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Analytical Insights Into Outage Probability and
Ergodic Capacity of Fluid Antenna Systems

Hui Zhao and Dirk Slock

Abstract—This letter analyzes the delivery performance of
a point-to-point (P2P) fluid antenna system (FAS), where the
receiver is equipped with a one-dimensional N -port fluid antenna.
For the first time, we rigorously reveal the diversity order of the
P2P FAS through mathematical proof. Motivated by this analysis,
we propose a novel and tractable approximation for the signal-to-
noise ratio (SNR) distribution after receiver combining. Using this
approximation, we derive a simple closed-form expression for the
outage probability (OP) composed solely of elementary functions,
along with its high-SNR approximation. Furthermore, we analyze
the ergodic capacity (EC) of the system and derive a closed-form
expression for the EC. The high-SNR approximation of the EC
is also presented, revealing the power offset in the high-SNR
regime. Monte Carlo simulations validate the high accuracy of
the proposed analytical models, demonstrating their effectiveness
in capturing the performance of the P2P FAS.

Index Terms—Diversity order, ergodic capacity, fluid antenna
systems, and outage probability.

I. INTRODUCTION

The fluid antenna system (FAS) has emerged as a promising
technology for next-generation wireless communication systems
due to its ability to dynamically adapt its antenna position
within a small physical space [1]–[3]. Compared to conventional
antenna systems, FAS leverages the fluid nature of conductive
materials to achieve superior spatial diversity and improved
communication reliability. By allowing the antenna to switch
positions among multiple preset ports, FAS can effectively
exploit channel variations, reduce interference, and enhance
system performance in a flexible and efficient manner. This
unique capability positions FAS as a critical enabler for future
high-performance communication networks, including 6G and
beyond [4].

Despite its advantages, analyzing the delivery performance
of FAS remains challenging due to the strong spatial correlation
among ports. The ports are typically placed in close proximity
within a limited physical space, leading to highly correlated
fading channels. As a result, the exact distribution of the FAS
channel gain after receiver combining becomes mathematically
intractable [5]. Current approximations for the combined
SNR distribution in FAS are often highly complex, involving
either products of integral forms [6] or summations of special
functions [7], which hinder their practical applicability due to
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computational inefficiency. Furthermore, while several studies
(e.g., [6]–[8]) have attempted to characterize the diversity order
of the FAS, the results are typically approximate and lack
rigorous mathematical proofs. For instance, the authors of
[8] recently proposed a simple approximation for the outage
probability (OP) using the asymptotic matching method [9]
and derived the diversity order based on this approximation.
However, this approach cannot yield the exact diversity order,
leaving a gap in understanding the precise diversity order
achievable in the FAS.

Motivated by the above challenges, this letter investigates
the delivery performance of a point-to-point (P2P) FAS, where
the receiver is equipped with a one-dimensional N -port fluid
antenna. The main contributions of this work are summarized
as follows.

• For the first time, we provide rigorous mathematical proof
to reveal the exact diversity order of the P2P FAS.

• We propose a novel and tractable approximation for the
combined SNR distribution, and derive a simple closed-
form expression for the OP composed solely of elementary
functions, as well as derive the high-SNR approximation.

• We also analyze the ergodic capacity (EC) of the FAS
and derive a simple closed-form expression. We further
present the high-SNR approximation of the EC, which
reveals the power offset in the asymptotic regime.

We validate the high accuracy of the proposed analytical models
through extensive Monte Carlo simulations, demonstrating
their effectiveness in capturing the performance of the P2P
FAS. This work provides novel insights into the fundamental
performance limits of the FAS and presents simple, yet accurate,
analytical tools for evaluating and optimizing FAS-based
wireless communications.

Notations. We use C to denote the set of complex numbers,
and | · | to represent the magnitude of a complex number.
E{·} and P(·) denote the expectation operator and probability,
respectively. For a matrix A, AT and AH represent its non-
conjugate transpose and conjugate transpose, respectively.

