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Abstract—Unmanned Aerial Vehicles (UAVs) are increasingly
pivotal for data harvesting in the context of IoT networks,
leveraging their exceptional mobility and flexibility. Traditional
and AI-driven approaches for UAV data collection typically focus
on optimizing a single or a fixed combination of objectives, such
as data quantity, energy efficiency, or data freshness. However,
these methods often fall short in balancing the diverse trade-
offs in complex, real-world tasks with conflicting objectives.
Our work introduces a novel extension of the Discrete Soft
Actor-Critic algorithm to the multi-objective framework. This
approach enables UAVs to learn and adapt to diverse trade-
offs between data collection and energy consumption. Simulation
results demonstrate significant improvements in stability and
performance over existing deep multi-objective reinforcement
learning algorithms.

Index Terms—Data collection, deep reinforcement learning,
IoT, multi-objective optimization, UAV, wireless communications.

I. INTRODUCTION

Internet of Things (IoT) devices are increasingly prevalent
across various environments, ranging from urban to rural areas,
driving a growing demand for efficient and scalable data
collection solutions. In this context, Unmanned Aerial Vehicles
(UAVs), as wireless data harvesting agents, have attracted sig-
nificant attention thanks to their mobility, flexibility, and ease
of deployment over large areas without the need for additional
ground infrastructure [1]. Indeed, UAVs can be efficiently used
in a wide range of data collection scenarios, such as agri-
cultural management, smart cities, and environmental moni-
toring. Nevertheless, UAV-IoT problems have typically been
addressed within a single-objective optimization framework,
which is much simpler than the inherently multi-objective
nature of real-world scenarios. A comprehensive solution to
such data harvesting problems should account for and balance
trade-offs among key, often conflicting objectives, such as
maximizing data collection, minimizing energy consumption,
and preserving data freshness [2].

A. Related Work

In wireless data collection with UAVs, conventional meth-
ods often rely on graph-theoretic algorithms for trajectory
design, such as A*, Dijkstra, and Voronoi diagrams, which are
typically supported by heuristics focused on energy efficiency,

network delay, or the quantity of collected data (QCD) [2]. Ad-
ditionally, both scalar and multi-objective optimization tech-
niques have been applied to address data collection challenges.
For instance, a trade-off between Age of Information (AoI)
and energy consumption is explored in [3] within a single UAV
framework, demonstrating that simultaneously minimizing AoI
and energy usage is generally not feasible.

Recently, Deep Reinforcement Learning (DRL) algorithms
have emerged as efficient solutions for automatically designing
UAV trajectories in data collection tasks. These algorithms
handle better high complexity and dimensionality, can learn
solely through interactions without requiring prior knowledge
of the environment’s rules, and provide models capable of
making near-optimal decisions in real-time. For example, in
[4], the authors train a Deep Q Network (DQN) to jointly
optimize flight cruise control and environment sensing data
collection of a single UAV, outperforming non-linear heuristic-
based methods. In the same line of work, [5] outperformed
conventional “non-learning”-based baselines by employing a
Twin-Delayed Deep Deterministic policy gradient (TD3) in
a realistic throughput maximization task during UAV naviga-
tion. Unlike other works, [6] explicitly formulates the data
collection problem as a multi-objective optimization task,
incorporating data collection, energy harvesting, and UAV
energy consumption. However, the proposed solution relies on
training a Deep Deterministic Policy Gradient (DDPG) algo-
rithm using a scalarized reward with fixed importance weights
assigned to each objective. Thus, the algorithm, once deployed,
only produces a single policy, which may be inefficient for
other importance weights required for balancing the objectives.

In this work, we study a wireless data collection problem
where a UAV flies from a starting point to a final destination
while collecting data from sensor devices distributed across an
urban environment. We propose a Multi-Objective Reinforce-
ment Learning (MORL) agent, trained only once (no retraining
or fine-tuning), which is capable of generating efficient behav-
iors for various desired trade-offs between data collection and
battery conservation - two inherently conflicting objectives.
To the best of our knowledge, this approach is novel, as
existing scalar DRL methods are limited to discovering a
single solution corresponding to a fixed trade-off between the
objectives.



B. Contributions
Our main contributions can be summarized as follows:
‚ We formulate a UAV-based wireless data harvesting

problem in an urban area as a multi-objective trajectory
optimization problem between data collection and battery
consumption objectives.

