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This paper presents an innovative approach to automating the full lifecycle management of optical
networks using locally fine-tuned large language models (LLMs) and digital twin technologies. We
experimentally demonstrate the integration of generative AI and digital twins to create powerful AI-
Agents capable of handling the design, deployment, maintenance, and upgrade phases in the lifecycle
of optical networks. By deploying and fine-tuning LLMs locally, our framework eliminates the need
for public cloud services, thereby ensuring data privacy and security. The experimental setup includes
a commercial-product-based testbed with 8 optical multiplex sections in the C-band, showcasing the
effectiveness of the AI-Agents in various automation tasks, such as API-calling for service establishment
and periodic power equalization, as well as log analysis for troubleshooting. The results highlight
significant improvements in operational accuracy and efficiency, underscoring the feasibility of this
approach in real-world scenarios. This work represents a significant advancement toward intent-based
networking, showcasing the transformative potential of AI in automating and optimizing optical network
operations.
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1. INTRODUCTION

Artificial intelligence (AI) and digital twin (DT) technologies
have been prominent and rapidly evolving topics in recent years.
Among various AI techniques, large language models (LLMs),
a subset of Generative AI (GenAI) that leverage advanced neu-
ral networks to comprehend and generate natural language
text, have garnered significant attention for their wide-ranging
applications across multiple domains. Researchers in optical
communications and networking are currently exploring inno-
vative applications of LLMs and DTs. As shown in Tab. 1, LLMs
can assist in analyzing alarm logs and troubleshooting network
issues [1–4] and they can automate network management tasks
by generating network configurations based on application pro-
gramming interfaces (APIs) [5–10]. DTs have also recently raised
increasing attention in optical networks for automation and
management [11–14]. A network DT can analyze physical-layer
monitoring data based on physical models or machine learn-

Table 1. State-of-the-Art

Ref. Tech. Applications

[1, 2] LLM Alarm analysis using cloud LLMs.

[3] LLM Network assistant using cloud LLMs.

[4] LLM Log analysis using local LLMs.

[5–7] LLM+DT Intent-based network using cloud LLMs.

[8] LLM+DT Intent-based network using local LLMs.

[9, 10] DT API-based network control automation.

[11–15] DT Digital twin optical networks (DTONs).

[16] DT Failure management.

http://dx.doi.org/10.1364/ao.XX.XXXXXX
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ing models (or a combination of the two [15]). Moreover, DTs
can be applied to failure management in optical networks [16].
Then, the DT can be used as a sandbox to test proposed physical
layer changes before implementing any operations in the physi-
cal world by first emulating such changes and predicting their
impact in the DT itself.

However, previous works [1–3, 5–7] were using LLMs on the
public cloud, leading to data privacy concerns. Though [8] used
a local LLM for network auto-configurations, it only achieved
80% accuracy in translating human intents to the appropriate
network configurations. In this paper, we demonstrate for the
first time how to use fine-tuned local LLMs for automating an
optical network. By deploying and fine-tuning LLMs locally,
we avoid using a public cloud and achieve 100% accuracy in
interpreting human requests with low hardware requirements.
Moreover, we demonstrate how to build AI-Agents based on DT
and other tools for automating an optical network during the
four key steps of its lifecycle: design, deployment, maintenance
(including power re-equalization and troubleshooting), and up-
grade. After the experimental demonstration, we conclude the
pros and cons of applying LLMs in optical networks based on
our experience.

The rest of this paper is organized into six sections. In Sec-
tion 2, we introduce the concepts of LLM and AI-Agent. In
Section 3, we introduce the DT and software-defined network-
ing for optical networks. In Section 4, we show our experimental
setup and framework for locally deployed AI-Agents. In Sec-
tion 5, we demonstrate the applications of AI-Agents for lifecycle
control and management of optical networks. In Section 6, we
discuss the pros and cons of LLMs in optical network control
and management. In Section 7, we conclude our study and
discuss possible future perspectives.

This paper is an extended version of our post-deadline paper
(PDP) at the European Conference on Optical Communication
(ECOC) in 2024 [17]. In this paper, we provide more details on
the implementation of AI-Agents for optical network automa-
tion. Key novel contributions include:

• Detailed discussions on employed methodologies in Sec-
tion 2 and relative implementation details in Section 4;

• More results showcasing the network lifecycle control and
management in Section 5;

• Extended literature review and discussions about the pros
and cons of LLM-based systems in optical network control
and management in Section 6.

