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Abstract—This work explores the data-driven online tracking
control problem for linear dynamic systems across multiple-input
multiple-output (MIMO) fading channels. Initially, we address
the optimal tracking control for a system with known plant
dynamics, and design an innovative stochastic-approximation
(SA)-based data-driven algorithm that leverage the instanta-
neous wireless channel state information (CSI). Subsequently, we
extend this approach to accommodate unknown plant dynam-
ics by proposing a novel normalized-stochastic-gradient-descent
(NSGD)-based algorithm. This algorithm facilitates simultaneous
system identification and control in an online setting using the
real-time plant state as well as the CSI. Through Lyapunov drift
analysis, we establish the asymptotic optimality of our proposed
data-driven algorithms. Numerical results and analysis further
demonstrate notable performance improvements compared to
several leading learning techniques.

Index Terms—Online training, linear tracking control, machine
learning, MIMO communication, Unreliable transmission.

I. INTRODUCTION

Optimal tracking control for linear systems via wireless
networks has been a focal point of recent research, particularly
due to its wide applications. This discipline is dedicated to the
development of sophisticated remote tracking controllers that
guide dynamic systems towards their desired states. A typical
linear control system comprises three essential components: a
potentially unstable dynamic plant, a remote controller and an
actuator collocated with the dynamic plant, as shown in Fig.
1. The remote controller processes the real-time plant state and
crafts the intermittent control signals. The control commands
are then conveyed to the actuator via an unreliable wireless
network, aiming to synchronize the internal plant states with
predetermined target states. Despite this, the wireless network
can introduce issues such as signal fading and packet loss,
which may markedly diminish the tracking control efficacy of
the system.

The design of tracking controllers for linear systems has
been extensively studied [1], [2]. The linear system is modeled
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Fig. 1: Example of a linear system over the wireless channels.

in the frequency domain, and offline proportional-integral-
derivative (PID) control schemes are proposed [1]. These
schemes rely on empirical PID coefficients, with control so-
lutions generated at a remote controller based on the dynamic
differences between the desired plant states and real-time
states. However, PID control methods are inherently heuristic
and lack robustness, making them suboptimal in many prac-
tical applications. To address these limitations and reduce re-
liance on trial-and-error tuning, online linear-quadratic-tracker
(LQT) control approaches have been proposed in [2], where
controllers and actuators are collocated. These LQT methods
parameterize control actions using tracking control gains de-
rived from solving the Riccati equation [3] in real-time, based
on both the target and actual states of the dynamic systems.
However, directly applying these LQT solutions becomes
problematic for wireless communication. Such scenarios can
lead to undesirable system behavior, as the tracking control
gains need to account not only for the dynamic differences be-
tween target and real-time plant states but also for variations in
wireless network conditions. Specifically, adapting the control
gains to both wireless fading conditions and system dynamics
is crucial for achieving accurate state trajectories. As a result,
brute-force application of the LQT schemes from [1], [2] can
result in significant mismatches between the desired and actual



plant states in wireless networked control systems.
Precise tracking control depends on accurate knowledge

of the dynamic plant model, which is often unavailable
in practice. Consequently, system identification of unknown
dynamic plants becomes crucial for achieving high tracking
performance. Traditional system identification methods for
linear systems have been extensively studied in an offline
setting, primarily through least-squares-based techniques [4].
However, these offline algorithms require exponentially large
memory for sample storage, making them impractical for
large-scale linear systems. To address the computational bur-
den, online system identification methods have been devel-
oped, using recursive least squares [5] and projected online
learning algorithms [6]. These methods reduce computational
complexity by updating model parameters in real time. How-
ever, these approaches assume that controllers and actuators
are collocated and do not account for plant noise, limiting
their applicability in real-world scenarios. Applying these
identification algorithms directly in wireless networked control
systems will degrade identification performance due to the
randomness in state samples used for system identification.
To handle noisy data, stochastic gradient descent (SGD)-
based algorithms have been widely used in parameter learning
problems [7]. However, standard SGD-based approaches are
unsuitable for identifying unstable dynamic plants, as they
struggle with the unbounded variance of the state samples
during training, leading to poor convergence and performance
[8].

