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Abstract

Artificial Intelligence (AI) based analysis of multimodal data collected using inexpensive and
accessible wearable sensors is emerging as a promising opportunity to democratise access
to healthcare. It would facilitate the prevention of various health problems and reduce the
need for expensive clinical examinations that are difficult to access for a large portion of the
population. However, concerns remain about the reliability and robustness of AI algorithms
that are frequently overlooked in healthcare research. Yet, these aspects are crucial to
the deployment of AI in medical applications. On one hand, most existing algorithms are
trained on data that is hardly representative of the real world, and on the other, their
architectures make them vulnerable to various perturbations commonly encountered in
real data, once deployed. The aim of this PhD project is to develop innovative, robust
and reliable methodologies for the analysis of wearable sensor data – with a particular
focus on robustness to missing data. Our aim is to design novel multimodal methodologies
that are evaluated on real sensor data and designed to be transposed and adapted to
various medical applications – ranging from physiological signals analysis to the analysis of
multimodal imaging data. We propose 5 contributions to achieve this goal. (1) We introduce
StressID, a new dataset specifically designed for stress identification from unimodal and
multimodal data, that we made publicly available for researchers. It contains videos, audio
recordings, and physiological signals collected in ambulatory settings using wearable sensors.
As it is collected from 65 participants, it includes a wide range of participant’s responses.
As such, it is a valuable support for building reliable and robust applications for stress
identification. (2) We propose an open-source suite of baseline models for the analysis of
StressID, that is representative of the current state-of-the-art in the domain, and facilitates
future contributions to this domain by providing a starting point for researchers who wish to
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use the dataset. We investigate the next steps needed to ensure reliability and robustness of
existing models, and identify robustness to missing data as an essential aspect to exploiting
the benefits of real-life multimodal datasets. (3) We explore whether the rich existing
literature on missing values in tabular data can be leveraged to address this limitation.
We conduct a comprehensive evaluation of existing methods for dealing with missing data,
and assess their reliability within healthcare applications. This enables us to identify the
strengths and limitations of existing approaches, to ultimately derive a set of guidelines
to properly and responsibly handle missing values in healthcare applications. (4) Based
on the considerations thus identified, we propose PicMi, an end-to-end imputation-free
model designed for supervised learning with missing values in tabular data, that uses
a permutation-invariant architecture to handle inputs of varying dimensions; integrates
missing value patterns as a condition in its objective function to ensure robustness to
various missing values scenarios; and is locally interpretable. (5) We extend our approach
to multimodal learning with missing modalities, and introduce HyperMM, a framework
designed for handling missing modalities without using reconstruction before training – as
opposed to existing solutions. We introduce a novel strategy for training a universal feature
extractor using a conditional hypernetwork, and propose a permutation invariant neural
network that can handle inputs of varying dimensions to process the extracted features,
in a two-phase task-agnostic framework. Our method is end-to-end and can be used in
various applications, and thus contributes to the development of more reliable and robust
AI systems in healthcare.

Keywords: Healthcare data, Multimodal data, Missing data, Supervised learning, Stress
Identification.
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Résumé

L’analyse basée sur l’intelligence artificielle (IA) des données multimodales collectées à
l’aide de capteurs portables, peu coûteux et accessibles, apparaît comme une opportunité
prometteuse pour démocratiser l’accès aux soins de santé. Elle faciliterait la prévention de
divers problèmes de santé et réduirait la nécessité d’examens cliniques coûteux, difficilement
accessibles à une grande partie de la population. Toutefois, la fiabilité et la robustesse des
algorithmes d’IA, souvent négligées dans la recherche sur les soins de santé, suscitent encore
des inquiétudes. D’une part, les algorithmes existants sont entraînés sur des données peu
représentatives du monde réel, et d’autre part, leurs architectures les rendent vulnérables
aux diverses perturbations couramment rencontrées une fois déployés. L’objectif de ce
doctorat est de développer des méthodes innovantes, robustes et fiables pour l’analyse des
données de capteurs portables – avec un accent particulier sur la robustesse aux données
manquantes. Nous voulons proposer des méthodes multimodales évaluées sur données réelles
et conçues pour être adaptées à diverses applications médicales – allant de l’analyse des
signaux physiologiques à l’analyse d’imagerie multimodale. Nous proposons 5 contributions
pour atteindre cet objectif. (1) Nous présentons StressID, un jeu de données conçu pour
l’identification du stress à partir de données unimodales et multimodales, que nous avons
rendu public. Il contient des vidéos, des enregistrements audio et des signaux physiologiques
collectés à l’aide de capteurs portables. Il comprend les données de 65 participants, et donc
un large éventail de réponses. Il s’agit d’un support précieux pour la création d’applications
fiables et robustes pour l’identification du stress. (2) Nous proposons une suite de modèles
pour l’analyse de StressID, qui est représentative de l’état de l’art actuel dans le domaine,
et a pour but de faciliter les contributions futures en fournissant un point de départ pour
les chercheurs. Nous analysons les limitations des modèles existants, et identifions la
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robustesse aux données manquantes comme un aspect essentiel pour exploiter les avantages
des données multimodales. (3) Nous examinons si la riche littérature existante sur les
valeurs manquantes peut être exploitée pour remédier à ce problème. Nous étudions les
méthodes existantes pour traiter les données manquantes, et évaluons leur fiabilité dans
les applications de soins de santé. Cela nous permet d’identifier les forces et les limites
des approches existantes, pour finalement dériver un ensemble de recommandations pour
traiter correctement et de manière responsable les valeurs manquantes dans les applications
de santé. (4) Sur la base des considérations ainsi identifiées, nous proposons PicMi, un
modèle sans imputation pour l’apprentissage supervisé avec des valeurs manquantes dans des
données tabulaires. Il utilise une architecture invariante par permutation pour traiter des
entrées de dimensions variables ; intègre les motifs de valeurs manquantes comme condition
dans son apprentissage pour assurer la robustesse à divers scénarios de valeurs manquantes
; et est localement interprétable. (5) Nous étendons notre approche à l’apprentissage
multimodal avec des modalités manquantes et présentons HyperMM, une méthode conçue
pour traiter les modalités manquantes sans utiliser de reconstruction – contrairement aux
solutions existantes. Nous proposons une stratégie pour l’entraînement d’un extracteur de
caractéristiques universel en utilisant un hypernetwork conditionnel, et proposons un réseau
neuronal invariant par permutation qui peut gérer des entrées de dimensions variables pour
traiter les caractéristiques extraites. Notre méthode est intégrée de bout-en-bout et peut
être utilisée dans diverses applications, contribuant ainsi au développement de systèmes
d’intelligence artificielle plus fiables et plus robustes dans le domaine des soins de santé.

Mots-clés: Données de santé, Données multimodales, Données manquantes, Apprentissage
supervisé, Identification du stress.
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Chapter 1

Introduction

Contents
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Medical Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Emergence of Wearable Medical Devices and e-Health . . . . . . . 3
1.2.2 Challenges of e-Health . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Objectives and Contributions . . . . . . . . . . . . . . . . . . . . 8
1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1 Overview

Currently, 4.5 billion people worldwide have no access to essential health services 1. In
France alone, nearly 8 million people live in medical deserts 2. Access to healthcare for
everyone, everywhere is, therefore, more than ever at the heart of our concerns, and the
search for innovative and competitive solutions on the global market is actively promoted by
the French 3 and international governments. The unprecedented rise in access to wearable
medical sensors and devices, our growing ability to collect, store, and process an abundance
of data, and advances in Artificial Intelligence (AI) have all fostered the emergence of digital
health solutions, or e-health, in recent years. In this context, AI analysis of multi-source, or
multimodal, data collected using inexpensive and accessible wearable sensors is emerging as a

1WHO, Universal health coverage factsheet, (2023)
2Rapport de la commission de l’aménagement du territoire et du développement durable, (2020)
3Stratégie d’accélération Santé Numérique, (2021)

1
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https://www.senat.fr/rap/r19-282/r19-2821.pdf
https://www.economie.gouv.fr/files/files/2021/DP_sante_numerique_20211019.pdf


promising opportunity to democratize access to healthcare. It would facilitate the prevention
of various health problems, and reduce the need for expensive clinical examinations that
are difficult to access for a large proportion of the population. However, concerns remain
about the reliability and robustness of AI algorithms. Although crucial to the use of AI in
medical applications, these aspects are frequently overlooked. On one hand, most existing
algorithms are trained on data that is hardly representative of the real world, and on the
other, their architectures make them vulnerable to various perturbations once deployed. In
particular, traditional algorithms are not equipped to handle missing values – although they
are prone to occur frequently in increasingly complex real-world datasets. These limitations
underline the need of innovative, robust and reliable methodologies to foster the potential
benefits of AI in e-health applications.

In this thesis, I design a methodology to ensure the development of robust and reliable AI
models for the analysis of wearable sensor data. This introduction provides the necessary
context. To start, the opportunities offered by the emergence of wearable medical devices
and the challenges associated with it are identified it in Section 1.2. In particular, the terms
of reliability and robustness are clearly defined, which enables their association with several
current limitations in e-health research. My thesis contributions to address these issues,
through the design of a real-life dataset collected with wearable sensors and innovative
methodologies to handle missing data, are described in Section 1.3. Finally, the organization
of this thesis is outlined in Section 1.4.

1.2 Medical Context

The World Health Organization (WHO) defines e-health as the cost-effective and secure use
of information and communication technologies in support of health and health-related fields,
including healthcare services, health surveillance, health literature, and health education,
knowledge and research. In other terms, e-health can be defined as the use of new technologies
to support and improve healthcare efficiency, accessibility, quality, and management – while
empowering patients to take an active role in managing their health. By integrating
technology into healthcare systems, e-health also aims to reduce costs and bridge gaps in
access to care, especially for under-served populations or those in remote areas. Multiple
studies have shown the positive impact of new solutions like telemedicine (Armaignac
et al., 2018; Lapointe et al., 2020), e-health mobile applications (Arsad et al., 2023),
remote monitoring of patients via wearable devices (Huhn et al., 2022), or data-driven AI
systems (Haleem et al., 2019; Ting et al., 2018) on the delivery of healthcare around the
world. This thesis places particular emphasis on the possibilities offered by the increasing
availability of wearable medical devices.

2
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Figure 1.1: Examples of data collected by wearable devices. They can capture a variety of
activity metrics and environment data, along with physiological signals providing insights
into the wearer’s health indicators. (reproduced from Piwek et al. (2016), the illustration of the
female figure was produced using DALL·E 3)

1.2.1 Emergence of Wearable Medical Devices and e-Health

Wearable devices are compact and portable technologies designed to be worn on the body.
These devices are equipped with sensors and digital interfaces enabling the continuous
and real-time data collection and monitoring. As illustrated in Figure 1.2, these devices
can capture a variety of activity and environmental data, such as movement through
accelerometers, elevation changes via altimeters, GPS location, audio and video – offering
insights into the wearer’s surroundings.

However, their most significant impact lies in their ability to measure various health-related
parameters in the form of physiological data. Traditionally, physiological data such as
cardiac activity, cerebral activity or galvanic skin response (i.e. electrodermal activity) was
collected in controlled laboratory or clinical environments, often limiting the scope of data
to short-term and artificial settings. The increasing portability of wearable devices, as seen
in Figure 1.2, has revolutionized this process, making it possible to monitor health metrics
in real-world, ambulatory contexts where people live and work. Moreover, most wearable
sensors available today have the ability to simultaneously collect multiple complementary
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signals. For instance, among wearable devices, smartwatches, connected wristbands and
bracelets have become popular options. They offer the ability to simultaneously record
signals like heart rate, single-lead electrocardiograms (ECG), electrodermal activity (EDA),
temperature, or respiration rates – providing rich multi-source insights in the wearer’s health
indicators. As such, these devices can benefit health monitoring and preventive care by
making it easier to track changes in physiological patterns over time.

Applications of wearable devices. The increasing availability of wearable devices opens
up a wide range of opportunities for applications that could significantly enhance the quality
of life of our society, trough applications including:

– Fitness and general health: the use of wearable devices can promote healthy
behaviors (e.g. regular exercise, better sleep), and enhance patient engagement in
their own care – which in time can reduce the prevalence of lifestyle-related diseases.

– Mental health monitoring: continuous and real-time monitoring of symptoms of
stress, anxiety and depression can enable early detection of mental health disorders
and intervention.

– Early detection and preventive care: wearable devices can identify subtle changes
in vital signs, such as heart rate irregularities or oxygen level drops, which might
indicate the early onset of medical conditions.

– Personalized care: by tracking individual health metrics over time, wearable sensors
facilitate personalized care plans tailored to a wearer’s physiology, lifestyle, and medical
history – which in turn can improve treatment outcomes.

– Chronic disease management: for conditions like diabetes, hypertension, or heart
disease, wearable sensors can provide patients and healthcare professionals with real-
time data to manage symptoms and treatment effectively.

– Access to healthcare: wearable sensors enable healthcare professionals to monitor
patients remotely, reducing the need for frequent in-person visits. This is especially
valuable as it can reduce the need for expensive clinical examinations that are difficult
to access for a large proportion of the population.

– Health research: the analysis of the vast amounts of wearable devices data can help
researchers better understand multitudes of health issues through AI and multimodal
analyses.

The unprecedented rise in access to wearable medical devices and advances in AI analysis
of large amounts of data have the potential to make healthcare more accessible, efficient,
and personalized, ultimately improving health outcomes and quality of life for individuals
worldwide.
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Figure 1.2: Usages of wearable devices reported by owners surveyed in Shandhi et al. (2024).