2. LARGE LANGUAGE MODELS AND AI-AGENTS

LLMs are a class of AI systems that employ advanced neural net-
work architectures, such as transformers, to process, understand,
and generate natural language text. These models underpin a
wide range of applications, including chatbots, text summariza-
tion, language translation, and more. In particular, the Trans-
former architecture has revolutionized natural language pro-
cessing by introducing a mechanism called self-attention, which
evaluates the relative importance of words within a sentence.
This mechanism enables LLMs to grasp context and relation-
ships in text more effectively than previous methods [18].

An LLM comprises two key components: the tokenizer and
the model weights stored in a safetensor file. The tokenizer
converts text inputs into discrete tokens (e.g., words, subwords,
or punctuation) and maps them into a high-dimensional vec-
tor space. The safetensor file encapsulates the model’s learned
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Prompt engineering, RAG, and fine-tuning.

parameters, including the weights of attention layers and feed-
forward neural networks. The model processes tokens through
the transformer and predicts the next token with associated
probabilities, enabling natural language generation. Fig. 1 offers
a simplified overview of the Transformer architecture, empha-
sizing the core components that are pertinent to its application
in optical network management. This depiction is a basic rep-
resentation, and actual Transformer implementations can vary
significantly, incorporating different encoder and decoder blocks
and other modifications tailored to specific large language mod-
els. This simplified version is intended to provide clarity and
focus on the essential aspects relevant to the discussions in this
paper.

Due to the complexity of transformers, these safetensor files
can be exceptionally large, as they often include billions of pa-
rameters in high-precision formats like 32-bit floating-point
(fp32). To address memory and hardware constraints, quan-
tization methods reduce the precision of these parameters, en-
abling storage in formats such as 16-bit floating-point (fp16),
brain floating-point (bf16), or even 8-bit integers (int8). For
example, an LLM with 7B parameters in fp16 has a size of
7 · 109 · 2 Byte = 14 GB, while the same model with parameters
in int8 only has half size, i.e. 7 GB, which fits on a customer-
grade laptop without a powerful graphics processing unit (GPU).
However, quantization introduces a trade-off between memory
efficiency and model accuracy, as reduced precision can degrade
performance.

Pre-trained LLMs like OpenAI’s ChatGPT [19], Meta’s
LLaMA [20], and Mistral AI [21] are built on general-purpose
knowledge bases. While they contain foundational knowledge,
their performance in specialized tasks remains limited due to
the lack of domain-specific training.

A. Prompt Engineering and Retrieval-Augmented Generation
Prompt engineering is the practice of crafting effective input
prompts to optimize the performance of LLMs. By carefully
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designing the phrasing, structure, and context of prompts, users
can guide the model to generate more accurate, relevant, and
context-aware outputs. This approach is particularly useful for
tailoring LLM responses to specific tasks or domains, such as
technical problem-solving or creative writing. Prompt engineer-
ing often involves iterative refinement, leveraging strategies like
providing explicit instructions, examples, or formatting guide-
lines to maximize the model’s understanding and utility.

As shown in Fig. 2(top), retrieval-augmented generation
(RAG) is a technique that combines retrieval-based methods
with generative models to enhance the accuracy and relevance
of generated responses by incorporating external knowledge.
The retriever searches external knowledge bases (e.g., techni-
cal documents or databases) for relevant data, which is then
combined with the user query. The generator (LLM) uses this
context to produce fluent, domain-specific responses. This ap-
proach ensures up-to-date , accurate, and specialized knowledge
integration, especially in dynamic fields like optical networks.
RAG’s key benefits include improved factual accuracy, adapt-
ability to specific domains, and reduced dependency on static
pre-trained knowledge.

B. Fine-Tuning the Parameters of an LLM

Since transformers are based on neural networks, another ap-
proach for adapting LLMs to specific tasks/domains is fine-
tuning the parameters of the model. As shown in Fig. 2(bot-
tom), the process involves further training a pre-trained model
on a smaller, task-specific dataset, allowing it to specialize
while leveraging previously acquired general knowledge. There
are various fine-tuning approaches, including full fine-tuning,
which updates all model parameters, and parameter-efficient
methods like low-rank adaptation (LoRA) [22], adapter tuning,
and prefix tuning, which modify only a subset of parameters or
introduce new trainable elements to reduce computational costs.

LoRA freezes the pre-trained model parameters and injects
trainable rank decomposition matrices into each layer of the
Transformer architecture, which reduces hardware requirements
and allows for efficient adaptation to new tasks.

In summary, fine-tuning integrates knowledge into the
model’s parameters during training, while RAG retrieves and
uses external knowledge on-the-fly during inference.

