
Multi-objective Scheduling in Wireless Networks
with Deep Reinforcement Learning

Babacar Toure˚:, Dimitrios Tsilimantos˚, Theodoros Giannakas˚, Omid Esrafilian:, Marios Kountouris:

˚Advanced Wireless Technology Lab, Paris Research Center, Huawei Technologies France
:Communication Systems Departement, EURECOM, Sophia Antipolis, France

{babacar.toure1, dimitrios.tsilimantos}@huawei.com, tedgiannakas@gmail.com,{omid.esrafilian, kountour}@eurecom.fr

Abstract—Radio resource scheduling in modern wireless net-
works faces several challenges, including high throughput de-
mands, fast access requirements, and a staggering amount
of users. AI-based schedulers have recently gained increasing
interest as a solution to these problems since they can han-
dle complex network settings by coming up with non-trivial
scheduling schemes. Nevertheless, they have not yet been used
to address multiple, often conflicting objectives, such as network
throughput, latency, and fairness, without essentially reducing
them to a single scalar objective. In this work, we develop a multi-
objective reinforcement learning agent that acts as a scheduler of
downlink transmissions to multiple devices. The agent is trained
to accommodate differing and varying operator preferences for
throughput and fairness while minimizing packet drops. Our
simulation results show that, with a single agent trained only once,
we outperform existing scheduling baselines on all objectives.

Index Terms—deep reinforcement learning, multi-objective op-
timization, scheduling, wireless networks.

I. INTRODUCTION

In recent years, mobile network operators have experienced
an unprecedented increase in mobile traffic demand, as users
are becoming more eager to use their mobile devices for
streaming, gaming, and teleconferencing purposes, among oth-
ers. The fact that there were finally more unlimited mobile data
plans available in 2019 than capped ones [1] is a significant
evidence of this phenomenon. To make matters worse, the
wireless community has set very high standards for 5G+
networks, expecting considerable gains in performance over
4G, such as 10ˆ reduction in latency and a 10ˆ increase in
throughput. Furthermore, the emerging generation of commu-
nication systems needs to perform well across a diverse range
of services, such as enhanced mobile broadband (eMBB) and
ultra-reliable and low-latency communications (URLLC). One
of the main issues with managing many services is that each
one could call for a different trade-off between network objec-
tives; for instance, eMBB requires high throughput, whereas
URLLC prioritizes low latency and error rate.

In this paper, we study a wireless setting in which a Base
Station (BS) allocates resources to a set of devices for down-
link communication. In particular, at each timeslot, the BS
must determine which of its connected devices will occupy the
channel to download data, based on device-related information,
such as channel gain. Our main goal is to enable the BS to
effectively and efficiently balance multiple objectives, such as
throughput, fairness, and reliability.

A. Related Work

Conventional approaches in wireless networks typically op-
timize the performance of a single objective or combination
of objectives. For example, Proportional Fair (PF) scheduler
optimizes a mix of fairness and throughput [2], and MaxWeight
(MW) targets throughput while trying to stabilize the data
queues [3]. Recently, an AI-based approach that has gained
popularity in wireless is Reinforcement Learning (RL) [4]. RL
views the BS as an agent that tries to learn a (scheduling)
policy by interacting with the wireless stochastic environment
without knowledge of its statistics. Most often, RL uses func-
tion approximation, namely Deep Neural Networks (DNNs)
[5], because of the large action and state spaces in networking
applications. Deep RL (DRL), combining RL with DNNs, has
shown remarkable results in the context of resource allocation
[6]–[8], especially in dense scenarios where standard methods
fail due to their myopic decision-making.

B. Key Challenge: Multi-objective RL-based Scheduling

In the intersection of RL with scheduling, some works
assume a single objective [6], [7], [9], and others consider
multiple rewards (objectives) but scalarize them; typically, this
is done by using a linear function as follows. Let r P RM

denote the reward vector of M objectives and w P RM

express the importance on each objective; the scalarized multi-
objective reward is then defined as fwprq “ wJr, from
which the BS learns [10]–[12]. Nonlinear scalarization has also
been studied [13], as well as other network tasks like Internet
congestion control [14].