II. SYSTEM MODEL

We consider a P2P communication system, where a single-
antenna transmitter sends signals to a receiver equipped with
an N -port fluid antenna. These N ports are connected to
a single radio-frequency (RF) chain and are evenly placed
along a linear dimension of length Wλ, where λ is the carrier
wavelength. Therefore, the receiver can only select the signal
from a single port for decoding. To get the optimal combined
SNR, the receiver dynamically selects the port that maximizes
the instantaneous SNR for each transmission. The SNR at the
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n-th (n = 1, 2, · · · , N ) port is given by γn = γ̄|hn|2, where
γ̄ denotes the average SNR normalized to pathloss and noise
power, and hn represents the fading channel gain. As a result,
the combined SNR takes the form

γmax = max{γ1, γ2, . . . , γN}. (1)

A. Channel Model

Due to the compact physical placement of the antenna ports,
the channel gains {hn}Nn=1 are spatially correlated, making the
SNR distribution analytically challenging [6], [7]. The spatial
correlation among the ports is captured by the correlation matrix
J ∈ CN×N , which is symmetric and positive semi-definite.
As a result, the eigenvalues of J are real and non-negative. To
analyze J , we perform eigenvalue decomposition, expressed
as J = UΛUT , where U is a unitary matrix whose n-th
column corresponds to the eigenvector of J associated with the
eigenvalue λn, the n-th diagonal element of the diagonal matrix
Λ. Without loss of generality, we assume that the eigenvalues
are ordered as λ1 ≥ λ2 ≥ · · · ≥ λN . We can write the channel
gain hn as (cf. [6], [7])

hn =

N∑
m=1

un,m

√
λmzm (2)

where un,m denotes the (n,m)-th element of U , and {zm}Nm=1

are independently and identically distributed (i.i.d.) complex
Gaussian random variables with zero-mean and unit-variance.
As hn is the summation of multiple Gaussian distributed
random variables, hn is Gaussian distributed. We can write the
channel vector h = [h1, h2, · · · , hN ]T ∈ CN×1 as

h = UΛ
1
2 z, (3)

where z ≜ [z1, z2, ·, zN ]T ∈ CN×1. It is easy to check that
the covariance matrix of h takes the form

E{hhH} = E{UΛ
1
2 zzHΛ

1
2UT }

= UΛ
1
2E{zzH}Λ 1

2UT = UΛUT = J . (4)

B. Performance Metrics

The OP quantifies the probability that the combined SNR,
γmax, falls below a predefined threshold γth, representing the
minimum required SNR for reliable communication. Mathe-
matically, it is expressed as

OP = P(γmax < γth). (5)

To better understand the behavior of OP in the high SNR
regime, we introduce the concept of diversity order, defined as

G = lim
γ̄→∞

− lnOP
ln γ̄

, (6)

The diversity order reflects the rate at which the OP decreases
as the average SNR increases. It is a fundamental measure
of a system’s ability to exploit spatial diversity in fading
environments [7]. A higher diversity order indicates that the
system can achieve a faster reduction in the OP with increasing
SNR, thereby offering greater reliability.

The EC, on the other hand, represents the average achievable
rate of the system, defined as

C̄ = E{ln(1 + γmax)} nats/s/Hz. (7)

This metric provides insights into the long-term throughput of
the system, averaged over all possible channel realizations.

III. PERFORMANCE ANALYSIS

In this section, we will first analyze the diversity order in
Theorem 1, followed by an approximation for the OP presented
in Lemma 1. Subsequently, an approximation for the EC is
derived in Lemma 2. Additionally, we also provide high-SNR
asymptotic results for both the OP and the EC.

A. Diversity Order of P2P FAS

Theorem 1. The diversity order of the considered P2P FAS
equals to the rank of J , i.e., G = M ≜ Rank{J}.

Proof. Let |hFAS|2 ≜ max{|h1|2, . . . , |hN |2} denote the com-
bined channel gain of the considered P2P FAS. To derive the
diversity order, we first note that

1

N

N∑
n=1

|hn|2 =
1

N
||h||2 ≤ |hFAS|2 ≤ ||h||2, (8)

where ||h|| denotes the norm-2 of h. For ||h||2, considering
(3), we have that

||h||2 = zHΛ
1
2UTUΛ

1
2 z = zHΛz =

M∑
n=1

λn|zn|2, (9)

where M is the number of non-zero eigenvalues of Λ (or
equivalently, the rank of J ). Therefore, we can establish both
lower and upper bounds for ||h||2 as follows

λmin

M∑
n=1

|zn|2 ≤ ||h||2=
M∑
n=1

λn|zn|2 ≤ λmax

M∑
n=1

|zn|2, (10)

where λmin and λmax are respectively the minimum and
maximum non-zero eigenvalues of J . Let Z =