C. LLM-Based AI-Agents

An AI-Agent is an entity powered by AI, designed to perceive
its environment, process data, make decisions, and take actions
to achieve specific goals. These agents can learn, adapt, and
interact with humans or systems, making them versatile tools
across various fields. An LLM-based AI-Agent extends this
concept by integrating an LLM with specialized tools and do-
main knowledge for precise, domain-specific tasks. In optical
communications, AI-Agents can automate optical networks by
leveraging tools like DT, which we will introduce in the next
section. And we will present how to build AI-Agents for optical
networks in Section 4.

3. DIGITAL TWIN AND SOFTWARE-DEFINED NETWORK-
ING

In this section, we introduce the tools used to build AI-Agents
for optical networking.

DTs, which are software replicas of physical systems, are uti-
lized to monitor, analyze, and predict network behavior [23],
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Fig. 4. The digital twin sits at the intersection of the applica-
tion and physical layers, e.g., within an SDN controller.

thereby enhancing decision-making processes before implement-
ing any physical adjustment (Fig. 3). A key role of a DT is to
estimate and predict the quality of transmission (QoT), e.g.,
signal-to-noise ratio (SNR), optical signal-to-noise ratio (OSNR),
and generalized signal-to-noise ratio (GSNR). A second key
role is to optimize the SNR of optical channels in the network,
for instance, by balancing the amplified spontaneous emission
(ASE) and non-linear (NL) noise [24]. In addition, emulating
operations and predicting the impact of these operations in the
DT, thereby making better decisions before implementing any
operation in the physical world.

Software-defined networking (SDN) is a networking
paradigm that separates the control plane from the data plane,
enabling centralized and programmable network management.
SDN architecture is typically divided into three layers: the appli-
cation layer, the control layer, and the physical layer, as shown
in Fig. 4. The application layer consists of software applications
that define network behavior and services, such as service estab-
lishment, performance analysis, and troubleshooting in optical
networks. The control layer, often implemented as a central-
ized SDN controller, acts as the brain of the network, translating
application requirements into actionable instructions, e.g., con-
figuration of line parameters in optical networks. In addition,
the controller can extract data and event logs from network
elements in the physical layer. Finally, the physical layer com-
prises the underlying hardware, such as wavelength selective
switches (WSSs), optical amplifiers, and transponders in opti-
cal networks, which execute the commands from the control
layer. This layered approach enhances flexibility, scalability, and
adaptability, making SDN a key enabler of modern, dynamic
networks, including optical and cloud-based infrastructures.
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4. DEPLOYMENT OF LOCAL AI-AGENTS ON THE
COMMERCIAL-PRODUCT-BASED TESTBED

Our proposed framework combines prompt engineering, RAG,
and fine-tuning to address diverse tasks during the lifecycle of
optical networks. To handle specialized tasks effectively, we
implement a multi-agent framework, where each sub-agent has
a specific role. These agents collaborate and coordinate to solve
complex tasks, leveraging technologies such as LLMs, retrieval
systems, and network DTs.

A. Testbed
Commercial network elements and boards are used to build our
C-band optical network testbed, consisting of 8 optical multiplex
sections (OMSs), for a total of 25 spans and 1980 km of fiber
(Fig. 5). The OMSs are heterogeneous in fiber length and type,
and (model of) of erbium doped fiber amplifiers (EDFAs). The
fiber types include G.652.D single mode fiber (SMF), G.654.E
pure-silica-core fiber (PSCF), G.655.D large effective area fiber
(LEAF), and G.655.D true-wave fiber (TW). The EDFAs shown in
Fig. 5 have various tunable gain ranges, EDFA21 has a range of
16-21dB, EDFA25 has a range of 19-25dB, EDFA32 has a range of
23-32dB. The WSS grid is set to 100 GHz channel spacing within
the 6 THz C-band.

Channel loading is emulated with an ASE source. A real-time
400 Gb/s (PDM-PCS16QAM) transponder is used to measure
the bit error rate (BER), thereby calculating the SNR.

The testbed is automated with our SDN framework named
AI-Light [25]. The SDN controller collects the data from the
physical layer and implements the DT to perform various opti-
mization algorithms (routing, spectrum allocation, power opti-
mization, ...). The power spectra can be monitored by either an
optical spectrum analyzer (OSA) or a commercial optical perfor-
mance monitor. We can also emulate link failures by plugging
out the fibers or disabling the optical amplifiers in the testbed,
and collect the alarm logs from network elements.