Importantly, the aforementioned works optimize the perfor-
mance for a single, fixed w, hence for a single balance between
objectives. This approach, although simple, is not robust in
the changes of objective preferences w. Consider the case of
training a BS in a setting with a varying preference w. A
straightforward option is to retrain the agent (i.e., a DNN)
for each w that arrives. This is an approach that requires a
lot of computational resources. Alternatively, the BS could
train multiple independent agents for each w, but this is not
a scalable approach in terms of memory. For these reasons,
it would be preferable and more efficient to learn a single
DNN that can generalize across the different w. Such an
approach allows network operators to handle various services

with potentially different trade-off requirements between the
objectives, without the need for online retraining.

C. Contributions
We address the problem of tuning a single DRL agent

to perform well for a wide range of preferences w over
throughput and fairness, while also accounting for packet-drop
rate. Our contributions are summarized as follows:
(C.1) We formulate the wireless downlink scheduling with
three objectives as a multi-objective RL (MORL) problem. Im-
portantly, we allow the operator’s preference w over through-
put and fairness to vary arbitrarily across the time horizon.
(C.2) We optimize a single Deep Q-Network (DQN) to learn
multiple trade-off points between throughput and fairness
while keeping the packet drop events to a bare minimum.
(C.3) We provide a thorough numerical evaluation of our pro-
posed method, showing that it dominates all baselines on both
throughput and fairness objectives, while having interesting
gains in terms of packet drops.

The paper is structured as follows. Section II introduces
the multi-objective scheduling problem. In Section III, we
formulate the problem as a MORL task and describe the
training algorithm. In Section IV, we present our simulation
results, and finally, we draw our conclusions in Section V.

II. PROBLEM SETUP

A. System Model
We consider the downlink of a wireless network with K “

tu1, . . . uKu devices connected to a single BS, as shown in
Fig. 1. Time is slotted with a slot duration of Ts and at each
slot the BS can schedule at most one device for transmission.
The BS has a dedicated buffer of size B for each device,
measured in packets; each packet is of size ρ bits. At slot t,
the buffer k, dedicated to uk, has xk

t packets that wait for
transmission, while Ak

t packets arrive according to Poisson
distribution with mean λk. Packets arriving at a full buffer are
dropped; we denote the number of dropped packets as dkt .

We adopt a block fading channel model, where the channel
gain between uk and the BS, denoted by gkt , remains constant
during slot t and changes independently in each slot as

gkt “ lklksh||ht
k||22, (1)

where lk is the distance-dependant path-loss following the
empirical 3GPP model for Urban Macrocell propagation in
Line of Sight conditions (UMa-LOS) [15], lksh „ N p0, σq is
the shadowing realization from a log-normal distribution and
ht
k evolves at each slot following a Gauss-Markov fast fading

model [16]: ht
k “ αht´1

k ` ztk, t ą 0, where 0 ď α ď 1

is the correlation factor and ztk “

b

1´α
2

´

ztk,1 ` iztk,2

¯

are
i.i.d. circular complex Gaussian variables, ztk,j „ N p0, 1q for
j P t1, 2u. Below, we define our main system variables.
Rate. Using the Shannon capacity of an additive white Gaus-
sian noise (AWGN) channel, the estimated rate of uk at t is

Rk
t “ bw log2

ˆ

1 `
gkt P

N0bw

˙

(2)

Device u1

Device u2 Device u3

Buffers

Packet
Arrivals

B packets

Fig. 1: Example of downlink communication

where P is the transmission power, bw is the bandwidth and
N0{2 is the noise power spectral density.
Scheduled device and Throughput. At every slot, the BS
allows only one device to occupy the channel and to download
data from its buffer. We denote ckt P t0, 1u a binary variable
indicating if uk has been scheduled at time t. Using the above
definitions, uk can potentially transmit several packets