∑M
n=1 |zn|2,

i.e., Z is the summation of M i.i.d. random variables (each
exponentially distributed with unit-mean). Then, we have that

λmin

N
Z ≤ 1

N
||h||2 ≤ |hFAS|2 ≤ ||h||2 ≤ λmaxZ. (11)

Based on (11), we derive both the upper and lower bounds for
the OP, given by

P
(
λmaxZ ≤ γth

γ̄

)
≤ OP ≤ P

(
λmin

N
Z ≤ γth

γ̄

)
. (12)

Further, we have that

P
(
Z ≤ γth

γ̄λmax

)
≤ OP ≤ P

(
Z ≤ γthN

γ̄λmin

)
. (13)

It is easy to prove that Z is Gamma distributed with the shape
parameter M and the unit scale parameter. Therefore, the CDF
of Z is of the form

FZ(z) = P (Z ≤ z) =
1

Γ(M)
Υ(M, z). (14)
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where Γ(·) and Υ(·, ·) are the Gamma function and the lower
incomplete Gamma function [10] respectively. As z → 0, the
CDF of Z can be simplified as

FZ(z) =
1

Γ(M)
Υ(M, z) =

zM

MΓ(M)
+ o(zM ). (15)

Therefore, as γ̄ → ∞ (high SNR), by omitting the higher order
terms in (15), we can simplify (13) as

1

MΓ(M)

(
γth

γ̄λmax

)M

≤ OP ≤ 1

MΓ(M)

(
γthN

γ̄λmin

)M

. (16)

For the lower and upper bounds in the above, we have the
limits respectively

lim
γ̄→∞

− 1

ln γ̄
ln

(
1

MΓ(M)

(
γth

γ̄λmax

)M
)

= M, (17)

lim
γ̄→∞

− 1

ln γ̄
ln

(
1

MΓ(M)

(
γthN

γ̄λmin

)M
)

= M. (18)

Considering (16)–(18) and the Squeeze Theorem [11, Thm.
3.3.6], we finally have that

G = lim
γ̄→∞

− lnOP
ln γ̄

= M, (19)

which concludes the proof. ■

Remark 1. This work presents, for the first time, a rigorous
mathematical proof of the diversity order in P2P FAS and
reveals its exact value. In contrast, prior works such as [7,
Thm. 3] and [8, Prop. 2] derive the diversity order based
on various approximations. Specifically, [7, Thm. 3] provides
a numerical approximation for the diversity order, while
[8, Prop. 2] estimates the diversity order as N using the
asymptotic matching method. However, since these results rely
on approximations, they do not reveal the exact diversity order,
as clearly identified in Theorem 1.

B. Outage Probability and Ergodic Capacity

Inspired by the fact that ||h||2 =
∑M

n=1 λn|zn|2 and the
analysis that the diversity order is M , which indicates the FAS’s
ability to combine signals from M paths over independent
Rayleigh fading channels, we approximate |hFAS|2 as

|hFAS|2 = max{|h1|2, · · · , |hN |2}
≈ Zmax ≜ max{λ1|z1|2, · · · , λM |zM |2}. (20)

Considering the approximation in (20), we have the results for
the OP in Lemma 1.

Lemma 1. For a given SNR threshold γth, the OP of the
considered P2P FAS can be approximated as follows

OP ≈
M∏
n=1

(
1− exp

(
− γth
λnγ̄

))
. (21)

In the high-SNR regime, i.e., γ̄ → ∞, we can further
approximate the OP as follows

OP ≈ γM
th∏M

n=1 λn

γ̄−M . (22)

Proof. We can derive the CDF of Zmax by

FZmax
(z) = Pr

{
max{λ1|z1|2, · · · , λM |zM |2} ≤ z

}
=

M∏
n=1

Pr

{
|zn|2 ≤ z

λn

}
(a)
=

M∏
n=1

(
1− exp

(
− z

λn

))
, (23)

where (a) follows from the fact that |zn|2 is exponentially
distributed with unit-mean. Based on the approximation in
(20), we can approximate the CDF of the combined SNR as

Fγmax
(x) ≈

M∏
n=1

(
1− exp

(
− x

λnγ̄

))
(24)

which leads to (21) by substituting x with γth.
In high SNR, i.e., γ̄ → ∞, by truncating the Talor series of

the exponential function in the approximate OP up to the first
order, i.e., exp(−x) = 1− x+ o(x), we can derive (22). ■

Remark 2. It is worth noting that when the spatial correlation
matrix J is full rank, the high-SNR asymptotic OP expression
in (22) coincides with the corresponding result presented in [7,
Thm. 2], although they adopted completely different analytical
approaches.