Usage of wearable devices. Today, medical wearable sensors represent a substantial
portion of the e-health market, and this sector is only expected to grow in the coming
years (Vaghasiya et al., 2023). Nagappan et al. (2024) analyzed survey responses collected
from 2020 to 2022 from 23,974 US participants. Among the respondents, 45% owned at
least one wearable device. They have found that healthcare and wellness were among the
top primary use of wearable devices owners: more than half reported using them for general
fitness and heath monitoring (i.e. tracking physical activity, fitness training, losing weight,
and improving sleep); more than one-third reported using their devices to manage diagnosed
medical conditions; and approximately one-third reported using them for mental health
monitoring. Similarly, Shandhi et al. (2024) have conducted an online survey around smart
device ownership and usage, and reported that among 1368 respondents, 59% owned at least
one wearable device. Approximately 87% of users reported using their wearable devices for
fitness and workout monitoring (i.e. heart rate, step tracking, jogging. etc.); more than
60% of owners use them for tracking health indicators tracking (i.e. blood oxygen, heart
rhythm, ovulation tracking, etc.); and approximately 50% of users reported using them
for sleep monitoring. These studies highlight that digital health monitoring functionalities
of wearable devices are among the primary reasons for users owning and using them. As
so, wearables are poised to transform healthcare delivery, and their usage could lead to
overall improvements in public health outcomes, as they empower individuals and healthcare
providers alike with actionable, real-time insights.

More so, AI analysis of multimodal data collected using inexpensive and accessible wearable
sensors appears as a promising opportunity to democratize access to healthcare. Although
many research studies combine AI and wearable sensors data to address diverse health issues
ranging from chronic disease management (Xie et al., 2021; Ahmed et al., 2022) to mental
health monitoring (Nahavandi et al., 2022; Abd-Alrazaq et al., 2023) – the use of AI-driven
analysis methods is yet limited in real-world applications. A more widespread adoption
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of AI systems is needed to foster the all the potential benefits of wearable devices usage.
However, major concerns about the trustworthiness of AI remain today.

1.2.2 Challenges of e-Health

In 2019, the European Commission’s High-Level Expert Group (HLEG) on Artificial
Intelligence released the European Ethics Guidelines for Trustworthy AI 4. This document
highlights robustness as one of three fundamental requisites for the development, deployment,
and use of trustworthy AI systems – along with adherence to the law and ethics. In particular,
these guidelines state that trustworthy AI should be robust from a technical perspective
while also taking into account its social environment. From the social perspective, robustness
becomes entwined with ethics and the principles of fairness and reliability:

"Unfair bias must be avoided, as it could could have multiple negative implications,
from the marginalization of vulnerable groups, to the exacerbation of prejudice
and discrimination."

From the technical perspective, it calls for the adoption of a preventive approach to risks in
the development of AI systems to ensure they perform as intended. Specifically, the HLEG
put forward practical requirements that AI systems should meet:

"AI systems need to be resilient and secure. They need to be safe, ensuring a
fall back plan in case something goes wrong, as well as being accurate, reliable
and reproducible. That is the only way to ensure that also unintentional harm
can be minimized and prevented."

Currently, both aspects are often overlooked in research, significantly setting back the
deployment of trustworthy AI systems (Galati et al., 2022; Zhang and Zhang, 2023; Bürger
et al., 2024). Bürger et al. (2024) identify the lack of rigorous definitions for trustworthiness
as a cause. Core pillars of trustworthiness, such as reliability and robustness, remain vaguely
defined to this day and are often used interchangeably. Following (Galati et al., 2022), this
thesis adheres to the definitions from the IEEE Standard Glossary of Software Engineering
Terminology 5.

Definition 1.2.1. (Reliability) The ability of a system to perform its required functions
under some stated conditions for a specified period of time.

Definition 1.2.2. (Robustness) The degree to which a system can function correctly in the
presence of invalid inputs, i.e. those that fall outside some given specifications in which the
system is developed.

4HLEG, Ethics guidelines for trustworthy AI, (2019)
5IEEE Standard Glossary of Software Engineering Terminology, (1990)
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In e-health, a major obstacle to the development of trustworthy AI systems resides in the lack
of high quality datasets that are representative of the real world. Most of current research
in healthcare is conducted on datasets that are collected in controlled clinical environments
with limited populations, and that lack diversity in terms of pathologies or patient responses
they carry. As a result, subsequent models become unreliable when deployed in real-life, as
they are not able to perform their required functions (Definition 1.2.1). This can translate
into significant consequences in healthcare:

– Lack of generalization: such systems can result in poor generalization to more
diverse real-world scenarios, causing errors in diagnosis. Overfitting to skewed data
reduces model reliability, and in turn, AI systems may fail to detect critical anomalies
or provide inaccurate recommendations (Gulrajani and Lopez-Paz, 2020; Wang et al.,
2022b).

– Fairness issues: AI models trained on data that is not representative of the real-
world can result in biased outcomes, and inequitable treatment. If the training data
over-represents certain populations or lacks diversity, models may perform poorly for
under-represented groups, exacerbating healthcare disparities (Yang et al., 2024).

– Ethical issues: additionally, unrepresentative data can raise ethical concerns, as
models may not meet safety or fairness standards. This in turn undermines trust and
adoption of AI healthcare applications.

Moreover, currently used datasets are often recorded in optimal conditions that are not met
in real-life. For instance, there is a significant difference in the signal-to-noise ratio between
physiological data collected in clinical environments and data obtained from wearable sensors.
In ambulatory settings, noise and artifacts are more likely to occur. Models trained under
the clinical ideal conditions lack the robustness needed to handle such perturbations in
input data effectively (Definition 1.2.2).

Even more so, one of the most common source of invalid inputs, and thus lack of robustness
(Definition 1.2.2), is the presence of missing values in datasets. Most datasets used for
research are complete. But in reality, as the size and complexity of real-world healthcare
datasets increase, missing values are prone to occur frequently. This can be due to a variety
of factors, such as complex data collection processes, the aggregation of multiple data sources,
sensor failures, or refusals to answer questions in surveys. Missing values pose significant
challenges in AI, and especially in healthcare applications:

– Technical limitations: datasets with missing values make supervised learning a
challenging task, as they prevent the straightforward use of traditional supervised
methods. AI algorithms often rely on complete data to learn patterns and make accu-
rate predictions, and missing values disrupt this process by introducing perturbations
in the information available for training.
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– Bias: they can compromise the quality of models. If not handled properly, missing
values can lead to biased or inaccurate models, as certain patterns may become
over-represented or ignored entirely (Jakobsen et al., 2017; Nijman et al., 2022).

– Ethical issues: in sensitive applications like healthcare, improperly addressing missing
values can lead to ethical concerns, unreliable outcomes, and a loss of trust in AI
systems. Therefore, developing robust strategies to handle missing values is essential
for creating deployable AI solutions.

The aforementioned challenges play important roles in why healthcare professionals and
patients may be hesitant to adopt e-health solutions today. They illustrate well the concerns
that currently set back the deployment of digital health solutions, and underline how
the development of reliable and robust strategies is essential for democratizing access to
healthcare worldwide.

1.3 Objectives and Contributions

The the main objectives of this thesis are to develop novel solutions that tackle the challenges
introduced in Section 1.2.2, i.e. to guarantee robustness of AI models for healthcare
applications – with a particular focus on robustness to missing data. Specifically, I aim
to propose innovative methodologies evaluated on real wearable sensor data, and designed
to be transposed and adapted to various medical applications. While the works presented
here are mainly focused on wearable sensors data analysis, they are designed to be used
for various health applications, ranging from physiological signal analysis to clinical studies
using multimodal imaging data. To this end, I develop a methodology including all the
steps involved in creating an e-health application – from multimodal sensor data collection
to model evaluation. The contributions of my thesis are summarized below.

StressID: a novel dataset collected with wearable devices. In the context of a
collaboration between EURECOM, Inria Centre Université Côte d’Azur, and the Cognition
Behavior Technology (COBTEK) institute, I have contributed to the design and collection
of StressID: a multimodal dataset for stress identification. It includes 65 participants for
whom we collected videos of facial expressions and audio recordings, as well as synchronized
electrocardiography (ECG), electrodermal activity (EDA) and respiration signals – recorded
using wearable sensors. We designed the StressID experimental protocol to increase
participants’ cognitive load across 11 tasks carefully chosen to induce different levels of
stress in them. Each task is associated with 4 self-evaluation questions to assess participants’
stress and emotional state. As access to high-quality datasets that are representative of the
real world is essential to support the development of reliable and robust applications, we
have made StressID available for researchers. It is a valuable resource for multiple fields
and has the potential to improve the quality of life of our society by supporting the design
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of e-health solutions to help prevent stress-related issues. This work has been presented at
the NeurIPS 2023 conference, where I received the NeurIPS Scholar Award.

Baseline models for the analysis of wearable sensors data. In addition to the
dataset, I have proposed a suite of methods for unimodal and multimodal analysis of
StressID. Through experiments, I effectively show that combining multiple modalities
carrying complementary information through multimodal learning has considerable benefits
for stress identification. I identify the next steps needed to ensure reliability and robustness
of models built on StressID – including robustness to missing data. An open-source
implementation of these models is also made available. The aim of this initiative is to facilitate
future contributions to this domain, by providing reference models for stress identification
that can represent a starting point for researchers who wish to use the StressID dataset in
their work. Even more so, the framework I have designed is representative of the state-of-
the-art in physiological signal analysis, and stress identification from multimodal inputs. As
such, it has been used for the related study of emotion recognition from multimodal data.
This work resulted in a separate co-authored publication at an ECCV 2024 workshop.

Novel guidelines for handling missing values in healthcare. Having identified
robustness to missing data as a major obstacle to the development of reliable and deployable
AI systems for e-health, I have investigated whether the rich existing literature on missing
values can be leveraged to this end. Although widely used in practice, the strategy of imputing
missing values before learning can introduce bias in the training data and impact subsequent
prediction models – which can lead to severe consequences in sensitive applications. In the
context of a collaboration between EURECOM and King’s college London, I have developed
a framework tailored to assessing these methods’ reliability within healthcare applications.
In particular, I have designed a tree-based approach to help determine how to choose the best
model for dealing with incomplete entries, given multiple characteristics of a health-related
dataset. By identifying the strengths and limitations of state-of-the-art algorithms, I have
derived a set of guidelines to responsibly handle missing values in healthcare data.

PicMi: a robust method for handling missing values. I have proposed a novel method
to palliate the limitations of existing approaches to handling missing values in healthcare.
Specifically, I have introduced PicMi, an end-to-end imputation-free model designed for
supervised learning with missing values that uses a permutation-invariant architecture to
handle inputs of varying dimensions; integrates missing value patterns as a condition in its
objective function to ensure robustness to various missing values scenarios; and is locally
interpretable. I have evaluated the method on multiple real-life healthcare datasets with
missing values, and demonstrated its advantages over state-of-the-art algorithms.
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HyperMM: a robust method for handling missing modalities. I have extended my
previous contribution to the task of multimodal learning (MML) with missing modalities.
While most works assume modality completeness in the input data, in clinical practice
it is common to have incomplete modalities. Existing solutions that address this issue
rely on complex, computationally costly modality reconstruction strategies. Instead, I
have proposed HyperMM, an end-to-end framework designed for learning with varying-
sized inputs. Specifically, it focuses on the task of supervised MML with missing imaging
modalities without using reconstruction before training. I have introduced a novel strategy
for training a universal feature extractor using a conditional hypernetwork, and proposed
a permutation-invariant neural network that can handle inputs of varying dimensions to
process the extracted features, in a two-phase task-agnostic framework. I experimentally
demonstrated how the proposed approach can be transposed and adapted to various medical
applications. Specifically, I have shown its effectiveness in two tasks: Alzheimer’s disease
detection and breast cancer classification from multimodal images. I have presented this
work at a MICCAI 2024 workshop, where I have received the Best Presentation Award.

In addition to the work directly relevant to this thesis, I have contributed to other studies
related to the use of AI in e-health and the analysis of physiological data.

1.4 Thesis Organization

This chapter provides an overview of the requirements for the development of reliable and
robust AI applications in healthcare. It summarizes the opportunities and challenges of
e-health, and the objectives and contributions of this thesis.

Chapter 2 introduces StressID, a dataset specifically designed to support the development
of robust and reliable applications for the identification of stress from multimodal inputs –
including physiological signals collected using wearable sensors, videos and audio recordings.

In Chapter 3, I provide an overview of the state-of-the-art in physiological signal analysis,
and stress identification. Building on that, I develop an open-source implementation of
unimodal and multimodal models for the analysis of StressID – and more generally sensor
data – that can be used as a starting point for future researchers.

Chapter 4 explores whether existing state-of-the-art approaches for handling missing values
in supervised learning can be reliably used in healthcare applications. To answer this
question I propose a qualitative analysis of the performances of a large range of methods.
I propose a decision tree-based approach to identify the strengths and limitations of the
literature, and ultimately derive interpretable guidelines for addressing this issue.

In Chapter 5, I introduce PicMi, a novel method for handling missing values in healthcare
applications that palliate the previously identified limitations of existing approaches. I
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propose an approach that bypasses the need for imputation, is robust to diverse missing
values scenarios, and is locally interpretable.

Chapter 6 transitions to a MML setting: I propose HyperMM, a framework that extends the
previously developed method to the task of MML with missing modalities. I experimentally
demonstrate the advantages of the approach on StressID, and several applications using
multimodal images as inputs.