B. Local Deployed LLMs
We leverage an 8-GPU (NVIDIA Tesla V100-PCIe-32GB,
launched in 2018) server for locally deploying and fine-tuning
the LLMs. Each GPU has 32 GB memory and delivers 14 TFLOPS
(Tera floating point operations per second) of fp32 performance.
The 8-GPU memory is 256 GB, hence, we can deploy and fine-
tune different open-source LLMs locally, namely Mistral-7B-
Instruct [26] (model size 14.5 GB) that fits on a single GPU ,
Mixtral-8x7B-Instruct [27] (model size 90.4 GB), which requires
multiple GPUs . These open-source models are downloaded
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from Hugging Face [28], the biggest community of open-source
LLMs. Mistral AI develops LLMs supporting multiple European
languages, and we use it to work with not only English but also
French, Italian, Spanish, German, Greek, etc.

C. AI-Agents for Control and Management of Optical Network

We build two task-specific AI-Agents based on LLMs and dif-
ferent tools: AI-Agent A1 for network automation, which fed
LLMs with API descriptions for interaction with our SDN and
DT; AI-Agent A2 for network management, which uses LLMs
and embeds product documentation for system design and log
analysis. Using multiple specialized AI-Agents instead of a sin-
gle general-purpose agent allows each agent to be optimized for
specific tasks, leading to more accurate and reliable performance.
This approach reduces complexity, improves scalability, and
minimizes the risk of hallucinations by leveraging task-specific
expertise and focused training.

C.1. API-Calling to Control Optical Networks

As shown in Fig. 6, we deploy and fine-tune an LLM on the
local GPU server and deploy the DT-based SDN controller on
the same server to build the AI-Agent A1 for intent-based opti-
cal network automation. The SDN controller provides different
JSON format APIs written in Python. The LLM is fine-tuned
based on API-calling chat prompts and can generate valid prede-
fined APIs in JSON format (compliance to standards is possible
but is out of the scope of this paper). Hence, the AI-Agent A1
leverages such an LLM to translate human language requests
into valid APIs with correct arguments so that SDN controller
can implement them to realize the user’s intent.

There are five APIs used in controlling , as shown in Tab. 2.
The API functions utilize a structured set of arguments to define
their inputs and operations. The arguments include:

source and destination: Represent the names of the source
and destination nodes in the network. These are required to
specify the endpoints for the service and are denoted by string
values such as "A" or "B".

path: Specifies the light path for the service. It can be ex-
plicitly provided (e.g., "OMS1-OMS2"); if the path is not given
explicitly, then it is determined dynamically by a routing and
wavelength assignment (RWA) algorithm based on the shortest
path of the light path length.

frequency: Indicates the preferred frequency for the service
in MHz (e.g., 196625000 [MHz]). If not specified, the RWA al-
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Fig. 8. Multi-language API-calling test. Top: Asking a fine-tuned LLM to generate JSON format API configuration using different
languages. Bottom: Asking a confusing question to LLM without (w/o) and with (w/) fine-tuning (FT).

gorithm selects a frequency using a "first-fit" approach, starting
from longer wavelengths to shorter wavelengths.

bandwidth: Defines the bandwidth required for the service
in MHz, correlating to the board mode. For instance, a 400 Gb/s
service requires 100000 [MHz], while a 200 Gb/s service requires
75000 [MHz].

board_mode: Specifies the modulation format of the board.
Common options include "PCS-16QAM" for a 400 Gb/s service,
"QPSK" for a 200 Gb/s service, or "auto" to dynamically select
an available board.

oms_id: Identifies the Optical Multiplex Section (OMS) in-
volved in certain operations, such as quality of transmission
(QoT) estimation or power equalization. Examples include
"OMS1" or "ALL" to refer to all OMSs.

service_id: Acts as an index to identify a specific service in
the network for operations like QoT estimation or measurement.

metric: Refers to the parameter being evaluated or opti-
mized, such as "OSNR", "GSNR", "SNR" (Signal-to-Noise Ratio),
"ASENL" (ASE to NL Noise Ratio), or "BER" (Bit Error Rate).

method: Describes the approach for operations like power
equalization. Common methods include "ASENL" to optimize
the SNR by balancing ASE to nonlinear noise ratio, "OSNR" for
equalizing OSNR, and "GSNR" for equalizing GSNR.

AI-Agent A1 should call the correct APIs with as high accu-
racy as possible. However, as discussed in Section 2, there is a
trade-off between performance and general LLM size, which re-
lates to computation resource requirements. For instance, quan-
tization of the parameters is a standard strategy for reducing
the model’s size and inference costs. Ref [8] achieved 80% accu-
racy by using Mixtral-8x7B-Instruct with 4-bit quantization (Q4).
Based on PoliMi’s dataset (limited to 50 queries) made available
in the same paper [8], we test the model accuracy with differ-
ent levels of quantization (Q5-Q8: 5-bit to 8-bit quantization).
Fig. 7(left) depicts the obtained model size/accuracy trade-off
in blue. The results align with intuition, as larger models tend
to perform better in terms of accuracy. While [8] (which lever-
ages formal grammars) and fine-tuning both enable standard-
compliant outputs, fine-tuning additionally achieves higher ac-
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Table 2. APIs used in experiments and prompts for fine-
tuning AI-Agent A1.