In this work, we propose a novel data-driven approach for
online tracking control over wireless MIMO fading channels.
The main contributions are as follows: (a) Data-Driven Online
Tracking Control over the MIMO Fading Channels with
Known Plant Dynamics: Leveraging the knowledge of plant
dynamics and real-time channel state information (CSI), we
develop an online tracking controller for linear systems using
a novel stochastic approximation (SA)-based algorithm; (b)
Data-Driven Online Tracking Control over the MIMO Fad-
ing Channels with Unknown Plant Dynamics: For scenarios
where plant dynamics are unknown at the remote controller,
we propose a new normalized stochastic gradient descent
(NSGD)-based algorithm. This method enables simultane-
ous system identification and online learning of the optimal
tracking control solution, utilizing real-time plant states and
CSI; and (c) Optimal Convergence Performance Analysis:
By providing Lyapunov-based analysis, we demonstrate that
both the system identification and tracking control algorithms
asymptotically achieve optimal performance.

II. SYSTEM MODEL

A. Dynamic Plant Model

We consider a discrete-time linear system with S state
variables, where the remote controller is equipped with Nt

transmission antennas, and the actuator is equipped with Nr

receiving antennas. The dynamics of the physical plant are:

xk+1 = Axk +Bûk +wk, k = 0, 1, 2, ..., (1)

where xk ∈ RS×1 is the plant state variable, A ∈ RS×S is
the plant dynamics, B ∈ RS×Nr is the control input matrix,
ûk ∈ RNr×1 is the received control signal at the actuator
and wk ∈ RS×1 is the plant noise with zero mean and finite
noise covariance matrix W ∈ SS+. We assume the dynamic
evolution (1) is potentially unstable 1. The plant system (A,B)
is assumed to be controllable.

B. Wireless MIMO Fading Channel Model

As depicted in Fig. 1, a wireless MIMO fading channel is
considered between the remote controller and the actuator [9].
At each time slot k, the control signal received at the actuator,
denoted by ûk ∈ RNr×1, is given by

ûk = δkHkuk + vk, (2)

where uk ∈ RNt×1 is the control action generated at the
remote controller, and δk ∈ {0, 1} is the i.i.d. random access
variable for the remote controller with Pr(δk = 1) = p.
Hk ∈ RNr×Nt ∼ N (0,1Nr

) is the wireless MIMO fading
matrix between the remote controller and the actuator, and
vk ∼ N (0, INr ) is the additive Gaussian noise.

III. DATA-DRIVEN OPTIMAL TRACKING CONTROL FOR
THE LINEAR SYSTEM WITH KNOWN PLANT DYNAMICS

The equivalent linear time-varying (LTV) system model can
be derived by combining Eqs. (1) and (2), resulting in

xk+1 = Axk + δkBHkuk +Bvk +wk. (3)

Let rk ∈ RS×1 be the prior-known target state, which
evolves according to rk+1 = Grk, where G ∈ RS×S is
the reference dynamics matrix. The goal of optimal tracking
control for this LTV system can be framed as an ergodic
tracking control problem over the aggregated state sequence
S = {S1,S2, ...}, where the aggregated state at the k-th time
slot is Sk = {xk, rk, δkHk}. The optimal tracking control
problem can then be formulated as the following infinite-
horizon ergodic optimization problem.

Problem 1 (Ergodic Optimal Tracking Control Problem):

min
π

J π =min
π

lim sup
K→∞

1

K
E[

K∑
k=1

ξkr1(Sk,uk)],

s.t. (3), ξ ∈ R+.

