3GPP TSG RAN WG Wuhan, China, Api	•	R1-2501839
Agenda Item:	9.7.1	
Source:	EURECOM	
Title:	Discussion on ISAC deployment scenarios and requirement	S
Document for:	Discussion and decision	

1. Introduction

According to the SI for Release 19 ISAC [1], the objective of this SI is as follows:

The study should aim at a common modelling framework capable of detecting and/or tracking the following example objects and to enable them to be distinguished from unintended objects:

- UAVs
- Humans indoors and outdoors
- Automotive vehicles (at least outdoors)
- Automated guided vehicles (e.g. in indoor factories)
- Objects creating hazards on roads/railways, with a minimum size dependent on frequency

All six sensing modes should be considered (i.e. TRP-TRP bistatic, TRP monostatic, TRP-UE bistatic, UE-TRP bistatic, UE-UE bistatic, UE monostatic).

Frequencies from 0.5 to 52.6 GHz are the primary focus, with the assumption that the modelling approach should scale to 100 GHz. (If significant problems are identified with scaling above 52.6 GHz, the range above 52.6 GHz can be deprioritized.)

For the above use cases, sensing modes and frequencies:

Identify details of the deployment scenarios corresponding to the above use cases.

The following agreements were made in RAN1#116:

Agreement

For progressing ISAC study, the following sensing targets and existing communication scenarios will be considered as a starting point:

- Note1: the table below does not imply that the sensing target will be placed at positions defined for UEs and BSs in the scenarios in the right column.
- Note2: the table below does not imply that UEs are necessarily placed at positions defined for UEs in the scenarios in the right column.
- Note3: the existing communication scenarios are listed with the intent to use the evaluation parameters defined for those scenarios, as a starting point.

Sensing Targets	Scenarios	
UAVs	RMa-AV, UMa-AV, UMi-AV (TR 36.777)	
Humans indoors	InF, Indoor Office, [Indoor Room (TR 38.808)], [UMi, UMa]	
Humans outdoors	UMi, UMa, [RMa]	
Automotive vehicles (at least outdoors)	Highway, Urban grid, UMa, UMi, RMa	
Automated guided vehicles (e.g. in indoor factories)	InF	
Objects creating hazards on roads/railways (examples defined in TR 22.837)	Highway, Urban grid, HST	

Agreement

For ISAC channel modelling, RAN1 uses the sensing related terminology as defined in TS22.137 or TR22.837 as a starting point for discussion purposes with the following definitions:

- Sensing transmitter: the TRP or a UE that sends out the sensing signal which the sensing service will use in its operation. A sensing transmitter can be located in the same or different TRP or a UE as the sensing receiver.
- Sensing receiver: the TRP or a UE that receives the sensing signal which the sensing service will use in its operation. A sensing receiver can be located in the same or different TRP or a UE as the sensing transmitter.
- Sensing target: target that need to be sensed by deriving characteristics of the objects within the environment from the sensing signal.
- Background environment: background (clutter and/or environmental objects) that are not the sensing target(s).
- Mono-static sensing: sensing where the sensing transmitter and sensing receiver are co-located in the same TRP or UE.
- Bi-static sensing: sensing where the sensing transmitter and sensing receiver are in different TRPs or UEs.
- Multi-static sensing: sensing where there are multiple sensing transmitters and/or multiple sensing receivers, for a sensing target.
- Sensing signal: Transmissions on the 3GPP radio interface that can be used for sensing purposes.

Agreement

RAN1 agrees the following ISAC terminology with minor modifications as follows:

For ISAC channel modelling, RAN1 uses the sensing related terminology as defined in TS22.137 or TR22.837 as a starting point for discussion purposes with the following definitions:

- Sensing transmitter: the TRP or a UE that sends out the sensing signal which the sensing service will use in its operation. A sensing transmitter can be located in the same or different TRP or a UE as the sensing receiver.
- Sensing receiver: the TRP or a UE that receives the sensing signal which the sensing service will use in its operation. A sensing receiver can be located in the same or different TRP or a UE as the sensing transmitter.
- 3. Sensing target: target that need to be sensed by deriving characteristics of the objects within the environment from the sensing signal.
- 4. Background environment: background (clutter and/or environmental objects) that are not the sensing target(s).
- 5. Mono-static sensing: sensing where a sensing transmitter that transmits a sensing signal and a sensing receiver that receives the sensing signal are co-located in the same TRP or UE.
- 6. Bi-static sensing: sensing where a sensing transmitter that transmits a sensing signal and a sensing receiver that receives the sensing signal are not co-located in the same TRP or UE.
- 7. Multi-static sensing: sensing where there are multiple sensing transmitters and/or multiple sensing receivers, for a sensing target.
- 8. Sensing signal: Transmissions on the 3GPP radio interface that can be used for sensing purposes.

Agreement

Any TRP and/or UE location in the corresponding communication scenario can be selected as sensing transmitters and receivers locations. FFS: other possible sensing transmitters and receivers locations.

Agreement

The following table can be used by companies to propose values for each sensing target.

• Additional parameters/rows can be added if needed

Table x. Evaluation parameter template for sensing scenarios

Parameters	Value

Applicable communication scenarios		
Sensing transmitters and receivers properties		
Supported sensing modes		
	Outdoor/indoor	
	3D mobility	
	3D distribution	
Sensing target	Orientation	
	Physical characteristics (e.g., size)	
	Types	
	3D mobility	
[Unintended/Environment	3D distribution	
objects]	Orientation	
	Physical characteristics (e.g., size)	
[Sensing area]		
Minimum 3D distances between pairs of Tx/Rx/sensing target/[unintended objects]		

The following agreements were made in RAN1#117:

Agreement

For each of the sensing target deployment scenarios using the template agreed in RAN#116-bis, the following principles apply:

- For defining sensing Tx and sensing Rx properties (e.g., cell layout, BS antenna height, and minimum distance), scenario parameter values for the applicable communication scenarios in 38.901 are considered as a starting point. Updates to these evaluation parameter values for ISAC scenarios will consider the following:
 - o aerial UEs parameter values as defined in TR 36.777
 - indoor room scenario parameter values defined in TR 38.808
 - automotive scenario parameter values as defined in TR 37.885, 38.859 for Urban grid/Highway
 - Minimum distances between Tx/Rx and target are not defined in the existing communications scenarios and shall be included in the sensing target deployment scenarios.
 - Note: Only deviation from the existing evaluation parameters in the applicable communication scenarios need to be explicitly defined in the ISAC scenario tables.
- For defining sensing target properties, as a baseline
 - Evaluation parameter values can be taken from additional TRs, e.g., TR 36.777, 37.885, 38.859, etc.
 - Size of sensing targets based on TR 22.837, 37.885 (e.g. for automotive), 38.901 (e.g. for AGV size), etc

Agreement

For ISAC deployment scenarios, carrier frequency, bandwidth, and SCS are not included in the evaluation parameters templates for sensing scenarios, but may be included in the evaluation/calibration phase.

Agreement

For UAV sensing target scenarios, the following table is used as a starting point for deployment scenario parameters/values.

Note: Additional parameters, value/value ranges are not precluded.

Table x. Evaluation parameters for UAV sensing scenarios

Parameters	Value	
	UMi, UMa, RMa [38.901]	
Applicable communication scenarios	UMi-AV, UMa-AV, RMa-AV	

Sensing transmitters and receivers properties	Rx/Tx Locations	 Rx/Tx locations are selected among the TRPs and UEs locations in the corresponding communication scenario Note1: this may include aerial UEs for UMi-AV, UMa-AV, RMa-AV communication scenarios. [In this case, other Rx/Tx properties (e.g. mobility) are also taken from the corresponding communication scenario.]
Supported sensing mod	es	[All 6 sensing modes]
	Outdoor/indoor 3D mobility	Outdoor Horizontal velocity: Up to 160 km/h [FFS specific velocity(ies) or random distribution] [FFS vertical plane velocity]
Sensing target	3D distribution	[Uniform between a minimum and maximum height] [Uniform in horizontal domain at a given height]
	Orientation	Random in horizontal domain
	Physical characteristics (e.g., size)	UAV object type(s) [FFS]
[Sensing area]		
Minimum 3D distances between pairs of Tx/Rx and		FFS

sensing target/[unintended objects]	
Minimum 3D distance between sensing targets	FFS
[Unintended/Environment objects, e.g., types, characteristics, mobility, distribution, etc.]	FFS

Agreement

RAN1 agrees to the following revised evaluation parameters values for the UAV sensing target scenarios:

Parameters	Value
Sensing transmitters and receivers properties	Rx/Tx locations are selected among the TRPs and UEs locations in the corresponding communication scenario
	Note 1: Other Rx/Tx properties (e.g. mobility) can also be taken from the corresponding communication scenario.
	Note 2: This may include aerial UEs as Rx/Tx that car be selected among locations in the UMi-AV, UMa-AV RMa-AV communication scenarios

The following agreements were made in RAN1#118:

General principles for all sensing target deployment scenarios should consider the following:

- "Sensing mode" is removed in the scenario tables, but may be included in the evaluation/calibration phase. Per the SI, all sensing modes are possible for the deployment scenarios.
- "Sensing area" may be addressed as part of the sensing target distribution and/or Tx/Rx characteristics and/or cell layout.

