of theo-

rem 2.1: an SDE in the form of equation (2.4), defined on a proper probability space, induces a

time-varying measure which corresponds to the time-reversal of the original �t, i.e. the measure

associated with equation (2.1). Furthermore, the equality in equation (2.11) allows us to claim

that the measure �t is also a solution of the continuity equation (see [63–65] for definiteness and

uniqueness)

∫
H

u(x, 0)d�(x) + ∫
T

0

ds ∫
H

(
du(x, t)
dt

+ ⟨Ax + f (x, t) − R

2
( log �t(x),Dxu(x, t)⟩)d�t(x) = 0, (2.12)

which corresponds to an ordinary differential equation (ODE) in the Hilbert space with determin-

istic drift

⎧

⎨
⎩

dXt =AXt + f (Xt, t) −
R

2
( log �t(Xt)dt

X0 ∼ �
. (2.13)

These facts allow us to build a connection between the methodology discussed so far and other

prominent approaches from the literature, as shown hereafter.

3. Alternative generative approaches
In §2, we introduced a family of generative models rooted in (variants) of the time reversal for-

mula, shown in equation (2.4). As anticipated, inverting the dynamics of a diffusion process is

a sufficient, but not necessary, strategy to obtain a generative model in function space. In this

section, we briefly overview some different methodologies which appeared in the literature,

clearly connecting theirworkingmechanismandunderlying assumptionswith the ones described

previously.
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(a) Annealed Langevin dynamics
Consider the N + 1 dimensional sequence of measures �0, �T∕N,… �T . Suppose we have access to
computational schemes which allow us, starting from a sample drawn from �(i+1)T∕N, to obtain a

sample from the target �iT∕N. Then, a valid generative modelling technique is to run sequentially

such computational schemes on the reverse order sequence. One particular approach [30] relies

on running multiple annealed chains of Langevin sampling schemes, in the following fashion:

dX̃t =−X̃tdt + S(iT∕N)( log(
d�iT∕N

d�0
iT∕N

(X̃t)) +
√
2S(iT∕N)R−1dW̃t (3.1)

where W̃t has covariance R. Dynamics in the form of equation (3.1) have the following fundamen-

tal property: their time-invariant measure is �iT∕NρiT/N [19,66]. Notice that for the scheme to be

valid, the Radon–Nikodym derivative should be valid, i.e. condition 2.4 should hold, as required

explicitly by the authors of [30]. Consequently, by selecting the sequence of measures as the law

of a diffusion process in the form of equation (2.1), with the conditions described in theorem 2.2,

the condition is satisfied, allowing comparison of the methods on the same ground.

To connect this scheme with the one described in [30], it is necessary to notice that

M◦D
(HS(iT∕N))
x log(

d�iT∕N

d�0
iT∕N

)=((HS(iT∕N)) log(
d�iT∕N

d�0
iT∕N

)= S(iT∕N)(H
log(

d�iT∕N

d�0
iT∕N

). The iterative procedure

that starts from a sample ∼ �(i+1)T∕N, simulates dynamics equation (3.1) for a sufficiently long time

(to reach approximately steady state) and obtains a sample from �iT∕N, is consequently a valid

generative model for �.
Our goal hereafter is to discuss more clearly the connections between this approach and the

schemes described previously. Considering a simple time-rescaling argument, it can be shown

[37] that the dynamics in equation (3.1) are equivalent to

dX̃t =−1

2
S(iT∕N)−1RX̃tdt +

R

2
( log(

d�iT∕N

d�0
iT∕N

(X̃t))dt + dW̃t, (3.2)

where Ŵt is a Brownian motion with covariance R. Then, under the assumptions of theorem 2.2,

equation (3.2) reads

dX̃t =
R

2
( log

(
�iT∕N(X̂t)

)
dt + dŴt, (3.3)

which is reminiscent of a classical Langevin equation in ℝN. Clearly, equation (3.3) preserves the

measure �iT∕N. The reverse time dynamics described by equation (2.5) can then be interpreted

as the schemes which anneal through the infinite (N→∞, [1,T∕N,… ,T]→ [0,T]) sequences as
follows:

dX̂t = (AX̂t +
R

2
( log

(
�T−t

(
X̂t

))
dt)

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
Equation (2.13). Transports �T−t into �T−dt−t

+ (R
2
( log

(
�T−t

(
X̂t

))
dt + dŴt)

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
Equation (3.3) with i∕N=T−t. Preserves �T−t

.

