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Abstract

Rectified Flow (RF) models trained with a Flow matching framework have
achieved state-of-the-art performance on Text-to-Image (T2I) conditional
generation. Yet, multiple benchmarks show that synthetic images can still
suffer from poor alignment with the prompt, i.e., images show wrong at-
tribute binding, subject positioning, numeracy, etc. While the literature
offers many methods to improve T2I alignment, they all consider only Dif-
fusion Models, and require auxiliary datasets, scoring models, and linguis-
tic analysis of the prompt. In this paper we aim to address these gaps.
First, we introduce RFMI, a novel Mutual Information (MI) estimator for
RF models that uses the pre-trained model itself for the MI estimation.
Then, we investigate a self-supervised fine-tuning approach for T2I align-
ment based on RFMI that does not require auxiliary information other than
the pre-trained model itself. Specifically, a fine-tuning set is constructed by
selecting synthetic images generated from the pre-trained RF model and
having high point-wise MI between images and prompts. Our experiments
on MI estimation benchmarks demonstrate the validity of RFMI, and em-
pirical fine-tuning on SD3.5-Medium confirms the effectiveness of RFMI for
improving T2I alignment while maintaining image quality.

1 Introduction

Text-to-Image (T2I) generative models have reached an incredible popularity thanks to
their high-quality image synthesis, ease of use, and integration across a variety of end-users
services (e.g., image editing software, chat bots, smartphones apps, websites). T2I models
are trained using large-scale datasets (LAION project, 2024) to generate images semantically
aligned with a user text input. Yet, recent benchmarks (Huang et al., 2023; Wu et al., 2024)
show that even Rectified Flow (RF) models, e.g., Stable Diffusion 3 (Esser et al., 2024) and
FLUX (FLUX, 2023), despite achieving a new state of the art, still suffer from a variety
of alignment issues (subjects in the images might be missing, or have the wrong attributes,
such as numeracy, positioning, etc).
Many works in the literature propose methods to mitigate alignment issues at either
inference-time – e.g., steering the generation guided by auxiliary text information or map-
based objectives (Chefer et al., 2023; Feng et al., 2023; Shen et al., 2024) – or using model
fine-tuning – e.g., updating the pre-trained model weights via supervised learning (Krojer
et al., 2023) or reinforcement learning (Fan et al., 2023; Huang et al., 2023) to address a
specific task. Despite their merits, available alignment methods require complementary data
such as linguistic analysis of prompts – e.g., A&E (Chefer et al., 2023) steers U-Net cross-
attention units by knowing which are the relevant tokens the prompt that need to appears
in the image, auxiliary models – e.g., DPOK (Fan et al., 2023) uses a reward function based
on a complementary model trained to capture human judgment of alignment and aesthetics,
or datasets – e.g., HNITM (Krojer et al., 2023) relies on a contrastive learning approach
creating negative prompt examples from a set of target prompts. In other words, these
methods shift the alignment problem from the model to the users.
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Differently from existing literature, in this work we argue for avoiding auxiliary input in
favor of a self-supervised approach where the pre-trained model is used to compute a score
signaling if the generated images align with the text prompt. In particular, we aim to use a
pre-trained RF model as a neural estimator for the Mutual Information (MI) between the
generated image and the prompt. In turn, this raises two research questions: how to estimate
MI using an RF model? and how to use the MI estimates to improve T2I alignment?
While multiple MI neural estimators have been proposed, to the best of our knowledge no
previous work considers RF models. For instance, discriminative approaches (McAllester &
Stratos, 2020) focus on directly estimating the ratio between joint distribution and product
of marginals but the sample average’s variance scales exponentially with the ground-truth
MI. Considering methods closer to our scope, generative approaches based on estimating
the two marginal densities separately with generative models like normalizing flows (Anony-
mous, 2025; Dinh et al., 2017) are more scalable but face estimation accuracy challenges
on high-dimensional or complex data according to benchmark testing on synthetic distribu-
tions (Czyż et al., 2023). However, none of these methods directly applies to RF models.
More important, the literature on T2I alignment primarily focuses on Diffusion Models
(DMs) such as SD2, while RF-related literature only tangentially considers the problem. For
instance, (Li et al., 2024) extends SD3 with more modalities, (Dalva et al., 2024) enhances
FLUX with a linear and fine-grained editing scheme of models’ attention output, (Liu et al.,
2024) proposes a novel text-conditioned pipeline to turn Stable Diffusion (SD) into an ultra-
fast one-step model – while all these works present CLIP score evaluations, they neither
focus nor they are designed to address T2I alignment. At the same time, the intrinsic
different nature of the RF models architecture (e.g., SD3 replaces the U-Net of SD2 with a
DiT architecture and also add an extra text transformer) calls for redesigning some of the
mechanics of DM-based T2I aligment methods.
In summary, in this work:

• We introduce RFMI, an RF-based point-wise MI estimator (Section 3) leveraging
the relation between the score of the density ∇ log pt and the velocity field ut.

• We design a self-supervised fine-tuning approach, called RFMI FT (Section 4), that
uses a small number of fine-tuning samples to improve the pre-trained T2I model
alignment with no inference-time overhead, nor auxiliary models other than the
generative model itself.