‚ We extend the well-known Soft Actor-Critic for discrete
action space to support multiple objectives, which, to the
best of our knowledge, has not been explored before.
We evaluate our proposed MORL algorithm against a
carefully designed rule-based method and established
MORL baselines, with a focus on performance, stability,
and computation needs.

‚ We further employ target entropy decay and propose
exploration improvements through a “heated-up” softmax
mechanism in the actor network to significantly boost
performance. We conduct a performance study on a UAV
wireless data harvesting simulation, demonstrating the
superiority of our algorithm compared to baselines.

C. Notations
In the rest of the paper, vectors are represented with bold

characters. We denote r¨sT the transpose operator and 1l the
1-vector of size l P N, e.g. 13 “ r1, 1, 1s. The j-th element
of a vector v is designated by vj . For a position vector p, px,
py , and pz denote the x, y, and z coordinates, respectively. For
an action-value function Q, the vector of action-values of the
different actions in a state s is denoted Qps, ¨q. Whenever a
function defined on a subset of R is applied on a vector or
matrix, we intend an element-wise application.

II. SYSTEM MODEL

A. Environment and UAV model
Our scenario closely resembles the one proposed in [7],

with the key distinction that we focus on a single UAV and
address multiple objectives simultaneously. We consider a data
harvesting mission in an urban area engaging one UAV and
K static devices at ground level. The k-th device coordinates
are denoted pk “ pxk, yk, 0q P R3. We assume that time is
discretized into equal-duration slots of length ∆t, indexed by
n P r0, T s, with T P N being the mission duration. Each
device k has a data buffer initially filled with data quantity
Dk

0 and at time step n, the remaining data quantity is denoted
as Dk

n. The UAV is assumed to fly at a constant height h, with
its coordinates at time step n given by pn “ pxn, yn, hq.

The data harvesting mission starts at an initial position pI “

pxI , yI , hq with the UAV’s battery fully charged at b0. The
mission stops if the UAV’s remaining battery, which is denoted
as bn at time step n, is 0 or if the UAV reaches the destination
pF “ pxF , yF , hq. We assume that at each time step n, the
UAV can either hover or travel within a distance c in one of
the four directions. Thus, we define the set of UAV actions as
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We further assume that moving consumes a single unit of bat-
tery and hovering consumes half a unit. Then, given an P A,
the position of the UAV and the remaining battery evolve as:

pn`1 “ pn ` an, (2)

bn`1 “

#

bn ´ 0.5 if an “ hover,
bn ´ 1 else.

(3)

The consumed battery is denoted by en “ bn ´ bn`1.

B. Channel model and data collection
Following [7], the channel gain (in dB) between device k

and the UAV at n writes as:

gkn “ βz ´ αz log10pdknq ` ηz, (4)

with dkn “ }pk ´ pn}2 the Euclidean distance between the
UAV and device k, index z P tLoS,NLoSu denoting whether
the communication link is in Line-of-Sight (LoS) or non-LoS
(NLoS) condition, αz the path loss exponent, ηz „ N p0, σ2

zq

the log-normal shadowing and βz the average gain at a
reference distance of 1m. Subsequently, the Signal-to-Noise
Ratio (SNR) at time step n is expressed as

SNRk
n “

P100.1g
k
n

σ2
(5)

where P is the transmit power and σ2 is the additive white
Gaussian noise (AWGN) power at the receiver. The (Shannon)
maximum achievable information rate is then

Rk
n “ log2p1 ` SNRk

nq. (6)

Adopting the block fading model, we assume that the channel
(and hence Rk

n) remains constant during a time slot. At a
time step n, the device with the highest SNR is scheduled for
transmission. We denote δkn P t0, 1u the scheduling variable,
such that δkn “ 1 if device k is scheduled and δkn “ 0
otherwise. As only one device can be scheduled at a time,
it follows:

K
ÿ

k“1

δkn ď 1, @n ě 0. (7)

Note that a device is scheduled for communication only if
its SNR at the UAV is greater than a threshold Σ, which
effectively defines the communication range. For a scheduled
device k, the transmission rate is then

Qk
n “

#

Rk
n if Dk

n ě Rk
n∆t ,

Dk
n{∆t else.