Furthermore, the approach in [30] can also be directly linked with the denoising approach of

[24,25,27] thanks to the result in equation(2.8), which allows us to appreciate the connection

among all the methods and a denoising interpretation of the generative dynamics.

(b) Flowmatching
It is worth mentioning that, in the literature, a purely deterministic approach to the problem (a

generalization of the ODE equation (2.13)), built as a generalization of the finite-dimensional Flow

Matching approach of [46], has been explored in [29]. In this work, the authors avoid the issues as-

sociated with time reversal by directly constructing a path of probability measures (�̂t)t∈[0,T] which
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anneals from a tractable initial measure �̂0 (a Gaussianmeasure for example) to the target data dis-

tribution �̂T = �. This path is constructed by flowing the initial measure along a time-dependent

vector field v(x, t) on the Hilbert space H:

dX̃t = v(Xt, t)dt, X̃0 ∼ �̂0 =N0,C, (3.4)

with C being a given trace class covariance. Since it represents a deterministic evolution, equation

(3.4) can equivalently be described by a flow mapping X̃t = �(X̃0, t),which is usually the space in

which the design of such models is performed. The evolution of �̂t along v(x, t) is governed by the
continuity equation (again for u in the set of cylinder test functions)

∫
T

0

dt ∫
H

()tu(x, t) + ⟨v(x, t)(x),(xu(x, t)⟩) d�̂t(x) = 0. (3.5)

Notice that the difference between this methodology and the ones described previously is that

the transformation of a Gaussian reference measure into the data measure takes place exactly in

finite time, whereas for the other methodologies, this does not happen. Indeed, in equation (2.4),

the initial conditions are drawn from �T , which can be close but not equal to a purely Gaussian

distribution (unless � is the steady-state distribution itself of the process, provided it exists, or

T =∞). Similarly, the annealed Langevin approach requires running the last step of the chains

for an infinite amount of time.

Given a conditional vector field v(x, t), it is possible to compute the induced sequence of

measures �̂t. The inverse procedure, which is more important from a practical perspective (the

annealed sequence is a design parameter and the field is unknown), is much more challenging.A

priori, it is not even known whether, given a sequence of measures, a vector field which matches

this sequence exists. In [29], the strategy for the construction of a sequence for which the field ex-

ists is split into steps: (i) selection of a family of vector fields vzt which induce a flow ofmeasures �̂zt
whose starting point is �̂z0 = �̂0 (thus independent from z) and ending one (at time T) is a measure

concentrated around z, (ii) assumption that �̂zt ≪ �̂t for � a.e. z and almost every t∈ [0,T], and (iii)

construction of v(x, t) = ∫ vzt
d�̂z

t

d�̂t
d�(z). The biggest technical problem is to ensure that �̂zt ≪ �̂t, which

is proven to be true if the collection of parametrized measures are � a.e. mutually absolutely con-

tinuous. This holds for a class of conditional flows (induced by the conditional fields) of the form

�z(x̃0, t) = �(t)x0 +m(t)z, where m, � are selected appropriately (�(0) =m(T) = 1, �(1) =m(0) = 0),

which corresponds to conditional vector fields

vz(x, t) =
d log�(t)

dt
(x −m(t)z) +

dm(t)
dt

z. (3.6)

In this practical case, the sequence of measures d�̂ft (g) admits known Gaussian closed form.