Agreement

For UAV sensing target scenarios, the following table is agreed for deployment scenario parameters/values using the agreements from RAN1#117 as a baseline.

Note: Additional parameters, value/value ranges are not precluded.

The detailed scenario description in this clause can be used for channel model calibration.

ISAC-UAV

Details on ISAC-UAV scenarios are listed in Table x.

Parameters		Value	
Applicable communication scenarios		UMi, UMa, RMa [38.901]	
		UMi-AV, UMa-AV, RMa-AV	
Sensing transmitters and receivers properties	Rx/Tx Locations	 Rx/Tx locations are selected among the TRPs and UEs locations in the corresponding communication scenarios. Note1: This may include aerial UEs for UMi-AV, UMa-AV, RMa-AV communication scenarios. In this case, other Rx/Tx properties (e.g. mobility) are also taken from 	
	Outdoor/indoor	the corresponding communication scenario.	
	Outdoor/indoor		
	3D mobility	Horizontal velocity: uniform distribution between 0 and 180km/h, if horizontal velocity is not fixed	
		to 0.	
		Vertical velocity: 0km/h, optional {20, 40} km/h	
		NOTE2: 3D mobility can be horizontal only or	
		vertical only or a combination for each sensing	
		target	
Sensing target		FFS: time-varying velocity.	
		Horizontal plane:	
		Option A: N targets uniformly distributed within	
	3D distribution	one cell.	
		Option B: N targets uniformly distributed per cell.	
		Option C: <i>N</i> targets uniformly distributed within	
		an area not necessarily determined by cell	
		boundaries.	

Table x. Evaluation parameters for UAV sensing scenarios

		FFS: Value of <i>N</i> , defined area, and other distributions
		Vertical plane: Option A: Uniform between 1.5m and 300m. Option B: Fixed height value chosen from {25, 50, 100, 200, 300} m assuming vertical velocity is equal to 0. FFS Other options are not precluded. Note2: target(s) are outside the minimum distance to the Tx/Rx
	Orientation	Random in horizontal domain
	Physical characteristics (e.g., size)	Size: • Option 1: 1.6m x 1.5m x 0.7m • Option 2: 0.3m x 0.4m x 0.2m FFS: Material(s), Structure, Other size(s)
Minimum 3D distances between pairs of Tx/Rx and sensing target		Option B: Min distances based on min. TRP/UE distances defined in TR36.777 as a starting point. Option C: Min. distance is larger than the min. far- field distance of the sensing Tx/Rx
Minimum 3D distance between sensing targets		Option 1: At least larger than the physical size of a target Option 2: 10 meters
[Unintended/Environment objects, e.g., types, characteristics, mobility, distribution, etc.]		FFS

The following agreements were made in RAN1#118b:

Agreement

For Automotive sensing target scenarios, the following table is used as a starting point for deployment scenario parameters/values.

The detailed scenario description in this clause can be used for channel model calibration.

	Table x. Evaluation parameters for Automotive sensing scenarios			
	Parameters	Values		
Applicable co	ommunication scenarios	Highway, Urban Grid. NOTE1		
Sensing tra	ansmitters and receivers	 Rx/Tx locations are selected among the TRPs and UEs (e.g., VRU, vehicle, RSU-type UEs) locations in the corresponding communication scenario. NOTE2 FFS: Option 2: ISD between TRPs of Urban Grid is 250 meters 		
	LOS/NLOS	LOS and NLOS (including NLOSv)		
	Outdoor/indoor	Outdoor		
	Mobility (horizontal plane only)	Based on TR37.885 mobility for urban grid or highway scenario		
Sensing target	Distribution (horizontal)	Based on dropping in TR37.885 per urban grid or highway communication scenario		
	Orientation	Lane direction in horizontal plane		
		Type 1/2 (passenger vehicle)		
	Physical	Type 3 (truck/bus)		
	characteristics	Vehicle type distribution per TR 37.885 as a starting point		
	(e.g., size)	FFS: Other sizes, additional distributions, and vehicle types,		
		e.g. one new type of e-scooter/motorcycle/bike		
Minimum 3D	distances between pairs of	Option 1: Min distances based on min. TRP/UE distances defined in TR37.885 as a starting point.		
Tx/Rx ar	nd sensing target	Option 2: Min. distance is larger than the min. far-field distance of the sensing Tx/Rx		
Minimum 3D targets	distance between sensing	Option 1: At least larger than the physical size of a sensing target		
		Option 2: Fixed value, [x] m. value of x is FFS		
Environment characte etc.	: Objects, e.g., types, ristics, mobility, distribution,	 EO Type 2 for Urban Grid FFS: details, e.g. 4 walls (as EO type 2) per building of size [413mx230mx20m] 		

Note: Additional parameters, value/value ranges are not precluded.

- NOTE1: calibration for UMi, Uma, RMa is not performed for the automotive scenario, but UMi, Uma, RMa can be considered for future evaluations of the automotive sensing target scenarios. Calibration for UMi, Uma, RMa is expected to be performed for another sensing scenario.
- NOTE2: A percentage of TRPs/UEs that have sensing capabilities may be considered for future evaluations.

Agreement

For Human sensing target scenarios, (indoor and outdoor), the following table is used as a starting point for deployment scenario parameters/values.

The detailed scenario description in this clause can be used for channel model calibration.

Note: Additional parameters, value/value ranges are not precluded.

Table x. Evaluation parameters for Human (indoor and outdoor) sensing scenarios

F	Parameters	Indoor Values	Outdoor Values
Applicable comm	unication scenarios NOTE1	Indoor office, indoor factory [TR38.901] Indoor room [TR38.808]	UMi, Uma, RMa [TR38.901]
Sensing transmitters and	Rx/Tx Locations NOTE 2	Rx/Tx locations are selected among the TRPs and UE locations in the corresponding communication scenario	Rx/Tx locations are selected among the TRPs and UE locations in the corresponding communication scenario
receivers	Rx/Tx Mobility for UEs	Option 1: 0km/h Option 2: 3km/h Option 3: Uniform distribution between 0km/h	Option 1: 0km/h Option 2: 3km/h Option 3: Uniform distribution between 0km/h and 10km/hr

		and 3km/hr	
	Outdoor/indoor	Indoor	Outdoor
		Option 1: 0km/h	Option 1: 0km/h
		Option 2: 3km/h	Option 2: 3km/h
		Option 3: Uniform	Option 3: Uniform
		distribution	distribution between
	3D mobility	between 0km/h	0km/h and 10km/hr
		and 3km/hr	(horizontal plane with
		(horizontal plane with	random direction
		random direction	straight-line
		straight-line	trajectory)
		trajectory)	
Sensing target	3D distribution	N targets uniformly distributed over the horizontal area of the convex hull of the TRP deployment FFS: Value of N	Uniform in horizontal plane
	Orientation	Random over the horizontal area	Random over the horizontal area
	Physical characteristics (e.g., size)	Size (Length x Width x Height): Child: 0.2m x 0.3m x 1m Adult Pedestrian: 0.5m x 0.5m x 1.75m	Size (Length x Width x Height): • Child: 0.2m x 0.3m x 1m • Adult Pedestrian: 0.5m x 0.5m x 1.75m

	Option 1: Min. distance is larger	Option 1: Min. distance
	than the min. far- field distance of	is larger than the min. far-field
Minimum 3D distances between pairs of Tx/Rx and sensing target	the sensing Tx/Rx	distance of the sensing Tx/Rx
	Option 2: Min distances defined in TR 38.901 as a starting point	Option 2: Min distances defined in TR 38.901 as a starting point
Minimum 3D distance between sensing targets	Option 1: At least larger than the physical size of a sensing target Option 2: Fixed value, [x] m. value of x is FFS	Option 1: At least larger than the physical size of a sensing target Option 2: Fixed value, [x] m. value of x is FFS
Environment Objects, e.g., types, characteristics, mobility, distribution, etc.	FFS, based on outcome for Al 9.7.2	FFS, based on outcome for AI 9.7.2

- NOTE1: For the human (indoor and outdoor) sensing targets, additional communication scenarios can be considered for future evaluations. Channel model calibration for Urban Grid with outdoor humans is expected to be performed from Objects creating hazards on the road/railway sensing scenarios.
- NOTE2: A percentage of TRPs/UEs that have sensing capabilities may be considered for future evaluations.

Agreement

For Automated Guided Vehicles (AGV) target scenarios, the following table is used as a starting point for deployment scenario parameters/values.

The detailed scenario description in this clause can be used for channel model calibration.

Note: Additional parameters, value/value ranges are not precluded.