(8)

C. Problem formulation
We seek the policies π for movement and hovering decisions

so as to optimize data collection and battery usage. Using the
above notations and definitions, our problem becomes

max
π

˜

T´1
ÿ

n“0

K
ÿ

k“1

δknQ
k
n∆t, ´

T´1
ÿ

n“0

en

¸

(9a)

s.t. p0 “ pI ,pT “ pF , (9b)
bT ě 0, (9c)
p2q, p3q, p7q. (9d)



The first objective is to maximize the quantity of collected
data during the mission, while the second objective is to
minimize the battery consumption. Constraint (9b) enforces
that the UAV starts at the initial position and finishes at the
final position, (9c) ensures that it reaches the destination before
its battery is empty and (9d) encapsulates movement, battery,
and data collection rules, respectively. This problem involves
multiple layers of complexity, such as the simultaneous opti-
mization of multiple objectives and the uncertainty associated
with the channel model. In addition, the two objectives are
inherently conflicting, as collecting more data requires higher
battery consumption. To address this issue, in the following
sections, we propose a novel MORL-based algorithm, which
is capable of adapting its policy dynamically to any required
trade-off between these objectives without additional training.

III. MULTI-OBJECTIVE SOFT ACTOR-CRITIC (MOSAC)
A. Multi-Objective Markov Decision Process (MOMDP)

An MOMDP is defined as a tuple pS,A, p,R, γ, µ, fq,
where S is the state space, A is the action space, pp¨|s, aq is
the transition distribution over next states given a state s and
an action a, γ P r0, 1q is the discount factor, µ is the initial
state distribution, R : S ˆ A Ñ RM is the multi-objective
reward function (with M the number of objectives) and f
is a scalarization/utility function over the objectives. Within
this framework, let π denote a policy, which is a function
that maps states to actions. The multi-objective action-value
function corresponding to this policy can be written for a state
s P S and an action a P A as

Qπ
ps, aq “ Eπ

«

8
ÿ

i“0

γiRn`i|sn “ s, an “ a

ff

. (10)

It represents the expected discounted return obtained by fol-
lowing the policy π from a given state-action pair. The target
solution to such an MODMP is the Pareto set of policies

Π˚ “ tπ˚|Eπ1 : V π1

ąP V π˚

u, (11)

with V π
“ Es0„µrQπ

ps0, πps0qs the multi-objective value
function and ąP the Pareto dominance relation:

V π1

ąP V π
ô p@m : V π1

m ě V π
mq^pDm : V π1

m ą V π
mq. (12)

A policy Pareto-dominates another if it achieves equal or
higher values across all objectives while being strictly supe-
rior in at least one objective. In general, linear scalarization
fpV π,wq “ wTV π is used with w the preference vector
such that

ř

m wm “ 1, wm ě 0,m “ 1, . . . ,M . Here, wm is
the importance weight of the m-th objective. For a policy π,
if no other policy achieves a higher scalarized utility under a
given preference w, then π is Pareto non-dominated [8].

B. RL formulation

To solve problem (9) using the MOMDP framework, we need
to define the states, actions, and rewards of our system. Our
MORL agent will learn Pareto optimal policies by observing
states, exploring various actions, and learning from the corre-
sponding rewards.

State space. The global state of the system depends on the
state of the UAV, the devices, and the communication channels.
The state of the UAV at time step n can be described by the
remaining battery level bn, the minimum battery required to
reach the destination bSC

n , and the relative distances between
the UAV and the destination dn,x “ pFx ´ pn,x and dn,y “

pFy ´ pn,y . Moreover, the device k is described by its relative
distances to the UAV dkn,x “ pn,x ´ pkx, dkn,y “ pn,y ´ pky ,
dkn “ ||pn ´pk||2, the remaining data in its buffer Dk

n, SNRk
n

and its reachability by the UAV ρkn s.t ρkn “ 1 if SNRk
n ě Σ

and ρkn “ 0 otherwise. Thus, we write the state at n as

sn “ psUAV
n , sunq, (13)

sUAV
n “ pbSC

n , bn, dn,x, dn,yq, (14)

sun “ tdkn,x, d
k
n,y, d

k
n, D

k
n,SNRk

n, ρ
k
nu@k. (15)

Note that we assume that the device positions are known by
the UAV, but the UAV has no direct access to the current
amount of data in the devices’ buffers. Instead, the UAV has
access to Dk

0 , and at n ą 0, it can infer Dk
n locally based on

Dk
n´1 and the quantity of collected data.