P̂ k
t “

Z

Tsc
k
tR

k
t

ρ

^

, (3)

but as the transmission is limited by the buffer content xk
t , the

real number of transmitted packets is written as

P k
t “ mintxk

t , P̂
k
t u. (4)

Therefore, the throughput of uk at slot t is given by

Hk
t “

ρP k
t

Ts
. (5)

The floor function t¨u models the fact that only full packets
are downloaded by the devices.
Buffer Evolution. We assume that the number of packets xk

t

in buffer k evolves based on the number of transmitted packets
P k
t and the arrivals Ak

t , but cannot exceed B as

xk
t`1 “ min

`

xk
t ´ P k

t ` Ak
t , B

˘

. (6)

Finally, at every slot t, the number of dropped packets in
buffer k, which represents the excess of packets that would
overflow the buffer capacity B after considering transmissions
and arrivals, is written as follows

dkt “
“

xk
t ´ P k

t ` Ak
t ´ B

‰`
, (7)

with rxs
`

fi max px, 0q.

B. Network Metrics
The operator has a scheduling policy π, which drives the

system evolution and performance. In particular, policy π
is associated with the performance of the three long-term
objectives of interest. Hence, for a time horizon T , first,
throughput (in bps) is expressed as

Hπ “

T
ÿ

t“1

K
ÿ

k“1

Hk
t . (8)

Second, fairness, as experienced by the K devices [17], is

Fπ “
p
řK

k“1

řT
t“1 H

k
t q2

K
řK

k“1p
řT

t“1 H
k
t q2

. (9)

Note that the minimum of (9) is equal to 1{K when only one
device has occupied the channel on all T slots, whereas its
maximum is equal to 1 when all devices download the same
amount of packets across horizon T . Third, the number of
dropped packets, normalized by the number of arrivals, is

Dπ “

řK
k“1

řT
t“1 d

k
t

řK
k“1

řT
t“1 A

k
t

. (10)

Depending on the scenario, the objectives Hπ and Fπ can
be conflicting. As an example, consider that device uk has the
highest rate in every slot, and the arrival rate is high enough
to constantly keep all buffers full. In that case, a policy π that
always schedules uk is throughput-optimal, and results in the
minimum possible fairness, Fπ “ 1{K.

C. Problem Formulation

We formulate our optimization problem with multiple ob-
jectives, namely throughput, fairness and packet drop rate. In
mathematical terms, the optimization problem becomes:

Optimization Problem 1:

max
π

pHπ, Fπ,´Dπ
q (11)

Since these objectives may conflict, our goal is to find
multiple trade-off points as Pareto optimal solutions.

III. MULTI-OBJECTIVE REINFORCEMENT LEARNING

In this section, we formalize the scheduling problem of
Section II-C with RL and present an algorithm for the training
of the BS/agent, based on DQN as in [18].

A. Formulation

The scheduling problem we study is inherently “state-
based”, mainly due to finite size buffers. Scheduling a device
at slot t affects the state of all buffers at t ` 1, render-
ing RL an attractive modeling framework. Moreover, since
we are interested in considering more than one objectives
without beforehand knowledge of the desired trade-off be-
tween those objectives, we resort to the Multi-Objective RL
(MORL) framework. A MORL problem is defined by the
tuple pS,A,P,R,W, fwq, where S is the set of environment
states, A is the set of actions and P is the state transition
matrix. Importantly, the reward function R produces a vector,
r P RM with M the number of objectives, and not a scalar as
in typical RL formulations, while W , the preference space, is
a pM ´ 1q-simplex representing all possible preferences over
the objectives: W “ tw P RM :

ř

i wi “ 1,wi ě 0,@i “

1, . . . ,Mu, where wi represents the importance weight of the
i-th objective. Finally, function fw scalarizes r; here we are
interested in linear scalarization, of the form fwprq “ wJ ¨ r.
State Space. For each device uk at t ą 1, we keep track of:

(a) Rate Rk
t´1 as computed by (2).

(b) Average historical throughput up to time t ´ 1, namely
H

k

t´1 “ 1
t´1

řt´1
τ“1 H

k
τ , see (5).