Table x. Evaluation parameters for Automated Guided Vehicles			
F	arameters	Value	
Applicable commu	nication scenarios	InF (TR38.901 including Table 7.8-7)	
		Rx/Tx location are selected among the TRPs and UE location in the corresponding communication scenario	
Sensing transmitte NOTE2	ers and receivers properties	Rx/Tx Mobility for UEs - Option 1: 0 km/h	
		 Option 2: 3km/h Option 3: Uniform distribution between 0km/h and 3km/h 	
	LOS/NLOS	LOS and NLOS	
	Outdoor/indoor	Indoor	
	3D mobility	Horizontal velocity with random straight-line trajector - Option 1: Uniform distribution in the range of up to 30 km/h - Option 2: Fixed velocities [3, 10] km/h	
Sensing target	3D distribution	Option A: Uniformly distributed in the convex hull of th horizontal BS deployment Option B: Uniformly distributed in horizontal plane	
	Orientation	Horizontal plane only	
	Physical characteristics (e.g., size)	Size (L x W x H) - Option 1: 0.5m x 1.0m x 0.5m - Option 2: 1.5 m x 3.0m x 1.5 m - FFS: Material, Additional sizes, and AGV size distribution	
Minimum 3D distances between pairs of Tx/Rx and sensing target		Option 1: Min. distance is larger than the min. far-fie distance of the sensing Tx/Rx from the sensir target	

	Option 2: Min distances based on min. TRP/UE distances defined in TR38.901
Minimum 3D distance between sensing targets	Option A: At least larger than the physical size of a target Option B: Fixed value, [x] m. value of x is FFS
Environment objects, e.g., types, characteristics, mobility, distribution, etc.	FFS

- NOTE1: For the AGV sensing targets, additional communication scenarios can be considered for future evaluations.
- NOTE2: A percentage of TRPs/UEs that have sensing capabilities may be considered for future evaluations.

NOTE3: RAN1 can further discuss narrowing down the number of sub-scenarios of InF

Agreement

For objects creating hazards, the following proposals are suggested to be discussed by RAN1:

For objects creating hazards use cases, RAN1 to consider the following table as a starting point for deployment scenario parameters/values.

The detailed scenario description in this clause can be used for channel model calibration.

Note: Additional parameters, value/value ranges are not precluded.

Table x. Evaluation parameters for objects creating hazards

Parameters		Value	
Applicable communication scenarios NOTE1		Highway, Urban grid, HST (High Speed Train)	
Sensing transmitters and receivers properties NOTE2	Rx/Tx Locations	 Rx/Tx locations are selected among the TRPs and UEs (e.g., VRU, vehicle, RSU-type UEs) locations in the corresponding communication scenarios. FFS: Option 2: ISD between TRPs of Urban Grid is 250 meters 	
Sensing target	LOS/NLOS	LOS and NLOS	

	Outdoor/indoor	Outdoor
	3D mobility	Horizontal velocity: up to [10] km/h for humans and animals FFS: Additional velocities, trajectory
	3D distribution	Uniformly distributed in horizontal plane
	Orientation	Random distribution in horizontal plane
		For human/pedestrians: Child: 0.2m x 0.3m x 1m
	Physical	Adult: 0.5m x 0.5m x 1.75m
	characteristics	For animals:
	(e.g., size)	Size: 1.5m x 0.5m x 1 m
		FFS: other types of targets
Minimum 3D distances between pairs of Tx/Rx and sensing target		Option 1: Min. distance is larger than the min. far- field distance of the sensing Tx/Rx from the sensing target
		Option 2: based on TR37.885 and TR38.802
Minimum 3D distance between sensing targets		Option 1: At least larger than the physical size of a target
		Option 2: Fixed value, [x] m. value of x is FFS
Environment objects, e.g., types, characteristics, mobility, distribution, etc.		 EO Type 2 for Urban Grid FFS: details, e.g. 4 walls (as EO type 2) per building of size [413mx230mx20m]

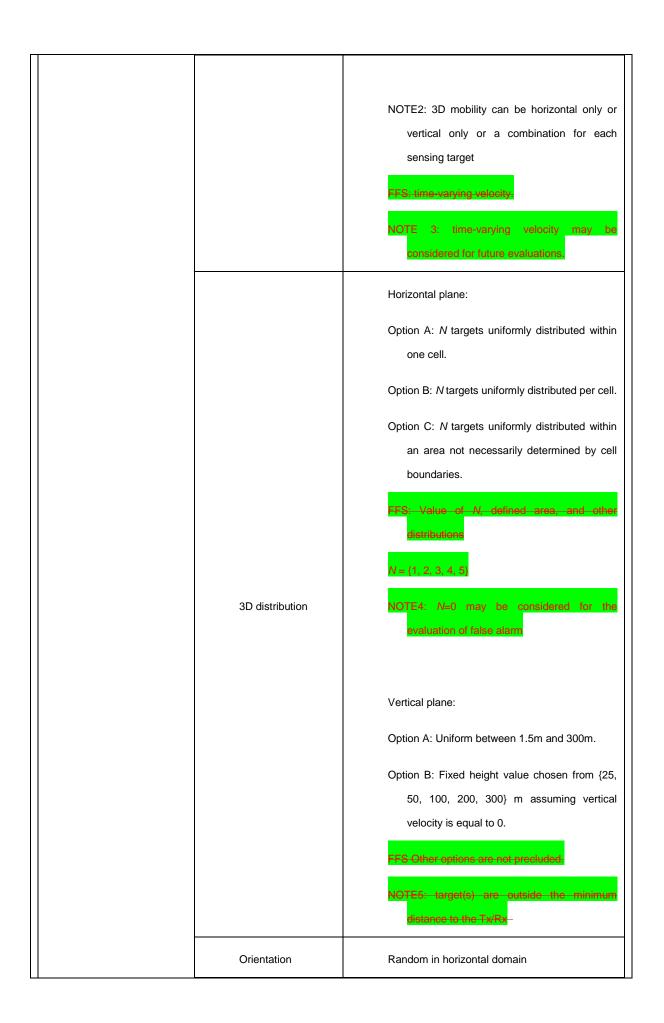
NOTE1: For the objects creating hazards sensing targets, additional communication scenarios can be considered for future evaluations.

NOTE2: A percentage of TRPs/UEs that have sensing capabilities may be considered for future evaluations.

The following agreements were made in RAN1#119:

Agreement

For UAV sensing target scenarios, the following table is agreed for deployment scenario parameters/values using the agreements from RAN1#118 as a baseline:


The detailed scenario description in this clause can be used for channel model calibration.

ISAC-UAV

Details on ISAC-UAV scenarios are listed in Table x.

Ра	rameters	Value
Applicable communicat	on scenarios	UMi, UMa, RMa [38.901] UMi-AV, UMa-AV, RMa-AV
Sensing transmitters and receivers properties	Rx/Tx Locations	 Rx/Tx locations are selected among the TRPs and UEs locations in the corresponding communication scenarios. NOTE1: This may include aerial UEs for UMi-AV,
		UMa-AV, RMa-AV communication scenarios. In this case, other Rx/Tx properties (e.g. mobility) are also taken from the corresponding communication scenario.
	LOS/NLOS	LOS and NLOS
	Outdoor/indoor	Outdoor
Sensing target	3D mobility	Horizontal velocity: uniform distribution between 0 and 180km/h, if horizontal velocity is not fixed to 0.
		Vertical velocity: 0km/h, optional {20, 40} km/h

Table x. Evaluation parameters for UAV sensing scenarios

	cal haracteristics e.g., size)	Size: Option 1: 1.6m x 1.5m x 0.7m Option 2: 0.3m x 0.4m x 0.2m FFS: Material(s), Structure, Other size(s)			
Minimum 3D distances between pairs of Tx/Rx and sensing target		Option B:-Min distances based on min. TRP/UE distances defined in TR36.777 as a starting point. NOTE5: the sensing target is assumed in the far field of sensing Tx/Rx Option C: Min. distance is larger than the min. far- field distance of the sensing Tx/Rx			
Minimum 3D distance between sensing targets		Option 1: At least larger than the physical size of a target Option 2: 10 meters			
[Unintended/Environment objects, characteristics, mobility, distributio	[Unintended/Environment objects, e.g., types, characteristics, mobility, distribution, etc.]				
NOTE: A percentage of TRPs/UEs t evaluations.					
Agreement For Automotive sensing target scenarios, the following table is agreed for deployment scenario parameters/values using the agreements from RAN1#118-bis as a baseline: The detailed scenario description in this clause can be used for channel model calibration.					
ISAC-Automotive					
Details on ISAC-Automotive scenarios are listed in Table x.					
Table x. Evaluation parameters for Automotive sensing scenarios					
Parameters	Parameters Values				
Applicable communication scenarios Hig					