The relationship between the technique described in [29] and the other ones pre-

sented previously can be understood assuming that �̂t = �T−t, with A=−I∕2. Then �̂zt (x) =
Nexp(−(T−t)∕2)z,(1−exp(−(T−t)))R(x). Notice that, in this comparison, the flow starts from a measure �T
which is only close to a purely Gaussian measure. Then, we can explicitly identify the vector field

v(x, t) from equation (2.13), after simple manipulation, as v(x, t) = −Ax + 1

2
R( log �T−t(x), thanks

to the content of the second form of the Fokker–Planck equation, as shown in equation (2.12).

This correspondence is useful in that the same conditions of theorem 2.2, which allow us to

claim validity for the other class of models, are sufficient to ensure that the models considered

in [29] are well defined. Indeed, other than integrability assumptions, the main assumption in

Theorem 1 of [29] is that �zt ≪�t for � a.e. z and almost every t. Under the same assumptions of

theorem 2.2, this holds.

Theorem 3.1. As in theorem 2.2, assume that �(R
1
2H) = 1 and condition 2.2 holds. Then, �zt ≪�t for

� a.e. z and almost every t.
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Proof. We consider point (ii) of theorem 2.2, �t ≪�0t , which reads �0t (B) = 0⇒ �t(B) = 0 for any

t∈ (0,T]. Since �t(B) = ∫ �zt (B)d�(z), we have �t(B) = 0⇒ �zt (B) = 0, for � a.e. z. Chaining the re-

sults, this implies that �zt ≪�0t , for � a.e. z. Since both measures are Gaussian, this implies their

equivalence, �zt ∼ �
0
t for �−a.e. z. Then, for any z, z′, �

z
t ∼ �

z′
t , which is enough to prove that �zt ≪�t

for � a.e. z and almost every t, since (0,T] has full measure ([29], Theorem 2). ■

4. Parametric approximations
Our discussion so far has been rooted in the underlying assumption of having access to the

key vector fields of the dynamics for the generation process: ( log �t(x),( log
d�i∕N

d�i∕N
(x) and v(x, t).

Clearly, this is not the case in practice, for realistic (and unknown) �. In all implementations, the

true vector field is replaced by a parametric (� ∈ℝp) approximation s�(x, t). Importantly,working in

the functional domain calls for architectural choices which are suited for the infinite-dimensional

domain. The most popular choice for resolution invariant architectures is the family of Neural

(Fourier) Operators [67,68]. These architectures are extremely powerful in representational power

but suffer from the drawback of requiring the input points to be collected on a regularly spaced

grid [68], limiting their usage.Alternatively, transformers architectures [69] have been considered,

by interpreting them as mappings between Hilbert spaces [70]. The flexibility of being capable of

handling irregularly spaced grids comes at the cost that resolution invariance has to be learned

during training, and it is not guaranteed by default for Neural Operators. Finally, it is worth

mentioning the class of ImplicitNeural Representations [71],which have the requested resolution-

invariant properties, are known to be naturally good denoisers [72], but require meta-learning

techniques for working properly [73]. Another possibility, not yet explored by the community, is

to combine the different architectures mentioned, as done in the empirical work [74].

(a) Loss functions and time discretization
While the selection of an appropriate architecture is an important endeavour, a fundamental as-

pect is the selection of appropriate loss functions for learning the parameters of such architectures.

We then proceed by providing an overview of various loss functions employed in different ap-

proaches to infinite-dimensional diffusion models, highlighting their mathematical formulations

and connections. Interestingly, all variants presented in the literature can be understood under

the lens of learning to denoise a corrupted version of the input data.

The learning objective associated with equation (2.4) can be formulated as an evidence lower

bound (ELBO) on the log-likelihood of the data (see [26] for full details). In particular, such ELBO

arises from comparing the path measures of the forward and reverse diffusion processes, lever-

aging Girsanov’s theorem in infinite dimensions [37]. The discrepancy between the measure �
obtained with the approximated dynamics (and with initial conditions drawn from �0

T
in place of

�T) and the true one can be expressed in Kullback–Leibler (KL) terms as

KL(�||�)≤ 1

2
Eℚ [∫

T

0

||R(s�(Xt, t) − ( log �t(Xt |X0))||2
R1∕2H

dt] + KL(�T||�0T) + const(�), (4.1)

where ⟨( log �t(x | x0)), ek⟩=
)