• We demonstrate the validity of our MI estimator considering both a synthetic bench-
mark involving various challenging data distributions (Section 5.1) where the true
MI is known, as well as a T2I benchmark (Huang et al., 2023) (Section 5.2).

2 Preliminaries

This work relies on recent advances in generative modeling (Esser et al., 2024; FLUX, 2023)
as a building block to design an estimator for the mutual information between two random
variables. Here, we give the necessary background to develop our methodology, that revolves
around flow models (Chen et al., 2019) and flow matching framework (Lipman et al., 2023).
Let x ∈ Rd denote a data point in the d-dimensional Euclidean space associated with the
standard Euclidean inner product, and X ∈ Rd a Random Variable (RV) with continuous
Probability Density Function (PDF) pX : Rd → R≥0, where

∫
Rd pX(x)dx = 1. We use the

notation X ∼ pX to indicate that X is distributed according to pX .
The key concepts we consider within the framework of flow matching are:
1. flow : a time-dependent Cr

(
[0, 1] × Rd,Rd

)
mapping ψ : (t, x) 7→ ψt(x)

2. velocity field : a time-dependent Cr
(
[0, 1] × Rd,Rd

)
mapping u : (t, x) 7→ ut(x)

3. probability path : a time-dependent PDF (pt)0≤t≤1

Given a source distribution p – e.g., standard Gaussian distribution N (0, I), and the data
target distribution q, the goal of generative flow modeling is to build a flow that transforms
X0 ∼ p into X1 := ψ1 (X0) such that X1 ∼ q.
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Considering an arbitrary probability path pt, ut is said to generate pt if its flow ψt satisfies
Xt := ψt (X0) ∼ pt for t ∈ [0, 1), X0 ∼ p0, since there is an equivalence between flows and
velocity fields derived from the ordinary differential equation (ODE){ d

dtψt(x) = ut (ψt(x)) (flow ODE)
ψ0(x) = x (flow initial conditions). (1)

One practical way to verify if a vector field ut generates a probability path pt is to verify if
the pair (ut, pt) satisfies the Continuity Equation for t ∈ [0, 1)

d
dtpt(x) + div (ptut) (x) = 0. (2)

Given a prescribed probability path pt satisfying the boundary conditions p0 = p and p1 = q,
the goal of Flow Matching (FM) is to learn a parametric velocity field uθ

t that matches the
ground truth velocity field ut known to generate the desired probability path pt. This goal
is realized by minimizing the regression loss: LFM(θ) = EXt∼pt

∥uθ
t (Xt) − ut (Xt) ∥2.

In practice, the ground truth marginal velocity field ut is not tractable, as it requires
marginalizing over the entire training set – i.e., ut(x) =

∫
ut (x | x1) p1|t (x1 | x) dx1.

Instead, we consider the Conditional Flow Matching (CFM) loss: LCFM(θ) =
Et,X1,Xt∼pt|1(·|X1)

∥∥uθ
t (Xt) − ut (Xt | X1)

∥∥2, where the ground truth conditional velocity
field ut(· | x1) is tractable, as it only depends on a single data sample X1 = x1. The
two losses are equivalent for learning purposes: since their gradients coincide, the minimizer
of CFM loss is the marginal velocity ut(x).
Training using CFM loss requires (i) designing pt|1 (· | x1) yielding a marginal probabil-
ity path pt satisfying the boundary conditions and then (ii) finding ut (· | x1) generating
pt|1 (· | x1). These two tasks could be reduced to defining a C2 (

[0, 1) × Rd,Rd
)

conditional

flow ψ : [0, 1) × Rd → Rd satisfying ψt (x | x1) =
{
x t = 0
x1 t = 1.

A popular objective is to minimize a bound of the Kinetic Energy, which results in the flow
ψt (x | x1) = tx1 + (1 − t)x. (3)

When x is a data sample x0 of X0 ∼ p, eq. (3) becomes ψt (x0 | x1) = tx1 + (1 − t)x0, the
conditional velocity field reduces to ut (xt | x1) = x1 − x0 for all t ∈ [0, 1), and the CFM
loss simplifies to

LCFM(θ) = Et,(X0,X1)∼π0,1

∥∥uθ
t (Xt) − (X1 −X0)

∥∥2
, (4)

where π0,1 denotes the joint distribution known as the source-target coupling. The condi-
tional probability path pt|1 of this linear conditional flow, defined using the push-forward
formula, satisfies the boundary conditions; furthermore, it is a particular case of Gaussian
paths pt|1 (· | x1) = N

(
· | btx1, a

2
t I

)
with bt = t and at = 1 − t, if the source distribution p

is the standard Gaussian.
Since a property of this linear conditional flow is that the Kinetic Energy of the marginal
velocity ut(x) is not bigger than the Kinetic Energy of the original coupling π0,1 used to train
the model, Liu et al. (2022) denote uθ

t optimized with CFM loss as Rectified Flow (RF).
As we are interested in conditional generation, we define the guidance RV as Y ∼ pY , with
data samples y ∈ Y ⊂ Rk. Given access to labeled target samples (x1, y), the goal of
conditional FM is to train the parameters θ of a single velocity field uθ

t : Rd × Rk → Rd to
match the ground truth guided velocity field ut(· | y) known to generate the desired guided
probability path pt|Y (· | y) satisfying the boundary conditions pt=0|Y (· | y) = p (·) and
pt=1|Y (· | y) = q (· | y) , for all values of y. The guided version of CFM loss is LCFM(θ) =
Et,(X0,X1,Y )∼π0,1,Y