(c) Free buffer space, namely B ´ xk
t , see (6).

Rates are useful to capture the throughput objective. We
assume no access to the current channel rates, as in practice
channel gain information needs to be reported by the devices
for downlink [19]; and instead use the rates from the previous
slot. Moreover, the historical throughput per device is mainly
included to capture fairness accross devices and finally, the
free buffer space is useful in order to avoid packet drops.

Each device uk then has a local state skt “ rRk
t , H

k

t , B´xk
t s

and the concatenation across all devices defines the state st,
which the BS observes at every t:

st “ ts1t , . . . , s
K
t u. (12)

As S is prohibitively large, we resort to the use of DNNs [5].
Action space. The BS action at indicates the device chosen
to download data from the BS at slot t.
Reward. Through the instantaneous reward signal, we aim
to help the agent accomplish its long-term goals. We set as
a reward at slot t the vector that represents instantaneous
measurements of the long-term objectives.

rt “

«

K
ÿ

k“1

Hk
t ,

p
řK

k“1

řt
i“1 H

k
i q2

K
řK

k“1p
řt

i“1 H
k
i q2

,´

K
ÿ

k“1

dkt

ff

. (13)

Recall that we would like to strike a balance between
throughput (8) and fairness (9) while minimizing the packet
drops (10). A way of capturing this is by setting a constant
weight to the packet drop rewards. Thus, the preferences are
in the shape w0 “ pw, 1 ´ w, cq with w P r0, 1s, and c ě 0
modulates the level of constraint on the drop objectives. Since
c is fixed, in the rest of the paper we only consider the 2D
preference w “ pw, 1 ´ wq.

B. Training a Multi-Objective DQN (MOQ) Agent
In the standard scalar reward setting, starting from state s,

taking action a and following policy π, the state-action value
function Qπ : S ˆ A Ñ R is defined as follows

Qπps, aq “ Eπ

„

ÿ

tě0

γtrt|s0 “ s, a0 “ a

ȷ

. (14)

Definition 1: The Bellman optimality operator H :
R|S|ˆ|A| Ñ R|S|ˆ|A| is defined as

pHQqps, aq “ rps, aq ` γEs1„P

„

max
a1PA

Qps1, a1q

ȷ

. (15)

The fixed point Q‹ of the operator H is the optimal state-action
function from which the optimal policy can be found.

Extending the single reward setting to the multi-objective
case, the reward becomes a vector rt P RM and the state-
action value function is also parameterized by w, namely, Qπ :
S ˆ A ˆ W Ñ RM and is expressed as

Qπps, a,wq “ Eπ

„

ÿ

tě0

γtrt|s0 “ s, a0 “ a

ȷ

. (16)

Observe that for fixed s, a and two preferences w ‰ w1, Qπ

may result in two different M -dimensional vectors. Below, we
define the Bellman operator for the multi-objective case.

Definition 2: The Bellman optimality operator H :
R|S|ˆ|A|ˆ|W| Ñ R|S|ˆ|A|ˆ|W| is defined as

pHQqps, a,wq “ rps, aq ` γEs1„P

„

pFQqps1,wq

ȷ

. (17)

Similar to (15), where the max operator chooses the best Q-
value from the next state s1, here we need to extract M Q-
values, one for every reward dimension. The main idea of [18]
gives an optimistic way to resolve this by defining F as:

FQps,wq “ argQ max
a1PA,w1PW

wTQps, a1,w1q. (18)

The key step is to compute the scalarized utility wTQps, ¨, ¨q

across all action-preference pairs (so in total |A|¨|W| utilities),
and return the Q vector evaluated at the pair that achieved
the highest utility, namely, Qps, a˚,w˚q. Intuitively, this gen-
eralizes the idea of being optimistic over the next action to
being optimistic over the next action-preference pair. Applying
repeatedly this Bellman operator provides the optimal Q‹ [18].
Training Procedure. We train the MOQ algorithm with double
Q-Learning which yields more accurate action-value estimates
[20]. The DQN is parametrized by θ and we define a loss
between the Q-estimations and target values obtained using
the target network parametrized by θ´, i.e.,