Before presenting the main results for the EC, for a
given k ∈ {1, 2, · · · ,M}, we use the notation

∑
nk

≜∑
1≤n1<n2<···<nk≤M to denote the summation in the Euler

function (cf. [12, Eq. (10.7)]).

Lemma 2. The EC in the considered P2P FAS can be
approximated as

C̄≈
M∑
k=1

(−1)k
∑
nk

exp

 k∑
j=1

1

λnj
γ̄

Ei

− k∑
j=1

1

λnj
γ̄

 (25)

where Ei(·) denotes the exponential integral function [10]. In
high SNR (γ̄ → ∞), we can further simplify the EC as

C̄ ≈ ln(γ̄)− ξ +

M∑
k=1

(−1)k
∑
nk

ln

 k∑
j=1

1

λnj

 (26)

where ξ = 0.577 . . . is the Euler’s constant [10, Eq. (8.367.1)].

Proof. The proof is relegated into Appendix I. ■

Remark 3. It is important to note that the approximations for
OP and EC are also applicable to the two-dimensional fluid
antenna, as our analysis relies solely on the eigenvalues of
the correlation matrix J , which are inherent system properties
determined by the specific structure of the FAS.

IV. NUMERICAL RESULTS

In this section, we compare the performance metrics, in-
cluding the OP and EC, with Monte Carlo simulation results
to validate the accuracy and practicality of the proposed
analytical models. To model the spatial correlation matrix J ,
we employ the widely used Jake’s model [13], which effectively
captures the physical correlation among antenna ports in a one-
dimensional fluid antenna, where the ports are closely spaced
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Fig. 1: OP versus γ̄ for W = 1 and γth = 1.
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Fig. 2: OP versus γ̄ for W = 3 and γth = 1.

relative to the carrier wavelength [6], [7]. In this model, the
(m,n)-th entry of J is given by

Jm,n = J0

(
2π

(m− n)

N − 1
W

)
, (27)

where J0(·) denotes the zero-order Bessel function of the first
kind [10], and W is the fluid antenna length normalized to the
carrier wavelength λ. Based on the spatial correlation model
in (27), we generate 107 channel realizations to compute the
sample mean for each Monte Carlo simulation result.

In Fig. 1, we plot the OP versus the average SNR γ̄ for
W = 1 with different numbers of ports N . As expected, the
OP decreases as N increases, with a steeper slope reflecting
a higher diversity order. However, as N grows beyond 4
to a large value (e.g., N = 20), the improvement in OP
becomes marginal. This behavior aligns with the observations
in [7, Table II], where the reference level N∗ is determined
numerically to identify the point beyond which increasing
N provides negligible improvement. Theorem 1 provides a
theoretical explanation for the existence of N∗, revealing that
the diversity order is fundamentally limited by the rank of the
spatial correlation matrix J . Specifically, for a fixed physical
length W , increasing N strengthens the spatial correlation

among closely spaced ports, which restricts the rank of J and
thus limits the achievable diversity order.

To explore the effect of increasing W , we plot the OP for
W = 3 in Fig. 2. Compared to Fig. 1, the larger physical space
allows more ports to be placed with reduced spatial correlation,
thereby enhancing the effective diversity order. As N increases,
the OP again improves significantly, and each curve exhibits a
steeper slope corresponding to a higher diversity order. In Figs.
1–2, the approximate OP derived in Lemma 1 (solid lines)
matches the simulated result (symbols) very well, while the
high-SNR asymptotic OP (dashed lines) aligns closely with the
simulations in the high-SNR regime, demonstrating the high
accuracy of the proposed analytical results in Lemma 1.