)xk
log

d�t(xk | x0)

dxk
. In the linear case, the conditional score term has

expression [26]

R( log �t(x | x0) = −RS(t)−1
(
x − exp(tA)x0

)
. (4.2)

Minimizing the loss C(�) = Eℚ [∫
T

0
||Rs�(Xt, t) + RS(t)−1

(
Xt − exp(tA)X0

)
||2
R

1
2 H

dt] is then equiv-

alent to minimizing the ELBO. Related losses, but with different preconditioning, are
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also considered in [24,31,45]. A typical parametrization chosen for s�(x, t) is in the form

S(t)−1
(
Xt − exp(tA)n�(x, t)

)
, from which

C(�) = Eℚ [∫
T

0

||RS−1(t) exp(tA) (s�(Xt, t) − X0) ||2
R

1
2 H

dt]

and is thus evident that the optimal solution for the parametric network n�(x, t) is the ‘denoiser’
Eℚ[X0 |Xt = x].

While the continuous-time framework provides a strong theoretical foundation for under-

standing diffusion processes, practical implementations often rely only on discrete-time approx-

imations. In this setting [28], the first work in chronological order in considering Hilbert space

valued generative diffusion models, the continuous path of measures (�t)t∈[0,T] is replaced by the

finite sequence of measures, and the forward and reverse diffusion processes are approximated

using discrete-time transitions, from which an analogous ELBO to equation (4.1) is obtained

(where effectively, integration over t is substituted with a finite sum over the discrete steps of

the generation chain). One important aspect of this approach is that it automatically includes in

the lower bound the effect of discretization of the SDEs, which is instead not included explicitly

in the continuous time methods (when implemented, such methods clearly need to include some

form of numerical integration [75–81]). Whenever the number of numerical integration steps is

limited, in the finite-dimensional literature of diffusion models, it has been observed that opti-

mizing directly the discrete-time lower bound provides better results [82]. While the same should

hold in principle also in the infinite-dimensional settings, to the best of our knowledge, none of

the work present in the literature has directly explored the problem.

Other families of approaches [29,30] adopt similar techniques, where a conditional ver-

sion of the target field is considered for learning the vector fields. In particular, for learning

( log
d�i∕N

d�i∕N
(x) through the equality formalized by equation (2.8), the following loss is considered:

C(�) =
∑N

i=1 EQ

[‖‖‖‖exp(iT∕NA)X0 − s�(XiT∕N, iT∕N)
‖‖‖‖
2]
. Each term in the loss corresponds to the mis-

match between the true Langevin drift and the approximated one. Interestingly, in principle,

the scheme in [30] could still achieve very good performance while having bad approximations

for all the terms but the last one, provided the last chain is run for long enough. A quantita-

tive analysis of such discrepancy is an interesting avenue for future work, but it is worth men-

tioning that the study of the convergence rate of Langevin dynamics in infinite dimensions is

much more challenging than for the finite-dimensional case [19]. Finally, in [29], the considered

loss is C(�) = EQ

[
∫ T

0
||s�(Xt,T − t) − vX0 (Xt,T − t)||2

]
which, upon noticing that vX0 (Xt,T − t) =

d log�(t)

dt
(Xt −m(t)X0) +

dm(t)

dt
X0 (equation (3.6)), can again be interpreted as a denoising objective.

5. Applications and extensions
One of the primary applications of diffusion models in function spaces is data generation at ar-

bitrary resolutions. This capability is essential in domains where high-resolution or continuous

data representations are required. For example, in the fields of image and audio synthesis, where

traditional generative models operate in discrete, finite-dimensional spaces, diffusion models in

function spaces can inherently capture and generate data that varies continuously across scales.