LApθq “ Es,a,w

„

||y ´ Qps, a,w; θq||2
ȷ

, (19)

where y :“ r ` γQps1, ã, w̃; θ´q with pã, w̃q “

argmaxa1PA,w1PW wTQps, a1,w1; θq, using (17)-(18).
Such a loss drags the Q-value vector in the direction of the

target vector. We also add an auxiliary loss that takes into
account the scalarized utility as done in [18]:

LBpθq “ Es,a,w

„

ˇ

ˇwTy ´ wTQps, a,w; θq
ˇ

ˇ

ȷ

. (20)

Our final loss then becomes:

Lpθq “
1

2

`

LApθq ` LBpθq
˘

. (21)

The expectation in (19)-(20) is estimated by sampling ex-
perience tuples from a replay buffer. We describe the training
steps in Alg. 1. As various preferences are sampled during
training, this learning paradigm acquires optimized policies
for all possible preferences, thereby eliminating the need for
additional training or fine-tuning (see step 12 in Alg. 1). Note
that since our scheduling problem does not have a real terminal
state, we apply bootstrapping [21] to the target of the last state.

IV. PERFORMANCE EVALUATION

A. Simulation setup

Baselines. To evaluate the performances of our proposed DQN
agent, we use the following baselines:

‚ Max-Weight (MW): at “ argmaxkPK xk
tR

k
t´1. It opti-

mizes the throughput while stabilizing the buffers.

Algorithm 1: MOQ algorithm

1 Input: a preference sample distribution DW , a replay
buffer B, a number of training episodes L, a number
of sampled preferences Nw.

2 Initialize replay buffer B and Q function parameters θ.
3 for episode e “ 1, . . . , L do
4 Sample w from DW
5 for timeslot t “ 1, . . . , T do
6 Observe state st.
7 Sample ϵ-greedily an action:

at “

#

random action in A w.p. ϵ
maxaPA wJQpst, a,w; θq w.p. 1 ´ ϵ.

8 Receive vectorized reward rt and observe st`1.
9 Save transition pst, at, rt, st`1q in buffer B.

10 if update then
11 Sample Nτ transitions psj , aj , rj , sj`1q

12 Sample Nw preferences W “ twi „ DWu.
13 Compute target @1 ď i ď Nw, 1 ď j ď Nτ :

yij “ rj ` γQpsj`1, ã, w̃; θ´q

pã, w̃q “ argmax
a1

PA,w1
PW

wJ
i Qpsj`1, a

1,w1; θq.

14 Update θ Ð θ ´ α∇θLpθq by stochastic
gradient descent, using (21).

15 Update target network parameters:
θ´ Ð τθ ` p1 ´ τqθ´

‚ Proportional Fairness (PF): at “ argmaxkPK
Rk

t´1

H
k
t´1

. It

optimizes a mix of throughput and fairness.
‚ Exponential PF using Buffer state (EXPB) [22]:

at “ argmaxkPK
Rk

t´1

H
k
t´1

exp

ˆ

xk
t ´x̄t

1`
?
x̄t

˙

s.t. x̄t “

ř

k xk
t

K .

EXPB extends PF by considering buffer lengths.
‚ Round-Robin: Schedules devices in a cyclic fashion.
‚ Random: Picks a device at random at every time slot.

The above baseline schedulers do not require training and
each of them, by design, solves a fixed trade-off between our
different objectives, which can be restrictive in the context of
modern networks with variable service requirements. On the
contrary, our MOQ agent is first trained offline, experiencing
different trade-offs weights between the objectives. Then, in
real-time, it is able to produce any required trade-off or adapt
to a change in the operator inputted weights.