∥∥uθ
t (Xt | Y ) − (X1 −X0)

∥∥2. Furthermore, if the model is trained with
Gaussian paths, the Classifier-Free Guidance (CFG) technique can be applied at inference
to enhance the sample quality, for which during training y will be masked as null-condition ∅
with probability puncond, in order to train uθ

t (· | ∅) to approximate the unconditional velocity
field ut generating the unconditional probability path pt.
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Finally, an essential result known as the Instantaneous Change of Variables (Chen et al.,
2019) is required for our work. Given the Continuity Equation, the differential equation
governing the evolution of the log-probability density is:

d
dt log pt (ψt(x)) = − div (ut) (ψt(x)) . (5)

3 RFMI: Estimating Mutual Information with Rectified Flows

Recall that the MI between two random variables X ∼ pX and Y ∼ pY can be defined
as the Kullback–Leibler (KL) divergence between the joint distribution and the product of
marginals: I(X;Y ) = DKL

(
p(X,Y )∥pXpY

)
. Furthermore, let pX|Y (·|y) be the conditional

distribution of X given Y = y. Using the identity p(X,Y )(x, y) = pX|Y (x | y)pY (y), it clearly
holds that I(X;Y ) = EY

[
DKL

(
pX|Y ∥pX

)]
, which indicates that the more the distributions

pX|Y and pX differ on average, the greater the information gain.
In this section we introduce RFMI, a new method to estimate the MI between X and the
guidance signal Y leveraging conditional RF models (Esser et al., 2024; FLUX, 2023). To
keep the notation concise and aligned with the notions in Section 2, we will refer to pX as
q, and pX|Y (·|y) as q(·|y).

Consider the case of linear conditional flow ψt (x | x1) = tx1 + (1 − t)x with x be-
ing samples of Gaussian prior X0 ∼ p = N (0, I). This flow’s conditional veloc-
ity field ut(· | x1) generates a Gaussian path pt|1 (· | x1) satisfying p0|1 (· | x1) =
p and p1|1 (· | x1) = δx1(·). The conditional pair

(
ut(· | x1), pt|1 (· | x1)

)
does not

depend from the guidance variable Y , while its marginal counterpart does, as(
ut(· | y) =

∫
ut (· | x1) p1|t,Y (x1 | ·, y) dx1, pt|Y (· | y) =

∫
pt|1 (· | x1) q (x1 | y) dx1

)
. As a

consequence, by applying the Marginalization trick, the guided velocity field ut(· | y) gen-
erates the guided probability path pt|Y (· | y), pt|Y (· | y) satisfies p0|Y (· | y) = p (·) and
p1|Y (· | y) = q (· | y). Note that when y = ∅ ∈ {∅} the marginal case is reduced to uncondi-
tional generation: ut(· | ∅) = ut, pt|{∅}(· | ∅) = pt, and q (· | ∅) = q. Overall, we express MI
using the guided and the unconditional marginal probability paths at the endpoint t = 1 as

I(X;Y ) = EY

[
DKL

(
pX|Y ∥pX

)]
= EY

[∫
q(x | Y ) log

(
q(x | Y )
q(x)

)
dx

]
= EY

[∫
p1|Y (x1 | Y ) log

(
p1|Y (x1 | Y )
p1(x1)

)
dx1

]
.

(6)

In practice, we train a single conditional RF neural network uθ
t (x | y), using the CFM loss,

for all values y ∈ {Y, ∅}. Since the minimizer of CFM loss is ut(· | y), uθ
t (x | y) is a valid

approximation of ut(· | y).
Next, we develop an expression of MI using ut(· | y) and ut, and use the conditional RF
model to estimate the MI between X and Y . To do so, we first express the score functions
associated to the marginal probability paths using the marginal velocity fields. These two
terms are related according to the following

Proposition 3.1 (Relation between velocity field and score function). For Gaussian paths
pt|1 (· | x1) = N

(
· | btx1, a

2
t I

)
, the relation between the conditional velocity field ut(· | x1)

and the score function ∇ log pt|1 (· | x1) of the conditional probability path pt|1(· | x1) is
derived as :

ut(x | x1) = ḃt

bt
x+

(
ḃtat − btȧt

) at

bt
∇ log pt|1 (x | x1) . (7)
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This relation also holds for their marginal counterpart, both in the guided case and in the
unconditional case:

ut(x | y) = ḃt

bt
x+

(
ḃtat − btȧt

) at

bt
∇ log pt|Y (x | y)

ut(x) = ḃt

bt
x+

(
ḃtat − btȧt

) at

bt
∇ log pt(x).

(8)

See proof in Eq. (F.4) (Albergo & Vanden-Eijnden, 2023), Eq. (7) (Zheng et al., 2023).

In particular, for linear conditional flow with Gaussian prior, i.e. bt = t, at = 1 − t, we have
ḃt = 1, ȧt = −1, and Equation (8) becomes

∇ log pt|Y (x | y) = tut(x | y) − x

1 − t

∇ log pt(x) = tut(x) − x

1 − t
.