(4)

where the control policy π : S → U is a mapping from
Sk to uk ∈ U . The per-stage reward function r1(Sk,uk) is
given by r1(Sk,uk) = (xk − rk)

TQ(xk − rk) + uT
kRuk +

(δkHkuk)
TMHkuk. Q ∈ SS+, R ∈ SNt

+ , and M ∈ SNr
+ .

The following theorem summarizes the sufficient conditions
for the existence of the solution to Problem 1.
Theorem 1: (The Sufficient Conditions for the Existence

of the Solution to Problem 1) Let the singular value de-
composition (SVD) of δkξBHk

(
HT

kMHk +R
)−1

HT
kB

T

be δkξBHk

(
HT

kMHk +R
)−1

HT
kB

T = VT
k ζkVk with

1“The dynamic evolution (1) is potentially unstable” means that plant
dynamics A contains possibly unstable eigenvalues, i.e., ∥A∥ > 1.



the diagonal elements of ζk in descending order. Let

rank
(
δkBHkH

T
kB

T
)
= γk and Πk =

[
Iγk 0

0 0

]
S×S

. Prob-

lem 1 exists a unique solution if: (a) 0 < ξ∥G∥2 < 1; and (b)
∥E[ATVT

k (IS −Πk)VkA]∥ < 1
ξ .

Proof: Please refer to Appendix A.
Note that the Problem 1 can be equivalently represented as

a virtual ergodic optimal control problem as follows.
Problem 2 (Equivalent Virtual Ergodic Optimal Control

Problem for Problem 1):

min
π

J π = min
π

lim sup
K→∞

1

K
E[

K∑
k=1

ξkr2(Sk,uk)]

s.t. x̂k+1 = Âx̂k + B̂kuk + ŵk,

(5)

where the equivalent per-stage reward function for the remote
controller r2(Sk,uk) is given by r2(Sk,uk) = x̂T

k Q̂x̂k +

uT
kRuk + (δkHkuk)

TMHkuk. x̂k =

[
xk

rk

]
∈ R2S×1, Q̂ =[

Q −Q

−Q Q

]
∈ R2S×2S . Â = Diag(A,G) ∈ R2S×2S ,B̂k =[

δkBHk

0S×Nt

]
∈ R2S×Nt , and ŵk =

[
Bvk +wk

0S×1

]
∈ R2S×1.

As a result, the solution to Problem 1 can be obtained via
the solution of the ergodic Bellman optimality equation for
Problem 2 as follows.
Theorem 2: (Ergodic Bellman Optimality Equation for

Problem 1) Under the sufficient conditions in Theorem 1, the
ergodic Bellman optimality equation for Problem 2 is

θ∗ + V ∗(Sk) = min
uk

[r2(Sk,uk) + ξE[V ∗(Sk+1)|Sk,uk]],

(6)

where the expectation at R.H.S. of (6) is w.r.t. δk+1Hk+1, wk,
and vk. θ∗ = J ∗ = infπ J π is the optimal average cost in
Problem 2, and V ∗(Sk) is the optimal value function for the
remote controller.

Proof: Please refer to Chapter 6.7 of [10].
One might consider solving (6) using conventional iterative

methods such as value iteration or Q-learning. However, these
approaches encounter significant obstacles due to the “curse
of dimensionality.” This challenge stems from the necessity
of learning the unstructured, high-dimensional value function
V ∗(Sk), which depends on the random variable Sk and spans
an uncountable state space. To address these challenges, we
leverage the fact that δk and Hk are i.i.d. random processes
with respect to k, for 1 ≤ k ≤ K. Based on this, we propose
a structured approach by deriving an equivalent reduced-
state optimality equation, which simplifies the problem and
mitigates the dimensionality issues.