Environment and DQN model. We set up a network with a
single BS and 8 devices with fixed positions. The maximum
buffer size is B “ 100 packets and each packet contains
ρ “ 700 bits. We fix the transmission time to Ts “ 1
ms. The arrival rate λ is set to create significant network
congestion, making the problem challenging. Note that our
approach works for any λ. The buffers are initialized full,
so that packets can get dropped from the beginning of the

12.50 12.75 13.00 13.25 13.50 13.75 14.00 14.25
Throughput (Mbps) →

0.92

0.93

0.94

0.95

0.96

0.97

0.98

Fa
irn

es
s→

0.0

0.2

0.4

0.6

0.8

1.0
w1

(a) Throughput vs Fairness

12.50 12.75 13.00 13.25 13.50 13.75 14.00 14.25
Throughput (Mbps) →

−0.24

−0.22

−0.20

−0.18

−0.16

Dr
op

s→

0.0

0.2

0.4

0.6

0.8

1.0
w1

RR
random
PF
MW
EXPFB
Ours

(b) Drops vs Throughput

−0.24 −0.22 −0.20 −0.18 −0.16
Drops→

0.92

0.93

0.94

0.95

0.96

0.97

0.98

Fa
irn

es
s→

0.0

0.2

0.4

0.6

0.8

1.0
w1

(c) Fairness vs Drops

Fig. 2: Trade-off analysis. Each marker represents a scheduler. Our algorithm (circled markers with gradient of colors from red
to black) is employed with different preferences w “ pw1, 1 ´ w1q for throughput weight w1.

TABLE I: Simulation parameters

System parameters
Packet arrivals λ 3000 packets/s
Scheduling duration T 500 slots
Cell radius 1000 m
Bandwidth bw 1 MHz
Transmission power P 20 dBm
Noise spectral density N0 ´174 dBm/Hz
Center frequency fc [15] 2 GHz
Shadowing std σ 7 dB
Fast-fading correlation 0.95

DNN parameters
Discount factor γ 0.99

Soft target update τ 0.005

Preference sample size Nw 4

Batch size Nτ 32

Training episodes L 3000

Learning rate α 1e´4

scheduling duration. A random realization of the environment
is saved for evaluation so that all the schedulers experience the
same channel conditions and packet arrivals. For the DQN, we
employ a fully connected DNN with 2 layers, each one with
256 neurons. The packet drop constraint is set to c “ 0.5.
More network and DQN parameters are presented in Table I.
State and reward normalization. Input and output scaling
is widely used to enhance DNN training [23]. Following this
principle, we normalized states and rewards yielding signifi-
cant gains in performance and convergence speed. Practically,
we collected a dataset of 75000 states and rewards by perform-
ing 50 scheduling episodes using each of the following three
baselines: MW, Random and PF. Each episode corresponds to
a random realization of the environment with different channel
conditions due to shadowing and fast-fading. In addition, the
reward dataset is diversified because the three selected base-
lines prioritize different objectives. From the obtained dataset,
we computed the following statistics: the maximum rate R and
maximum average historical throughput H observed across

all devices, and pµm, σmq for m “ 1, ¨ ¨ ¨ ,M the average
and standard deviation of the rewards on each objective. Our
normalized state and reward then become:

ŝt “

#

@uk P K :
Rk

t´1

R
,
H

k

t´1

H
,
B ´ xk

t

B

+

, (22)

r̂t,m “
rt,m ´ µm

σm
for m “ 1, ¨ ¨ ¨ ,M. (23)

Here rt,m denotes the m-th element of the vector reward rt.

B. Results and discussion

Pareto front.
Fig. 2 shows the achieved performance of different sched-

ulers over the throughput, fairness, and drop ratio objectives,
as defined in (8)-(10). The performance is evaluated over an
episode of the evaluation environment. Our scheduler has been
called over the preferences tp k

100 , 1 ´ k
100 q, k P rr0, 100ssu,

which are illustrated with different colors on the plots. Recall
that the packet drop weight is set to 0.5. Also note that
for illustration purposes, we show the drop packet ratio with
negative values, so that the values in all 3 objectives increases
for higher performances.