(9)

We note that Equation (9) is only defined for t ∈ [0, 1). As t → 1, by taking the limit of
Equation (9) using l’Hopital’s rule, the limit of score function is (proof in Appendix A.1.1):{lim

t→1
∇ log pt|Y (x | y) = lim

t→1
−∂tut(x | y)

lim
t→1

∇ log pt(x) = lim
t→1

−∂tut(x). (10)

Given the guided and unconditional ground truth marginal velocity fields ut(·|y) and ut, it
is possible to show that MI can be computed exactly, as done in the following
Proposition 3.2 (MI computation). Given a linear conditional flow with Gaussian prior,
the MI between the target data X and the guidance signal Y is given by

I(X;Y ) = EY

[∫
p1|Y (x1 | Y ) log

(
p1|Y (x1 | Y )
p1(x1)

)
dx1

]
= EY

[∫ 1

0
EXt|Y

[
t

1 − t
ut(Xt|Y ) · (ut(Xt|Y ) − ut(Xt))

]
dt

]
.

(11)

This can be proven leveraging Equation (2), Equation (5), and the result of Proposition 3.1.
The full proof of Proposition 3.2 is given in Appendix A.1.2.
Similarly, it is easy to show that, given an individual guidance sample Y = y , it is possible
to use Equation (11) to compute the point-wise MI as

I(X; y) =
∫ 1

0
EXt|Y =y

[
t

1 − t
ut(Xt|Y = y) · (ut(Xt|Y = y) − ut(Xt))

]
dt. (12)

The integral in Equation (11) can be estimated by uniform sampling t ∼ U(0, 1). However,
in practice, since the denominator (1 − t) → 0 as t → 1, this estimator has unbounded
variance. To reduce variance, since the argument of the integral has constant magnitude
on average, it would be tempting to use importance sampling where t ∼ f(t) ∝ t

1−t . This
ratio, however, is hard to normalize (as it integrates to ∞). As an alternative, we consider
the following un-normalized density f̃ϵ proportional to such ratio for most of its support,
and then truncated to a constant for large t:

f̃ϵ(t) =
{

t
1−t t ∈ [0, tϵ)

tϵ

1−tϵ
t ∈ [tϵ, 1] (13)

To implement such non-uniform sampling in practice, we use the inverse transform sampling
method, with the inverse Cumulative Distribution Function (CDF) described in
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Proposition 3.3 (Non-uniform sampling for importance sampling). The inverse CDF of a
PDF proportional to truncated t

1−t is

F−1
ϵ (u) =

1 +W (−e−Zu−1) u ∈
[
0, − ln(1−tϵ)−tϵ

Z

)
,

1 + 1−tϵ

tϵ
[ln(1 − tϵ) + Zu] u ∈

[
− ln(1−tϵ)−tϵ

Z , 1
]
,

(14)

in which W is the Lambert’s W -function1, and the normalizing constant is Z = − ln(1− tϵ).

We show the proof of Proposition 3.3 in Appendix A.1.3.
Finally, given the parametric approximations of marginal velocity fields through minimiza-
tion of CFM loss, and the result in Proposition 3.2, now we are able to propose an MI
estimator defined as

I(X;Y ) ≈ EY

[∫ 1

0
EXt|Y

[
t

1 − t
uθ

t (Xt|Y ) ·
(
uθ

t (Xt|Y ) − uθ
t (Xt)

)]
dt

]
(15)

For the estimation of point-wise MI between generated image and guidance prompt, in prac-
tice we found that using the velocity field calibrated by CFG as uθ

t (Xt|Y ) in Equation (15)
leads to better performance than using the vanilla guided output given by the model. Fur-
thermore, for generating images at high resolution, to reduce training’s computational cost
and to speed up inference, it is common to apply RF on a lower dimensional manifold (e.g.
the compressed latent space of a pretrained Variational Autoencoder). It is easy to show
that the MI between images X and prompts Y equals to that between images’ latents Z
and prompts Y , i.e. I(X;Y ) = I(Z;Y ).
An important property of our estimator is that it is neither an upper nor a lower bound of the
true MI, since the difference between the ground truth velocity fields and their parametric
approximation can be positive or negative. This property frees our estimation method from
the pessimistic results of McAllester & Stratos (2020).

Algorithm 1: RFMI FT
Input : Pre-trained model: uθ , Prompt set: Y
Hyperparam: Image pool size: M ; Top MI-aligned

samples: k
Output : Fine-tuned diffusion model uθ∗

// Fine-tuning set
1 S ← {}
2 for y(i) in Y do
3 for j in 1, · · · , M do

// Generate and compute MI
4 z(j), I(z(j), y(i)) = PointWiseMI(uθ , y(i))

// Append samples and MI
5 S[y(i)].append(z(j), I(z(j), y(i)))
6 end

// Retain only Top-k elements
7 S[y(i)] = Top-k(S[y(i)])
8 end
9 return uθ∗ = FineTune(uθ , S)

Algorithm 2: RFMI
Input : Pre-trained model: uθ ; Prompt: y
Hyperparam: Step size: ∆t
Output : Generated clean latent: z; Point-wise MI:

I(z, y)
1 Function PointWiseMI(uθ , y):