Finally, Chapter 7 concludes this thesis, and discusses future works and research lines.
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Chapter 2

StressID : A Multimodal Dataset for
Stress Identification

Contents
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Abstract. The object of this thesis is the development of robust and reliable
algorithms for the analysis of wearable device data. Access to high-quality
datasets that are representative of the real world is an essential aspect of this
task. Yet, the availability of such datasets remains limited. Therefore, it appears
as essential to design and collect a dedicated dataset to support the development
of such applications. In this chapter, we introduce StressID, a new dataset
specifically designed for stress identification from physiological signals recorded
with wearable sensors, facial expressions, and audio recordings. The work
presented in this chapter is the first part of a conference paper published in
NeurIPS 2023 (Chaptoukaev et al., 2023).
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2.1 Introduction

In this chapter we introduce StressID, a new dataset designed and collected to support the
development of robust tools for the analysis of wearable sensors data, with a focus on the
task of stress identification. Our choice is motivated by both relevance and practical consid-
erations. (1) The increasing prevalence of wearable devices has facilitated the monitoring of
physiological signals – including cardiac or electrodermal activity, both highly correlated
with stress. Additionally, the field of stress identification has advanced significantly in the
last years due the pivotal role played by machine learning and deep learning. (2) The exper-
imental setup for the collection of a dataset focused on stress identification is convenient,
cost-efficient, and realistic, as it can be readily approved by research institutes’ ethical
committees. (3) The research on the effects of stress on health has seen considerable interest
lately. While a healthy amount of stress is necessary for functioning in daily life, it can
rapidly begin to negatively impact health and productivity when it exceeds an individual’s
coping level. Indeed, negative stress can be a triggering or aggravating factor for many
diseases and pathological conditions (Dimsdale, 2008), and frequent and intense exposures
to stress can cause structural changes in the brain with long-term effects on the nervous
system (Bremner, 2022). Monitoring of stress levels could play a major role in the prevention
of stress-related issues, and early stress detection can be vital in patients exhibiting emotional
disorders, or working in high-risk jobs such as surgeons, pilots or long-distance drivers.

In practice however, building robust and reliable models for stress identification requires; (1)
understanding and integrating the differences between subgroups of the population to ensure
bias free applications, (2) integrating the relationships between physical and physiological
responses to stress, (3) studying responses to various categories of stressors, as the perception
of stress differs strongly from one individual to another. An essential element to such analyses
is high-quality and versatile multimodal datasets that include varied categories of stressors,
and are recorded on large and diverse populations. However, existing datasets do not answer
these needs. They are generally restricted in size (i.e. a few dozen of participants) and a
majority is focused on a single source of data (i.e. physiological signals, video or audio) –
although multimodal datasets have considerable advantages (Huang et al., 2021; Jung et al.,
2019). Moreover, existing datasets often provide imbalanced subject responses, due to both
an inability of the recording protocol to elicit strong reactions, and a lack of diversity in the
stimuli – making it difficult to deploy deriving analyses to real-life applications.

To address these limitations, we designed StressID, a novel multimodal dataset focused
on stress-inducing tasks. We made the dataset available for research purposes at https:
//project.inria.fr/stressid/. StressID consists of recordings from 65 participants
who performed 11 tasks: a guided breathing task; watching 2 video clips; 7 different
interactive tasks; and a relaxation task – as well as the corresponding self-reported ratings
of perceived relaxation, stress, arousal, and valence levels (Figure 2.1 presents a summary
of the dataset contents and size). As illustrated in Figure 2.2, StressID uses a collection
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StressID Dataset Facts
Dataset StressID

Motivation

Summary A multimodal dataset for stress identification from video, speech
and physiological data from wearable sensors.
Example Use Cases Stress identification, emotion recognition, task
classification
Original Authors H. Chaptoukaev, V. Strizhkova, M. Panariello,
B. D’Alpaos, A. Reka, V. Manera, S. Thümmler, E. Ismailova, N. Evans, F.
Bremond, M. Todisco, M. A. Zuluaga, L. M. Ferrari

Metadata

URL https://project.inria.fr/stressid/
Keywords Stress recognition, multimodal, wearable sensors
Format .csv, .txt, .mp4, .wav
Ethical review Approved by CER/CERNI
Licence Proprietary
First release 2023

Sensors

ECG BioSignalsPlux ECG sensor
EDA BioSignalsPlux EDA sensor
Respiration BioSignalsPlux Piezoelectric chest-belt
RGB Camera Logitech QuickCam Pro 9000 RGB
Audio QuickCam Pro 9000 integrated microphone

Data Annotations

Self-assessments Stress, relax, arousal, valence
Labels for supervised learning Binary stress, 3-class stress

Annotated Tasks

Relaxing Guided breathing, relaxation
Audiovisual Video clips
Interactive stressors Cognitive tasks, public speaking, multi-tasking

Participants

Count 65
Gender 72%Male, 28%Female
Age 29 ± 7 years
Background 32%Master students, 20%PhD students, 48%Tertiary

Dataset Size

Total size 5.29GB
Physiological total duration across subjects and across tasks 1119 min
Video total duration across subjects and across tasks 918 min
Audio total duration across subjects and across tasks 385 min

Figure 1: A dataset summary card for StressID, constructed based on [2, 5].

3

Figure 2.1: A dataset summary card for StressID, constructed based on Bandy and Vincent.
(2021); Gebru et al. (2021).
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Figure 2.2: Data collection set-up of StressID.

of wearable sensors to record the physiological responses of the participants, namely, an
electrocardiogram (ECG), an electrodermal activity (EDA) sensor, and a respiration sensor.
The data is coupled with synchronized facial video and audio recordings. StressID is one of
the largest datasets for stress identification, representing more than 39 hours of annotated
data in total.

The remainder of this chapter is organized as follows. We provide an overview of the
existing datasets for stress recognition in Section 2.2. We then introduce the experimental
protocol we have designed for recording behavioral and physiological responses to diverse
triggers, using wearable and global sensors in Section 2.3, and describe the contents of the
resulting dataset in Section 2.4. We discuss the intended usages of StressID, and possible
applications in Section 2.5. Finally, we discuss contributions and limitations of our work,
and future directions.

2.2 Related Work

Table 2.1 places StressID in the context of related stress recognition datasets. The SUS
datasets (Steeneken and Hansen, 1999) gather the recordings of 35 subjects collected during
aircraft communication training. This unimodal collection of datasets only features audio
recordings without self-assessments or external annotation and employs an uncommon
elicitation task. SADVAW (Tran et al., 2021) is a dataset composed of 1236 video clips from

15



Table 2.1: Comparison of StressID to related datasets.
Dataset #Subjects Modalities Stressors Data annotations

SUS 35 Speech Aircraft communication
training Stressor-based

SADVAW - Video - External annotations

DriveDB 9 EMG, EDA, ECG,
HR, Respiration Driving tasks Stressor-based

WeSAD 15

ECG, EDA, EMG,
BVP, Respiration,
Temperature,
Acceleration

TSST,
Audiovisual

Stressor-based,
PANAS (Watson et al., 1988),
STAI (Spielberger et al., 1971),
SAM (Bradley and Lang, 1994)

CLAS 62 ECG, PPG, EDA,
Acceleration

Cognitive load,
Audiovisual SAM

MuSE 28
EDA, HR, Breath rate,
Temperature, Audio,
Face and upper body video

Public speaking,
Audiovisual

PSS (Lee, 2012),
SAM,
External annotations

SWELL-KW 25
ECG, EDA, Posture,
Computer logging,
Face and upper body video

Office work with
interruptions and
time pressure

NASA task load (Hart, 1986),
SAM,
Stress assessment

Distracted Driving
dataset 68

EDA, HR signal,
Respiration, Face video,
Driving performances

Simulated driving
with distractions

Stressor-based,
NASA task load,
SAM

StressID 65
EDA, ECG, Speech,
Respiration,
Face video

Cognitive load,
Public speaking,
Audiovisual

SAM,
Stress assessment

41 Korean movies, making the setting closer to the real world and including a broader range of
responses. However, it features video recordings exclusively, restricting deriving applications
to computer vision systems only. Among the works investigating the physiological aspect
of stress, DriveDB (Healey, 2000) collects physiological data from 9 subjects exposed to
driving-related tasks. The lack of self-assessment or external annotations significantly limits
the accuracy of measuring stress. In addition, the dataset is collected in the very specific
setting of driving, with a narrow range of stressors – considerably restricting its usage.
WeSAD (Schmidt et al., 2018) and CLAS (Markova et al., 2019), two of the most widely
explored datasets for stress recognition, contain physiological data from 15 and 62 subjects
respectively, collected using wearable devices. The participants partake in various tasks,
combining perceptive stressors in the form of audiovisual stimuli, with several variations of
the Trier Social Stress Test (TSST) (Allen et al., 2017). However, they do not include any
behavioral modalities.

There exist a few multimodal datasets for stress recognition, such as MuSE (Jaiswal et al.,
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2020) and SWELL-KW (Koldijk et al., 2014). They feature a broader set of modalities and
are collected in laboratory environments imitating real-life activities. MuSE participants are
elicited through audiovisual and public speaking tasks. SWELL-KW participants perform
office work on several topics designed to elicit different emotions. These datasets are limited
in size with recordings of respectively 28 and 25 subjects. Finally, the distracted driving
dataset (Taamneh et al., 2017) gathers recordings of 68 subjects in the setting of simulated
driving with stress-inducing distractions. The lack of diversity in the stimuli restricts
subsequent applications to the setting of driving. Moreover, cardiac activity is acquired
in terms of heart rate, which does not allow the extraction of heart rate variability (HRV)
measures, a key measure in the identification of stress (Kim et al., 2018).

StressID aims to fill the gap in the existing related work. It features both physiological and
behavioral modalities, includes a large number of participants, exploits varied stimuli, and
includes participants’ replies to 4 self-assessment questions providing insights on the subject’s
emotional state. Although CLAS (Markova et al., 2019) and WeSAD (Schmidt et al., 2018)
present similar experimental set-ups, they focus on physiological modalities and do not
include behavioral data. Instead, StressID features three types of modalities: video, audio,
and physiological signals capturing complementary information. While MUSE (Jaiswal
et al., 2020) and SWELL-KW (Koldijk et al., 2014) are also multimodal datasets recorded
in similar conditions, they are very limited in size. On the contrary, with 65 subjects
recorded StressID is one of the largest datasets designed for stress identification. Finally,
although the size and modalities of the distracted driving dataset (Taamneh et al., 2017) are
comparable to StressID, it relies on very environment-specific stressors, whereas StressID
includes emotional video-clips, cognitive tasks, and social stressors based on public speaking,
which represents a key aspect to guarantee the collection of a wide range of responses. To
summarize, StressID is the first multimodal dataset for stress identification that is recorded
on a large number of participants but also features a wide range of stimuli ensuring more
versatility in deriving applications.

2.3 Design of the StressID Dataset

StressID is designed specifically for the identification of stress from different triggers. It uses
a collection of wearable and global sensors to record the physiological and physical responses
of 65 participants to 11 varied stress-inducing stimuli – such as emotional video clips, cognitive
tasks including mathematical or comprehension exercises, and public speaking scenarios,
designed to trigger a diverse range of emotional responses. Each task is associated with 4
different annotations: scores from a self-assessment rating perceived stress and relaxation,
along with valence and arousal based on the Self-Assessment Manikin (SAM) (Bradley and
Lang, 1994).
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Figure 2.3: Overview of the experimental protocol of StressID. The experiment consists
of 11 tasks divided into four blocks: a guided breathing task, 2 emotional video clips, 7
interactive stressors, and a relaxation task.

2.3.1 Experimental Protocol

All the stressors used in StressID are mental stressors. They are based on established clinical
methods to induce stress in subjects (Bali and Jaggi, 2015), such as : the Mental Arithmetic
Task (MAT) – one of the most commonly used stimuli for inducing stress, designed to
increase the mental workload by having the subject perform a series of arithmetic operations
with a varying range of difficulty, aloud. This stimulus is easy to implement and does not
requires any special instrument Arsalan et al. (2022a); or, the Stroop Color-Word Test
(SCWT) – a neuropsychological test that is extensively used for both experimental and
clinical purposes. In the most common version of the SCWT, subjects are required to read
named color-words printed in an inconsistent color ink (Stroop, 1935).

In addition, the choice and design of stressors is based on several considerations. (1) Tasks
have been designed to elicit 3 different categories of responses: stimulate the audiovisual
cortex of the participants; increase the cognitive load by soliciting attention, comprehension,
mental arithmetic or multi-tasking abilities; and elicit psycho-social stress leveraging on
public speaking as a stressor. (2) The tasks of the experiment are overall short – which
allows the participants to perform several tasks in a row without tiring or losing acuity by
the end of the experiment. (3) All interactive tasks are designed to leverage time restriction
as a stressor by having a strict requirement for a response in 1 minute – thus, after receiving
instructions on the screen, the subjects see a ticking 1-minute clock during the execution of
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each task. (4) The order of the stressors is designed to be unexpected to the participants.
Therefore the experiment alternates between subgroups of tasks (e.g. all mental arithmetic
tasks do not come all at once). (5) The level of detail provided in the instructions as well as
the duration of the instruction were also carefully thought to maximize levels of stress in the
experiment, by preventing participants from preparing for the coming task. (6) Finally, all
stimuli are easy to implement and do not require any special setup (Arsalan et al., 2022b).

The experimental protocol used to collect StressID, illustrated in Figure 2.3, was designed
to have a total duration of 35 minutes. It consists of 11 tasks separated by self-assessments
and grouped into 4 blocks: guided breathing, watching emotional video clips, a sequence of
interactive tasks, and a relaxation phase.

Guided breathing. The first block of the protocol consists of the single task of Breathing.
The participants watch a guided breathing video of 3 minutes. It aims to relax and reset
to neutral the emotional state of the subjects. This recording is used as a baseline for the
non-verbal neutral state of each participant. After the breathing task, the participants count
forward for 1 minute.

Emotional video-clips. This block consists in watching 2 emotional videos clips, retrieved
from the FilmStim database (Schaefer et al., 2010). These videos have been selected to elicit
specific emotional responses.

– Video1 : an extract from the movie There’s something about Mary, selected to elicit
low arousal and positive valence in the participants.

– Video2 : an extract from the movie Indiana Jones and the Last Crusade, selected to
elicit high arousal and negative valence.

Interactive tasks. This block consists of a sequence of 7 interactive stressors based on
well-established clinical methods to induce stress (Bali and Jaggi, 2015). All the tasks have
a strict requirement for response in 1 minute and the order of the stressors is designed to be
unexpected to the participants.