Our scheduler manages to learn a trade-off between through-
put and fairness (see Fig. 2.a), while minimizing the packet
drops (see Fig. 2.b and Fig. 2.c). When the input preference
is w “ p0, 1q, i.e. fully on fairness, our scheduler performs
p13.78 Mbps, 0.984, 17.9%q respectively on throughput, fair-
ness, and drop ratio, dominating EXPB and PF on all three
objectives. Note that in our setting, the PF scheduler performs
poorly in throughput and packet drop due to its insensitivity
to buffer sizes (see its definition in IV.A). EXPB corrects that
behaviour thanks to the exponential term in buffer lengths,
but is still worse than our solution. On the other hand, for
preferences close to w “ p1, 0q favoring throughput, we
observe that the MW scheduler minimizes the packet drops
and is throughput-efficient at the cost of a lower fairness
compared to other baselines. Remarkably, our scheduler per-
forms p14.30 Mbps, 0.93, 15.4%q, slightly outperforming MW

TABLE II: Monte-Carlo evaluation (mean and std)

Algo w Throughput (Mbps) Fairness Drops (%)

MW -
14.4

˘0.09
0.90

˘0.009
13.7
˘0.6

Ours (1,0)
14.45
˘0.1

0.92
˘0.01

14
˘0.7

EXPB -
13.62
˘0.1

0.97
˘0.003

20
˘0.8

Ours (0,1)
13.84
˘0.1

0.976
˘0.003

17.3
˘0.8

in throughput but with a significantly higher fairness, as shown
by the x-axis of Fig. 2.a.

Besides the fact that our scheduler performs well in both
extremes, as shown previously, one of the main interests of our
approach lies in the fact that it embeds, with a single training,
optimal policies over the whole preference space. For example,
we notice that as the preference gradually changes from p1, 0q

to p0, 1q, we are able to continuously capture trade-off points
in the Pareto front of the studied objectives. On another note,
our results show a strong correlation between the throughput
and drop ratio objectives (see Fig 2 .b).
Monte Carlo evaluation. Knowing that our wireless envi-
ronment has high dynamics due to the randomness of the
channel conditions and packet arrivals, we set up a test to
ensure that the performance of our scheduler is guaranteed
across different realizations of the environment. For 100 dif-
ferent environments, we measure the long-term performances
achieved by the EXPB scheduler, the MW scheduler, and our
scheduler with w “ p0, 1q and w “ p1, 0q. The results are
reported in Table II. From this table, we see that our scheduler
has a similar variance to the standard schedulers in all the
settings and on all objectives. This supports the reliability
of our RL solution in comparison to these well-established
scheduling baselines. In terms of average performance, we
confirm the observation made on the Pareto front of the
evaluation environment. Our scheduler reaches a performance
similar (or slightly higher) than the baselines in the objective
of interest while outperforming them on the other objectives.

V. CONCLUSIONS

In this work, we proposed an all-in-one scheduler that
determines optimal policies for every input preference on
throughput and fairness objectives with only a single train-
ing. Our simulations demonstrate that, for all objectives, our
scheduler is as reliable and as effective as existing baseline
schedulers. Its key advantage is its ability to implement the
optimal policy for any preference, thus eliminating the need for
online re-training or maintaining multiple, possibly suboptimal
models at the BS. In our future work we plan to extend this
study to scenarios involving multiple interfering base stations
in high-density networks. The addtional challenge would be
the non-stationarity introduced by agents acting according to
their own preferences.

REFERENCES

[1] U. Cisco, “Cisco annual internet report (2018–2023) white paper,” Cisco:
San Jose, CA, USA, vol. 10, 2020.

[2] M. Andrews et al., “Providing quality of service over a shared wireless
link,” IEEE Communications magazine, vol. 39, no. 2, pp. 150–154,
2001.

[3] ——, “Scheduling in a queuing system with asynchronously varying ser-
vice rates,” Probability in the Engineering and Informational Sciences,
vol. 18, no. 2, pp. 191–217, 2004.

[4] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[5] V. Mnih et al., “Playing atari with deep reinforcement learning,” arXiv
preprint arXiv:1312.5602, 2013.