Sensing tra propertie:	nsmitters and receivers s	Rx/Tx locations are selected among the TRPs and UEs (e.g., VRU, vehicle, RSU-type UEs) locations in the corresponding communication scenario. NOTE2 FFS: Additional option: ISD between TRPs of Urban Grid is 250m	
	LOS/NLOS	LOS and NLOS (including NLOSv)	
	Outdoor/indoor	Outdoor	
	Mobility (horizontal plane only)	Based on TR37.885 mobility for urban grid or highway scenario	
Sensing target	Distribution (horizontal)	Based on dropping in TR37.885 per urban grid or highway communication scenario	
-	Orientation	Lane direction in horizontal plane	
	Physical characteristics (e.g., size)	Type 1/2 (passenger vehicle) Type 3 (truck/bus) Vehicle type distribution per TR 37.885 as a starting point FFS: Other sizes, additional distributions, and vehicle types, e.g. one new type of e-scooter/motorcycle/bike	
	distances between pairs of d sensing target	Option 1: Min distances based on min. TRP/UE distances defined in TR37.885 as a starting point. Option 2: Min. distance is larger than the min. far-field distance of the sensing Tx/Rx NOTE3: the sensing target is assumed in the far field of sensing Tx/Rx	
Minimum 3D targets	distance between sensing	Option 1: At least larger than the physical size of a sensing target Option 2: Fixed value, <mark>(10] m. value of x is FFS</mark>	

	EO Type 2 for Urban Grid
Environment Objects, e.g., types,	- FFS: details, e.g. up to 4 walls modelled as EO type 2, per
characteristics, mobility, distribution,	building of size [413m x 230m x 20m]. FFS: number of
etc.	buildings, how many walls are modelled, additional building
	sizes, etc.

NOTE1: Calibration for UMi, Uma, RMa is not performed for the automotive scenario, but UMi, Uma, RMa can be considered for future evaluations of the automotive sensing target scenarios. Calibration for UMi, Uma, RMa is expected to be performed for another sensing scenario.

NOTE2: A percentage of TRPs/UEs that have sensing capabilities may be considered for future evaluations.

Agreement

For Human (indoor and outdoor) sensing target scenarios, the following table is agreed for deployment scenario parameters/values using the agreements from RAN1#118-bis as a baseline:

The detailed scenario description in this clause can be used for channel model calibration.

ISAC-Human

Details on ISAC-Human scenarios are listed in Table x.

F	Parameters		Outdoor Values
Applicable communication scenarios NOTE1		Indoor office, indoor factory [TR38.901] Indoor room [TR38.808]	UMi, Uma, RMa [TR38.901]
Sensing transmitters and receivers properties	Rx/Tx Locations	Rx/Tx locations are selected among the TRPs and UE locations in the corresponding communication scenario	Rx/Tx locations are selected among the TRPs and UE locations in the corresponding communication scenario

Table x. Evaluation parameters for Human (indoor and outdoor) sensing scenarios

	Rx/Tx Mobility for UEs	Option 1: 0km/h Option 2: 3km/h Option 3: Uniform distribution between 0km/h and 3km/hr	Option 1: 0km/h Option 2: 3km/h Option 3: Uniform distribution between 0km/h and 10km/hr
	LOS/NLOS	LOS and NLOS	LOS and NLOS
	Outdoor/indoor	Indoor	Outdoor
Sensing target	3D mobility	Option 1: 0km/h Option 2: 3km/h Option 3: Uniform distribution between 0km/h and 3km/hr (horizontal plane with random direction straight-line trajectory)	Option 1: 0km/h Option 2: 3km/h Option 3: Uniform distribution between 0km/h and 10km/hr (horizontal plane with random direction straight-line trajectory)
	3D distribution	N targets_uniformly distributed_over the horizontal area_of_the convex hull of the TRP deployment FFS: Value of N NOTE1: N=0 may be considered_for the evaluation of false alarm	Option A: <i>N</i> targets uniformly distributed within one cell. Option B: <i>N</i> targets uniformly distributed per cell.

			Option C: <i>N</i> targets uniformly distributed within an area not necessarily determined by cell boundaries. Uniform in horizontal plane NOTE1: <i>N</i> =0 may be considered for the evaluation of false alarm
	Orientation	Random over the horizontal area	Random over the horizontal area
	Physical characteristics (e.g., size)	Size (Length x Width x Height): - Child: 0.2m x 0.3m x 1m - Adult Pedestrian: 0.5m x 0.5m x 1.75m	Size (Length x Width x Height): - Child: 0.2m x 0.3m x 1m - Adult Pedestrian: 0.5m x 0.5m x 1.75m
Minimum 3D distances between pairs of Tx/Rx and sensing target		Option 1: Min. distance is larger than the min. far- field distance of the sensing Tx/Rx Option 2: Min distances defined in TR 38.901 and TR36.843 and TR38.859as a starting point	Option 1: Min. distance is larger than the min. far-field distance of the sensing Tx/Rx Option 2: Min distances defined in TR 38.901 and TR36.843 and TR38.859 as a starting point

	NOTE2: the sensing target is assumed in the far field of sensing Tx/Rx	NOTE3: the sensing target is assumed in the far field o sensing Tx/Rx
Minimum 3D distance between sensing targets	Option 1: At least larger than the physical size of a sensing target Option 2: Fixed value, [x] m. value of x is FFS	Option 1: At least large than the physica size of a sensing target Option 2: Fixed value [x] m. value of x is FFS
Environment Objects, e.g., types, characteristics, mobility, distribution, etc.	FFS, based on outcome for AI 9.7.2	FFS, based on outcom for AI 9.7.2

NOTE1: For the human (indoor and outdoor) sensing targets, additional communication scenarios can be considered for future evaluations. Channel model calibration for Urban Grid with outdoor humans is expected to be performed from Objects creating hazards on the road/railway sensing scenarios.

NOTE2: A percentage of TRPs/UEs that have sensing capabilities may be considered for future evaluations.

Agreement

For AGV sensing target scenarios, the following table is agreed for deployment scenario parameters/values using the agreements from RAN1#118-bis as a baseline:

The detailed scenario description in this clause can be used for channel model calibration.

ISAC-AGV

Details on ISAC-AGV are listed in Table x.

Table x. Evaluation parameters for Automated Guided Vehicles

Parameters	Value
------------	-------

Applicable communication scenarios		InF (TR38.901 including Table 7.8-7)
		Rx/Tx location are selected among the TRPs and UEs location in the corresponding communication scenario
Sensing transmitters and receivers properties NOTE2		Rx/Tx Mobility for UEs Option 1: 0 km/h Option 2: 3km/h Option 3: Uniform distribution between 0km/h and 3km/h
	LOS/NLOS	LOS and NLOS
	Outdoor/indoor	Indoor
	3D mobility	Horizontal velocity with random straight-line trajectory - Option 1: Uniform distribution in the range of up to 30 km/h - Option 2: Fixed velocities [3, 10] km/h
Sensing target	3D distribution	Option A: Uniformly distributed in the convex hull of the horizontal BS deployment Option B: Uniformly distributed in horizontal plane
	Orientation	Horizontal plane only
	Physical characteristics (e.g., size)	Size (L x W x H) - Option 1: 0.5m x 1.0m x 0.5m - Option 2: 1.5 m x 3.0m x 1.5 m - FFS: Material, Additional sizes, and AGV size distribution
Minimum 3D distar and sensing tar	nces between pairs of Tx/Rx	Option 1: Min. distance is larger than the min. far-field distance of the sensing Tx/Rx from the sensing target Option 2: Min distances based on min. TRP/UE distances defined in TR38.901

	NOTE: the sensing target is assumed in the far field of sensing Tx/Rx
Minimum 3D distance between sensing targets	Option A: At least larger than the physical size of a target Option B: Fixed value, [x] m. value of x is FFS
Environment objects, e.g., types, characteristics, mobility, distribution, etc.	FFS

NOTE1: For the AGV sensing targets, additional communication scenarios can be considered for future evaluations.

NOTE2: A percentage of TRPs/UEs that have sensing capabilities may be considered for future evaluations.

NOTE3: RAN1 can further discuss narrowing down the number of sub-scenarios of InF

Agreement

For Objects creating hazards sensing target scenarios, the following table is agreed for deployment scenario parameters/values using the agreements from RAN1#118-bis as a baseline:

The detailed scenario description in this clause can be used for channel model calibration.

ISAC-Hazards

Details on ISAC-Hazards are listed in Table x.

Parameters		Value
Applicable communication scenarios NOTE1		Highway, Urban grid, HST (High Speed Train)
Sensing transmitters and receivers properties	Rx/Tx Locations	Rx/Tx locations are selected among the TRPs and UEs (e.g., VRU, vehicle, RSU-type UEs) locations in the corresponding communication scenarios.