– Counting1 : a MAT designed to increase the participants’ cognitive load through
arithmetic operations with a varying range of difficulty. In this task, the participants
receive the instructions to count backwards from 100 subtracting 3 as fast as they can.

– Counting2 : another MAT of increased difficulty. Participants are asked to count
backward from 1011 subtracting 7 as fast as they can.

– Stroop : a variant of the Stroop Color-Word Test (Stroop, 1935), selected to increase
the cognitive load by soliciting the attention and reactivity of the participants.
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– Speaking : a Social Evaluative Task (SET), leveraging public speaking as a social
stressor. The subjects are instructed to explain their strengths and weaknesses,
emulating stressful job interview conditions.

– Math : a task designed to increase the mental workload. The participants are asked
to resolve 20 mathematical problems in one minute.

– Reading : a task composed of 2 phases and designed as a TSST variation. Participants
have to read a text, in the first step, and then explain what they read, in the next
step, thus simultaneously soliciting comprehension abilities and using speaking as a
stressor.

– Counting3 : a MAT with added difficulty. Participants are instructed to count
backwards from 1152 subtracting 3, as fast as they can, while repeating an independent
hand movement. This task is designed to increase the mental workload by soliciting
participants’ multi-tasking abilities.

At the end of the third block, the participants are asked to designate the task perceived as
most stressful.

Relaxation. The last block of the experimental protocol is solely composed of the Relax
task. It consists of a 2 minute and 30 seconds long relaxation part, where participants are
instructed to watch a relaxing video (Gros et al., 2017).

Each of the 11 tasks is followed by 4 self-assessment questions. The first 2 questions
establish the participant’s perceived stress and relaxation levels on a 0-10 scale. The
following 2 questions are based on the SAM (Bradley and Lang, 1994), and establish the
participants’ valence and arousal on a 0-10 scale. Psychological evidence suggests that
these two dimensions are intercorrelated (Kuppens et al., 2013). More so, research suggests
relaxation and stress conditions can be described in different quadrants of the arousal-valence
space. For instance, high arousal and negative valence are characteristics of emotional stress
induced by threatening stimuli (Christianson, 1992), while low arousal and positive valence
are characteristics of a calm and relaxed state (McManus et al., 2019).

The counting forward baseline section is not defined as a task, but is designed to keep the
participants in a neutral affective state, therefore it is not coupled with any self-assessment.
Additionally, participants answer a survey question at the end of the experiment and indicate
the task they considered most stressful. Examples of instructions, tasks and self-assessments
questions presented to the participants are provided in Appendix A.1.
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Figure 2.4: Sensors used in StressID. A 4 channels Biosignalsplux hub is used with a single
lead ECG sensor, an EDA sensor and a respiration belt, to record physiological signals. An
RGB camera with integrated microphone is used to record video and audio signals.

2.3.2 Sensors

All three physiological signals collected in StressID are recorded using the BioSignalsPlux
acquisition system1. The BioSignalPlux kit consists of a 4-channel hub communicating via
Bluetooth with the OpenSignals (R)evolution platform for data visualization and acquisition,
connected to an ECG, EDA, and a respiration sensor. The devices used are illustrated in
Figure 2.4. The hub ensures the synchronized recording of up to 4 sensors simultaneously.
The ECG is acquired with 3 Ag/AgCl electrodes located on the ribs of the non-dominant
side of the subjects. The EDA is measured with 2 Ag/AgCl electrodes attached to the
palm of the non-dominant hand. The respiration is measured through a chest belt with an
integrated piezoelectric sensing element. The selected devices have a high signal-to-noise
ratio (PLU, 2020, 2021a,b), and all physiological signals are acquired with a sampling rate
of 500 Hz and resolution of 16 bits per sample.

The data is coupled with synchronized facial video and audio recordings. The video and
audio are acquired using a Logitech QuickCam Pro 9000 RGB camera with an integrated
microphone. The video is acquired with a 720p resolution and a rate of 15 frames per second.
The audio is recorded at a sampling rate of 32kHz and a resolution of 16 bits per sample.
Additional details on the calibration and synchronization of the sensors are available in
Appendix A.2.

1biosignalsplux, PLUX wireless biosignals S.A. (Lisbon, Portugal)
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Figure 2.5: Demographics of the StressID dataset.

2.3.3 Recruitment and Recording

In total, 65 healthy participants were recruited on a voluntary basis, without compensation.
Subjects were recruited by email, and word of mouth primarily. Each participant was
recorded in a single session, lasting approximately 50 minutes including preparing sensors,
calibration, and the 35 minutes long experiment. They were instructed not to smoke, intake
caffeine, or exercise 3 hours before the experiment. At the beginning of each session, they
were introduced to the purpose and content of the study. The experiments are conducted
entirely in English. The experimental protocol was identical for all participants, and the
experimenter was always present in the room during the recording. The participants could
either consent to, Option A: research use and public release of all their recorded data,
including identifying data (i.e. physiological, audio, and video); or Option B: research use
of all their recorded data, but no public release of identifying data (i.e. only physiological
and audio data, but no video). Among the 65 participants, 62 opted for option A and 3
opted for option B. We discuss in more details the considerations of working with human
data in Appendix A.3.

Most of the participants of StressID are Science, Technology, Engineering, and Mathematics
(STEM) students and workers. The demographics of the participants are illustrated in
Figure 2.5. The participants included 18 women and 47 men of ages ranging between 21 and
55 years old (29y.o. ± 7). Among the participants, 32% were master students and interns,
20% PhD students, and the remaining 48% represented diverse tertiary professions. All
subjects were required to have sufficient proficiency in English.
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2.4 Dataset Description

Following data collection, we split each recorded session into individual tasks. In total, the
final task-split dataset amounts to approximately 19 hours of annotated physiological data,
15 hours of annotated video data, and 6 hours of annotated audio data, thus amounting to
more than 39 hours of data in total.

2.4.1 Contents and Formats

For each modality, we split the 35 minutes long recordings into 11 individual tasks: one 3
minutes breathing recording (block 1), 2 recordings corresponding to the watching of the
video clips of respectively 2 and 3 minutes (block 2), 7 separate 1-minute recordings of the
interactive tasks (block 3), and a 2 minute and 30 seconds long relaxation recording (block
4). As the guided breathing, the video clips and the relaxation parts do not carry meaningful
audio, the audio part of the dataset consists of the 7 talking tasks only. During the
acquisitions, due to camera malfunctions, video and audio recordings of 8 participants were
damaged. In addition, while we keep them in the dataset, the EDA recordings of 7 subjects
were damaged during certain tasks (total of 19 tasks), as illustrated in Figure 2.6. After
splitting, StressID is composed of 711 distinct annotated recordings of the physiological
modalities, 587 annotated videos, and 385 annotated audio recordings. Figure 2.7 visualizes
the proportions of missing data per modality.

Each task is identified in the dataset by subjectname_task, where the task names are as
described in Section 2.3.1. This convention facilitates different types of analyses, whether
subject-specific or task-specific. For each modality, all tasks are grouped by subject into
separate repositories. For each task, data from all wearable sensors is organized into a
single .txt file. Each file contains 3 synchronized entries corresponding to the ECG, EDA,
and respiration data respectively. In a similar fashion, for each task, the video data from
the Logitech QuickCam Pro 9000 RGB camera is contained in a .mp4 generated video file.
Audio data is represented in the dataset as uncompressed .wav files.

Along with the unprocessed self-assessments provided by the participants, we propose 2
discrete labels that can be used to train supervised models: a 2-class label and a 3-class one.
The 2-class label is computed using the stress self-assessment of each task by splitting the
0-10 scale at 5: self-assessment of stress below 5 is considered not stressed (0) while equal
or above 5 is stressed (1). The 3-class label is based on the results outlined by Christianson
(1992); McManus et al. (2019), which are in line with the observations drawn from Figure 2.8.
It allows the prediction of relaxed vs. neutral vs. stressed. We considered a subject to
be relaxed (0) for a task where they reported a valence rating above 5, an arousal rating
below 5, and a perceived relaxation rating above 5. Similarly, we label tasks with arousal
levels above 5, valence levels below 5, and perceived stress levels above 5 as stressed (2),
and neutral (1) otherwise. We provide 3 .csv files containing self-assessments and labels.
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Figure 2.6: Illustrations of EDA recordings damaged due to sensor satuation. For several
participants, the recorded signal exceeds the maximum value that the sensor can measure
(25µS).
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Figure 2.7: Proportions and repartition of missing modalities in the StressID dataset.
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(a) Sress/Arousal (b) Relax/Valence

Figure 2.8: Distribution of the self-assessment answers. (left) Joint and marginal distributions
of stress and arousal. (right) Joint and marginal distributions of the relax and valence
ratings.

2.4.2 Data Annotations

An overview of the distributions of the self-assessments is reported in Figure 2.8. The
analysis of the distributions highlights a positive correlation between stress and arousal, as
well as relax and valence. This suggests that across subjects and tasks, a high arousal is
associated with a higher level of stress, and a positive valence corresponds to a higher level
of relaxation. In addition, the marginal distributions of stress and relax ratings highlight a
balance in the perceived stress and relaxation levels of the participants across the whole
experiment, suggesting that the experimental protocol of StressID can arouse proportional
instances of stress and relaxation. Furthermore, the distribution of arousal is significantly
skewed towards a high rating across the dataset, while valence is centered around a neutral
value, highlighting the ability of the protocol to create a high involvement in the participants
and elicit strong responses.

Most stressful task. Fig. 2.9 shows the distribution of the answers to the question survey
at the end of the experiment i.e. which task was perceived as most stressful for each subject.
Approximately 30% of the participants of StressID designated the task Counting2 as most
stressful, 20% designated the task of public Speaking, 15% designated the task Counting3,
while the remainder 35% chose between Stroop, Math, Reading, and Counting1. Although
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Figure 2.9: Most stressful tasks as designated by participants of StressID.

a majority of participants agreed on Counting2 as the strongest stressor, this analysis
highlights the advantages of relying on multiple and diverse stressors in an experimental
protocol designed for stress identification. Perception of stress and relaxation can vary a lot
from one participant to another – and more so, the effectiveness of a stressor can vary from
one subject to another; while an arithmetic task can be a strong stressor for one individual,
it can be an uneventful task for another.

Participant-specific distributions of StressID annotations. We analyze the distri-
butions of the stress, relaxation, arousal, and valence self-assessments for each participant of
StressID. To have a global vision of the dataset, for each self-assessment question we repre-
sent on a single figure all subject-specific Kernel Density Estimate (KDE) plots in Fig. 2.10.
The KDE plot, analogous to a histogram, represents the distribution of self-assessment data
– only using a continuous probability density curve. Several observations can be drawn from
Fig. 2.10. First, for all 4 self-assessment questions, the participant-specific distributions are
rather heavy-tailed, with the exception of a few subjects. This suggests that each participant
of StressID gave a broad range of self-assessed scores across the experiment, affirming the
ability of the StressID protocol to elicit varied responses. Second, the perceived stress and
relaxation levels of the participants across the experiment are well balanced, suggesting the
experimental protocol enabled the creation of a dataset with proportional instances of stress
and relaxation across tasks. Finally, we observe that the distribution of arousal scores is
significantly skewed towards higher ratings across the dataset, highlighting the protocol’s
ability to create a high involvement in the participants and elicit strong responses – whether
stress or amusement.

Joint distributions of StressID annotations. We analyze the pair-wise joint distri-
butions of the StressID annotations in Fig. 2.11. The analysis highlights a linear relation

26



Figure 2.10: Participant-specific KDE plots for each of the self-assessment questions.

between stress and relaxation levels. In our experimental protocol, the participants’ per-
ceived levels of relaxation and stress associated with each task are mutually exclusive –
globally, a subject cannot be both relaxed and stressed during a task. In addition, Fig. 2.11
highlights a positive correlation between stress and arousal, and a negative correlation
between stress and valence – suggesting that across subjects and tasks, high arousal and
low valence are associated with a higher level of stress. Similarly, relaxation is positively
correlated to valence, and negatively correlated to arousal – suggesting low arousal and
positive valence corresponds to higher levels of relaxation. These observations are consistent
with psychological studies Christianson (1992); McManus et al. (2019) describing stress on
the circumplex model of affect Russell (1980), thus once again affirming the coherence of
the StressID dataset.
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Figure 2.11: Joint distributions of pairs of self-assessment answers.
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2.5 Intended Uses of StressID

StressID is conceived to support the development of robust, reliable and versatile automated
stress recognition algorithms. Rather than focusing on a single task, StressID features
responses to several categories of stress-inducing stimuli to account for the variability
of responses from one individual to another. In addition, the dataset is recorded in an
ambulatory setting using wearable devices. Although this makes the data susceptible to
noise, artifacts and missing data due to sensors failure, it also makes it more representative
of the real world. These aspects enable the design and validation of models that are robust
to perturbations encountered in real-life. The large number of participants of the StressID
also makes it possible to analyze the demographics associated with stress, based on factors
such as gender or age, thus advancing towards the design of reliable and bias-free algorithms
that integrate these differences.

In addition, the multimodal nature of StressID offers a large set of possible uses cases
and applications. Diverse modalities carry complementary information that can be jointly
exploited: video and audio capture the behavioural component of emotions – the reactions
that are visible from outside, while the physiological signals capture valuable internal states
not visible on camera such as cardiac activity, or skin sweating. By providing access to
multiple synchronized modalities, StressID enables cross-modal analyses that have the
potential to improve the understanding of the relationships between video, audio, and
physiological responses to stress.