Theorem 3: (Structured Reduced-State Optimality Equa-
tion) Under the sufficient conditions in Theorem 1, the optimal
solution to Problem 2 is equivalent to the solution of the
equivalent structured reduced-state optimality equation for
Problem 2, which is given by

θ̂∗ + V̂ ∗(x̂k) = EδkHk
[min
uk

[r2(Sk,uk)

+ ξEδk+1Hk+1,wk,vk
[V̂ ∗(x̂k+1)|Sk,uk]],

(7)

where V̂ ∗(x̂k) = EδkHk
[V ∗(Sk)|xk] = x̂T

kPx̂k is the
structured reduced-state value function and P ∈ S2S . The
optimal average cost θ̂∗ = θ∗ = infπ J

π = Tr(ξP1:SW +
ξBTP1:SB), where P1:S is the S-order leading principal
submatrix of P. The optimal control policy π∗ = {u∗

k,∀k},
where u∗

k is the solution to Problem 2 given by

u∗
k = −(R+HT

kMHk + ξB̂T
kPB̂k)

−1ξB̂T
kPÂx̂k. (8)

Proof: Please refer to Appendix B.
In contrast to solving (6) by learning the unstructured high-

dimensional value function V ∗(Sk), which encompasses an
uncountable state space, solving (7) streamlines the process
by focusing on the structured kernel P of the low-dimensional
function V̂ ∗(x̂k). This shift in focus significantly reduces com-
plexity and helps to circumvent the ”curse of dimensionality.”
By leveraging the structural properties of V̂ ∗(x̂k), θ̂∗, and u∗

k

as outlined in Theorem 3, the equivalent structured reduced-
state optimality (7) can be expressed as f(P) = 02S , where
f(P) is defined as follows:

f(P) = EδkHk
[Q̂+ ξÂTPÂ− ξ2ÂTPB̂k(R+

HT
kMHk + ξB̂T

kPB̂k)
−1B̂T

kPÂ]−P.
(9)

To find the root of the equation f(P) = 02S , we can employ
the SA algorithm, as detailed in Algorithm 12.

Algorithm 1 Data-Driven Online Optimal Tracking Control
for Linear Systems over MIMO Fading Channels
Initialization: Given a feasible positive semi-definite initial kernel
value P̄1 ∈ S2S , the initial estimated reduced-state value function
is given by V̄1(x̂1) = x̂T

1 P̄1x̂1, and the estimated optimal tracking
control solution at the initial timeslot is given by

u1 = −(R+HT
1 MH1 + ξB̂T

1 P̄1B̂1)
−1ξB̂T

1 P̄1Âx̂1. (10)

For k = 2, 3, ...
Step 1: (Update of the Reduced-State Value Function) Using
P̄k updated at the (k − 1)-th timeslot, the estimated reduced-
state value function at the k-th timeslot is given by V̄k(x̂k) =
x̂T
k P̄kx̂k.

Step 2: (Update of the Tracking Control Solution) Using
P̄k updated at the (k − 1)-th timeslot, the estimated optimal
control solution at the k-th timeslot is given by

uk = −(R+HT
k MHk + ξB̂T

k P̄kB̂k)
−1ξB̂T

k P̄kÂx̂k (11)

Step 3: (Update of the Learned P̄k)
P̄k+1 is updated using P̄k and δkHk given by

P̄k+1 = P̄k + αk(Q̂+ ξÂT P̄kÂ− ξ2ÂT P̄kB̂k(R+

HT
k MHk + ξB̂T

k P̄kB̂k)
−1B̂T

k P̄kÂ−Pk),
(12)

where αk > 0 is the learning stepsize at k-th timeslot satisfying∑∞
k=1 αk = ∞,

∑∞
k=1(αk)

2 < ∞.
End

We formally summarize the convergence of Algorithm 1 in
the following Theorem 4.

2In Steps 2 and 3 of Algorithm 1, the realization of the channel state
δkHk is necessary. This can be obtained through standard channel estimation
techniques at the actuator, which utilize the received pilot symbols from the
controller and the subsequent channel feedback to the controller [11].