Table x. Evaluation parameters for objects creating hazards

NOTE2		FFS: Option 2 Additional option ISD between TRPs of Urban Grid is 250 m
	LOS/NLOS	LOS and NLOS
	Outdoor/indoor	Outdoor
	3D mobility	Horizontal velocity: up to [10] km/h for humans and animals
		FFS: Additional velocities, trajectory
	3D distribution	Uniformly distributed in horizontal plane
Sensing target	Orientation	Random distribution in horizontal plane
		For human/pedestrians: Child: 0.2m x 0.3m x 1m
		Adult: 0.5m x 0.5m x 1.75m
	Physical characteristics (e.g., size)	For animals:
		Size: 1.5m x 0.5m x 1 m
		FFS: other types/sizes of targets may be considered for future evaluations
Minimum 3D distances between pairs of Tx/Rx and sensing target		Option 1: Min. distance is larger than the min. far- field-distance of the sensing Tx/Rx from the sensing target
		Option 2: based on-min TRP/UE distances defined in TR37.885 and TR38.802 and TR36.843 and TR38.859
		NOTE: the sensing target is assumed in the far field of sensing Tx/Rx
Minimum 3D distance between sensing targets		Option 1: At least larger than the physical size of a sensing target
		Option 2: Fixed value, [10] m. value of x is FFS
Environment objects	, e.g., types, characteristics,	EO Type 2 for Urban Grid

mobility, distribution, etc.	 FFS: details, e.g. up to 4 walls modelled as EO type 2, per building of size [413m x 230m x 20m]. FFS: number of buildings, how many walls are modelled, additional building sizes, etc,
NOTE1: For the objects creating hazards sensing t considered for future evaluations.	targets, additional communication scenarios can be
NOTE2: A percentage of TRPs/UEs that have sensing capabilities may be considered for future evaluations.	

The following agreements were made in RAN1#120:

Agreement
For ISAC channel modelling calibration, RAN1 considers both large-scale and full-scale calibration to
include parameters and values for at least the following:
• large scale parameters, where fast fading is not included
• full-scale calibration parameters, which includes fast fading.
• NOTE0: one part of calibration work does not include additional components and does not include
spatial consistency
• FFS: whether spatial consistency is specified as an additional component for ISAC CM
• NOTE1: additional calibrations including spatial consistency can also be considered case by case for
different scenarios.
• NOTE2: Inclusion of EO in ISAC CM calibrations can also be considered case by case for different
scenarios.
Agreement
Calibration of ISAC CM includes separate calibration of the target channel and of the background channel
• FFS: additional calibration for the combined channel (combination of target and background
channel).
Agreement
For the purposes of large scale calibration for UAV sensing targets, the following calibration parameters
are proposed below in Table x.

Table x. Simulation assumptions for large scale calibration for UAV sensing targets		
Parameters	Values	
Scenario	UMa-AV	
	TRP monostatic, TRP-TRP bistatic, TRP-UE bistatic, UE-UE bistatic	
Sensing mode	Note: further down-selection of the sensing modes for UAV sensin is not precluded	
Sectorization	3 sectors per cell site: 30, 150 and 270 degrees	
Carrier Frequency	FR1: 6 GHz	
	FR2: 30 GHz	
BS antenna configurations	Single dual-pol isotropic antenna	
	FR1: 56dBm	
BS Tx power	FR2: 41dBm	
Bandwidth	FR1: 100MHz	
Banuwium	FR2: 400MHz	
	FR1: 5dB	
BS noise figure	FR2: 7dB	
UT antenna configurations	(M,N,P,Mg,Ng;Mp,Np) = (1,1,2,1,1;1,1)	
	FR1: 9dB	
UT noise figure	FR2: 10dB	
Sensing target distribution	1 target uniformly distributed (across multiple drops) within the center cell. Vertical distribution: Fixed height value of 200 m.	
Component A of the RCS for each	a fixed value of A	
scattering point		

Minimum 3D distances between pairs of Tx/Rx and sensing target	10 m
Wrapping Method	No wrapping method is used if interference is not modelled, otherwise geographical distance based wrapping
Metrics	 Coupling loss (based on LOS pathloss) FFS: how to select sensing Tx and Rx FFS: additional metrics, wideband SIR and SINR based on RSRP if interference is modelled.

In this contribution, the deployment scenarios and evaluation metrics of ISAC will be discussed.

2. Discussion

2.2.1 UAV use cases

The parameters of CM calibration for full calibration for UAV use cases are shown in Table 1.

Parameters	Values
Scenario	UMa-AV
Sensing mode	TRP bistatic/monostatic
Target type	Small-size UAV
Sectorization	3 sectors per site: 30, 150, 270 degrees
	FR1: 6 GHz;
Carrier Frequency	FR2: 30 GHz
	For FR1:
	(M,N,P,Mg,Ng;Mp,Np) = (8,8,2,1,1;2,8)
BS antenna	(dH,dV) = (0.5, 0.8)λ, +45°/-45° polarization
configurations	For FR2:
	(M,N,P,Mg,Ng;Mp,Np) = (4,16,2,2,2; 1,1)
	(d_H,d_V) = (0.5, 0.5)λ, (dH,g, dV,g) = (4.0, 2.0)λ, +45°/-45° polarization
PS Ty power	FR1: 56dBm
BS Tx power	FR2: 41dBm
Bandwidth	FR1: 100MHz
Balluwiutii	FR2: 400MHz
PS poico figuro	FR1: 5dB
BS noise figure	FR2: 7dB

Table 1. The parameters of CM calibration for full calibration for UAV use cases

UT antenna	(M,N,P,Mg,Ng;Mp,Np) = (1,1,2,1,1;1,1)
configurations	
_	FR1:9dB
UT noise figure	FR2:10dB
Sensing target	1 target uniformly distributed (across multiple drops) within the 3 sectors of the center
distribution	cell. Vertical distribution: Fixed height value of 200 m.
Fast fading channel	Based on 36.777
(u, std) for XPR of target	(17, 3.4)
Component B1/B2 of	
bistatic RCS	Same values as monostatic (i.e., we temporally assume bistatic RCS is isotropic)
The power threshold	
for path dropping after	-40dB
concatenation for	-400B
target channel	
The power threshold	
for removing clusters in	
step 6 in section 7.5, TR	-25dB
38.901 for background	
channel	
	By definition, need to consider all direct and indirect paths. The following parameters
	are included in the calculation:
	 power scaling factor (pathloss, shadow fading, and RCS component A included)
	for small scale
	RCS B1/B2 and power of rays in Tx-target/target-Rx links ($P_{n',m',n,m}^{k,p}$), Tx/Rx
Definition of Coupling	antenna pattern, 3 polarization matrixes, i.e.,
loss	$\begin{bmatrix} r & (kn & kn &)\end{bmatrix}^T$
	$\sqrt{P_{n',m',n,m}^{k,p}} \begin{bmatrix} F_{rx,u,\theta} \left(\theta_{rx,n',m',ZOA'}^{k,p} \phi_{rx,n',m',AOA}^{k,p} \right) \\ F_{rx,u,\phi} \left(\theta_{rx,n',m',ZOA'}^{k,p} \phi_{rx,n',m',AOA}^{k,p} \right) \end{bmatrix}^{T} CPM_{rx,n',m'}^{k,p} CPM_{n',m',n,m}^{k,p} CPM_{tx,n,m}^{k,p}$
	$\left[F_{rx,u,\phi}\left(\theta_{rx,n',m',ZOA}^{\kappa,p},\phi_{rx,n',m',AOA}^{\kappa,p}\right)\right]$
	$\begin{bmatrix} F & (\rho^{k,p} & \phi^{k,p} \end{bmatrix}$
	$\cdot \begin{bmatrix} F_{tx,s,\theta}(\theta_{tx,n,m,ZOD}^{k,p}, \phi_{tx,n,m,AOD}^{k,p}) \\ F_{tx,s,\phi}(\theta_{tx,n,m,ZOD}^{k,p}, \phi_{tx,n,m,AOD}^{k,p}) \end{bmatrix}$
	$[T_{tx,s,\phi}(\sigma_{tx,n,m,ZOD}, \varphi_{tx,n,m,AOD})]$
Tx-Rx paring	Select 4 pairs with smallest power scaling factor.
Absolute delay	The model of UMa scenario defined in FR3 channel modeling.
	CDF of coupling loss
Metrics	CDF of Delay Spread and Angle Spread (ASD, ZSD, ASA, ZSA)

The updated parameters of CM calibration for large scale for UAV use cases are shown in Table

2.

Parameters	Values	
Target type	Small-size UAV	
Definition of coupling loss	power scaling factor (pathloss, shadow fading, and RCS component A (-12.81 dBsm) included) $L_{TX-SPST-RX} = PL_{dB}(d_1) + PL_{dB}(d_2) + 10lg\left(\frac{c^2}{4\pi f^2}\right) - 10lg\left(\sigma_{RCS,A}\right) + SF_{dB,1} + SF_{dB,2}$	
Generate the LOS condition, pathlo each of Tx-target and target-Rx links LOS condition, pathloss, SF For monostatic, same LOS condition/p is determined for both Tx-target and links		
Sensing Tx/Rx selection	N=4 Tx-Rx pairs to be selected for the target in TRP mono-static and TRP-TRP bistatic	

Table 2. The parameters of CM calibration for large scale for UAV use cases

Proposal 1: The parameters of CM calibration for full calibration for UAV use cases are shown in Table 1.