Moreover, the design of the StressID dataset supports a variety of learning pipelines, by
offering possibilities for the analysis of subject-specific, task-specific and modality-specific
responses to stress. Various use cases include extracting characteristics of stress from each
modality, analyzing correlations between various modalities, analyzing how the modalities
relate to specific tasks, training learning pipelines for the identification of stress in diverse
verbal and non-verbal tasks, and training pipelines to discriminate between audiovisual
stimuli, stressors designed to increase the cognitive load or stressors based on public
speaking. More so, it can be used to advance research in multiple other fields, such as
emotion recognition, affect understanding, or multimodal deep learning.

Ultimately, StressID is designed as a resource for improving the monitoring, modeling, and
understanding of the mechanisms of human stress conditions. All intended applications
have the potential to improve the quality of life of the population by helping prevent
stress-related issues. However, recording and usage of human activity data is associated
with high ethical implications, including privacy, bias, and impact on society. We further
discuss these considerations in Appendix A.4.
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2.6 Discussion

We present StressID, a dataset for stress identification featuring three categories of data
modalities and three different types of stimuli. The experimental protocol designed to
collect the StressID dataset is easy to replicate and can be adapted to additional sensors or
stressors. The equipment used for the data collection is affordable, and the selected devices
guarantee low noise in the recordings.

However, it is important to mention some limits that StressID suffers from. (1) This
dataset is recorded in a relatively controlled environment specifically designed to elicit
responses, where the process of attaching electrodes to the participants may be stressful
in itself. Experiments conducted in laboratory settings do not take into consideration
the external factors that contribute to the psychological mental state of participants and
typically assume a stress reaction is an isolated occurrence. In reality, human emotions are
complex and are influenced by combinations of factors. (2) Relying on self-assessed scales
for data annotation is a participant-subjective process, and can lead to bias in subsequent
analyses. Perception of stress and relaxation can vary a lot from one participant to another.
Nevertheless, analyses described in Section 2.4.2 highlight a coherent distribution of the
self-reported annotations across participants and the whole experiment. (3) Although all
participants recruited for the study are proficient in English, the act of speaking English
itself can be stress-inducing for non-native speakers. (4) Although the distribution of the
self-assessments across the dataset is reasonably balanced, the audio component of the
dataset suffers from an uneven distribution of labels, as the verbal tasks are associated with
higher levels of stress. (5) StressID suffers from missing modalities for some participants,
as discussed in Section 2.4.1. This makes learning from multimodal inputs a challenging
task as it prevents the straightforward use of traditional supervised learning methods. (6)
Finally, participants for the data collection were included in our dataset without restrictions
on gender, race, age, or education level – instead favoring sample size. As so, StressID
presents a gender imbalance representative of the female/male ratio in STEM studies and
workforce (UNESCO Institute for Statistics, 2019). This is a limitation StressID shares
with competitor datasets (Koldijk et al., 2014; Taamneh et al., 2017; Schmidt et al., 2018;
Markova et al., 2019; Jaiswal et al., 2020), and a common issue in human data collection, in
general (D’Mello et al., 2022; Pinho-Gomes et al., 2022). Therefore, systems that use the
dataset for modeling and understanding the mechanisms of human stress conditions need to
be aware of the potential imbalance in representation in the dataset.

Nonetheless, StressID is a valuable resource for multiple research fields. First, it has the
potential to improve the understanding of the sources, demographics, and both physical and
physiological mechanisms of stress responses. It is designed for the development of reliable
algorithms for stress identification that can improve the quality of life of our society by
helping prevent stress-related issues. For instance, early stress recognition can be beneficial
for people suffering from neurological or developmental disorders with emotion deregulation,
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such as autism, for whom the increase of stress can cause disruptive behaviors. Second,
StressID can help improve affect understanding, as it offers the possibility to analyze
and understand the correlation patterns between the distributions of perceived stress and
emotion, how these correlations relate to different categories of stimuli, or how they impact
subsequent stress and emotion recognition algorithms. Finally, StressID is useful to the
machine learning and deep learning communities as well, as it can be used to further evolve
multimodal learning algorithms, to develop strategies for learning with unevenly represented
modalities, or to study how to make algorithms learning with human data more reliable.

In chapter 3, we introduce and implement a suite of reference models for the identification
of stress from the unimodal and multimodal inputs of StressID – a natural next step to the
work presented here. Doing so, we aim to assess the limitations of existing works and outline
the necessary steps to ensure robustness and reliability in stress identification algorithms.
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Chapter 3

Stress Identification from
Physiological Signals, Videos and
Audio Data
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Abstract. A crucial step in the development of robust methods for the analysis
of wearable sensors data is identifying where existing methods fail, in order
to improve these aspects. In this spirit, we implement a set of unimodal
and multimodal models that are representative of the state-of-the-art in stress
recognition, and apply them to the StressID dataset to try and understand
their strengths and weaknesses. The work presented in this chapter is closely
related to Chapter 2, and corresponds to the second part of a conference paper
published in NeurIPS 2023 (Chaptoukaev et al., 2023).
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3.1 Introduction

In this chapter, we introduce a suite of unimodal and multimodal models for the study of
stress using the StressID dataset. The objectives of this initiative are threefold. (1) We aim
to define what currently constitutes the state-of-the-art in the domain of automated stress
identification from physiological signals, and thus provide a clear reference for the research
community. (2) We intend to facilitate future contributions to this domain by providing an
open-source implementation of reference models for stress identification, that can represent
a starting point for researchers who wish to use the StressID dataset in their work. (3)
Lastly, we aim to identify key limitations of current approaches. We put a particular focus
on their ability to handle perturbations commonly encountered in real-world applications
using sensor data, such as the presence of noise and artifacts, missing data, or representation
bias. Handling these aspects is critical for advancing the field towards real-world usability.
By providing a discussion of the strengths and weaknesses of the current state-of-the-art,
we aim to encourage the development of more innovative, robust and reliable solutions that
can be deployed in real-world settings.

We focus on the tasks of supervised stress identification using the 2-class and 3-class labels
defined in Section 2.4.1. While the primary focus of this thesis is the analysis of physiological
signals collected from wearable sensors, we recognize the value of video and audio data in the
stress identification domain. Therefore, in this chapter we propose baseline models for all
modalities of StressID. In particular, we provide unimodal models that focus exclusively on
individual modalities (i.e. physiological modalities, video, and audio), along with multimodal
models that combine data from the physiological and physiological modalities. All the
baselines introduced hereafter are selected to be representative of the state-of-the-art in the
domain (Gedam and Paul, 2021; Garg et al., 2021; Vos et al., 2023). All implementations
are available at https://github.com/robustml-eurecom/stressID.

The remainder of this chapter is organized as follows. In Section 3.2, we provide an overview
of the state-of-the-art in automated signal analysis. In Section 3.3, we present the multiple
baselines we have identified for stress detection, and illustrate them on the StressID dataset.
We then discuss the current limitations of the existing approaches and identify the necessary
steps to ensure robustness and reliability of applications using wearable devices data in
Section 3.4. Finally, we summarize our work and discuss future directions.

3.2 State-of-the-Art

The general framework for automated signal analysis, illustrated in Figure 3.1, involves three
key steps: (1) pre-processing of the raw data, which usually includes steps like denoising,
downsampling or windowing the raw data; (2) processing – which typically consists of
feature extraction and feature selection; (3) analysis or prediction using machine and deep
learning algorithms. Current research in this area typically highlights three main approaches
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Figure 3.1: Overview of the general pipeline for automated signal analysis.

following this framework: machine learning (ML)-based methods, deep learning (DL)-based
methods and hybrid methods. We focus on the literature on the analysis of physiological
signals hereafter. Nonetheless, state-of-the-art models for stress identification from video
and audio modalities follow the same approach (Aigrain et al., 2016; Giannakakis et al.,
2020; Jaiswal et al., 2020; Arsalan et al., 2022b; Ahmed et al., 2023).

In ML-based methods, relevant features with discriminative values for different classes must
be manually extracted from pre-processed physiological data before training a prediction
model. This process amounts to transforming complex signals into sets of discrete, meaning-
ful descriptive measures refered to as handcrafted (HC) features. Creating a tabular database
of HC features extracted from signals is a widely used approach in the analysis of electroen-
cephalography (EEG) (Boonyakitanont et al., 2020; Wang and Wang, 2021; Ein Shoka et al.,
2023), ECG (Neha et al., 2021; Mir and Singh, 2021; Singh and Krishnan, 2023), or wearable
sensors data (Sánchez-Reolid et al., 2020; Giannakakis et al., 2019; Arsalan et al., 2022b).
The computational complexity of these features varies, ranging from simple statistical
measures in the time domain (e.g., mean, variance) to more complex non-linear features
(e.g., entropy measures), as well as features from the frequency and time-frequency domains.
Such approaches have obvious advantages: they considerably decrease the complexity of the
input data; many tools including the Neurokit2 (Makowski et al., 2021) or MNE (Gramfort
et al., 2013) python libraries are openly available for feature extraction; and HC features
can be processed using traditional ML algorithms such as support vector machines (SVM),
random forests (RF), k-nearest neighbours (kNN) or gradient boosted decision trees – which
are known to outperform elaborated deep learning methods on tabular data (Grinsztajn
et al., 2022). However, ML-based approaches rely heavily on domain expertise for feature
engineering, and their performance can be sensitive to the quality of the extracted features.

In contrast, DL-based methods are end-to-end. They directly handle pre-processed data
and integrate the steps of feature extraction, selection, and prediction, thus eliminating
the need for manual feature engineering. In particular, Convolutional neural networks
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(CNN) are increasingly used to analyze ECG (Strodthoff et al., 2020; Merdjanovska and
Rashkovska, 2022; Rahman et al., 2022) data due to their ability to automatically identify
spatial hierarchies and patterns, making them suitable for tasks like classification or anomaly
detection. Recurrent neural networks (RNN), especially long short-term memory (LSTM)
networks, are also used for monitoring physiological signals over time (Faust et al., 2018;
Rim et al., 2020; Mao and Sejdić, 2022), which is crucial for applications like seizure or
anomalous heart beat detection. Most recent advancements in DL, notably the use of
attention mechanisms and transformers (Vaswani et al., 2017), have also allowed to achieve
state-of-the-art performances on some tasks like detection of atrial fibrillation (Mousavi et al.,
2019; Merdjanovska and Rashkovska, 2022). However, they have not yet become standard
in physiological signal analysis. This is largely due to their reliance on substantial amounts
of training data. To address this limitation, transfer learning techniques are increasingly
being employed (Wan et al., 2021; Weimann and Conrad, 2021), enabling the adaptation of
pre-trained models developed on large datasets to smaller, task-specific datasets.

In practice, while DL approaches have demonstrated efficiency in analyzing ECG signals –
where distinctive patterns of the heartbeat are relatively easy to identify – the end-to-end
analysis of more complex data like EEG signals presents greater challenges due to their
inherently chaotic nature. It is difficult for DL models to directly learn from the raw signal,
and instead operate on spectral density features, wavelet derived features, or Fourier feature
maps for instance (Faust et al., 2018; Craik et al., 2019), resulting in hybrid models (Jafari
et al., 2023). These models typically integrate the use of manual feature extraction, which is
then followed by DL models for prediction. Many approaches Jaiswal et al. (2020); Ahmed
et al. (2023) also inversely rely on DL for extracting features, which are then classified using
traditional ML methods, effectively combining the strengths of both paradigms.

3.3 Baseline Models for Stress Identification

We implement several unimodal and multimodal baselines models for StressID. Following
the general framework described in Section 3.2, all proposed models include a pre-processing
phase, a feature extraction phase, and a classification phase. For all baselines, we have
evaluated several combinations of feature selection algorithms and classifiers and selected
the best-performing ones for our baseline results. For feature selection, we evaluated
a Recursive Feature Elimination (RFE) algorithm, an L1 regularisation, and Principal-
Component Analysis (PCA) for dimension reduction, as well as no feature selection. For the
classification models, we have considered a large range of classical classifiers with different
hyper-parameterizations. The exhaustive list is reported in Table 3.1.

We train the models to perform 2-class classification, i.e. binary discrimination between
stressed and not stressed, as well as 3-class classification. In all the experiments, we generate
10 random splits, using 80% of the tasks for training, and 20% for testing for each split. The
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Table 3.1: List of tested classifiers and corresponding grid search of hyper-parameters.
Model Hyper-parameters Grid search values

Support Vector Machines kernel ’linear’, ’rbf’, ’sigmoid’
C 0.1, 1.0, 10.0

gamma ’scale’, ’auto’
K-Nearest Neighbors n_neighbors 3, 5, 10, 20

weights ’uniform’, ’distance’
algorithm ’auto’, ’ball_tree’,’kd_tree’, ’brute’

Random Forests n_estimators 100, 150, 200
criterion ’gini’,’entropy’
max_depth 3, 5, 7

min_samples_split 2, 4, 6
min_samples_leaf 1, 2, 3

max_features ’auto’, ’sqrt’, ’log2’
class_weight None, ’balanced’, ’balanced_subsample’

Multi Layer Perceptron layer_depth 2,3,4
layer_width 64, 128, 256
activation ’logistic’, ’tanh’, ’relu’

alpha 0.0001, 0.001, 0.01
solver ’lbfgs’, ’adam’

learning_rate ’constant’, ’invscaling’, ’adaptive
momentum 0.7, 0.8, 0.9

early_stopping True, False
Gradient Boosting Classifier loss ’deviance’, ’exponential

n_estimators 100, 150, 200
learning_rate 0.1, 0.5, 1.0

max_depth 3, 5, 7
min_samples_split 2, 4, 6

max_features ’sqrt’, ’log2

results are averaged over the 10 repetitions. To ensure robustness to potential imbalance
resulting from the train-test splits, the results are assessed using the weighted F1-score and
the balanced accuracy on the test data.

3.3.1 Unimodal Models

Physiological data. In line with the literature on stress recognition from physiological
signals (Arsalan et al., 2022b; Gedam and Paul, 2021; Giannakakis et al., 2019), we propose
a ML-based approach for the physiological baselines, including pre-processing of the signals,
extraction of HC features, and classification using traditional ML algorithms. In a first
step, the ECG, EDA, and respiration signals are filtered with Butterworth filters to reduce
high-frequency noise and baseline wander. Precisely, we use a 0.5 Hz high-pass Butterworth
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Table 3.2: Exhaustive list of physiological features extracted.