Action space. We employ the action space defined in (1).

Reward. Our vector reward at time step n is an instantaneous
version of the objectives defined in (9a):

rn “

«

K
ÿ

k“1

δknQ
k
n∆t,´en

ff

. (16)

Safety controller. As a precaution measure, the UAV is
required to execute the sequence of actions that brings it to
the destination whenever bSC

n “ 0, i.e., the remaining battery
is just sufficient to reach the destination. However, efficient
policies are likely to avoid reaching such a situation altogether.

C. Proposed MOSAC extension

The Soft Actor-Critic (SAC) algorithm [9] is regarded as
a benchmark in model-free DRL due to its high sample
efficiency and stability. These advantages stem from its unique
mixed-learning approach that combines the optimization of
expected returns with enhanced exploration, achieved through
entropy maximization. Although originally developed for con-
tinuous action spaces, SAC has since been adapted to handle
discrete action space problems [10]. The mentioned mixed
objective is

Jpπq “

T
ÿ

n“0

Epsn,anq„ρπ
rrpsn, anq ` αHpπp¨|snqqs (17)

where ρπ is the state-action distribution, Hpπp¨|snqq “

´
ř

a πpa|snq log πpa|snq is the entropy of the policy π and
α is the trade-off factor between performance (exploitation)
and entropy (exploration). The discrete SAC is trained by
learning an action-value Q : S Ñ R|A| and a distribution
over a discrete action space π : S Ñ r0, 1s|A| with neural
networks. Building on the widely adopted method developed
in [11], we extend the algorithm to the MORL framework by



conditioning both the Q-value and the policy by a preference
w so that different policies are learned for different desired
weighted combinations of the objectives. As a result, we now
learn Q : S ˆ W Ñ RMˆ|A| and π : S ˆ W Ñ r0, 1s|A|.

Soft Q function extension. In the discrete and scalar SAC
[10], the Q function is parameterized by θ and learned by
gradient descent of

JQpθq “ Eps,a,rq„B

„

1

2
pQθps, aq ´ yps, aqq

2

ȷ

, (18)

with yps, aq “ r ` γEs1 rπϕps1qT pQθ̄ps1, ¨q ´ α logπϕps1qqs,
B the replay buffer and θ̄ the parameters of the target network
[12]. Our extension is written as

JQpθq “ E
ps,a,rq„B
w„DW

„

1

2
}Qθps, a,wq ´ yps, a,wq}22

ȷ

, (19)

with DW a preference distribution and the target given by

yps, a,wq “ r ` γEs1

“`

Qθ̄ps1, ¨,wq´

α1M logπps1,wqT
˘

πps1,wq
‰

. (20)

Policy extension. In the scalar SAC, the policy estimator
πϕpa|sq is parameterized by ϕ and trained by minimizing

Jπpϕq “ Es„B
“

πϕpsqT rα logπϕpsq ´ Qθps, ¨qs
‰

. (21)

Such an objective aims to encourage policies with high value
and high entropy. We present our extension as

Jπpϕq “ E
s„B

w„DW

“

πϕps,wqT rα logπϕps,wq´

Qθps, ¨,wqTw
‰‰

. (22)

Entropy parameter. The trade-off parameter α controls the
relative importance of the entropy term. It can either be fixed
or learned dynamically with

Jpαq “ Es„B
“

πϕpsqT
“

´α
`

logπϕpsq ` H01|A|

˘‰‰

, (23)

where H0 is a target entropy that controls the desired level of
entropy. Taking into account our multi-objective policy:

Jpαq “ E
s„B

w„DW

“

πϕps,wqT
“

´α
`

logπϕps,wq ` H01|A|

˘‰‰

.

(24)

D. Heated-up softmax for exploration

In certain scenarios, the discrete SAC may converge to
a suboptimal policy due to insufficient exploration or may
even be misled into learning an incorrect policy that has a
high discounted entropy. Indeed, the objective in SAC can
be written as a trade-off between the discounted return and
the sum of discounted entropies Jpπq “ Qpπq ` αHpπq, see
(17). In the case of sparse, delayed, or small rewards, the
algorithm may learn a policy with a high discounted entropy.
Surprisingly, in such scenarios, a higher target entropy for
more exploration proves ineffective, as the resulting policies