Proposal 2: The updated parameters of CM calibration for large scale for UAV use cases are shown in Table 2.

2.2.2 Human indoor/outdoor use cases

The parameters of CM calibration for full calibration for human indoor/outdoor use cases are shown in Table 3.

Parameters	Indoor values	Outdoor values
	Indoor office	UMa, UMi
Scenario	120m*50m*3m	
	ISD: 20m	
Sensing mode	All sensing modes	All sensing modes
Target type	Size (Length x Width x Height):	Size (Length x Width x Height):

Table 3. The parameters of CM calibration for	full calibration for human indoor/outdoor use cases

	- Child: 0.2m x 0.3m x 1m	- Child: 0.2m x 0.3m x 1m
	- Adult Pedestrian: 0.5m x 0.5m x	- Adult Pedestrian: 0.5m x
	1.75m	0.5m x 1.75m
Sectorization	single sector per site	3 sectors per site
	FR1: 6 GHz;	FR1: 6 GHz;
Carrier Frequency	FR2: 30 GHz	FR2: 30 GHz
	For FR1:	[M,N,P,Mg,Ng]=[4,4,2,1,2],
	(M,N,P,Mg,Ng;Mp,Np) = (4,4,2,1,1;	dv=dh=0.5λ, dvg=dhg=2.5λ
	4,4) ,	
	(dH,dV) = (0.5, 0.5)λ, +45°/-45°	
	polarization	
BS antenna configurations	For FR2:	
	(M,N,P,Mg,Ng;Mp,Np)=	
	(16,8,2,1,1; 1,1) ,	
	(dH,dV) = (0.5, 0.5)λ, +45°/-45°	
	polarization	
	FR1: 24dBm	FR1:
	FR2: 23dBm	UMa: 49dBm; UMi: 44dBm
BS Tx power		FR2:
		UMa: 37dBm; UMi: 37dBm
Bandwidth	FR1: 100MHz	FR1: 100MHz
Banuwiuth	FR2: 400MHz	FR2: 400MHz
PS poiso figuro	FR1: 5dB	FR1: 5dB
BS noise figure	FR2: 7dB	FR2: 7dB
UT antenna configurations	(M,N,P,Mg,Ng;Mp,Np) =	(M,N,P,Mg,Ng;Mp,Np) =
	(2,2,1,1,1;1,1)	(2,2,1,1,1;1,1)
UT noise figure	FR1:9dB	FR1:9dB
	FR2:10dB	FR2:10dB
Fast fading channel	Fast fading channel is modeled	Fast fading channel is modeled
	5 targets uniformly distributed over	5 sensing targets uniformly
Sensing target distribution	the horizontal area of the convex	distributed within the center
	hull of the TRP deployment	cell
Component B1/B2 of bistatic	Same value as monostatic	Same value as monostatic
RCS		
The power threshold for path	-40dB	-40dB
dropping after concatenation		
for target channel		

The power threshold for	-25dB	-25dB
removing clusters in step 6 in		
section 7.5, TR 38.901 for		
background channel		
	Select 4 Tx-Rx pairs with the	Select 4 Tx-Rx pairs with the
Tx-Rx pairing	smallest power scaling factor	smallest power scaling factor
	CDF of coupling loss	CDF of coupling loss
Metrics	CDF of Delay Spread and Angle	CDF of Delay Spread and Angle
	Spread (ASD, ZSD, ASA, ZSA)	Spread (ASD, ZSD, ASA, ZSA)

Parameters	Indoor values	Outdoor values
	Indoor office	UMa, UMi
Scenario	120m*50m*3m	
	ISD: 20m	
Sensing mode	All sensing modes	All sensing modes
	Size (Length x Width x Height):	Size (Length x Width x
	- Child: 0.2m x 0.3m x 1m	Height):
Target type	Adult Pedestrian: 0.5m x 0.5m x	- Child: 0.2m x 0.3m x 1m
	1.75m	Adult Pedestrian: 0.5m x
		0.5m x 1.75m
Sectorization	single sector per site	3 sectors per site
	FR1: 6 GHz;	FR1: 6 GHz;
Carrier Frequency	FR2: 30 GHz	FR2: 30 GHz
	For FR1:	[M,N,P,Mg,Ng]=[4,4,2,1,2],
	(M,N,P,Mg,Ng;Mp,Np) = (4,4,2,1,1;	dv=dh=0.5λ, dvg=dhg=2.5λ
	4,4),	
	$(dH,dV) = (0.5, 0.5)\lambda, +45^{\circ}/-45^{\circ}$	
	polarization	
BS antenna configurations	For FR2:	
	(M,N,P,Mg,Ng;Mp,Np)=	
	(16,8,2,1,1; 1,1) ,	
	$(dH,dV) = (0.5, 0.5)\lambda, +45^{\circ}/-45^{\circ}$	
	polarization	
	FR1: 24dBm	FR1:
	FR2: 23dBm	UMa: 49dBm; UMi: 44dBm
BS Tx power		FR2:
		UMa: 37dBm; UMi: 37dBm

	FR1: 100MHz	FR1: 100MHz
Bandwidth	FR2: 400MHz	FR2: 400MHz
	FR1: 5dB	FR1: 5dB
BS noise figure	FR2: 7dB	FR2: 7dB
UT antenna configurations	(M,N,P,Mg,Ng;Mp,Np) =	(M,N,P,Mg,Ng;Mp,Np) =
	(2,2,1,1,1;1,1)	(2,2,1,1,1;1,1)
LIT poico figuro	FR1:9dB	FR1:9dB
UT noise figure	FR2:10dB	FR2:10dB
	5 targets uniformly distributed over	5 sensing targets uniformly
Sensing target distribution	the horizontal area of the convex	distributed within the
	hull of the TRP deployment	center cell
Large-scale RCS for each	The mean value of target RCS (-1.37	The mean value of target
scattering point	dBsm for monostatic)	RCS (-1.37 dBsm for
Stattering point		monostatic)
Minimum 3D distances	TR 38.901 as a starting point	TR 38.901 as a starting
between pairs of Tx/Rx and		point
sensing target		
Minimum 3D distance between	At least larger than the physical size	At least larger than the
sensing targets	of a sensing target	physical size of a sensing
		target
	No wrapping method is used if	No wrapping method is
	interference is not modelled,	used if interference is not
Wrapping method	otherwise geographical distance	modelled, otherwise
	based wrapping	geographical distance
		based wrapping
	Generate the LOS condition,	Generate the LOS
	pathloss, SF for each of Tx-target	condition, pathloss, SF for
	and target-Rx links	each of Tx-target and
	For monostatic, same LOS	target-Rx links
LOS condition, pathloss, SF	condition/pathloss/SF is	For monostatic, same LOS
	determined for both Tx-target and	condition/pathloss/SF is
	target-Rx links	determined for both Tx-
		target and target-Rx links
	nower scaling factor (nothlass	
	power scaling factor (pathloss,	power scaling factor
Definition of coupling loss	shadow fading, and RCS	(pathloss, shadow fading,
	component A included)	and RCS component A
		included)

	$L_{TX-SPST-RX} = PL_{dB}(d_1) + PL_{dB}(d_2) + 10lg\left(\frac{c^2}{4\pi f^2}\right)$	$L_{TX-SPST-RX} = PL_{dB}(d_1) + PL_{dB}(d_2) + 10lg\left(\frac{c^2}{4\pi f^2}\right)$
	$-10lg(\sigma_{RCS,A}) + SF_{dB,1} + SF_{dB,2}$	$-10lg(\sigma_{RCS,A}) + SF_{dB,1}$ $+ SF_{dB,2}$
	4 Tx-Rx pairs with the smallest	4 Tx-Rx pairs with the
Sensing Tx/Rx selection	scaling factor to be selected for the	smallest scaling factor to
	target.	be selected for the target.
	Coupling loss – serving cell (based	Coupling loss – serving cell
	on LOS pathloss)	(based on LOS pathloss)
Metrics	Geometry (based on LOS pathloss)	Geometry (based on LOS
	with and without white noise.	pathloss) with and without
		white noise.

Proposal 3: The parameters of CM calibration for full calibration for human indoor/outdoor use cases are shown in Table 3.

Proposal 4: The parameters of CM calibration for large scale for human indoor/outdoor use cases are shown in Table 4.

2.2.3 Automotive vehicles use cases

The parameters of CM calibration for full calibration for Automotive vehicles use cases are shown in Table 5.