Domain Features Total
ECG

Time
MeanHR, minHR, maxHR, stdHR, modeHR, nNN, meanNN, SDSD, CVNN,
SDNN, pNN50, pNN20, RMSSD, medianNN, q20NN, q80NN, minNN, maxNN,
triHRV

19

Frequency Total power of the signal, LF, HF, LF/HF, ULF, VLF, VHF, rLF, rHF, peakLF,
peakHF 11

Non-linear SD1, SD2, SD1SD2, ApEn, SampEn 5

EDA

Statistical
MinEDA, maxEDA, meanEDA, std, skeweness, kurtosis, median, dynamical
range, minSCR, maxSCR, meanSCR, stdSCR, minSCL, maxSCL, stdSCL,
slopeSCL

15

Time nSCRpeaks, area under SCR, mean amplitude SCR (meanAmp), maxAmp, mean
response SCR (meanResp), sumAmp, sumResp 8

Respiration

Time

MeanRR, minRR, maxRR, stdRR, nBB (breath to breath), meanBB, SDSD, SVNN,
SDNN, RMSSD, minBB, maxBB, meanTT (trhough to through), SDTT, minTT,
maxTT, meanBA (breath amplitude), SDBA, minBA, maxBA, meanBW (breath
width), SDBW, minBW, maxBW

25

Frequency Total power, LF, HF, VLF, VHF, LF/HF, rLF, rHF, peakLF, peakHF 10

Non-linear SD1, SD2, SD1SD2, ApEn, SampEn 5

filter of order 5 for the ECG, a 5Hz low-pass Butterworth filter of order 4 for the EDA, and
a 0.1-0.35 Hz bandpass Butterworth filter of order 2, followed by a constant detrending
for the respiration signal. We use the neurokit2 python package for all pre-processing.
Then, 35 ECG features, 23 EDA features, and 40 respiration features are extracted. These
include HRV features in the time domain including the number of R to R intervals (RR) per
minute, the standard deviation of all NN intervals (SDNN), the percentage of successive RR
intervals that differ by more than 20ms and 50ms (pNN20 and pNN50), or the root mean
square of successive RR interval differences (RMSSD), as well as frequency-domain, and
non-linear HRV measures. We have extracted statistical features of the Skin Conductance
Level (SCL) and Skin Conductance Response (SCR) components of the EDA, including the
slope and dynamic range of the SCL, along with time domain features including the number
of SCR peaks per minute, the average amplitude of the peaks, and average duration of SCR
responses. In addition, we have extracted Respiration Rate Variability (RRV) features in
the time and frequency domains. Figure 3.2 illustrates an example of basic ECG, EDA, and
respiration features visualized using neurokit2. An exhaustive list of the features used in
our baselines is provided in Table 3.2. The resulting handcrafted (HC) features are then
classified using RF classifiers with hyperparameters chosen by Cross-Validation (CV).
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Figure 3.2: Example of features extracted from the ECG, EDA and respiration signals of
StressID.
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(a) Audio features

AU12
+

AU25

Lips corners are pulled obliquely
with mouth opening

AU6 Cheeks are raised and eye opening is narrowed

(b) Video features

Figure 3.3: Example of features extracted from StressID. (left) MFCCs features extracted
from an audio extract. (right) Example of AUs extracted from a video extract.

Audio data. We propose two baselines for speech signals: the first employs HC features
and ML algorithms, and the second one is a hybrid approach built on the Wav2Vec 2.0
(W2V) model (Schneider et al., 2019; Baevski et al., 2020). Both techniques involve
downsampling from the original 32 kHz audio to 16 kHz, and the application of amplitude-
based voice activity detection (VAD) (Kinnunen and Li, 2010) prior to feature extraction
to eliminate non-speech segments. The first baseline relies on a plethora of specific audio
features (Sahidullah et al., 2015; Allik et al., 2016) widely used in the literature on emotion
recognition from speech (Ahmed et al., 2023; Arsalan et al., 2022b; Malla et al., 2020). These
include Mel Frequency Cepstral Coefficients (MFCCs) and their first and second derivatives,
which characterize the short-term power spectrum and its dynamics. Figure 3.3(a) shows an
example of MFCCs extracted on a subject of StressID. The spectral centroid, bandwidth,
contrast, flatness, and roll-off, which together provide a rich statistical representation of the
spectral shape, are extracted. Harmonic and percussive components are also extracted, with
tonal centroid features being computed for the harmonic component. The zero-crossing rate
is a simple measure of the rate of sign changes; the rate of zero-crossings relates directly
to the fundamental frequency of the speech signal. Last, we include tempogram ratio
features (Peeters, 2005) which represent local rhythmic information. We compute the mean
and standard deviation over time for all features, thereby resulting in feature vectors for each,
which are then concatenated to form a comprehensive feature vector of 140 components, and
used as input for ML algorithms. The handcrafted (HC) features are extracted using the
libROSA python package (McFee et al., 2015), and the extraction is done using a GeForce
RTX 3090 graphic card. The second baseline employs a large, pre-trained W2V model. The
W2V 2.0 model produces features capturing a wealth of information relevant to diverse tasks
including emotion recognition (Catania, 2023; Sharma, 2022; Chen and Rudnicky, 2023).
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Features are extracted every 20 ms and averaged over time to obtain a single 513-component
embedding per utterance, and are then classified using a linear classification layer optimized
with Adam, cross-entropy loss, and an initial learning rate of 1e−3, until convergence.

Video data. We propose an hybrid approach for the video baseline employing Action
Units (AU) and eye gaze for the classification of stress. AUs are commonly used as features
in stress recognition applications (Giannakakis et al., 2020; Jaiswal et al., 2020; Aigrain
et al., 2016). They are fine-grained facial muscle movements (Ekman and Friesen, 1978),
each relating to a subset of extracted facial landmarks (Perveen and Mohan, 2020). Each AU
is described in two ways: presence, if the AU is visible in the face, and intensity, indicating
how intense the AU is on a 5-point scale (minimal to maximal). After downsampling the
recordings to 5 frames per second, we use the OpenFace library (Baltrusaitis et al., 2018)
to extract eye gaze and AUs from each video frame. We extract the following AUs: 1, 2,
4, 5, 6, 7, 9, 10, 12, 14, 15, 17, 20, 23, 25, 26, 28, and 45. As eye gaze features, we use
two gaze direction vectors computed individually for each eye by detected pupil and eye
location. Figure 3.3(b) shows an example of AUs extracted on a subject of StressID. The
averages and standard deviations of each AU and eye gaze directions are computed across
time frames. The feature extraction from 587 videos is done in 3 hours 42 minutes using
two Dual CPU Intel Xeon E5-2630 v4 processors. The resulting 84-component vector is
used as input to an MLP with 4 layers of width 256. In line with (Jaiswal et al., 2020), the
number of layers and layer width of the MLP are chosen by CV in {2,3,4} and {64, 128,
256} respectively. We use ReLU activation and the MLP is trained for 100 epochs with
cross-entropy loss optimized using Adam (Kingma and Ba, 2015) with an initial learning
rate of 1e−3.

Each unimodal baseline is trained and tested on all available tasks of the corresponding
modality. i.e. 692, 711, 587, and 385 tasks respectively for the EDA, ECG and respiration,
video, and audio baseline. We remove from these analyses the damaged physiological
modalities described in Section 2.4.1, and therefore consider them missing. The obtained
performances for the unimodal baselines are reported in Table 3.3. Several conclusions can
be drawn from the results. First, the performances highlight that overall the physiological
modalities, especially the ECG and respiration signals, carry the most valuable information
for the classification of 2-class stress. This suggests that unimodal physiological modalities
are particularly useful for learning to reliably recognize a response to stress-inducing stimuli.
Second, all the unimodal baselines achieve comparable results for the classification of 3-class
stress, suggesting that the discrimination between positive and negative, or short-term and
long-term stress is a more sensitive task. Nonetheless, it can be noted that the baselines on
the ECG and audio modalities outperform other models in terms of accuracy. This suggests
that physiological and audio modalities are more susceptible of carrying information allowing
to discriminate between different states of stress, than video data.
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Table 3.3: Performances (mean ± std) of unimodal baselines for the classification of stress.
Each baseline is trained and tested on all available tasks of the corresponding modality.

2-class 3-class
#tasks F1-score (↑) Accuracy (↑) F1-score (↑) Accuracy (↑)

Physiological modalities
ECG 711 73.2 ± 2.1 72.7 ± 2.9 55.9 ± 2.9 55.2 ± 2.8
EDA 692 70.1 ± 3.5 70.2 ± 3.9 53.8 ± 2.8 54.1 ± 2.2

Respiration 711 72.8 ± 3.1 72.3 ± 3.1 54.9 ± 3.1 53.1 ± 3.1
Physical modalities
Audio (HC + kNN) 385 67.9 ± 6.1 62.9 ± 4.5 53.1 ± 4.1 52.2 ± 3.9

Audio (W2V 2.0 + MLP) 385 70.1 ± 2.1 66.2 ± 2.9 56.1 ± 3.8 52.3 ± 3.9
Video 587 70.2 ± 3.6 70.2 ± 3.8 54.8 ± 2.6 54.6 ± 2.9

3.3.2 Multimodal baselines

Multimodal learning is an emerging field of machine learning combining modalities from
various sources that depict a single subject from multiple views, and thus providing both
shared and complementary information. It has shown considerable advantages in multiple
domains (Baltrušaitis et al., 2018; Xu et al., 2023). While the existing literature is very rich
and continuously expanding, three primary categories of multimodal models can be identified
based on their modality fusion approach: feature-level fusion models, that combine low-level
features from all modalities early at the input level and learns them together; mid-level
fusion models, that learn modality-specific representations first, and fuse them later during
learning to leverage both independent and combined information; and decision-level fusion
models, that learn from modalities independently to generate separate outputs, which are
then merged for a final decision.

Multimodal fusion strategies. In line with the state-of-the-art in stress identification,
we propose fusion models combining all the extracted features using the most prominent
fusion methods in the literature: feature-level and decision-level fusion (Ahmed et al., 2023;
Middya et al., 2022). The differences between the unimodal approach and the two proposed
multimodal approaches are illustrated in Figure 3.4. For feature-level fusion, unimodal
HC features are combined into a single high-dimensional feature vector, used as input for
learning algorithms. Similarly to (Jaratrotkamjorn and Choksuriwong, 2019; Chaparro et al.,
2018), we evaluate feature-level fusion combined with ML classifiers. For decision-level
fusion, following (Xu and Wang, 2018; Rao et al., 2019), we train independent SVMs for
each modality using the HC features as input, and integrate the results of the individual
classifiers at the decision level, i.e. the results are combined into a single decision using an
average rule fusion.
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Figure 3.4: Comparison of the unimodal, feature-fusion multimodal and decision-level fusion
multimodal baselines.

We propose to compare the performances of unimodal baselines with those of two categories
of multimodal models: models combining the 3 physiological modalities only, and models
combining all 5 modalities, i.e. physiological audio, and data. The multimodal baselines of
StressID are evaluated on the tasks that feature all modalities only, i.e. 355 tasks, to avoid
learning with severely missing values. This subset of StressID is composed of talking tasks
exclusively, i.e. all tasks without the audio modality are excluded. In this setting, the dataset
presents a strong imbalance in the labels (70% stress). We use Minority Over-sampling
Techniques (SMOTE) (Chawla et al., 2002) to balance the training set in each of the 10
repetitions, and leave the test sets untouched. The results for all multimodal baselines for
the 2-class and 3-class classification are reported in Table 3.4. To ensure fairness in the
comparison, the unimodal baselines are also trained on the modality-complete subset of 355
tasks.

Several observations can be made. First, it can be noted that most unimodal baselines
computed on the modality-complete subset do not perform as well as the unimodal models
computed on all available tasks (see Table 3.3). This can be due both to the smaller sample
size used for training, and the label imbalance present in this new subset. Second, we can
observe that the feature-level fusion multimodal model combining just the physiological
modalities already significantly improves the performances of unimodal models trained on
ECG, EDA and respiration signals independently. This highlights the benefits of multimodal
learning, suggesting that the different modalities may carry complementary information
useful to stress identification. Lastly, the results unsurprisingly show that combining all
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Table 3.4: Performances (mean ± std) of multimodal baselines for the classification of stress,
compared to unimodal models. All baselines are trained and tested only on tasks featuring
all modalities, i.e. 355 tasks.

2-class 3-class
F1-score (↑) Accuracy (↑) F1-score (↑) Accuracy (↑)

Unimodal baselines
ECG 65.9 ± 5.7 61.4 ± 5.3 52.2 ± 4.9 50.4 ± 6.2
EDA 61.1 ± 4.4 61.0 ± 3.2 47.1 ± 3.2 45.2 ± 4.2

Respiration 58.4 ± 2.5 54.8 ± 3.3 43.8 ± 3.2 44.8 ± 4.4
Video 67.7 ± 3.9 62.2 ± 4.2 58.3 ± 5.0 56.4 ± 4.3
Audio 67.7 ± 4.8 62.1 ± 4.2 56.2 ± 6.0 54.3 ± 6.1

Multimodal baselines (physio.)
Feature fusion 68.5 ± 5.1 63.1 ± 5.0 54.2 ± 4.9 51.8 ± 4.4
Decision fusion 60.1 ± 4.7 54.5 ± 3.9 52.7 ± 5.1 49.3 ± 3.0

Multimodal baselines (all)
Feature fusion 66.4 ± 4.3 61.2 ± 3.7 55.5 ± 6.2 51.4 ± 5.3
Decision fusion 72.9 ± 4.8 65.2 ± 4.9 63.1 ± 5.1 58.6 ± 7.3

modalities using decision-level fusion multimodal models considerably improves classification
performances of all unimodal models separately. It also improves the 3-class classification
results – which further highlights the benefits of combining multiple complementary sources
of data, i.e. physiological and physical, for discriminating between different types of stress.