Recent works have demonstrated that these models can be particularly powerful for generating

high-resolution images or audio waveforms, with Neural Operators, INRs or Transformer ar-

chitectures providing a way to model functional data while maintaining resolution invariance

[26,27,31,50,83]. Other authors have mainly focused on time series modelling under the func-

tional formalism [28,29], or focused on new methodologies for physical sciences simulations and

inverse problems [30]. In general, function space diffusionmodels can be applied to anymodality

on which finite-dimensional techniques have been applied, and beyond. We comment that, other

than the obvious application scenario of generative modelling, variants of these diffusion models

have also been applied for other problems, which we overview in the following.
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(a) Diffusion bridges and optimal control
For example, the works presented in [32,33,50] introduce an approach for simulating nonlinear

diffusion bridges in infinite-dimensional spaces. The method involves considering a diffusion

process (with measure ℚ)

dXt = (AXt + f (Xt))dt + dWt,X0 = x0, (5.1)

and proving, through a generalization of Doob’s h-transform [84] to infinite dimensions, that

the representation of an SDE corresponding to a process with path measure ℚ� , where ℚ�(⋅) =
∫ ℚ(⋅ |XT = y)d�(y), �≪�T , is again an SDE in the form

dXt = (AXt + f (Xt) + R( log h(Xt, t))dt + dWt,X0 = x0, (5.2)

where h(x, t) = EY∼�Eℚ[1dY(XT) |Xt = x] = ∫ d�(z)dℚ(XT = z |Xt = x). Unfortunately, excluding

simple cases, knowledge of ( log h(x, t) is out of reach. Even worse, a priori, it is not even known

whether h(x, t) is differentiable and the problem is consequently well defined.

In the linear case, under the assumption exp(tA)z∈ S
1
2
t H, the derivative exists and further-

more �zt ≪�∞, with known differentiable density qt(z, x) (for the exact form and a proof refer

to [59,85,86]).1 Then, noticing the time homogeneity of the problem h(x, t) = ∫ d�(z)dℚ(XT−t =
z |X0 = x) = ∫ d�(z)d�x

T−t(z) = ∫ d�(z)qT−t(x, z)d�∞(z), that is a form allowing for the computation

of ( log h(x, t), which coincides with ( log �T−t(x) [50]. In [50], such formalism is investigated in

deeper detail and adopted for building bridges between broader modifications of ℚ, for exam-

ple for the measure ∫ d�(y)d�(x)ℚ(⋅ |X0 = x,XT = y). These extensions allow us, for example, to

perform generic bridge matching and implement Bayesian learning in function space [50]. Other

than for generative modelling purposes or stochastic control, stochastic bridges are also useful

in other contexts, such as phylogenetic shape analysis, which models the stochastic change in

animals’ morphometry over time [87].

When considering nonlinear SDEs, the situation becomes more complex as, in general, it is

harder to prove the existence of the derivative of h(x, t), and it is impossible to sample from

ℚ(XT = ⋅ |Xt = x) without having first constructed the bridge, which introduces a circular depen-

dency. The authors in [32,33] adopt the strategy of time reversal to solve such problems and

simplify the implementation.

For the following passages to be valid, it is important to assume the existence of the various

Radon–Nikodym derivatives involved, whose proof is in general a far from trivial task. We con-

sider for simplicity of exposition deterministic terminal conditions, i.e. ℚ�(⋅) =ℚ(⋅ |XT = y), and
consequently h(x, t) = dℚ(Xt = x |XT = y). By writing dℚ(Xt = x |XT = y) = dℚ(Xt=x |XT=y)

dℚ(Xt=x)
dℚ(XT = y),

we can explicitly write ( log h(x, t) =( log
dℚ(Xt=x |XT=y)

dℚ(Xt=x)
, and in particular then ⟨R( log h(x, t), ek⟩=

rk
)

)xk
(log (

dℚ(Xk
t
=xk |XT=y,X

j≠k
t

=xj≠k)

dℚ(Xk
t
=xk |X

j≠k
t

=xj≠k)
)). The time reversal of equation (5.2) involves the distribution

��t associated to ℚ� , and consequently ⟨R( log ��t (x), ek⟩= rk
)

)xk
(log (

d�t(Xkt =x
k |X

j≠k
t

=xj≠k ,XT=y)

dxk
)). Then

−R( log h(x, t) + R( log ��t (x) =R( log �t(x). Conceptually, this implies the following: to simulate

a bridge in the form of equation (5.2), it is possible to learn R( log �t(x) from equation (5.1), which

has no constraints on the ending value and is thus an easier task, and then simulate the back-

ward dynamics of equation (5.2), where initial conditions are known and the drift term is equal

to −Ax − f (x,T − t) + R( log �t(x). For full details and formal validity of the derivations, we refer

the reader to [32,33].