Theorem 4: (Almost Sure Convergence of Algorithm 1)
If the sufficient conditions in Theorem 1 are satisfied, then
we have: (a) The learned P̄k via Algorithm 1 converges to
the ground truth kernel P almost surely; (b) The learned
V̄k(x̂k) via Algorithm 1 converges to V̂ ∗(x̂k) = x̂T

kPx̂k

almost surely; and (c) uk via Algorithm 1 converges to u∗
k

in (8) almost surely.
Proof: Please refer to Appendix C.

Note that Algorithm 1 requires prior knowledge of the
plant dynamics A. In the subsequent sections, we will extend
Algorithm 1 to accommodate scenarios with unknown plant
dynamics. Specifically, we will demonstrate how both A and
the optimal control input u∗

k can be learned simultaneously in
an online manner.

IV. ONLINE OPTIMAL TRACKING CONTROL FOR THE
LINEAR SYSTEM WITH UNKNOWN PLANT DYNAMICS

We propose an online remote system identification scheme
at the remote controller using {x1,x2, ...} and {u1,u2, ...}.
The problem is formulated as follows.

Problem 3 (Identification of Plant Dynamics A):

min
Ã

lim sup
K→∞

1

K

K∑
k=1

Ewk,vk
[∥xk+1 − Ãxk − δkBHkuk∥2].

(13)
Note that Problem 3 is a convex stochastic optimization

problem, where Ã = A is the unique global optimal solutions.
One may consider using the SGD algorithm to solve Problem
3. However, such algorithm cannot converge since the con-
ditional variance E[xkx

T
k |Ãk] in the standard SGD update is

not guaranteed to be bounded [12].
To tackle the convergence issue of SGD algorithm for

system identification, we propose a novel NSGD algorithm.
Specifically, let {ηk} be the Lipschiz step-size sequence sat-
isfying

∑∞
k=1 ηk = ∞ and

∑∞
k=1(ηk)

2 < ∞. The learning
step-size for plant dynamics η̂k is obtained by dynamic
normalization on ηk according to the state realizations as:
η̂k = ηk if ∥xk−1∥2 < 1 and η̂k = ηk

∥xk−1∥2 otherwise. Such
state-dependent normalization ensures that the SGD update for
system identification will be reduced by a smaller equivalent
step size η̂k if the state xk,∀k ≥ 1, is drifting away. Based
on the real-time plant state xk and the CSI δkHk the update
for identified Ãk−1 at the k-th time slot is given by

Ãk = Ãk−1 + ϕkη̂k(xk − Ãk−1xk−1−
δk−1BHk−1uk−1)x

T
k−1, ∀k ∈ Z+,

(14)

where ϕk ∈ {0, 1} is an indicating function and ϕk = 1 if and
only if ∥E[(Ãk)

TVT
k (I − Πk)VkÃk]∥ < 1

ξ and ∥Ãk∥ < ϵ
with ϵ ∈ R+ being a finite prior-given truncation constant
satisfying ∥A∥ << ϵ < ∞. Vk ∈ RS×S and Πk ∈ RS×S are
defined according to Theorem 1.

The identified Ãk via (14) can be applied to (11) to learn the
optimal tracking control solution. We formally summarize the
simultaneous online system identification and tracking control
algorithm in the following Algorithm 2.

Algorithm 2 Online Identification and Tracking Control for
Linear Systems over MIMO Fading Channels.

Initialization: The identified plant dynamics is initialized as Ã1 ∈
RS×S with the condition for ϕ1 = 1 satisfied. The learned reduced-
state value function is initialized as V̄1(x̂1) = x̂T

1 P̄1x̂1, where P̄1 ∈
S2S is a positive semi-definite matrix, x̂1 = [xT

1 , r
T
1 ]

T ∈ R2S×1 is
the initial plant state, The control solution is initialized as

u1 = −(R+HT
1 MH1 + ξB̂T

1 P̄1B̂1)
−1ξB̂T

1 P̄1Ȧ1x̂1, (15)

where Ȧ1 = Diag(Ã1,G) ∈ R2S×2S .
Step 1: (Update of the Identified Plant Dynamics) At k-th time
slot, the identified plant dynamics Ãk is obtained via (14) at the
remote controller.