Remark 3.3.1. Both the unimodal and multimodal baselines highlight the difficulty of
predicting the 3-class label defined in Chapter 2. This label was intended as an example, and
further experiments suggest that focusing on other prediction tasks may be more appropriate.
Therefore, to better showcase the potential of the StressID dataset and the proposed models
to analyze it, we focus on a binary classification task for the remainder of this thesis.

3.4 Main Limitations

We have highlighted several limitations of StressID in Section 2.6. Namely, several modali-
ties are missing for some participants across the dataset, and the dataset presents a strong
imbalance in gender across the subjects. In this section, we discuss how these aspects can
limit the robustness and reliability of state-of-the-algorithms algorithms used for stress
identification.
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3.4.1 Missing Data

State-of-the-art algorithms for stress identification from physiological signals and multimodal
inputs are predominantly hybrid or ML-based. Currently, these models are not designed
to inherently handle missing data, requiring additional adaptations to effectively manage
such scenarios. In our experiments, we have opted to use a subset of the StressID dataset
where all modalities are complete for all participants. This decision was made primarily
to ensure a fair and consistent comparison between unimodal and multimodal baselines by
working with a uniform dataset. However, as demonstrated by the difference of performances
reported in Table 3.3 and Table 3.4, this approach significantly reduces the efficiency of
subsequent algorithms. Moreover, excluding samples due to missing modalities is not an
ideal solution, as it prevents the use of all available data, which is counterproductive to the
goal of maximizing information from multimodal inputs. More so, missing data itself can
hold implicit information, and disregarding it entirely may introduce bias into the models,
ultimately affecting their performance and reliability. This highlights the need for more
robust methods that can handle incomplete data while taking advantage of the plurality of
its sources.

3.4.2 Gender Imbalance

We analyse the effects of gender imbalance in training data on traditional learning algorithms
used for stress identification from physiological data. We evaluate the StressID multimodal
baselines combining all physiological modalities on two subsets of StressID. Subset A:
we select the recordings from all 18 female participants, and randomly select 18 male
participants – thus resulting in a subset composed of 36 subjects with a balanced ratio of
female and male subjects. Subset B: we randomly select a subset of 36 subjects, preserving
the female-to-male ratio of the original dataset, i.e. 9 female and 27 male subjects. We
compare the performances of the StressID baselines on the 2-class classification task on
the two subsets.

The results, averaged over 5 random repetitions, are reported in Figure 3.5. First, we
observe that the baseline built on the subset A (balanced) outperforms the baseline using
subset B. This suggests that more balanced datasets can improve the global performances
of subsequent models, and thus already highlights potential bias induced by imbalanced
representation in data. Second, we can observe that the difference in classification error
rate between female and male participants is considerably decreased when working with
balanced subsets. This is to be expected, as training on well-balanced data decreases the
risk for a model to overfit – which in the case of gender imbalance can be translated as
learning on male subjects mainly during the training phase and performing poorly during
the testing phase on female subjects, less seen during training.

An important conclusion can be drawn from this experiment: a balanced dataset is crucial
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(a) F1-score (b) Error rate

Figure 3.5: Comparison of performances between models trained on balanced and imbalanced
subsets of StressID. F1-scores (left) and error rates (right) of the multimodal baseline
combining all physiological modalities are reported.

for performing bias-free analyses and minimizing the risk of bias in algorithm development.
Imbalances in gender, race, age, or background of the participants can limit the development
of fair and equitable applications. Researchers need to be aware of this aspect and take the
appropriate steps to build equitable systems before their use in real-life applications.

3.5 Discussion

We have established the state of the art in stress identification using physiological signals,
video, and audio data. Building on the models identified in the literature, we have imple-
mented a suite of unimodal and multimodal baselines for StressID, that we have publicly
released, providing a valuable resource for researchers interested in working with the dataset.

Most current approaches to stress identification rely on ML-based and hybrid methods,
combining feature extraction via DL with traditional ML algorithms for classification, or
inversely, combining features extracted via handcrafted techniques, with DL classifiers. These
methods offer several advantages: they leverage widely available feature extraction tools and
libraries; they considerably reduce input data complexity; they enable the use of diverse ML
models for the classification of tabular feature datasets; and their low-complexity make them
particularly suited for real-time, closed-loop data processing necessary in wearable sensor
applications. Furthermore, we have shown in Section 3.3.2 that even simple multimodal
strategies, such as feature-level of tabular features, can significantly outperform unimodal
models trained on individual modalities in the StressID dataset.
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Nonetheless, we have identified several limitations in current state-of-the-art approaches.
We demonstrated in Section 3.4.2 that models trained on real-world data are prone to bias,
such as that caused by imbalanced gender representation in the dataset. This highlights
the importance of researchers taking appropriate measures to ensure systems are reliable
before deploying them in real-world applications. Equipping existing models to handle such
issues could be done with solutions as simple as processing subpopulations of the dataset
separately, or using conditional models. More critically, we highlighted in Section 3.4.1
that models intended for real-world use must be equipped to handle practical challenges,
such as missing data, which can arise for many reasons, including simple sensor failures.
Currently, most state-of-the-art models are not inherently designed to address this issue.
This underscores the need to either develop innovative solutions or adapt existing models to
make them robust to missing values. While adapting decision-level multimodal models to
handle this problem can be relatively straightforward, the task becomes more challenging for
feature-level fusion approaches or advanced multimodal models that rely on mid-level fusion
– which has been shown to offer significant advantages in various domains (Baltrušaitis et al.,
2018; Guarrasi et al., 2024; Strizhkova et al., 2025).

In the following chapters, we explore whether the extensive existing literature on handling
missing values in tabular datasets can be leveraged to enhance the performance of state-of-
the-art approaches for the binary classification of stress using multimodal data, including
physiological signals. To do so, we first propose to evaluate the reliability and suitability of
state-of-the-art techniques for addressing missing data within healthcare applications, in
Chapter 4. Indeed, most of existing techniques heavily rely on imputation, which may be
challenging to apply in sensitive domains like healthcare. Tackling this issue is a essential
step towards developing both robust and reliable unimodal and multimodal models for
analyzing wearable sensor data.
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Chapter 4

How to Handle Missing Values in
Healthcare Data?
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Abstract. In Chapter 3, we identified the handling of missing data as a
significant challenge in developing robust and deployable models for analyzing
wearable sensor data. We propose exploring whether the extensive existing
literature on handling missing values in tabular datasets can be leveraged
effectively to address this issue. Specifically, we aim to evaluate the reliability
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of these techniques in healthcare applications, focusing on aspects such as
imputation quality and impact on interpretability of subsequent models; and
assess whether they can be applied to the StressID dataset.

4.1 Introduction

In this chapter, we investigate existing methods for handling missing values in supervised
learning on tabular healthcare data. As discussed in Chapter 1, data loss is common in
wearable sensors data and, more generally, missing values are prone to occur increasingly
frequently as the size and complexity of real-world datasets increase. This phenomenon can
be due to a variety of factors, such as, complex data collection processes, the aggregation of
multiple data sources, sensors failures, or refusals to answers questions in surveys. Datasets
with missing values make supervised learning a challenging task since traditional algorithms
cannot be applied directly to incomplete data. In Chapter 3, we have adopted the easiest
and cheapest solution to circumvent this problem – consisting of removing instances or
features of the dataset containing missing values. However, this can be problematic in many
domains ranging from clinical and medical studies, to finance and economics (Kang, 2013).
Many current state-of-the-art solutions involve imputing the missing data, i.e. replacing
the unavailable values in a dataset with substituted values. These techniques range from
simple imputation by the mean, to using more elaborate generative models, before training
a supervised learning model. Yet, this approach can be highly limiting when applied to
real scenarios, as it may accentuate the biases present in already unrepresentative data
and can have a major impact on the interpretability of the models developed. Therefore,
such solutions can pose reliability issues in sensitive applications such as healthcare. Works
like Perez-Lebel et al. (2022) have benchmarked existing methods on healthcare data. Yet,
they have focused on prediction performances, and have not addressed aspects such as
quality of imputation and impact on the interpretability of subsequent supervised learning
models. While Shadbahr et al. (2023) have analyzed the importance of measuring imputation
quality, their study is conducted on a limited amount of data, and no clear directives on
how to appropriately choose a model are put forward.

For these reasons, we propose to conduct a comprehensive evaluation of existing methods for
handling missing data and assess their reliability within healthcare applications. Specifically,
we have developed a framework tailored to evaluating these methods based on the specific
needs of such applications. In particular, we: (1) review existing methods designed for
missing values and identify 3 main categories among them; (2) evaluate the performances of
these models in many diverse settings of missing data, that can occur in real-life scenarios
and are often overlooked in research; (3) analyze the quality and reliability of imputations
produced by these models, and study how data distributions can be impacted by imputation;
(4) investigate how imputation alters feature interaction in datasets; (5) evaluate the
interpretability of these models; (6) investigate how the characteristics of a dataset can
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impact the performances of these different methods; (7) propose a tree-based approach to
help understand how to chose a model, given a dataset. This comprehensive analysis enables
us to identify the strengths and limitations of existing approaches, in order to ultimately
derive a set of guidelines to properly and responsibly handle missing values in healthcare
applications. To ensure a robust and reliable study, we aim to encompass a wide range of
models, and evaluate them on multiple datasets drawn from diverse real-world scenarios.

The remainder of this chapter is organized as follows. We first formally introduce the
problem of supervised learning with missing values in tabular datasets and provide useful
background in Section 4.2. We provide an overview of the existing approaches for handling
missing values in Section 4.3. We describe the methodology we propose to assess their
reliability in healthcare applications in Section 4.4, and illustrate our finding on several
real-life datasets. We then translate our study into a set of guidelines for handling missing
values in healthcare in Section 4.5. Lastly, we evaluate whether state-of-the-art methods are
suited for StressID in Section 4.6, and we summarize our work and future directions.

4.2 Problem Formulation, Notations and Definitions

Many studies have addressed the issue of handling missing data in inferential frameworks
(i.e. distribution modeling and parameters estimation) (Rubin, 1976; Dempster et al., 1977;
Little, 1992; Little and Rubin, 2019; Nazábal et al., 2018; Ma et al., 2018b; Mattei and
Frellsen, 2019; Collier et al., 2020; Gong et al., 2021). However, the problem of supervised
learning with missing values is distinct from distribution estimation, and fewer studies have
focused on the prediction of a target variable in presence of missing values. Before exploring
existing resources on the problem, we provide a formal framework for supervised learning
with missing values in this section. We briefly remind the classical setting for supervised
learning, and introduce useful notations and definitions to formulate the problem of handling
missing data in this scenario. Throughout this chapter, capital letters refer to random
variables while lower-case letters denote realizations.

Supervised learning with missing values. Let us consider random independent input
and output pairs (X,Y ) drawn from a distribution P , where X ∈ Rd and Y ∈ R. The
goal in supervised learning is to predict Y given X. Formally, this corresponds to finding
a function f : Rd → R that minimizes E[ℓ(f(X), Y )] given a loss function ℓ : R× R. The
optimal prediction function f∗ is given by:

f∗ ∈ argmin
f :Rd→R

E[ℓ(f(X), Y )]. (4.1)

In practice, given a dataset D of n ∈ N training examples D := {(X1, Y1), . . . , (Xn, Yn)}, a
learning process is used to estimate an approximation f̂n of f∗. Given that the learning

49



process operates on a finite number of samples, and not the distribution P , it optimizes the
empirical risk

∑
i ℓ(f(Xi), Yi) rather than the expected risk defined in Eq. 4.1.

Ultimately, a learning process can be defined as the following optimization problem:

f̂n ∈ argmin
f :Rd→R

(
1

n

n∑
i=1

ℓ(f(Xi), Yi)

)
. (4.2)

However, in presence of missing values, we do not observe the complete vector X. Therefore,
it is necessary to define precisely the data in this new setting.

Let us introduce the indicator vector M ∈ {0, 1}d to denote the positions of missing values
in X such that Mj = 1 if and only if Xj is missing (where j denotes the j-th element of
one observation Xi in D). For realizations m of M , we denote by obs(m) the indices of the
observed variables of X, and by Xobs(m) the vector of observed elements of X, such that
Xobs(m)j = na if mj = 1. The observed data Xobs(m) can be written as

Xobs(m) = (1−M)⊙X +M ⊙ na, (4.3)

where ⊙ is the term-by-term product, with the convention that, for all one-dimensional x,
na⊙ x = na. As a result, for a given realization x = (1, 7,−2.9, 9,−2.5) and its associated
missing indicator m = (0, 1, 0, 0, 1), the observed data is

xobs(m) = (1, na,−2.9, 9, na).

In this setting, the learning goal becomes the prediction of Y given Xobs(m). In particular,
the new objective becomes the optimization of the empirical risk over the set of measurable
functions that map observed xobs(m) realizations to y, such that:

f̂n ∈ argmin
f :Rd→R

(
1

n

n∑
i=1

ℓ(f(Xobs(m)i), Yi)

)
. (4.4)

In practice however, the mixed nature of Xobs(m) (see Eq. 4.3) makes supervised learning
with missing values challenging. It prevents the straightforward use of traditional ML
algorithms that require fixed dimensional vectors as input. As a result, the optimization
problem described in Eq. 4.4 is hard to solve, and additional steps need to be taken to use
standard learning algorithms.
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Missing values mechanisms. In his pioneer work, Rubin (1976) introduces different
data scenarios leading to three missing data mechanisms that can be defined in terms of
the probability distribution of M |X. He distinguishes three missing values mechanisms
based on the relationships between the observed variables and the missing patterns: Missing
Completely At Random (MCAR), Missing At Random (MAR), and Missing Not At Random
(MNAR).