1Notice that this condition is in general not compatible with the ones guaranteeing the existence of a time reversal as defined

by [57].
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(b) Bayesian inverse problems
Finite-dimensional diffusion models have been explored as strong priors for Bayesian inverse

problems in multiple domains [51,52]. The extension of these techniques to the Hilbert space

settings has been explored by the authors in [24,25], in the case of linear and nonlinear obser-

vations, respectively. Considering the linear observation problem, it is assumed to have access to

Y = P(X0) + B, where P ∶H→RM is a linear operator and B is an additive noise random variable

with a density  w.r.t. the Lebesgue measure. Then, if �≪N(0,R) (note that the work in [24]

considers a more generic R̃) it is possible to show that the following scheme

dX̂t =
1

2
X̂t − (1 − exp(−t))−1 (x − exp(− t

2
)E

[
X0 |XT−t = X̂t,Y

]
) + dŴt, X̂0 ∼ℚ(XT |Y) (5.3)

with Ŵt being a R-Wiener process provides, at time t= T, a valid sample from the posterior dis-

tribution ℚ(X0 |Y). The result is obtained considering the particular case of equation (2.1) where

f = 0 andA=− 1

2
I. The proof requires mimicking the result of [45], extending it for the conditional

case. The authors extend their work in two directions: first, considering the case of nonlinear op-

erator P, and second, performing conditional samplingwith only knowledge of the unconditional

E [X0 |Xt] (thus allowing the technique to adopt any pre-trained unconditional model as in [88]).

A simplified expression of the scheme proposed in [25] reads

dX̂t =
R

2
( log ��(X̂t) +

R

2
( log

(
 (Y − P(X̂t))

)
+ dŴt, X̂0 ∼ℚ(XT |Y), (5.4)

where � > 0 is a parameter which is annealed from large to small values. Given the similarity

between equations (5.4) and (3.3), it is natural to interpret the former as an infinite-dimensional

generalization of the conditioning trick [89], which in finite dimension reads (��(x | y) =(��(x) +
(ℚ(y | x). We invite the reader to refer to [25] for generalizations of this scheme and quantitative

bounds on the quality of approximated posterior.

6. Conclusions
In this survey, we have explored the extension of diffusion-based generative models from finite-

dimensional settings to infinite-dimensional function spaces, focusing on the theoretical under-

pinnings and practical implementations of such models in Hilbert spaces. By leveraging SDEs

and the properties of time reversal in infinite dimensions, we have highlighted how these mod-

els can effectively generate function-valued data, offering promising applications in domains that

require high-resolution generative capabilities.

While significant progress has beenmade in adapting diffusionmodels to infinite-dimensional

settings, several challenges remain open. One of the key difficulties is ensuring the efficient com-

putation of generative dynamics in function spaces without sacrificing resolution invariance.

Approximations and parametric methods, such as those based on neural Fourier operators and

transformer architectures, have shown promise, but further improvements are necessary to fully

realize the potential of these models in practical settings.

An interesting direction for future research would be the exploration of perturbation-based

scenarios for infinite-dimensional diffusion models, akin to those already developed for finite-

dimensional cases. For instance, works such as [90–93] have successfully extended finite-

dimensional diffusionmodels to account for different perturbative settings.Applying thesemeth-

ods to function spaces could open new avenues for developing more robust generative models

that operate under complex data perturbations or in noisier, real-world applications. This ex-

tension could provide stronger priors for solving inverse problems, denoising functional data or

addressing generative tasks in physical sciences. Alternatively, it would be interesting to draw

the functional domain equivalent of the alternatives to diffusion in finite dimensions [47,94,95].