API name Usage Arguments

add_och Add a service in the
network.

source, destination,
path, frequency,

bandwidth,
board_mode

del_och Delete a service in the
network.

source, destination,
frequency

estimate_qot Estimate QoT of a
service/all services.

oms_id, service_id,
metric

measure_qot Measure BER or SNR. service_id, metric

equalize Equalize power in
OMS or network.

oms_id, method

curacy than [8].
We perform LoRA fine-tuning on Mistral-7B-Instruct for the

five APIs we introduced in Section 4 C.1. As shown in Fig. 7(left),
larger models achieving 100% accuracy can generate diverse
data to fine-tune smaller models. For example, we create a few
question-answer pairs and use the larger model to expand them
with high diversity. For non-confidential data, public cloud
LLMs like ChatGPT can be utilized, while private cloud LLMs
are employed to augment sensitive data securely. We generate
an augmented dataset of 10k/API for fine-tuning; note that the
LLM used to generate the dataset is completely independent of
the LLM used in our AI agents, to avoid introducing any bias in
the evaluation. The loss curve is shown in Fig. 7(right). We re-
duce the model size by 83%, from 90.4 GB to 14.5 GB, while main-
taining 100% accuracy in API calls, as shown in Fig. 7(left,red).

In addition, another advantage of LoRA fine-tuning is that
it only modifies a small portion of the parameters (here, 2.9%),
therefore, the model keeps its general abilities, for instance, the
multi-language ability. The Mistral AI models support several
European languages and still work with requests in different
languages although the training set in English. As shown in
Fig. 8(top), we use different languages (English, French, Ger-
man, Spanish, Italian, Greek) to request different services, and
the fine-tuned LLM gives us correct API calls in JSON format.
Moreover, the fine-tuned model is even robust to confusing
questions with mixing languages. For instance, we request the
service with indicating frequency in French format, which uses
"," instead of ".", yields the non-fine-tuned LLM misunderstands
the value/unit (Fig. 8 (bottom)).

C.2. Documentation and Log Analysis

The LLM develops a specialized understanding of commercial
optical products content by leveraging either RAG or fine-tuning.
As shown in Fig. 9, we leverage these two techniques to build
two types of AI-Agent A2 to integrate optical product documen-
tation. To implement RAG, we use LangChain [29] to split the
text from documentation bodies into chunks, which are then
vectorized and stored in a database with Chroma [30].

By integrating the description of logs found in product man-
uals, AI-Agent A2 can play a transformative role in analyzing
alarm logs from optical networks, a critical aspect of maintaining
network reliability and performance. Optical networks generate
large alarm logs to indicate potential faults, performance degra-
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dations, or operational anomalies. Reviewing these logs is time-
consuming and error-prone, especially in complex, multi-vendor
environments. LLMs can automate this process by identifying
patterns, classifying alarms, and providing actionable insights.

With the help of AI-Agent A2, engineers can quickly obtain
troubleshooting steps, configuration guides, or detailed product
specifications tailored to their queries. We will demonstrate
RAG for product searching in Section 5 A, alarms management
in Section 5 C.2, and fine-tuning for document integration in
Section 5 D.2. After showing the results, we compare these two
techniques in Section 6.

C.3. Multi-Agent

Since we deploy different AI-Agents on the same GPU server,
we let the AI-Agents interact with each other to build a multi-
agent system, as shown in Fig. 10. The main agent, which knows
the roles of the other agents, is used to communicate with the
other agents. An example application is network design (Fig. 11),
which will be discussed soon in Section 5.A.
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Fig. 13. Operations and power spectra evolution in network lifecycle. Top: number of services (blue) and SNR margin evolution
(red). Bottom: booster output spectra for 2 sample OMSes (OMS1 and OMS3) at different lifecycle steps. (Blue circle: before power
equalization, green triangle: after power equalization. Green solid line: before link failure, red dash line: after link failure.)

5. LIFECYCLE AUTOMATION

In this section, we demonstrate how AI-Agents can help de-
sign/manage an optical network over its lifecycle, from Day-0
to Day-N (see Fig. 12 and Fig. 13).

A. Day-0: Network Design

As shown in Fig. 11, a multi-agent system enables collaboration
between specialized agents to streamline network design.