Step 2: (Update of the Learned Reduced-State Value Function)
Using the learned kernel of the reduced-state value function P̄k

updated at (k − 1)-th time slot, the learned reduced-state value
function at k-th time slot is given by V̄k(xk) = x̂T

k P̄kx̂k.
Step 3: (Update of the Tracking Control Solution uk) The tracking
control solution uk at k-th time slot is given by

uk = −(R+HT
k MHk + ξB̂T

k P̄kB̂k)
−1ξB̂T

k P̄kȦkx̂k (16)

where Ȧk = Diag(Ãk,G), and P̄k is updated based on the real-
time plant state xk and the CSI δkHk as follows.

P̄k+1 = P̄k + αk(Q̂+ ξȦT
k P̄kȦk − ξ2ȦT

k P̄kB̂k(R+

HT
k MHk + ξB̂T

k P̄kB̂k)
−1B̂T

k P̄kȦk −Pk),
(17)

Let k = k + 1 and go to Step 1.

The convergence of Algorithm 2 can be achieved by the
convergence of Ãk and P̄k. We summarize the almost sure
convergence of Algorithm 2 in the following theorem.
Theorem 5: (Convergence of Algorithm 2) (a) Ãk via Al-

gorithm 2 converges to A almost surely; (b) P̄k via Algorithm
2 converges to P almost surely; (c) V̄k(x̂k) via Algorithm 2
converges to V̂ ∗(x̂k) = x̂T

kPx̂k almost surely; (d) uk via
Algorithm 2 converges to u∗

k in (8) almost surely.
Proof: Please refer to Appendix C.

V. NUMERICAL RESULTS

To evaluate the performance of the proposed online learning
algorithms, we compare them with the following baselines:

• Baseline 1: (Known Plant Dynamics and Known Optimal
Tracking Control Solutions [13]) A and u∗

k are known at
remote controller. The remote controller outputs u∗

k at
each timeslot.

• Baseline 2: (Brute-Force Value-Iteration-based Tracking
Control with Known Plant Dynamics [14]) Based on xk,
the remote controller generates uk via brute-force value
iteration on (6) with the knowledge of A.

• Baseline 3: (Brute-Force Value-Iteration-based Tracking
Control with SGD-based System Identification [15]) A is
identified by standard SGD-based approach. The remote
controller generates uk via value iteration on (6) with the
identified plant dynamics.

We consider a linear system paramterized by A =[
1.001 0.026 0.015

0.002 0.9 0.03

0.0025 0.004 0.985

]
and B =

[
1.61 1.43

1.67 1.17

1.77 1.42

]
. p = 0.8. Nt =



Fig. 2: MSE between the identified plant dynamics and the
true plant dynamics.

Fig. 3: MSE between the learned control solutions and the
optimal control solutions.

Nr = 2. R = M = 10−4I2, Q = 10213, γ = 0.9.
W = 5I3 ∈ S3+, G = I3, and r1 = [100; 100; 100].

A. Convergence Performance for System Identification

Fig. 2 illustrates the mean square error (MSE) between
the learned plant dynamics and the true plant dynamics as
a function of the iteration number. As depicted in Fig. 2 , the
learned plant dynamics using Baseline 3 do not converge to
the true plant dynamics. This lack of convergence is attributed
to the SGD-based identification algorithm employed in Base-
line 3, which fails to ensure bounded conditional variance.
Consequently, the algorithm does not achieve convergence.
In contrast, the proposed scheme demonstrates asymptotic
convergence in learning the plant dynamics, thanks to its
normalized iterative update law.

B. Convergence Performance for Tracking Control

Fig. 3 reveals that the learned tracking control solutions
obtained from Baseline 2 and Baseline 3 diverge from the
optimal tracking solutions due to the ”curse of dimensionality.”
In contrast, our proposed scheme asymptotically converges to
the optimal tracking solutions, demonstrating its effectiveness
in overcoming these challenges.