// Initial latent sample
2 z0 ∼ N (0, I)
3 I(z, y) = 0
4 for t in 0, ..., 1 do

// MI estimation (eq. (12))
5 I(z, y) +=

t
1−t

uθ (zt, y, t) · (uθ (zt, y, t)− uθ (zt, ∅, t))
// Denoising step

6 zt+ = uθ (zt, y, t)∆t
7 end
8 return z, I(z, y)

4 Improving Text-Image Alignment with MI-guided
Self-Supervised Fine-tuning

Given a pre-trained RF model – e.g., Stable Diffusion 3 (Esser et al., 2024) or Flux.1 (FLUX,
2023), we leverage RFMI to improve the model’s alignment via fine-tuning. Specifically, our
self-supervised approach relies on the pre-trained model to create a synthetic fine-tuning
set of prompt-image pairs with a high degree of alignment selected using the point-wise
MI estimates obtained from the pre-trained model itself.
As described in Algorithm 1, we begin with a set of fine-tuning prompts Y (manually crafted
or already available (Huang et al., 2023)) and for each prompt y(i) ∈ Y, we generate M
synthetic images and record their point-wise MI (Equation (12) and Algorithm 2). Then,
we rank the image-prompt pairs (z(j), y(i)), j ∈ [1,M ] based on the estimated point-wise

1
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.lambertw.html
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Figure 1: MI estimation results. Color indicates relative negative bias (red) and positive
bias (blue).

Table 1: T2I-CompBench alignment results (%) on images generated with CFG=4.5

Category Shape 2D-spatial 3D-spatial Numeracy
(BLIP-VQA) (UniDet) (UniDet)2 (UniDet)

SD3.5-M 57.96 31.31 38.81 61.15
RFMI FT 61.78 33.92 42.28 64.00

abs. difference 3.82 2.61 3.47 2.85
relative gain 6.59 8.34 8.94 4.66

MI and the top k pairs to the fine-tuning dataset S. Finally, we fine-tune uθ with efficient
LoRA adaptation (Hu et al., 2021). Detailed fine-tuning hyperparameters in Appendix B.
We highlight the efficiency of Algorithm 2 which combines image latent generation and
point-wise MI computation. Since MI estimation involves computing an expectation over
diffusion times t, it is easy to integrate the MI estimation into the same generation loop.
Moreover, the function is easy to parallelize to speed up the fine-tuning set S composition.

5 Experimental Evaluation

5.1 Synthetic benchmark

As a preliminary step, we assess the quality of RFMI using a known benchmark (Czyż et al.,
2023) composed of 40 tasks with synthetic data generated from a variety of known distribu-
tions where the true MI is known, and venturing beyond the typical Gaussian distributions
to include harder cases (e.g., distributions with high MI or long tails).
We consider four alternative neural estimators as baselines, namely MINE (Belghazi et al.,
2021), InfoNCE (van den Oord et al., 2019), NWJ (Nguyen et al., 2010) and DOE
(McAllester & Stratos, 2020). All methods are trained/tested using 100k/10k samples,
where each sample is composed of two data points x and y concatenated as input for the
neural network.
Figure 1 shows the ground truth MI and each method estimates, with colors reflecting the
difference between the MI estimate and the true value – the lighter the shade, the smaller
the estimation error. Overall, RFMI is on par or better than alternative methods.

5.2 Text-Image Alignment Evaluation

We evaluate RFMI on T2I-CompBench++ (Huang et al., 2023), a T2I benchmark com-
posed of 700/300 (train/test) prompts across 8 categories including attribute binding (color,
shape, and texture categories), object relationships (2D-spatial, 3D-spatial, and non-spatial
associations), numeracy and complex composition tasks. Prompts are generated with prede-
fined rules or ChatGPT (OpenAI, 2024) and the evaluation uses BLIP-VQA (Huang et al.,
2023), UniDet (Zhou et al., 2022), or GPT-4V (Yang et al., 2023) depending on the category.
As Huang et al. (2023) recently found, Stable Diffusion 3 already “saturates” performance

2For prompts depicting 3D-spatial relation, T2I-CompBench++ leverages UniDet (Zhou et al.,
2022) for object detection and Dense Vision Transformer (Ranftl et al., 2021) for depth estimation.
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on certain categories (see Table XIII in Huang et al. (2023)): then, we focus our evaluation
only on categories having an alignment score lower than 0.7, namely the 4 categories shape,
2D-spatial, 3D-spatial, and numeracy.
We applied RFMI FT (Algorithm 1) on Stable Diffusion 3.5-Medium Esser et al. (2024)
(SD3.5-M)3 and extended Huang et al. benchmark to include this latest RF-based T2I
model. Table 1 collects the results, with absolute difference and percentage gain between
SD3.5-M and RFMI FT summarized at the bottom. As expected, RFMI FT improves
the T2I alignment of SD3.5-M by a sizable margin across all the 4 challenging categories.
Qualitative visualization examples are shown in Figure 2.
We highlight that our approach RFMI FT is not sensitive to the neural network architecture
or the type of data, so it could be integrated beyond T2I task and into other disciplines
where rectified flow is adopted for conditional generation.