Parameters	Values
Scenario	Urban grid, Highway
Sensing mode	TRP bistatic/monostatic, TRP-UE bistatic
Target type	Vehicle type 2
Sectorization	3 sectors per site, 30, 150 and 270 degrees
	FR1: 6 GHz
Carrier Frequency	FR2: 30 GHz
BS antenna configurations	Single dual-pol isotropic antenna
	FR1: 56dBm
BS Tx power	FR2: 41dBm
Bandwidth	FR1: 100MHz
	FR2: 400MHz
BS noise figure	FR1: 5dB

	FR2: 7dB
UT antenna configurations	(M,N,P,Mg,Ng;Mp,Np) = (1,1,2,1,1,1,1)
	FR1:9dB
UT noise figure	FR2:10dB
Sensing target distribution	Dropping option A in 37.885
Fast fading model	Based on 37.885
The power threshold for	-40dB
path dropping after	
concatenation for target	
channel	
The power threshold for	-25dB
removing clusters in step 6 in	
section 7.5, TR 38.901 for	
background channel	
Definition of Coupling loss	By definition, need to consider all direct and indirect paths. The following parameters
	are included in the calculation:
	 power scaling factor (pathloss, shadow fading, and RCS component A included) for small scale
	RCS B1/B2 and power of rays in Tx-target/target-Rx links $(P_{n',m',n,m}^{k,p})$, Tx/Rx
	antenna pattern, 3 polarization matrixes, i.e.,
	$\sqrt{P_{n',m',n,m}^{k,p}} \begin{bmatrix} F_{rx,u,\theta} \left(\theta_{rx,n',m',ZOA}^{k,p}, \phi_{rx,n',m',AOA}^{k,p} \right) \\ F_{rx,u,\phi} \left(\theta_{rx,n',m',ZOA}^{k,p}, \phi_{rx,n',m',AOA}^{k,p} \right) \end{bmatrix}^{T} CPM_{rx,n',m'}^{k,p} CPM_{n',m',n,m}^{k,p} CPM_{tx,n,m}^{k,p}$
	$\cdot \begin{bmatrix} F_{tx,s,\theta} \left(\theta_{tx,n,m,ZOD}^{k,p}, \phi_{tx,n,m,AOD}^{k,p} \right) \\ F_{tx,s,\phi} \left(\theta_{tx,n,m,ZOD}^{k,p}, \phi_{tx,n,m,AOD}^{k,p} \right) \end{bmatrix}$
Tx-Rx pairing	For urban grid, select 4 Tx-Rx pairs with smallest power scaling factor.
	For Highway, select 1 Tx-Rx pairs with smallest power scaling factor.
Metrics	Coupling loss based on PL
וווכז	Wideband SIR and SINR based on geometry (based on pathloss)

The parameters of CM calibration for large scale for Automotive vehicles use cases are shown in Table 6.

$Table \ 6. \ The \ parameters \ of \ CM \ calibration \ for \ large \ scale \ for \ Automotive \ vehicles \ use \ cases$

Parameters	Values
Scenario	Urban grid, Highway
Sensing mode	TRP bistatic/monostatic, TRP-UE bistatic
Target type	Vehicle type 2
Sectorization	3 sectors per site, 30, 150 and 270 degrees
	FR1: 6 GHz
Carrier Frequency	FR2: 30 GHz
BS antenna configurations	Single dual-pol isotropic antenna
	FR1: 56dBm
BS Tx power	FR2: 41dBm
	FR1: 100MHz
Bandwidth	FR2: 400MHz
	FR1: 5dB
BS noise figure	FR2: 7dB
UT antenna configurations	(M,N,P,Mg,Ng;Mp,Np) = (1,1,2,1,1,1,1)
	FR1:9dB
UT noise figure	FR2:10dB
Sensing target distribution	Dropping option A in 37.885
Component A of RCS for each scattering point	The mean value of target RCS
Minimum 3D distances between pairs of Tx/Rx	Min distances based on min. TRP/UE distances
and sensing target	defined in TR37.885 as a starting point.
Minimum 3D distance between sensing targets	10 m
Wrapping Method	As defined in urban grid/highway scenario
	Generate the LOS condition, pathloss, SF for each of Tx-target and target-Rx links
LOS condition, pathloss, SF	For monostatic, same LOS condition/pathloss/SF is determined for both Tx-target and target-Rx links
Definition of Coupling loss	power scaling factor (pathloss, shadow fading, and RCS component A included)
	$L_{TX-SPST-RX} = PL_{dB}(d_1) + PL_{dB}(d_2) + 10lg\left(\frac{c^2}{4\pi f^2}\right)$
	$-10lg(\sigma_{RCS,A}) + SF_{dB,1} + SF_{dB,2}$

Sensing Tx/Rx selection	For urban grid, 4 Tx-Rx pairs with the smallest power scaling factor to be selected for the target. For Highway, 1 Tx-Rx pair with the smallest power scaling factor to be selected for the target.
Metrics	Coupling loss based on PL Wideband SIR and SINR based on geometry (based on pathloss)

Proposal 5: The parameters of CM calibration for full calibration for Automotive vehicles use cases are shown in Table 5.

Proposal 6: The parameters of CM calibration for large scale for Automotive vehicles use cases are shown in Table 6.

2.2.4 AGV use cases

The parameters of CM calibration for full calibration for AGV use cases are shown in Table 7.

Parameters	Values
Scenario	Indoor factory
Sensing mode	TRP bistatic/monostatic
	Size (L x W x H)
Target type	- Option 1: 0.5m x 1.0m x 0.5m
	- Option 2: 1.5 m x 3.0m x 1.5 m
Sectorization	3 sectors per site, 30, 150 and 270 degrees
Consider Freedoments	FR1: 6 GHz
Carrier Frequency	FR2: 30 GHz
BS antenna	(M,N,P,Mg,Ng;Mp,Np)=(16,16,1,1,1,1,1)
configurations	
BS Tx power	24dBm
Davidusidah	FR1: 100MHz
Bandwidth	FR2: 400MHz
DC noice figure	FR1: 5dB
BS noise figure	FR2: 7dB
UT antenna	(M,N,P,Mg,Ng;Mp,Np) = (1,1,2,1,1,1,1)
configurations	

Table 7. The parameters of CM calibration for full calibration for AGV use cases

	FR1:9dB	
UT noise figure	FR2:13dB	
Sensing target	5 targets uniformly distributed in the convex hull of the horizontal BS	
distribution	deployment	
Fast fading	Fast fading channel is modeled	
channel		
Component B1/B2	Same values as monostatic	
of bistatic RCS		
The power	-40dB	
threshold for path		
dropping after		
concatenation for		
target channel		
The power	-25dB	
threshold for		
removing clusters		
in step 6 in section		
7.5, TR 38.901 for		
background		
channel		
Definition of	By definition, need to consider all direct and indirect paths. The following parameters	
Coupling loss	are included in the calculation:	
	• power scaling factor (pathloss, shadow fading, and RCS component A included)	
	• for small scale	
	RCS B1/B2 and power of rays in Tx-target/target-Rx links $(P_{n',m',n,m}^{k,p})$, Tx/Rx	
	antenna pattern, 3 polarization matrixes, i.e.,	
	$\sqrt{P_{n',m',n,m}^{k,p}} \begin{bmatrix} F_{rx,u,\theta} \left(\theta_{rx,n',m',ZOA}^{k,p}, \phi_{rx,n',m',AOA}^{k,p} \right) \\ F_{rx,u,\phi} \left(\theta_{rx,n',m',ZOA}^{k,p}, \phi_{rx,n',m',AOA}^{k,p} \right) \end{bmatrix}^{T} CPM_{rx,n',m'}^{k,p} CPM_{n',m',n,m}^{k,p} CPM_{tx,n,m}^{k,p}$	
	$\cdot \begin{bmatrix} F_{tx,s,\theta}(\theta_{tx,n,m,ZOD}^{k,p}, \phi_{tx,n,m,AOD}^{k,p}) \\ F_{tx,s,\phi}(\theta_{tx,n,m,ZOD}^{k,p}, \phi_{tx,n,m,AOD}^{k,p}) \end{bmatrix}$	
Tx-Rx pairing	select 4 Tx-Rx pairs with smallest power scaling factor	
	CDF of coupling loss	
Metrics	CDF of Delay Spread and Angle Spread (ASD, ZSD, ASA, ZSA)	

The parameters of CM calibration for large scale for AGV use cases are shown in Table 8.