C. Stability Performance

Fig. 4 indicates that the plant states produced by Baseline 2
and Baseline 3 fail to track the target state due to their inability

Fig. 4: Stability performance comparison.

to learn the optimal tracking control solutions. In contrast, the
plant state achieved through our proposed scheme asymptoti-
cally converges to the target state over time, reflecting that the
optimal tracking control solution is effectively attainable.

VI. CONCLUSION

This work addressed the data-driven online optimal tracking
control problem for linear systems operating under wireless
MIMO channels, considering both known and unknown plant
dynamics. We proposed novel data-driven online learning
algorithms for identifying plant dynamics and determining
optimal tracking control solutions. Utilizing Lyapunov drift
analysis, we demonstrated that the learned plant dynamics and
tracking control solutions converge to their true values and
optimal solutions, respectively, through the proposed learning
algorithms. Numerical simulations further confirmed the supe-
riority of our approach compared to various existing methods.

APPENDIX

A. Proof of Theorem 1

Problem 2 can be solved via the Markov decision pro-
cess (MDP) techniques [13]. Specifically, using the simi-
lar approach as in [16], the optimality equation associated
with Problem 2 can be represented as θ̂∗ + x̂T

kPx̂k =

E[minuk
[x̂T

k Q̂x̂k + uT
k (R + HT

kMHk)uk + ξ(Âx̂k +

B̂kuk)
TP(Âx̂k+ B̂kuk)+ ξTr(P1:SW)+ ξTr(BTP1:SB)],

and u∗
k that achieves the minimum value of above equation

is given by (8). Assuming V̂ ∗ (x̂k) exists, i.e., P exists, it
follows that θ̂∗ = Tr

(
ξP1:SW + ξBTP1:SB

)
. As a result, it

suffices to prove that the solution P to the optimality equation
for Problem 2 exists, then the solutions of θ̂∗ , V̂ ∗ (x̂k) and
u∗
k to Problem 2 all exist.
We now prove the existence of unique P. Specifi-

cally, note f(P) = 02S has all terms positive semi-
definite. Hence, we can simultaneously diagonalize all terms
for f(P) = 02S . This follows that equations P1 =
Q + ξATP1A − E[ξ2δkATP1BHk(R + HT

kMHk +
ξHT

kB
TP1BHk)

−1HT
kB

TP1A] and P2 = ξGTP2G + Q



with unique positive semi-definite root P1 and P2 exists,
respectively. It is easy to see that unique positive semi-definite
P2 exists if 0 < ξ∥G∥2 < 1. We now prove that unique
positive semi-definite P1 exists under the sufficient conditions
in Theorem 1. Specifically, by some derivations, we have
P1 ≤ ξATE[VT

k (I − Πk)VkP1V
T
k (I − Πk)Vk]A + Q̄,

where Q̄ ∈ SS+ is a finite positive definite matrix. Under the
sufficient conditions in Theorem 1, we use the monotonicity
of the R.H.S. of the optimality equation w.r.t. P1, it follows
that there is a unique positive semi-definite P1 such that the
optimality equation is satisfied, which concludes the proof.

B. Proof of Theorem 3

Exploiting the i.i.d. property of Hk and δk, the optimal-
ity equation for Problem 2 in Theorem 2 can be repre-
sented as θ∗ + V ∗(x̂k, δkHk) = minuk

[r2(x̂k, δkHk,uk) +
ξ
∑

x̂k+1
Pr(x̂k+1|x̂k, δkHk,uk)V̂

∗(x̂k+1)]. Taking the ex-
pectation of both sides of above equation over δkHk, it follows
(7) and concludes the proof.

C. Proof of Theorem 4 and Theorem 5

Note that Algorithm 1 is a special case of Algorithm 2.
This follows to analyze the convergence of Ãk and P̄k in
Algorithm 2 for convergence of both algorithms.