SD3.5-M RFMI FT SD3.5-M RFMI FT SD3.5-M RFMI FT

(Shape) “a round bag and a square box” “a tall oak tree and a short sapling” “a cubic sugar cube and a cylindrical salt shaker”

(2D-spatial) “a vase on the right of a cat” “a airplane on the top of a horse” “a giraffe on the left of a train”

(3D-spatial) “a clock hidden by a sheep” “a balloon in front of a clock” “a train hidden by a horse”

(Numeracy) “four sinks and two tents” “three ships sailed alongside one swan” “one person and three cats”

Figure 2: Qualitative examples from Table 1 (same seed used for a given prompt).

6 Conclusion
In this study, we introduced RFMI, a novel RF-based MI estimator which provides a unique
perspective on MI estimation by leveraging the theory of FM-based generative models.
To show its effectiveness, we first considered a synthetic benchmark where the true MI is
known and we showed that RFMI is on par or better than alternative neural estimators.
Then, we considered the T2I alignment problem and used RFMI in a self-supervised fine-
tuning approach. Specifically, we used the point-wise MI value between text and image
estimated by the pre-trained RF model to create a synthetic fine-tuning set for improving the
model alignment. Our empirical evaluation on MI estimation benchmark and T2I alignment
benchmark illustrated the effectiveness of RFMI. Our lightweight, self-supervised fine-tuning
method does not depend on specific model architectures, so it can be used to improve
alignment of a variety of RF models in the future.

3From a preliminary investigation we observed a ×4 computational costs for FLUX (FLUX,
2023) so we could not collect results in time for the submission.
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A Appendix

A.1 Proofs

A.1.1 Proof of the limiting case of proposition 3.1

Proposition A.1. (Limiting case of Prop. 3.1) For linear conditional flow with Gaussian
prior, as t → 1, the relation between the marginal velocity field and the score function of the
marginal probability path is:{lim

t→1
∇ log pt|Y (x | y) = lim

t→1
−∂tut(x | y)

lim
t→1

∇ log pt(x) = lim
t→1

−∂tut(x) (16)

Proof. To simplify notation, we present proof in the unconditional setting. Consider the
case of conditional flow at the form ψt (x | x1) = atx + btx1, where at and bt are chosen

to satisfy ψι (x | x1) =
{
x t = 0
x1 t = 1, x is sample x0 of RV X0 ∼ p, and x1 is sampled from

the target distribution q. The marginalization trick shows that ψt generates a pt satisfying
p0 = p and p1 = q . Using the expression of marginal probability flux (Eq. (14) in Albergo
& Vanden-Eijnden (2023)), at t = 1, we have:

jt=1(x) =
∫
Rd×Rd

[∂tψt (x0|x1)] |t=1δ (x− ψt=1 (x0|x1)) p0 (x0) p1 (x1) dx0dx1

=
∫
Rd×Rd

(
ȧt|t=1x0 + ḃt|t=1x1

)
δ (x− x1) p0 (x0) p1 (x1) dx0dx1

=
∫

x0∈Rd

x0p0 (x0) dx0

∫
x1∈Rd

ȧt|t=1p1 (x1) δ (x− x1) dx1 +∫
x0∈Rd

p0 (x0) dx0

∫
x0∈Rd

ḃt|t=1x1p1 (x1) δ (x− x1) dx1

= E[X0]ȧ1p1 (x1) + ḃ1x1p1 (x1)

(17)

It follows that the marginal velocity field at t = 1 is

u1(x) = j1(x)/p1(x)
= E[X0]ȧ1 + ḃ1x1

(18)

If the conditional flow is linear, we have at = (1 − t) and bt = t, and therefore ȧt = −1,
ḃt = 1. Furthermore, if X0 is the standard Gaussian, we have E[X0] = 0. This means that
Equation (18) becomes u1(x) = 0 × (−1) + 1 × x1 = x1. Inserting this equality into the
numerator in Equation (9), both the denominator and the numerator converge to 0 when
t → 1: {

tut(x) − x
t→1−−−→ 1 × x1 − x1 = 0

1 − t
t→1−−−→ 1 − 1 = 0

(19)

By applying l’Hôpital’s rule,

∇logp1(x)

= lim
t→1

∂t (tut(x) − x) = [∂tt]ut(x) + t[∂tut(x)] − [∂tx] = ut(x) + t[∂tut(x)] − ut(x)
∂t(1 − t) = −1

= lim
t→1

[−∂tut(x)]

It is easy to show that the considerations above also hold in the guided case, whereby the
marginal items (i.e., the probability flux jt, flow ψt, velocity field ut, probability path pt

and target distribution q) are expressed in their guided form. □
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A.1.2 Proof of Proposition 3.2

Proposition A.2 (MI computation). Given a linear conditional flow with Gaussian prior,
the MI between the target data X and the guidance signal Y is given by

I(X;Y ) = EY

[∫
Rd

p1|Y (x1 | Y ) log
(
p1|Y (x1 | Y )
p1(x1)

)
dx1

]
= EY

[∫ 1

0
EXt|Y

[
t

1 − t
ut(Xt|Y ) · (ut(Xt|Y ) − ut(Xt))

]
dt

]
.