Algorithm 1: Discrete MOSAC

1 Input: preference distribution Dw, target entropies H0

and Hfinal , policy temperatures τ0 and τfinal
2 Initialize replay buffer B, policy temperature τ ,

networks Qθ1 , Qθ2 , Qθ̄1 , Qθ̄2 and actor network πϕ.
3 Match main and target parameters θ̄1 Ð θ1, θ̄2 Ð θ2
4 for episode e “ 1, . . . ,M do
5 Sample w „ Dw

6 while not done do
7 Observe state s
8 Sample action a „ πτ

ϕp¨|s,wq

9 Receive vectorized reward r and observe s1

10 Store transition ps, a, r, s1q in B
11 Decay policy temperature τ
12 for each gradient step do
13 Sample batch psi, ai, ri, si`1q „ B
14 Sample J preferences W “ twj „ Dwu

15 Update Q-functions parameters with (19):
θk Ð θk ´ λQ∇θkJQpθkq for k P t1, 2u

16 Update policy parameters with (22):
ϕ Ð ϕ ´ λπ∇ϕJπpϕq

17 Learn entropy parameter with (24):
α Ð α ´ λ∇αJαpϕq

18 Update target networks:
θ̄k Ð τθk ` p1 ´ τ θ̄kq for k P t1, 2u

already exhibit high discounted entropy relative to the dis-
counted return. Conversely, reducing the target entropy further
hampers the exploration.

We tackle this phenomenon in two steps. First, as in [13], we
decay the target entropy in (24) from an initial value H0 to a
value Hfinal ensuring that, as the training progresses, the trade-
off parameter α becomes smaller, thereby placing more focus
on the discounted return. Second, to enhance exploration, a
heated-up softmax is employed on the policy estimator. In fact,
the policy network outputs a vector of logits l “

“

l1, . . . , l|A|

‰

,
which is then passed through a softmax function to generate
the actual stochastic policy: πpa|sq “

exp la
ř

i exp li
. We add

exploration with a term τ rendering: πτ pa|sq “
exp pla{τq

ř

i exp pli{τq
.

The higher the value of τ , the more uniform the policy
becomes. When τ “ 1, no additional exploration is added.
In practice, training begins with an initial τ0 ą 1, which is
linearly decayed to τfinal over µτ steps.

Algorithm 1 provides the different steps of our approach.
Note that as in the scalar SAC, two Q-networks are trained to
mitigate overestimation bias (see step 15).

IV. EXPERIMENTS

A. Baselines and Performance metrics

For performance comparison, we employ the following
state-of-the-art MORL algorithms for discrete action space:
Envelope [14] and GPI-LS [15] using the scripts and pa-
rameters from the “MORL-Baselines” package [16]. Our
MOSAC algorithm is trained with target entropy levels
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Fig. 1: Average performance comparison of our proposed algorithm and baseline methods.

TABLE I: Mean and standard deviation of simulation durations

Algo GPI ENVELOPE MOSAC-τ
MOSAC

H0“0.3Hmax

Duration (h)
14.4

˘1.23
7.4

˘0.5
4.6

˘0.4
4.53
˘0.1

t0.1, 0.3, 0.5, 0.7uHmax, with Hmax “ ´ logp1{|A|q the max-
imum entropy. Its enhanced version from Section III.D is de-
noted by MOSAC-τ . A fully connected Deep Neural Network
(DNN) with 2 layers of 256 neurons each is trained by each
algorithm using three different seeds during 500K steps and is
evaluated every 10K steps. Our algorithm, akin to the Envelope
Algorithm, samples 3 preferences for the DNN update step
(see step 14, Alg. 1). The performance is estimated on the set
of multi-objective sum of rewards Jπ “ tJπ

w,w P Wtestu

with Wtest “ tp i
100 , 1 ´ i

100 q, i “ 0, 1, . . . 100u a coverage of
the preference space. Three MORL metrics [17] are employed:
i) the Hypervolume HV pJref , Jπq “

Ť

JPJπ

V olumepJref ,Jq

indicates the volume of the area covered by the obtained
front relative to a given reference point Jref , ii) the Sparsity
SppJπq “ 1

|Jπ |´1

řM
m“1

ř|Jπ
|´1

i“1 pJ̃π
mpiq ´ J̃π

mpi ` 1qq2, with
J̃π
mpiq the i-th value in the sorted list for the m-th objective

values in Jπ , measures the density of the found front and
iii) the Expected Utility EUMpJπq “ Ew„Wtest

pwTJπ
wq

represents the average scalarized utility. We desire high Hy-
pervolume and EUM with a low Sparsity.