1) Convergence of Ãk: We define the Lyapunov function
as Vk = ∥A − Ãk∥2F , with the associated Lyapunov drift
given by Λ(Ãk) = E[Vk+1 − Vk|Ãk]. Substituting (14) into
Λ(Ãk), and according to Lemma 2.1 of [17], it follows that
limk→∞ E[∥Ãk −A∥2F ] = 0.

2) Convergence of P̄k: The update rule for P̄k in (17)
can be represented as P̄k+1 = P̄k − αkĝ(P̄k, Ãk, δkHk) =
P̄k − αk(f(P̄k) + Mk), where ĝ(P̄k, Ãk, δkHk) =
P̄k − g(P̄k, Ãk, δkHk, f(P̄k) = E[ĝ(P̄k, Ãk, δkHk)|P̄k],
Mk = ĝ(P̄k, Ãk, δkHk)−f(P̄k), g(P̄k) = Q̂+ξȦT

k P̄kȦk−
ξ2ȦT

k P̄kB̂k(R + HT
kMHk + ξB̂T

k P̄kB̂k)
−1B̂T

k P̄kȦk.
It can be verified that E[∥P̄k∥2F ] < ∞,∀k and
E[Tr(P̄k)] < ∞,∀k. Using the boundness of E[∥P̄k∥2F ]
and the linearity of the trace functional on the
monotonic ĝT (P̄k, Ãk, δkHk) w.r.t. P̄k [3], it follows
that E[∥P̄k+1 −P∥2F ] = E[Tr((P̄k+1 −P)T (P̄k+1 −P))] =

E[∥P̄k+1 − P∥2F ] − 2αkE[Tr(ĝT (P̄k, Ãk, δkHk)(P̄k −
P))] + (αk)

2E[∥ĝ(P̄k, Ãk, δkHk)∥2F ] ≤
E[∥P̄k − P∥2F ] − 2αkE[Tr((ĝT (P̄k, Ãk, δkHk) −
ĝT (P,A, δkHk))(P̄k − P))] + (αk)

2c1 ≤ E[∥P̄k −
P∥2F ] − 2αkE[Tr((ĝT (P̄k,A, δkHk) + ĝT (P̄k, Ãk, δkHk) −
ĝT (P̄k,A, δkHk) − ĝT (P,A, δkHk))(P̄k − P))] +
(αk)

2c2 ≤ (1 − αkc3)E[∥P̄k − P∥2F ] + (αk)
2c4 +

2αkE[Tr((ĝT (P̄k,A, δkHk) − ĝT (P̄k, Ãk, δkHk))(P̄k −
P))] ≤ (1 − αkc3)E[∥P̄k − P∥2F ] + (αk)

2c4 +

2αkE[Tr((AAT − Ãk(Ãk)
T )ĝT (P̄k, I2S , δkHk)(P̄k −P))],

where 0 < c1, c2, c3, c4 < ∞. Further recursively applying the
Von-Neumann’s trace Inequality to the above inequality, we
have E[∥P̄k+1−P∥2F ] ≤ (1−αkc5)E[∥P̄k−P∥2F ]+(αk)

2c6+

αkc7E[
∑S

i=1 σs(A − Ãk)], where 0 < c5, c6, c7 < ∞, and
σi(A − Ãk) is the i-th decreasing-ordered singular value of
A− Ãk.

The derivations in 1) shows that the sequence
limk→∞ E[

∑S
i=1 σ

2
s(A − Ãk)] = 0. According to the

definition of the convergent sequence, it follows that for
arbitrary given c8 > 0, we have a finite timeslot k2 = 1, 2, ...,
such that for all k > k2, E[

∑S
i=1 σs(A − Ãk)] < c8. In

other words,
{
E[
∑S

i=1 σs(A− Ãk)]
}

is also a convergent
sequence that converges to 0. According to the definition of
the convergent sequence that converges to 0, it follows that
lim supK→∞ E[∥P̄k −P∥2F ] = 0, which concludes the proof.
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