(20)

Proof. What needs to be proved in Equation (20) is the equivalence of the terms inside
the expectation. To keep notation concise, in the following we will rename the guided
pair

(
pt|Y (· | y), ut(· | y)

)
as simply

(
pA

t (·), uA
t (·)

)
, and the marginal pair (pt(·), ut(·)) as(

pB
t (·), uB

t (·)
)
, so what needs to be proved becomes:∫

Rd

pA
1 (x1) log

(
pA

1 (x1)
pB

1 (x1)

)
dx1 =

∫ 1

0
EpA

t

[
t

1 − t
uA

t (x) ·
(
uA

t (x) − uB
t (x)

)]
dt (21)

To prove Equation (21), we start with expanding its LHS:∫
Rd

pA
1 (x) log

(
pA

1 (x)
pB

1 (x)

)
dx

(i)=
∫
Rd

pA
0 (x) log

(
pA

0 (x)
pB

0 (x)

)
dx+

∫ 1

0
∂t

∫
Rd

pA
t (x) log

(
pA

t (x)
pB

t (x)

)
dxdt

(ii)= 0 +
∫ 1

0
∂t

∫
Rd

pA
t (x) log

(
pA

t (x)
pB

t (x)

)
dxdt

(iii)=
∫ 1

0

∫
Rd

∂t

[
pA

t (x) log
(
pA

t (x)
pB

t (x)

)]
dxdt

(iv)=
∫ 1

0


∫
Rd

[
∂tp

A
t (x)

] [
log

(
pA

t (x)
pB

t (x)

)]
dx︸ ︷︷ ︸

1⃝

+
∫
Rd

[
pA

t (x)
] [
∂t log

(
pA

t (x)
pB

t (x)

)]
dx︸ ︷︷ ︸

2⃝

 dt

(22)

where (i) follows from the fundamental theorem of calculus; (ii) follows from the fact that
both pA

0 (x) and pB
0 (x) coincide with source distribution p at t = 0; (iii) follows from

switching differentiation (∂t) and integration (
∫
Rd) as justified by Leibniz’s rule; (iv) follows

from using the Product Rule (i.e. (u · v)′ = u′ · v + u · v′) on ∂t.
About the term 1⃝ in Equation (22), using in sequential order (i) the Continuity Equation
on [∂tp

A
t (x)], (ii) the Product Rule, (iii) the Divergence Theorem, and (iv) the assumption

that pA
t vanishes at infinity gives∫
Rd

[
∂tp

A
t (x)

] [
log

(
pA

t (x)
pB

t (x)

)]
dx

(i)=
∫
Rd

[
−∇x · (pA

t (x)uA
t (x))

] [
log

(
pA

t (x)
pB

t (x)

)]
dx

(ii)=
∫
Rd

(
pA

t (x)uA
t (x)

)
·
[
∇x log

(
pA

t (x)
pB

t (x)

)]
dx−

∫
Rd

∇x ·
(
pA

t (x)uA
t (x) log

(
pA

t (x)
pB

t (x)

))
dx

(iii)=
∫
Rd

(
pA

t (x)uA
t (x)

)
·
[
∇x log

(
pA

t (x)
pB

t (x)

)]
dx−

∮
∂Rd

(
pA

t (x)uA
t (x) log

(
pA

t (x)
pB

t (x)

))
· ndS

(iv)=
∫
Rd

(
pA

t (x)uA
t (x)

)
·
(
∇x log pA

t (x) − ∇x log pB
t (x)

)
dx− 0

=EpA
t

[
uA

t (x) ·
(
∇x log pA

t (x) − ∇x log pB
t (x)

)]
(23)
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About the term 2⃝ in Equation (22), by using in sequence (i) Leibniz’s rule and Continuity
Equation on [∂tp

B
t (x)] , and (ii) the equality ∇ · (ρv) = ρ(∇ · v) + (∇ρ) · v if v is a vector

field and ρ is a scalar function, we obtain∫
Rd

[pA
t (x)][∂t log

(
pA

t (x)
pB

t (x)

)
]dx

=
∫
Rd

[pA
t (x)][∂t log(pA

t (x)) − ∂t log pB
t (x) ]dx

=
∫
Rd

[pA
t (x)][∂tp

A
t (x)

pA
t (x)

− ∂tp
B
t (x)

pB
t (x)

]dx

=
∫
Rd

[∂tp
A
t (x) − pA

t (x) ∂tp
B
t (x)

pB
t (x)

]dx

=
∫
Rd

∂tp
A
t (x)dx−

∫
Rd

pA
t (x)
pB

t (x)
∂tp

B
t (x)dx

(i)=∂t

∫
Rd

pA
t (x)dx−

∫
Rd

pA
t (x)
pB

t (x)
(−∇x · (pB

t (x)uB
t (x))]dx

(ii)= ∂t1 +
∫
Rd

pA
t (x)
pB

t (x)
(
uB

t (x) · ∇xp
B
t (x) + pB

t (x)∇x · uB
t (x)

)
dx

=0 +
∫
Rd

pA
t (x)
pB

t (x)
uB

t (x) · ∇xp
B
t (x) + pA

t (x)
pB

t (x)
pB

t (x)∇x · uB
t (x)dx

=
∫
Rd

pA
t (x)

(
∇xp

B
t (x)

pB
t (x)

· uB
t (x) + ∇x · uB

t (x)
)

dx

=
∫
Rd

pA
t (x)

((
∇x log pB

t (x)
)

· uB
t (x) + ∇x · uB

t (x)
)

dx

(iii)= 0

(24)

in which the last equality (iii) follows from Instantaneous Change of Variables: recall that
in Instantaneous Change of Variables (Equation (5)) d

dt log pt (x) = − div (ut) (x), its RHS
can be rewritten as − div (ut) (x) = −∇x · ut(x); using the chain rule, its LHS is equivalent
to d

dt log pt (x) = d log pt(x)
dx · dx

dt = (∇x log pt(x)) · ut(x). It follows that the Instantaneous
Change of Variables yields

(
∇x log pB

t (x)
)

· uB
t (x) + ∇x · uB

t (x) = 0.