Moreover, the theoretical understanding of how these perturbation techniques interact with

the infinite-dimensional structure remains an open problem. As with finite-dimensional models,
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establishing precise conditions for the stability, convergence and efficiency of these models in

infinite dimensions will be critical for both theoretical development and their practical utility.

In conclusion, infinite-dimensional diffusion models represent a powerful and flexible ap-

proach to generative modelling in functional domains. Their potential in practical applications

is clear but under-explored, and further extensions, especially along the lines of perturbation

methods, could significantly advance both the theory and applications of functional models.
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Appendix A. Detailed conditions for theorem 2.1
We provide a complete list of assumptions from [65], where the authors consider a generalization

of the infinite system of equations

dYk
t = bk(Yt, t)dt + �k(t)dW k

t , k∈ℕ, (A 1)

where W k
t are Brownian motions, with Eℚ[W k

tW
j
s] = �(k − j)rk min(s, t), � in the Kronecker sense.

For clarity, we denote the law of the process by d�Yt (y) when necessary. The system studied in

[65] evolves in the space of weighted square-summable sequences,

lr2(ℕ)
def
= {y∈ℝℕ ∶

∑
ri(yi)2 <∞},

while the original processX is defined in l2(ℕ). Since these two spaces are isomorphic, results from

one setting can be translated into the other via simple algebraic manipulations. We now list the

necessary assumptions for ensuring the existence of the reverse process.We state the assumptions

in a simplified form, which leverages the fact that in this work we consider � to be independent

from y.

Assumption A.1. (Assumption H1 in [65]). There exists a finite positive constant K such that

∀y, z∈ lr2(ℕ) ∶

sup
t

{
∑

i

ri
(
bi(y, t)

)2
+
∑

i

(
ri
)2 (

�i(t)
)2
}≤K (1 +

∑

i

ri
(
yi
)2
)

sup
t

{
∑

i

ri
(
bi(y, t) − bi(z, t)

)2
}≤K

∑

i

ri
(
yi − zi

)2
.

Assumption A.2. (Assumption H2 of [65]). For each k∈ℕ and t∈ [0,T], the coefficients bk(y, t)
depend on y on at most a number of finite coordinates.

Assumption A.3. (Assumption H4 of [65]). There exists a positive constant K such that ∀y, z∈
lr2(ℕ)

sup
t

{
∑

i

(
ri
)2 (

bi(y, t) − bi(z, t)
)2
}≤K

∑

i

(
ri
)2 (

yi − zi
)2
.
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Assumption A.4. (Assumption H5 of [65]). There exists an increasing sequence of finite subsets

I(i), i≥ 0 which cover ℕ (i.e. ∪iI(i) =ℕ) such that ∀i∈ℕ,C> 0, there exists a constant K(i,C) for
which

sup
t

sup
k∈I(i)

sup{|bk(y, t)| +
∑

j∈ℕ

rk|�j,k(t)| ∶ sup
m∈I(i)

|ym|≤C}≤K(i,C).

Assumption A.5. (parts (iii,iv) of Theorem 4.3. in [65]). Suppose that the initial condition Y0 ∈
lr2(ℕ).

— Assume that the conditional law of yi given yj, j≠ i has density with respect to Lebesgue measure

on ℝ, i.e. the conditional densities
d�Y

t
(yi | yj≠i)

dyi
exist.

— Fix a finite subset J ⊂ℕ. For every positive t0, everyD∈ {(
∏

j∈J Kj) × (
∏

j∉J ℝ),Kj compact in ℝ} ∩
lr2(ℕ), and every i∈ℕ assume that

∫
1

t0

∫
D

|ri(�i(t))2 )
)yi

(
d�Yt (yi | yj≠i)

dyi
)|dyi�Yt (dyj≠i)dt<∞.