[6] Y. S. Nasir and D. Guo, “Multi-agent deep reinforcement learning
for dynamic power allocation in wireless networks,” IEEE Journal on
Selected Areas in Communications, vol. 37, no. 10, pp. 2239–2250, 2019.

[7] A. Destounis and D. Tsilimantos, “Distributed reinforcement learning for
low-delay uplink user scheduling in multicell networks,” in GLOBECOM
IEEE Global Communications Conference. IEEE, 2022, pp. 2303–2308.

[8] A. Avranas, P. Ciblat, and M. Kountouris, “Deep reinforcement learning
for resource constrained multiclass scheduling in wireless networks,”
IEEE Transactions on Machine Learning in Communications and Net-
working, vol. 1, pp. 225–241, 2023.

[9] F. Meng, P. Chen, L. Wu, and J. Cheng, “Power allocation in multi-
user cellular networks: Deep reinforcement learning approaches,” IEEE
Transactions on Wireless Communications, vol. 19, no. 10, pp. 6255–
6267, 2020.

[10] S. Chinchali et al., “Cellular network traffic scheduling with deep
reinforcement learning,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 32, no. 1, 2018.

[11] J. Stigenberg, V. Saxena, S. Tayamon, and E. Ghadimi, “Qos-aware
scheduling in new radio using deep reinforcement learning,” in 2021
IEEE 32nd Annual International Symposium on Personal, Indoor and
Mobile Radio Communications (PIMRC). IEEE, 2021, pp. 991–997.

[12] C. Xu et al., “Buffer-aware wireless scheduling based on deep reinforce-
ment learning,” in 2020 IEEE Wireless Communications and Networking
Conference (WCNC). IEEE, 2020, pp. 1–6.

[13] N. Naderializadeh, J. J. Sydir, M. Simsek, and H. Nikopour, “Resource
management in wireless networks via multi-agent deep reinforcement
learning,” IEEE Transactions on Wireless Communications, vol. 20,
no. 6, pp. 3507–3523, 2021.

[14] N. Jay et al., “A deep reinforcement learning perspective on internet
congestion control,” in International Conference on Machine Learning.
PMLR, 2019, pp. 3050–3059.

[15] 3GPP, “Study on channel model for frequencies from 0.5 to 100 GHz
(v. 17.0.0, release 17).” TS 38.901, 2022.

[16] M. Kobayashi and G. Caire, “Joint beamforming and scheduling for a
multi-antenna downlink with imperfect transmitter channel knowledge,”
IEEE Journal on Selected Areas in Communications, vol. 25, no. 7, pp.
1468–1477, 2007.

[17] R. K. Jain, D.-M. W. Chiu, W. R. Hawe et al., “A quantitative measure
of fairness and discrimination,” Eastern Research Laboratory, Digital
Equipment Corporation, Hudson, MA, vol. 21, p. 1, 1984.

[18] R. Yang, X. Sun, and K. Narasimhan, “A generalized algorithm for multi-
objective reinforcement learning and policy adaptation,” Advances in
neural information processing systems, vol. 32, 2019.

[19] J. Korhonen, “Scheduling of data transmissions,” https://www.3gpp.org/
technologies/scheduling, 2023, [Online; accessed 4-April-2024].

[20] H. v. Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with
double q-learning,” in Proceedings of the Thirtieth AAAI Conference on
Artificial Intelligence, ser. AAAI’16. AAAI Press, 2016, p. 2094–2100.

[21] F. Pardo, A. Tavakoli, V. Levdik, and P. Kormushev, “Time limits
in reinforcement learning,” in Proceedings of the 35th International
Conference on Machine Learning. PMLR, 2018, pp. 4045–4054.

[22] J.-H. Rhee, J. Holtzman, and D.-K. Kim, “Scheduling of real/non-real
time services: adaptive exp/pf algorithm,” in The 57th IEEE Semiannual
Vehicular Technology Conference, 2003. VTC 2003-Spring., vol. 1, 2003,
pp. 462–466 vol.1.

[23] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, Efficient
BackProp. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp.
9–48. [Online]. Available: https://doi.org/10.1007/978-3-642-35289-8 3