Parameters	Values
Scenario	Indoor factory
Sensing mode	TRP bistatic/monostatic
Target type	Size (L x W x H) - Option 1: 0.5m x 1.0m x 0.5m
	Option 2: 1.5 m x 3.0m x 1.5 m
Sectorization	3 sectors per site, 30, 150 and 270 degrees
Carrier Frequency	FR1: 6 GHz FR2: 30 GHz
BS antenna configurations	(M,N,P,Mg,Ng;Mp,Np)=(16,16,1,1,1,1,1)
BS Tx power	24dBm
Bandwidth	FR1: 100MHz FR2: 400MHz
BS noise figure	FR1: 5dB FR2: 7dB
UT antenna configurations	(M,N,P,Mg,Ng;Mp,Np) = (1,1,2,1,1,1,1)
UT noise figure	FR1:9dB FR2:13dB
Sensing target distribution	5 targets uniformly distributed in the convex hull of the horizontal BS deployment
Large-scale RCS for each scattering point	The mean value of target RCS
Minimum 3D distances between pairs of Tx/Rx and sensing target	0m
Wrapping Method	No
LOS condition, pathloss, SF	Generate the LOS condition, pathloss, SF for each of Tx-target and target-Rx links For monostatic, same LOS condition/pathloss/SF
	is determined for both Tx-target and target-Rx links
Definition of Coupling loss	power scaling factor (pathloss, shadow fading, and RCS component A included)

Table 8. The parameters of CM calibration for large scale for AGV use cases

	$L_{TX-SPST-RX} = PL_{dB}(d_1) + PL_{dB}(d_2) + 10lg\left(\frac{c^2}{4\pi f^2}\right) - 10lg(\sigma_{RCS,A})$
	+ SF _{dB,1} $+$ SF _{dB,2}
Sensing Tx/Rx selection	4 Tx-Rx pairs with the smallest scaling factor to
	be selected for the target.
N Astrica	Coupling loss based on PL
Metrics	Wideband SIR and SINR

Proposal 7: The parameters of CM calibration for full calibration for AGV use cases are shown in Table 7.

Proposal 8: The parameters of CM calibration for large scale for AGV use cases are shown in Table 8.

2.2.5 Objects creating hazards on roads/railways use cases

The parameters of CM calibration for full calibration for objects creating hazards on roads/railways use cases are shown in Table 9.

Table 9. The parameters of CM calibration for full calibration for objects creating hazards onroads/railways use cases

Parameters	Values	
Scenario	Highway	
Sensing mode	All 6 sensing modes	
	For human/pedestrians:	
	Child: 0.2m x 0.3m x 1m	
Target type	Adult: 0.5m x 0.5m x 1.75m	
	For animals: 1.5m x 0.5m x 1 m	
Sectorization	3 sectors per site, 30, 150 and 270 degrees	
Consider Freedoments	FR1: 6 GHz	
Carrier Frequency	FR2: 30 GHz	
BS antenna	(M,N,P,Mg,Ng;Mp,Np)=(16,16,1,1,1,1)	
configurations		
	FR1: 56dBm	
BS Tx power	FR2: 41dBm	
	FR1: 100MHz	
Bandwidth	FR2: 400MHz	

BS noise figure	FR1: 5dB
	FR2: 7dB
UT antenna	(M,N,P,Mg,Ng;Mp,Np)=(2,2,1,1,1,1,1)
configurations	
UT noise figure	FR1:9dB
	FR2:13dB
Sensing target	Uniformly distributed in horizontal plane
distribution	
Fast fading	Fast fading channel is modeled
channel	
The power	-40dB
threshold for path	
dropping after	
concatenation for	
target channel	
The power	-25dB
threshold for	
removing clusters	
in step 6 in section	
7.5, TR 38.901 for	
background	
channel	
Definition of	By definition, need to consider all direct and indirect paths. The following parameters
Coupling loss	are included in the calculation:
	• power scaling factor (pathloss, shadow fading, and RCS component A included)
	• for small scale
	RCS B1/B2 and power of rays in Tx-target/target-Rx links $(P_{n',m',n,m}^{k,p})$, Tx/Rx
	antenna pattern, 3 polarization matrixes, i.e.,
	$\sqrt{P_{n',m',n,m}^{k,p}} \begin{bmatrix} F_{rx,u,\theta} \left(\theta_{rx,n',m',ZOA}^{k,p}, \phi_{rx,n',m',AOA}^{k,p} \right) \\ F_{rx,u,\phi} \left(\theta_{rx,n',m',ZOA}^{k,p}, \phi_{rx,n',m',AOA}^{k,p} \right) \end{bmatrix}^{T} CPM_{rx,n',m'}^{k,p} CPM_{n',m',n,m}^{k,p} CPM_{tx,n,m}^{k,p}$
	$ \cdot \begin{bmatrix} F_{tx,s,\theta} \left(\theta_{tx,n,m,ZOD}^{k,p}, \varphi_{tx,n,m,AOD}^{k,p} \right) \\ F_{tx,s,\varphi} \left(\theta_{tx,n,m,ZOD}^{k,p}, \varphi_{tx,n,m,AOD}^{k,p} \right) \end{bmatrix} $
Tx-Rx pairing	select 4 Tx-Rx pairs with smallest power scaling factor
Metrics	CDF of coupling loss

CDF of Delay Spread and Angle Spread (ASD, ZSD, ASA, ZSA)

The parameters of CM calibration for large scale for objects creating hazards on roads/railways use cases are shown in Table 10.

Table 10. The parameters of CM calibration for large scale for objects creating hazards on

Parameters	Values
Scenario	Highway
Sensing mode	All 6 sensing modes
Sectorization	3 sectors per site, 30, 150 and 270 degrees
Target type	For human/pedestrians: Child: 0.2m x 0.3m x 1m Adult: 0.5m x 0.5m x 1.75m
	For animals: 1.5m x 0.5m x 1 m
Carrier Frequency	FR1: 6 GHz FR2: 30 GHz
BS antenna configurations	(M,N,P,Mg,Ng;Mp,Np)=(16,16,1,1,1,1,1)
	FR1: 56dBm
BS Tx power	FR2: 41dBm
Bandwidth	FR1: 100MHz
	FR2: 400MHz
BS noise figure	FR1: 5dB
	FR2: 7dB
UT antenna configurations	(M,N,P,Mg,Ng;Mp,Np)=(2,2,1,1,1,1,1)
UT noise figure	FR1:9dB
	FR2:13dB
Sensing target distribution	Uniformly distributed in horizontal plane
Sensing target mobility	10km/h
Large-scale RCS for each scattering point	Fixed value of A
Minimum 3D distances between pairs of Tx/Rx	35m
and sensing target	
LOS condition, pathloss, SF	Generate the LOS condition, pathloss, SF for each of Tx-target and target-Rx links

roads/railways use cases

	For monostatic, same LOS condition/pathloss/SF is determined for both Tx-target and target-Rx
	links
Definition of Coupling loss	power scaling factor (pathloss, shadow fading, and RCS component A included)
	$L_{TX-SPST-RX} = PL_{dB}(d_1) + PL_{dB}(d_2) + 10lg\left(\frac{c^2}{4\pi f^2}\right)$
	$-10lg(\sigma_{RCS,A}) + SF_{dB,1} + SF_{dB,2}$
Sensing Tx/Rx selection	4 Tx-Rx pairs with the smallest scaling factor to
	be selected for the target.
Metrics	CDF of coupling loss

Proposal 9: The parameters of CM calibration for full calibration for objects creating hazards on roads/railways use cases are shown in Table 9.

Proposal 10: The parameters of CM calibration for large scale for objects creating hazards on roads/railways use cases are shown in Table 10.

3. Conclusions

In this contribution, the following proposals are put forward:

Proposal 1: The parameters of CM calibration for full calibration for UAV use cases are shown in Table 1.

Proposal 2: The updated parameters of CM calibration for large scale for UAV use cases are shown in Table 2.

Proposal 3: The parameters of CM calibration for full calibration for human indoor/outdoor use cases are shown in Table 3.

Proposal 4: The parameters of CM calibration for large scale for human indoor/outdoor use cases are shown in Table 4.

Proposal 5: The parameters of CM calibration for full calibration for Automotive vehicles use cases are shown in Table 5.

Proposal 6: The parameters of CM calibration for large scale for Automotive vehicles use cases are shown in Table 6.

Proposal 7: The parameters of CM calibration for full calibration for AGV use cases are shown in Table 7.

Proposal 8: The parameters of CM calibration for large scale for AGV use cases are shown in Table 8.

Proposal 9: The parameters of CM calibration for full calibration for objects creating hazards on roads/railways use cases are shown in Table 9.

Proposal 10: The parameters of CM calibration for large scale for objects creating hazards on roads/railways use cases are shown in Table 10.

References

- RP-234069, "New SID: Study on Channel modelling for Integrated Sensing And Communication (ISAC) for NR", Nokia, Nokia Shanghai Bell, 3GPP TSG RAN meeting #102, Edinburgh, UK, 11th-15th December, 2023.
- [2] TR 22.837, "Feasibility study on Integrated Sensing and Communication", V19.2.0, 3GPP, 2023.
- [3] 3GPP RAN1 #116 Minutes report, Athens, Greece, 26th February 1st March.
- [4] 3GPP RAN1 #116b Minutes report, Changsha, China, 15th -19th April.
- [5] 3GPP RAN1 #117 Minutes report, Fukuoka, Japan, 20th -24th May.
- [6] 3GPP RAN1 #118 Minutes report, Maastritcht, Netherland, 19th -23rd August.
- [7] 3GPP RAN1 #118b Minutes report, Hefei, China, 14th -18th October.
- [8] 3GPP RAN1 #119 Minutes report, Orlando, US, 18th 22nd November.
- [9] 3GPP RAN1 #120 Minutes report, Athens, Greece, 17th 21st February.