A main AI-Agent is powered by prompt engineering for un-
derstanding the roles of different sub-agents. The main agent
decomposes the tasks to these sub-agents when the user request
requires knowledge or tools from different agents. Besides the
APIs to control the optical network, we give AI-Agent A1 here
the APIs to use DT for simulating and optimizing physical layer
parameters, such as optical amplifier gain configuration. Once
the design is complete, the main AI-Agent asks AI-Agent A2
to leverage its knowledge of commercial optical products to
recommend suitable components, like the type name of ampli-
fiers, ensuring the design is both technically optimal and im-
plementable with available hardware. We use the JSON format
messages for communication between AI-Agents and users, e.g.,
{"from": "user", "to": "Agent_Main", "content": "xxx"}, {"from":

"Agent_Main", "to": "Agent1", "content": "xxx"}. (See Visualiza-
tion 2.)

This collaborative framework bridges theoretical simulation
and practical application, enhancing efficiency and feasibility in
optical network development.

B. Day-1: Network Deployment

Once the optical network devices have been deployed, com-
missioning is required to establish the services. We start from a
5-OMS meshed network and upgrade it to 8-OMS in the end. We
use AI-Agent to establish the services automatically. The work-
flow is shown in Fig. 14 and demonstrated in Visualization 3
:

Step-1: The user requests the services in natural language, for
instance, “Please build a 400G service from node A to D”.

Step-2: AI-Agent A1 understands the intent and generates
the valid APIs sending to the DT for specific tasks introduced in
section 4 C.1.

Step-3 : Then the DT leverages an RWA algorithm to assign
the light path routing and frequency slot allocation.

Step-4: AI-Agent A1 gives suggestions to the user and re-
quests approval.
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Fig. 14. Service establishment workflow. See Visualization 3.
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Fig. 15. Digital twin validation: SNR improvement with
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Step-5: Upon approval, AI-Agent A1 uses the DT to configure
the transmitter, receiver, and WSSs to establish the service.

C. Day-2: Network Maintenance
For network maintenance, we consider two tasks: power equal-
ization and troubleshooting. To emulate these tasks, we load
new batches of 20 services each (see slot occupation in Fig. 13
at T1, T2, T3, T5, T6); as introduced in Section 4 A, the services
are emulated by an ASE source and we use a single transponder
to replace the ASE channels during the SNR measurements ; for
the following numerical evaluations, we measured SNR for 20%
of the services.

C.1. Periodic Power Equalization

During the network lifecycle, amplifiers’ gains vary with load,
such that launch power profiles vary as well. To avoid the re-
sulting SNR margin degradation, we use periodic service launch
power re-equalization as in [31].

By chatting with AI-Agent A1, we initially add services ac-
cording to the “set and forget” method, i.e., each service is estab-
lished with a fixed channel power, which is not re-optimized as
new services are added.

Then, we periodically re-equalize the power through API-
calling by AI-Agent A1 to optimize the SNR (up to 1dB margin
improvement is measured at T6) by balancing the ASE-to-NL
noise ratio. For example, the power spectra before and after
equalization at different times are shown in Fig. 13. The mea-
sured network SNR margin (defined as the minimum across all
services, difference between the service SNR and its FEC limit)
before and after re-equalization for each of the five batches is
shown in Fig. 13 (jumps in the red dashed line), and the DT
predicted SNR gains for all services over network lifetime in

Raw Alarm Logs

Root Cause Reason

NE1 NE2 NE6NE5… …

Alarm 1 @NE5 BID x Port a - Time 1
Alarm 2 @NE6 BID y Port b - Time 2
Alarm 3 @NE6 BID z Port c - Time 3
Alarm n @NEm BID n Port p - Time t

Alarm 1 @OA1_5
Alarm 2 @OA1_6

Alarm 3 @WSS1_2
… Alarm n @… 

RAG: Alarm description

Network Topology Info:
{“OMS 1”:{“from”: “Node 
B”, “to”: “Node D”, 
“components”: “OA1_1-
Span1_1-OA1_2-…”}…}

database

AI-Agent A2

Formatting Prompt

... It’s possible that there was a failure
in one or both span1_4 and span 1_5...

Fig. 16. Log analysis workflow for a link failure (NE: network
element; BID: board identifier; OA: optical amplifier).
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Fig. 17. Log analysis time and accuracy comparison. Time is
normalized to human reading time (as 100).

Fig. 15(inset). Note that some services may degrade but the
network margin always improves.