Finally, (i) injecting Equation (23) and Equation (24) back into Equation (22), and (ii)
expressing the score functions with velocity fields (Equation (9)) give:∫

Rd

pA
1 (x) log

(
pA

1 (x)
pB

1 (x)

)
dx

(i)=
∫ 1

0

[
EpA

t

[
uA

t (x) ·
(
∇x log pA

t (x) − ∇x log pB
t (x)

)]]
dt

(ii)=
∫ 1

0
EpA

t

[
uA

t (x) ·
[
tuA

t (x) − x

1 − t
− tuB

t (x) − x

1 − t

]]
dt

=
∫ 1

0
EpA

t

[
t

1 − t
uA

t (x) ·
(
uA

t (x) − uB
t (x)

)]
dt

(25)

i.e. Equation (21) is proven. □
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A.1.3 Proof of Proposition 3.3

Proposition A.3 (Non-uniform sampling for importance sampling). The inverse CDF of
a PDF proportional to truncated t

1−t is

F−1
ϵ (u) =

1 +W (−e−Zu−1) u ∈
[
0, − ln(1−tϵ)−tϵ

Z

)
,

1 + 1−tϵ

tϵ
[ln(1 − tϵ) + Zu] u ∈

[
− ln(1−tϵ)−tϵ

Z , 1
]
,

(26)

in which W is the Lambert’s W -function, and the normalizing constant is Z = − ln(1 − tϵ).

Proof. Our goal is to sample from a PDF proportional to t
1−t for most of its support. For

some large tϵ ∈ [0, 1], we define the following un-normalized density (Equation (13))

f̃ϵ(t) =
{

t
1−t t ∈ [0, tϵ)

tϵ

1−tϵ
t ∈ [tϵ, 1] (27)

By integrating Equation (27) w.r.t. t, we get the cumulative function of the unnormalzied
density

F̃ϵ(t) =
{

− ln(1 − t) − t t ∈ [0, tϵ)
− ln(1 − tϵ) + tϵ

1−tϵ
(t− 1) t ∈ [tϵ, 1] (28)

Evaluating it at t = 1 gives us the normalizing constant Z = F̃ϵ(t = 1) = − ln(1 − tϵ), from
which we obtain the CDF Fϵ(t) = F̃ϵ(t)

Z , and the inverse CDF that we need for sampling
(using the inverse CDF transform)

F−1
ϵ (u) =

1 +W (−e−Zu−1) u ∈
[
0, − ln(1−tϵ)−tϵ

Z

)
1 + 1−tϵ

tϵ
[ln(1 − tϵ) + Zu] u ∈

[
− ln(1−tϵ)−tϵ

Z , 1
] (29)

in which W is the Lambert’s W-function.
Specifically, to solve the equation

− ln(1 − t) − t

Z
= u (30)

we denote w := 1 − t and b := −Zu− 1 for simplicity, then Equation (30) becomes lnw =
b+w, which could be rewritten as −we−w = −eb, therefore −w is the Lambert W function
W (−eb). We note that the Lambert W function can be solved because Z > 0 and u ≥ 0 give
−eb ≥ −e−1. Furthermore, since −eb < 0, both the W0 and W−1 branches of the Lambert
W function are defined; but since we are interested in the solution that remains in the range
−1 ≤ W (x) to make Equation (29) well defined, W0 is the branch of interest. □
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B Experimental protocol details

We report in Table 2 all the hyper-parameters we used for our experiments.

Table 2: Training hyperparameters.

Name Value

Trainable model MMDiT
PEFT LoRA
Rank 32
α 32

Learning rate (LR) 5e − 6
Gradient norm clipping 0.005
LR scheduler Constant
LR warmup steps 400
Optimizer AdamW
AdamW - β1 0.9
AdamW - β2 0.999
AdamW - weight decay 1e − 4
AdamW - ϵ 1e − 8
Resolution 1024 × 1024
CFG scale 4.5
Denoising steps 100
M 50
k 1
Global batch size 240
Training iterations 2000

To construct a fine-tuning set S based on point-wise MI, we use the pre-trained SD3.5-
M and, given a prompt, conditionally generate 50 images with CFG = 4.5 at resolution
1024×1024, while at the same time computing point-wise MI between the prompt and each
image latent. Only the image with the highest MI is kept. This process is done twice for all
the 700 fine-tuning prompts Y defined by T2I-Combench. Given the constructed fine-tuning
set, we finetune SD3.5-M for 2000 iterations with LoRA adaptation.
Note that (i) there is no overhead at image generation time: once the pre-trained SD3.5-M
has been fine-tuned with RFMI FT, conditional sampling takes the same amount of time of
“vanilla” SD3.5-M and (ii) the time to process the workloads scales down (almost linearly)
with the number of GPUs used according to our observations.
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