B. Simulations

We consider a scenario with K “ 6 devices that are
randomly scattered over an urban area of size 600m ˆ 800m
comprising buildings with various heights [7]. The UAV’s ini-
tial and destination locations are set as pI “ p120, 200, 60qm
and pF “ p520, 440, 60qm. The UAV flies at h “ 60m
and the UAV step size is c “ 20m. The transmit power
is P “ 36dBm, the SNR threshold is Σ “ 15dB and
the propagation parameters are αLoS “ 2.5, αNLoS “ 3.04,
βLoS “ ´30, βNLoS “ ´35, σ2

LoS “ 2, σ2
NLoS “ 5. For

MOSAC-τ , we choose H0 “ 0.6Hmax, Hfinal “ 0.3Hmax,
τ0 “ 5, τfinal “ 1.5 and µτ “ 100K steps.
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Fig. 2: Average Pareto front comparison over 100 preferences.

1) Multi-objective evaluation: All the algorithms are
trained and evaluated by conducting several Monte Carlo
simulations, and the average performance is reported in Fig.1.
We can conclude that the envelope algorithm has the low-
est performance and seems unstable. MOSAC expectedly
performs poorly for high and low target entropy levels as
hinted in Section III.D and performs best with an entropy
level at 0.3Hmax. However, it is still outperformed by GPI-
LS, supporting the fact that simply tuning the entropy level
is not sufficient for performance and exploration in this
problem. Also note that after convergence at around 70K
steps, MOSAC’s performance remains stable indicating that
the algorithm does not explore further and becomes trapped
in a local minimum. This challenge is successfully tackled by
MOSAC-τ outperforming the rest of the algorithms notably on
the Hypervolume metric thanks to the enhanced exploration.
Indeed, as illustrated on Fig 2, MOSAC-τ manages to find
policies that collect close to 100% of the data. However,
due to the use of a stochastic policy during evaluation, it
achieves a similar EUM performance to GPI. Moreover, Table
I shows that, for the same number of training steps (evaluation
included), our algorithm runs 2ˆ faster than the Envelope
algorithm and 4ˆ faster than GPI. Envelope is penalized by the
envelope search [14] over the sampled preferences and GPI-LS
by the additional linear support step to update the set of corner
weights [15] (preferences). In addition, both algorithms are set
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(c) w “ p0, 1q, Jπ
w “ p20%,´32q

Fig. 3: MOSAC-τ trajectories with different preferences (initial data quantity D0 “ 3000 and battery capacity b0 “ 100)

to apply more than one gradient update per training step.
2) Pareto front and trajectory: For each algorithm, we plot

the Pareto front averaged across different simulations. We also
use a non-learning approach (marked as Naive) that collects
from the N -closest devices and then flies to the destination.
First, in Fig. 2, we observe in general the superiority of deep
MORL approaches compared to the naive non-learning. As
already observed, MOSAC-τ dominates other algorithms due
to its ability to find policies that collect nearly all the data.
In Fig. 3, we plot three trajectories found by our algorithm for
different preferences w on one of the random placements of
the devices over the city. When w “ p0, 1q, the UAV takes the
shortest path to the destination collecting only from one device
on the way and as the inputted preference for data collection
increases, the UAV decides to get closer to the devices at the
cost of higher battery consumption. For w “ p1, 0q all the
data is collected consuming all the battery. Interestingly, for
w “ p0.8, 0.2q, our algorithm learns to collect all the data and
fly to the destination only consuming 65% of the total battery
b0. Such behaviors could not have emerged from training with
a single data collection reward or with pre-determined fixed
weights between the objectives.

V. CONCLUSIONS

We developed and tested a novel MORL algorithm that com-
bines the performance and stability of the scalar Soft Actor-
Critic framework with a heated-up softmax mechanism to
enhance exploration efficiency. Our simulation results showed
that our approach outperforms MORL baselines in addressing
the UAV-assisted wireless data-energy task. Our algorithm
efficiently learns policies that capture all desired trade-offs
between our objectives in a single training. In future work,
we aim to extend this framework to multi-UAV systems,
incorporating collaborative strategies for multi-agent, multi-
objective learning.
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