The DT performs prediction and estimation of SNR before
and after re-equalization. Prediction here is the prediction of
the optimized state, based on the monitoring available for the
previous non-optimized network state. The probability density
function (PDF) of the SNR prediction accuracy (SNRprediction −
SNRmeasured) is shown in Fig. 15, the root mean square error
(RMSE) is 0.3dB.

C.2. Troubleshooting

Event logs are continuously generated in optical networks, and
alarms occur over time. As a natural language processing tech-
nique, LLMs are highly effective in alarm-log analysis. Based
on the topology of a network and the logs from the network
elements, an LLM can figure out where a failure has occurred.

The logs from the network elements contain the time stamp
of each event, however, time synchronization across network
elements cannot be guaranteed. As a consequence, the event
time from different network elements may not be trusted for
troubleshooting, and the spatial information, i.e., topology, is
more important for troubleshooting. Hence, we also provide the
topology information in a formatted prompt. Additionally, raw
alarm logs from various network elements capture event details
for individual boards, identified by their board ID and port num-
bers. To enhance analysis, the board ID and port are mapped to
the corresponding indices of OMSs and optical amplifiers in the
prompt, ensuring precise alignment with the network topology
and providing clear contextual relevance. The LLM-enabled
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Fig. 18. Commercial products documentation-based fine-
tuning before/after upgrade. Version 2019 is for C-band com-
mercial equipment only, while version 2024 updates L-band
commercial equipment.

troubleshooting workflow is shown in Fig. 16.
We unplugged a connector to emulate a fiber cut on OMS1

(leading to the drop of 16 services) at T4 and collected the logs,
which were then analyzed by AI-Agent A2. As shown in Fig. 17,
by comparing with the reading speed of human beings [32], AI-
Agent A2 performed alarm log reading and analysis 7x faster
than a human would parse the logs (let alone analyze them).

In addition, we also emulate link failure by disabling in turn
the amplifier located before each of the 19 spans. The LLM-based
AI-Agent A2 troubleshooter successfully returns the location for
each of the 19 emulated failures, as shown in Fig. 17. However,
we need to observe that, despite different models achieving the
same accuracy, we have to tune the prompt for each model. In
other words, the same prompt yields different performances
depending on the underlying LLM. Moreover, the order of infor-
mation (topology, alarms, descriptions) also impacts the output
of different LLMs.

D. Day-N: Network Upgrade
D.1. Scaling the Network

To avoid blocking at end-of-life (T7), we add 3 OMSs and use AI-
Agent A1 to automate the addition of 20 services in the 8-OMS
network, using the same method as in Day-2, reaching a total of
120 services established, see Fig. 13 (right).

D.2. Hardware and Software Upgrade

While RAG retrieves relevant information from vast technical
repositories, fine-tuning adapts an LLM to deeply understand
the structure, terminology, and context of domain-specific doc-
umentation. By fine-tuning the model on commercial product
manuals, the LLM develops a specialized understanding of com-
mercial optical networks content. This ensures that even without
information retrieval, the model can independently provide ac-
curate and context-aware insights.

However, different products and features are typically re-
leased during the 10-20 years lifetime of optical equipment. The
AI-Agent A2 also requires to be updated. Since the safetensor
is just a checkpoint of the training (cf. Section 2), model fine-
tuning can be done iteratively on the previous model each time
new product documentation or a new software version is re-
leased. Safetensors enable continuous fine-tuning using prior
checkpoints.

For example, a model initially fine-tuned with documentation
from 2019 was subsequently enhanced using updated 2024 docu-
mentation, resulting in improved performance while preserving

Table 3. Comparison between RAG and Fine-tuning.

Technique RAG Fine-tuning

Pros Dynamic knowledge
access, reduced
training costs,

scalability.

Fast response on
specific, static

knowledge base;
make smaller models

powerful and
consistent.

Cons Slower inference;
complexity in
integration.

Re-training is needed
each time the

knowledge changes.

Table 4. Comparison of LLMs, Traditional machine learning
(ML), and Rule-Based Systems in Optical Network Manage-
ment and Control.

Technique LLMs Traditional
ML

Rule-Based
Systems

Flexibility High,
adaptable to
various tasks

Moderate Low,
hard-coded

logic

Interpret-
ability

Low,
black-box

models

Moderate,
statistical
models

High, explicit
rules

Scalability High, but
resource-
intensive

Moderate Low, manual
scaling

required

Ease of
use

High, natural
language
interface

Moderate Low, technical
expertise
required

earlier optimizations. The training dataset comprised speci-
fications from various commercial products, including WSSs,
EDFAs, transponders, etc. Notably, the 2019 dataset focuses
exclusively on C-band equipment, whereas the 2024 dataset in-
corporates updated specifications for L-band equipment, reflect-
ing technology advancements. The training loss curve (Fig. 18)
demonstrates smooth convergence each time fine-tuning is trig-
gered, showcasing the practicality of incremental model up-
grades.