Given the assumptions outlined above, we can now formally state the main result of Theorem 4.3

in [65]:

Theorem A.1. Consider the system in equation (A 1). Suppose assumptionsA.1,A.2,A.3,A.4, and

A.5 hold. Then the time reversal of equation (A 1) is a solution of the SDE taking values in lr2(ℕ)

dŶk
t =−bk(Ŷt,T − t) + rk(�k(T − t))2 )

)yk
log (

d�Y
T−t(Ŷ

k
t |Ŷ

j≠k
t )

dyk
)dt + �k(T − t)dŴ k

t . (A 2)

As a direct corollary, we consider the system of equations in l2(ℕ),

dXk
t = ak(Xt) + f k(Xt, t)dt + dW k

t , k∈ℕ,

which admits strong solutions. We introduce the coordinate transformation yk = (rk)−
1
2 xk, yielding

the equivalent system

dYk
t = (rk)−

1
2 (ak(R

1
2Yt) + f k(R

1
2Yt, t))

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
bk(Yt ,t)

dt + (rk)−
1
2

⏟⏟⏟
�k(t)

dW k
t , k∈ℕ, (A 3)

which evolves in lr2(ℕ) since

∑

i

(xi)2 =
∑

i

ri ((ri)−
1
2 xi)

2

=
∑

i

ri(yi)2.

For this transformed system, we verify that assumptions A.1, A.2, A.3, A.4 and A.5 hold. If these

conditions are satisfied, the time-reversed process of equation (A 3) satisfies equation (A 2). Since

the transformation satisfies dX̂k
t = (rk)

1
2 dŶk

t , the reversed system takes the form

dX̂k
t =−

(
ak(X̂t) + f k(X̂t,T − t)

)
+ (rk)

1
2 (

)
)yk

log(
d�Y

T−t(y
k|yj≠k)

dyk
)) |

y=R
− 1
2 X̂t

dt + dŴ k
t . (A 4)

Applying the change of variable formula formeasures, we obtain
d�Y

t
(yk ∣yj≠k)

dyk
= (rk)

1
2
d�X

t
(xk ∣xj≠k)

dxk
, which

leads directly to the form given in equation (2.4).
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A.1. The linear case
We now show that condition 2.3 ensures the validity of assumptions A.1, A.2, A.3 andA.4. Under

this condition, the forward system satisfies

dXk
t = akXk

tdt + dW k
t , k∈ℕ, (A 5)

which admits a strong solution in l2(ℕ) (see condition 2.1). Transforming via yi = (ri)−
1
2 xi, we obtain

dYk
t = akYk

tdt + (rk)−
1
2 dW k

t , k∈ℕ. (A 6)

Under this transformation, assumption A.1 reduces to

∀y∈ lr2(ℕ),
∑

i

ri
(
ai
)2 (

yi
)2
+
∑

i

ri ≤K (1 +
∑

i

ri
(
yi
)2
) ,

∀y, z∈ lr2(ℕ),
∑

i

ri
(
ai
)2 (

yi − zi
)2
≤K

∑

i

ri
(
yi − zi

)2
.

Since b and � are independent of t, these assumptions are satisfied, given that
∑

i
ri =K1 and

∑

i

ri(ai)2(yi)2 ≤M2
∑

i

ri(yi)2,
∑

i

ri(ai)2(yi − zi)2 ≤M2
∑

i

ri(yi − zi)2,

where M is the constant from condition 2.3. Assumption A.3 is verified similarly, while A.2 and

A.4 follow from the diagonality of A. In particular for A.4, consider I(i) = {i}, from which the as-

sumption is satisfied if sup{|aiyi| + (ri)
1
2 ∶ |yi|≤C}≤K(i,C),∀i∈ℕ, which clearly holds since ai is

bounded.

Using again the relation
d�Y

t
(yk ∣yj≠k)

dyk
= (rk)

1
2
d�X

t
(xk ∣xj≠k)

dxk
, along with the results in theorem 2.2(iii),

we establish that the integrability condition in assumption A.5 holds, since the time interval

considered is (0, 1].
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