Fig. 3 illustrates the EC versus γ̄ for W = 1 with different
values of N . As γ̄ increases, the EC improves due to the
enhanced channel quality. Similar to the OP behavior in Fig. 1,
the EC increases with N , but the improvement becomes
marginal for N > 4 due to the limited spatial diversity
caused by strong correlations among closely spaced ports.
The approximate EC in Lemma 2 (solid lines) closely matches
the simulated result (symbols), particularly for N = 2 and
N = 3 in Fig. 3. The high-SNR asymptotic EC in Lemma 2
(dashed lines) also demonstrates excellent agreement with the
simulations in the high-SNR regime. However, for larger N ,
slight mismatches appear. From extensive numerical simulations
(omitted due to space limitations), we observe that the slight
mismatch arises because the spatial correlation matrix J
becomes singular or nearly singular when N ≥ 4. Despite
slight mismatches when N ≥ 4, numerical results in Fig. 3
indicate that the performance improvement becomes negligible
beyond N = 4. Therefore, in practice, placing more than 4
ports is less meaningful.

We further evaluate the accuracy of the approximate EC in
Lemma 2 at the reference level N∗, where J becomes singular
or nearly singular, under varying N and W in Fig. 4. We
consider two specific cases: W = 0.5 and W = 4. [7, Table
II] shows that for W = 0.5, the reference level is N∗ = 3,
and for W = 4, it increases to N∗ = 10. As shown in Fig. 4,
the approximate EC remains highly accurate in both cases.
For W = 0.5, when N is reduced to 2, the approximate
and simulated EC results are nearly indistinguishable, further
validating the accuracy of the proposed model. We note that as
N becomes sufficiently large, the reference level N∗ exhibits
an asymptotic linear relationship with W (e.g., 2W ), as detailed
in [14, Coro. 1].

A. Validation Under the Optimistic Constant Correlation Model

Let us consider the exceedingly optimistic constant correla-
tion model in [15] where the channel gain for the n-th port is
of the form1

hn = µZ0 +
√

1− µ2Zn, (28)

where Z0, Z1, · · · , ZN are i.i.d. random variables, each fol-
lowing a complex Gaussian distribution with zero-mean and

1The content in Section IV-A was requested by the reviewers of IEEE
Wireless Communications Letters but was ultimately omitted from the published
version due to space constraints.
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Fig. 3: EC versus γ̄ for W = 1.
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Fig. 4: EC versus γ̄ with varying N and W .

unit-variance, and µ ∈ [0, 1] specifies the correlation structures
of the channels over the ports, defined as follows [15, Eq. (4)]

µ2 ≜

∣∣∣∣ 2

N(N − 1)

N−1∑
k=1

(N − k) J0

(2πkW
N − 1

)∣∣∣∣, (29)

which implies that the correlation coefficient between any
two distinct ports is always µ2. So the correlation matrix
J ∈ CN×N is of the form

J =


1 µ2 µ2 · · · µ2

µ2 1 µ2 · · · µ2

µ2 µ2 1 · · · µ2

...
...

...
. . .

...
µ2 µ2 µ2 · · · 1

 (30)

which is a special type of Toeplitz matrix. The corresponding
eigenvalues can be easily derived, as follows

λn =

{
1 + (N − 1)µ2, for n = 1;

1− µ2, for n > 1
(31)

which shows that the correlation matrix J is always full-rank,
i.e., N = M , as long as µ2 < 1. Alternatively, we can express
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Fig. 5: OP versus γ̄ for γth = 1, W = 2 and N = 8 under the optimistic
constant correlation model [15]. The red dashed line represents Lemma 1 in
the manuscript and the black solid line represents [8, Prop. 1].

the channel vector h = [h1, h2, · · · , hN ]T for the N -port fluid
antenna as

h = J
1
2 z (32)

where z ∈ CN×1 is a random vector whose elements are i.i.d.
complex Gaussian distributed random variables with zero-mean
and unit-variance.

Under this constant correlation model, and after applying
some straightforward mathematical simplifications, the OP
approximation in [8, Prop. 1] simplifies to

OP ≈ 1

Γ(N)
Υ

(
N,

γth
γ̄

( Γ(N)N

(1− µ2)N−1

)1/N)
, (33)

where Υ(·, ·) denotes the lower incomplete Gamma function.
In contrast, our proposed OP approximation in Lemma 1 under
this constant correlation model becomes

OP ≈
N∏

n=1

(
1− exp

(
− γth

γ̄λn

))
=

(
1− exp

(
− γth

γ̄(1 + (N − 1)µ2)

))
×
(
1− exp

(
− γth

γ̄(1− µ2)

))N−1

. (34)

In Fig. 5, it is evident that our proposed method in Lemma 1
achieves significantly higher accuracy than [8, Prop. 1],
particularly in the low-SNR regime. However, their difference
asymptotically approaches zero as the SNR increases, and both
methods exhibit excellent agreement with the exact (simulated)
results in the high-SNR regime.