6. DISCUSSION

In this Section, we discuss a series of open issues that arose
during the implementation of this demonstration and that point
at important future research directions in this area.

RAG vs. Fine-Tuning. In Section 5, we demonstrate that
AI-Agent 2 can work with either RAG or fine-tuning. Different
tasks in optical network control and management can be done
by either RAG or fine-tuning. The choice between RAG and
fine-tuning depends on the specific requirements of the task.
As listed in Tab. 3, RAG is suitable for applications that require
dynamic and up-to-date information, while fine-tuning is better
for tasks that need consistent and coherent responses within
a specific domain. Each approach has its trade-offs, and the
decision should be based on the available resources, the nature
of the task, and the desired outcome.
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Table 5. Pros and Cons of LLMs on Control (e.g., service
deployment, optimization) and Management (e.g., trou-
bleshooting, knowledge search).

Application Control Management

Pros Intent-based
networking. Reduces
manual intervention,
minimizing human
error. Speeds up the

network
configurations.

Quickly analyzes
large amounts of

network logs.
Reduces the need for

highly specialized
knowledge among
network operators.

Cons Requires accurate DT.
Requires high
computational

resources. Adds
latency for

time-sensitive app.

Data privacy issue.
Hallucinations: false
positives or negatives.
Requires continuous

training.

LLM vs. Exisiting Solutions. While LLMs offer promising
capabilities for automating optical network control and manage-
ment, a comprehensive comparison among LLMs, traditional
machine learning, and rule-based systems is yet to be thoroughly
conducted. Tab. 4 provides a qualitative comparison of LLMs,
traditional machine learning (ML), and rule-based systems in
terms of flexibility, interpretability, scalability, and ease of use.
It highlights that LLMs offer high flexibility and a natural lan-
guage interface but are resource-intensive and less interpretable
compared to rule-based systems, which are rigid but highly
interpretable.

Tab. 5 outlines the pros and cons of LLM-based techniques
specifically for control and management applications. For con-
trol, LLMs enable intent-based networking and reduce manual
intervention but require accurate data and significant compu-
tational resources. In management, LLMs excel at analyzing
network logs and reducing the need for specialized knowledge
among operators, though they raise concerns about data privacy
and continuous training requirements.

Although LLMs present a powerful tool for enhancing net-
work automation throughout the lifecycle, it is essential to con-
sider the critical requirements related to data accuracy, computa-
tional resources, and interpretability during their deployment.

Data Privacy. As data privacy is a critical requirement for
operators, we decided to deploy our LLM locally instead of on
the public cloud in this work. However, this approach involves
additional expenses and expertise for fine-tuning the model and
maintaining local servers and the related infrastructure.

Computational Requirements. Training, fine-tuning, and
even RAG require large amounts of high-quality data, and LLMs
are computation-hungry, so there are concerns about the costs
and return on investment of training the LLMs. While the topic
of computational cost is still debated, we notice that new tech-
niques to improve the efficiency of training the LLMs are emerg-
ing, e.g., distillation (recently used by DeepSeek-R1 [33]).

Reliability. Optical networking is a field that requires high
reliability, therefore, interpretability is highly desired. How-
ever, LLMs are black-box models, and prompt engineering does
not permit consistent output, hindering explainability and re-
ducing trust in LLM-based network operation. For this reason,
we propose to leverage DT with accurate physical tools and

interpretable workflow for the physical-layer related operations,
thereby achieving a predictive control loop, i.e., perception-
prediction-action-feedback.

Further research is needed to fully understand the strengths
and limitations and quantify the performance of LLMs in this
context relative to existing automation techniques.

7. CONCLUSIONS AND FUTURE PERSPECTIVES

This study demonstrates a successful application of locally fine-
tuned LLMs and DT technologies for the comprehensive lifecy-
cle management of optical networks. Our framework achieves
efficient automation by addressing key tasks for network de-
sign, deployment, maintenance, and upgrade while ensuring
data privacy through on-premises deployment. Experimental re-
sults illustrate substantial gains in intent interpretation accuracy,
and efficiency, underlining the feasibility of this approach in
real-world scenarios. Moreover, integrating multi-agent systems
and advanced AI techniques ensures adaptability and scalability
to evolving network demands. Future research will focus on
enhancing model robustness, expanding domain adaptability,
exploring advanced functionalities, and improving efficiency on
various tasks, paving the way for autonomous optical networks.
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