However, as the number of ports N increases in Fig. 6, [8,
Prop. 1] exhibits a noticeable deviation from the simulated
results, even in the high-SNR regime. In contrast, our proposed
expression in Lemma 1 consistently maintains high accuracy.
To further examine scenarios where Lemma 1 may exhibit
relatively lower accuracy, we increase N to 50 in Fig. 7, where
a larger OP value leads to a more pronounced discrepancy.
Nevertheless, for practical OP values (typically below 0.01
for reliable communications), Lemma 1 continues to provide
highly accurate results compared to simulations.
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V. CONCLUSIONS AND DISCUSSIONS

This letter analyzed the delivery performance of the P2P
FAS with a one-dimensional N -port fluid receiver antenna.
We rigorously proved the diversity order of the P2P FAS
and proposed a novel approximation for the SNR distribution,
enabling a simple closed-form expression for the OP using only
elementary functions, from which we also derived the closed-
form expression for the EC. Additionally, we presented the high-
SNR approximations for both OP and EC, offering key insights
into the asymptotic behavior of FAS. The proposed analytical
models, validated through Monte Carlo simulations, provide a
tractable framework for evaluating FAS performance and lay
the foundation for future studies in fluid antenna technology.

For device-to-device (D2D) networks, the applicability of our
analytical method depends on the system settings, particularly
whether each receiver has global channel state information
(CSI). For receivers without global CSI, inter-user interference
is usually treated as noise. In this case, the interference effect
can be accounted for by reducing the average SNR in our
P2P model, providing a practical way to incorporate inter-user
interference. On the other hand, if each receiver has global CSI,
the interference at different fluid antenna ports is correlated (cf.
[16, Eq. (15)]), which aligns with the Fluid Antenna Multiple

Access (FAMA) framework. Addressing this case requires a
different approach, which will be explored in future work.

APPENDIX I: PROOF OF LEMMA 2

By using some integral transforms, we can write the integral
for the EC defined in (7) as (cf. [17, Eq. (48)])

C̄ =

∫ ∞

0

1− Fγmax
(x)

1 + x
dx. (35)

Thanks to the simple OP (i.e., the combined SNR) distribution
in (21), we can approximate the EC as

C̄ ≈
∫ ∞

0

1

1 + x

[
1−

M∏
n=1

(
1− exp

(
− x

λnγ̄

))]
dx. (36)

Based on the Inclusion-Exclusion Principle [12], we can rewrite
the CDF of the combined SNR γmax as

Fγmax(x) = 1 +

M∑
k=1

(−1)k
∑
nk

exp

(
−

k∑
j=1

x

λnj γ̄

)
. (37)

Therefore, we can rewrite (36) as

C̄ ≈
M∑
k=1

(−1)k+1
∑
nk

∫ ∞

0

exp
(
−
∑k

j=1
z

λnj
γ̄

)
1 + x

dx. (38)

With the help of [10, Eq. (3.353.5)], we can solve (38) in the
closed-form expression, as shown in (25).

To derive the asymptotic EC in high SNR, following the
asymptotic method in [18], we first approximate the exponential
integral function Ei(−x) by

Ei(−x) → ln(x) + ξ, as x → 0. (39)

Then, as γ̄ → ∞, we can approximate the EC in (25) as

C̄ ≈
M∑
k=1

(−1)k
∑
nk

ln

 k∑
j=1

1

λnj
γ̄

+ ξ


=

(
−1 + 1 +

M∑
k=1

(−1)k
∑
nk

(
− ln(γ̄) + ξ

))

+

M∑
k=1

(−1)k
∑
nk

ln

 k∑
j=1

1

λnj


(a)
=

(
−1 +

M∏
n=1

(1− 1)

)(
− ln(γ̄) + ξ

)

+

M∑
k=1

(−1)k
∑
nk

ln

 k∑
j=1

1

λnj

 , (40)

where (a) follows from the inverse of the Inclusion-Exclusion
Principle, and which finally yields the asymptotic EC in (26).
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