Definition 4.2.1. (Missing Completely At Random) The data is MCAR if the probability
of a value being missing is independent from the data, such that

P(M = m|X) = P(M) ∀m ∈ M

Definition 4.2.2. (Missing At Random) The data is MAR if the probability of a value
being missing depends on the observed variables, such that

P(M = m|X) = P(M |Xobs(m)) ∀m ∈ M.

Definition 4.2.3. (Missing Non At Random) The data is MNAR if the probability of a
value being missing depends on the full vector X, i.e. both observed variables and missing
variables themselves.

To illustrate those definitions, let us imagine a data set of customer records with a variable
age that is missing for some of them. The data is MCAR if the missing values occur
completely at random, with no relationship to the variables (e.g. due to a technical error in
data collection). If the missing values are related to another observed variable of the data
such as the gender for example, the data is MAR (e.g. because male customers are less
likely to provide their age). If the missing information is related to the variable age itself,
the data is MNAR (e.g. because older customers may be less likely to disclose their age).

While statistical analysis with missing values has been abundantly studied under the MAR
assumption, or the more restrictive MCAR assumption (Emmanuel et al., 2021; Lin and
Tsai, 2020; Little and Rubin, 2019; Mayer et al., 2019; Josse and Reiter, 2018; Van Buuren,
2018), fewer works study the harder to address MNAR mechanism (Chen et al., 2018; Yang
et al., 2018; Ipsen et al., 2021).

4.3 State-of-the-Art

The challenges of supervised learning in the presence of missing values are different from
those of inference and imputation, as the principal goal becomes to minimize a prediction
error given incomplete data. While numerous works have been developed for missing values
imputation (Van Buuren and Groothuis-Oudshoorn, 2011; Stekhoven and Bühlmann, 2012;
Gondara and Wang, 2018; Mattei and Frellsen, 2019) and distribution estimation in presence
of missing values (Rubin, 1976; Dempster et al., 1977; Little, 1992; Robins et al., 1994;
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Jones, 1996; Nazábal et al., 2018; Ma et al., 2018a,b; Mattei and Frellsen, 2019; Collier
et al., 2020; Gong et al., 2021), fewer studies have focused on the prediction of a target
variable in the presence of missing values in both the training and the test sets (Josse et al.,
2019; Le Morvan et al., 2021).

The easiest and cheapest solution to circumvent the limitation introduced in Section 4.2 is
list-wise deletion, consisting in removing incomplete samples for the training data. However
this approach is suboptimal: it is highly limiting in applications like healthcare where
training data is often scarce; outside of the MCAR scenario, the presence of missing values
in itself can be meaningful, as such deletion can lead to a considerable loss of information;
lastly, while this approach can allow the training of supervised models on complete data, it
is not robust to missing values in testing data, and therefore not adapted to trustworthy
real-life applications. Therefore, learning systems should be specifically equipped to handle
missing values. We classify the existing solutions in the literature that address this problem
intro three categories: impute-then-regress methods; impute-and-regress methods; and
imputation-free methods.

Impute-then-regress. The most popular solution, as its name suggests, consists of first
learning an imputation model, using it to fill in the missing values of a dataset, before
fitting a supervised model on the imputed dataset (Bertsimas et al., 2021; Le Morvan
et al., 2021). A considerable advantage of this approach lies in that it can be used to
adapt existing algorithms and learning pipelines to the presence of missing values. Josse
et al. (2019); Le Morvan et al. (2021) have shown that good predictions can be obtained
using strategies as simple as imputing by the mean of the observed features, given a
powerful enough prediction model. Impute-then-regress strategies can also take advantage
of the many more elaborate imputation models available in the literature. Among these,
MICE (Van Buuren and Groothuis-Oudshoorn, 2011) and MissForests (Stekhoven and
Bühlmann, 2012), are well-known solutions commonly used in both research and practice.
They iteratively impute each variable with missing values by learning to model them
conditionally on the other variables in the dataset. Moreover, these methods can be used
in a multiple imputation set-up (MI), consisting in generating multiple possible values for
the missing values and combining the results to incorporate uncertainty. Another popular
solution is KNN imputation (Troyanskaya et al., 2001), consisting in imputing each missing
value as the average or most frequent value (for continuous and categorical data respectively)
among the non-missing values of the k most similar neighbours. More recent methods based
on DL approaches such as denoising autoencoders (Gondara and Wang, 2018), deep latent
variable models (Mattei and Frellsen, 2019), or generative adversial networs Yoon et al. (2018)
have reached state-of-the-art performances in terms of quality of the imputation in missing
at random (MAR) or not at random (MNAR) settings (Ipsen et al., 2021). However, Josse
et al. (2019); Le Morvan et al. (2021) have highlighted that optimal imputations do not
necessarily lead to optimal prediction performances.
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Impute-and-regress. Le Morvan et al. (2021) have shown that the difficulty of the
prediction task strongly depends on the choice of imputation strategy. They suggest that
the imputer and predictor should be adapted to one another, which can be difficult to
ensure in practice, as choosing the right imputation function can be time-consuming and
computationally costly. To circumvent this problem, Le Morvan et al. (2021) have suggested
jointly learning imputation and prediction instead. They have proposed to use NeuMiss
networks (Le Morvan et al., 2020a) that handle missing values using multiplication by the
indicators M as nonlinearities to capture the conditional links across observed and unobserved
variables, for imputing missing values; and a multilayer perceptron (MLP) for prediction.
Building on this idea, Ipsen et al. (2022) have proposed a joint model for imputation and
supervised learning in MAR settings by marginalizing over missing covariates and mimicking
multiple imputation. Joint learning approaches, however, can be impractical in real-life, as
they rely on complex optimization processes or require large numbers of samples to reach
good performances (n > 1e5 in Le Morvan et al. (2021)).

Imputation-free. Another branch of solutions consists in end-to-end methods that do
not rely on imputation, and instead predict from observed variables only. A first solution
is learning independent estimators for each missing-values pattern, but as the number
of possible patterns grows with the number of features d, in practice 2d sub-models are
required to fit the Bayes-consistent predictors (Le Morvan et al., 2020b). Ayme et al.
(2022) have proposed a thresholded pattern-by-pattern linear estimator to palliate this
limitation. However, it is designed in the specific context of linear models, and adapts
poorly to classification problems or more complex datasets. Another solution is to directly
use expectation maximization (EM) to compute maximum likelihood estimates from an
incomplete dataset (Dempster et al., 1977). However, such approaches rely on strong
assumptions on the missing values. Alternatively, the discrete nature of decision trees allows
them to handle the mixed nature of Xobs(m), and thus missing data, natively (Friedman,
2001; Kapelner and Bleich, 2015; Jeong et al., 2022). These approaches can operate by using
surrogate splits when a missing value is encountered, or more commonly, by incorporating
the missing data in attributes (MIA) (Twala et al., 2008). In particular, MIA methods
are a good choice when the presence of missing values in a dataset is informative, as the
splitting criteria are computed with respect to whether a feature is missing or not. MIA
approaches represent a good alternative to imputation-based methods, they work well in
diverse scenarios, and have shown great performances in multiple comparative studies (Josse
et al., 2019; Perez-Lebel et al., 2022; Ipsen et al., 2022). Nonetheless, they can suffer from
slow convergence (Josse et al., 2019), or fail to generalize when new missing patterns are
introduced in the test samples.
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4.4 Assessing the Reliability of Existing Approaches within
Healthcare Applications

Several works have addressed the problem of supervised learning from medical datasets
with missing values (Perez-Lebel et al., 2022; Nijman et al., 2022). Some have studied the
impact of imputation on downstream classification performances (Campos et al., 2015; Jäger
et al., 2021). However, less attention has been given to assessing whether the imputed data
actually reflects the underlying features distributions accurately. Yet, Van Buuren (2018)
have highlighted that optimal scores on metrics such as the mean square error (MSE) or
the mean absolute error (MAE) – commonly used in studies to assess the quality of an
imputation model by comparing the imputed values with the ground truth, can be achieved
even when the distributions of imputed data are far from the true distributions. Building
on this observation, Shadbahr et al. (2023) have explored and found that these metrics are
actually uncorrelated from downstream classification performances, whereas more elaborate
metrics that quantify distributional discrepancies are. All the more, the authors have shown
that even a classifier built on data with a poor imputation quality can reach satisfactory
performances. Similarly, Josse et al. (2019); Le Morvan et al. (2021) have demonstrated
that good prediction performances on certain tasks can be achieved even with suboptimal
imputations. However, this can be problematic in sensitive domains such as healthcare,
where the reliability of the imputed data is of paramount importance. Poorly imputed data
can introduce significant bias in data distributions, and create spurious relations in the
data. This in turn can compromise the interpretability of subsequent prediction models:
it can lead to assigning spurious importance to particular features and thus, to incorrect
conclusions about the impact of a feature on an outcome. Perez-Lebel et al. (2022) have
found in their evaluation of multiple state-of-the-art approaches that not only features with
few missing values have important impacts in the outcomes of models, but features with
high levels of missing values too. This can be problematic in medical applications, where it
leads to interpretations relying on values that were not genuinely recorded. Therefore, in
healthcare, the quality and reliability of imputations and interpretability are crucial factors
to consider to ensure the deployment of trustworthy models.

We have developed a framework tailored to assessing the reliability of existing methods
for handling missing data based on the specific needs of healthcare applications. Precisely,
we systematically and carefully address the following open questions: (1) Are state-of-the-
art models able to generate reliable imputations (when applicable) that reflect the true
underlying distribution of the data? (2) Are these models able to capture and preserve the
interactions between features found in the original dataset? (3) Are the interpretability
mechanisms of these models affected by the quality of imputation, i.e. how reliable are the
interpretations that these models provide? (4) Do the characteristics of a dataset impact the
reliability of the different state-of-the-art methods? To answer these questions, we introduce
a novel framework, illustrated in Figure 4.1.
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Figure 4.1: Overview of our methodology. First, we generate 384 datasets by introducing
different scenarios of missing values in 14 complete datasets from the UCI repository. We
then evaluate 5 models on the 384 dataset, using 10 different criteria, and determine the
best choice for each. Lastly, we train a decision-tree to analyze the results and help us derive
a set of guidelines to choose a model given the fingerprints (i.e. characteristics) of a dataset.

4.4.1 Overview of the Methodology

In a first step, we select 14 publicly available health-related datasets from the UCI repos-
itory (Dua et al., 2017) that do not contain any missing data. They are chosen to be as
diverse as possible in terms of data content, size, and prediction tasks. For each dataset,
we generate multiple versions where we artificially introduce missing values using various
mechanisms and amounts. As a result of this step, we obtain 384 different databases.

In a second step, we evaluate 5 state-of-the-art models taken from each category of approaches
(see Section 4.3) on the 384 datasets. In addition to prediction performances, we measure
10 criteria to assess their reliability. In particular, we compare the feature distributions of
datasets imputed with each model to those of the complete data (14 original UCI datasets).
Similarly, we compare the features interactions between the complete and imputed datasets
to check for the presence of new spurious relations. Lastly, we compare the feature rankings
of models trained on complete datasets with those of models trained on imputed ones.

In a last step, we investigate how the characteristics of a dataset can impact the reliability of
different methods. We propose a decision tree-based approach to analyze the results of our
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benchmark. We extract fingerprints (i.e. data characteristics) from each of the 384 datasets
evaluated; select the best model based on a combination of the 10 evaluation criteria; and
use this information as input for tree models to extract sets of rules. We ultimately use
these rules to help us derive a set of guidelines on how to choose the most appropriate model,
given a specific dataset.

4.4.2 Datasets Generation and Fingerprints Extraction

4.4.2.1 UCI Datasets

To evaluate the performances of state-of-the-art models focusing on more than prediction
performances, we select multiple datasets from the UCI repository Dua et al. (2017) with
varied characteristics, both numerical and categorical variables, and that contain no missing
values. We consider the 14 following datasets:

1. CDC Diabetes Health Indicators: that contains 21 features that correspond to
healthcare statistics and lifestyle survey information of 70,712∗ patients along with
their diagnosis of diabetes. The prediction task on this dataset is binary classification.

2. National Health and Nutrition Health Survey: that contains 7 features collected
from interviews, physical examinations, and laboratory tests for 748∗ individuals. The
prediction task is the binary classification of the age group of the participants.

3. AIDS Clinical Trials Group Study: that contains 23 features representing health-
care statistics and categorical information about 2139 patients who have been diagnosed
with AIDS. The prediction task on this dataset is the binary classification of death of
the patient within a certain window of time.

4. Glioma Grading Clinicial and Mutation Features: that contains most frequently
mutated 20 genes and 3 clinical features for 839 patients. The task on this dataset is
the binary classification of glioma grade.

5. National Poll on Healthy Aging: that contains 14 features giving insights on the
health, sleep issues affecting 714 Americans aged 50 and older. The prediction task on
this dataset is 3-class classification of the frequency of doctor visits of the participants.

6. Differentiated Thyroid Cancer Recurrence: that contains 13 clinicopathologic
features for 383 patients. The prediction task is binary classification of recurrence of
well differentiated thyroid cancer.

7. Estimation of Obesity Levels: that contains 16 features corresponding to eating
habits and physical condition for 2111 individuals. The prediction task is 7-class
classification of the obesity levels of the patients.

8. Heat Failure Clinical Records: that contains 12 clinical features of 299 patients
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who had heart failure, collected during their follow-up period. The prediction task on
this dataset is the binary classification of death of the patient.

9. Parkinson’s Telemonitoring: that contains 19 features corresponding a range of
biomedical voice measurements from 42 people with early-stage Parkinson’s disease,
measured during a six-month period of telemonitoring. The dataset contains 5875
distinct samples. We define two regression tasks: prediction of motor UPDRS score,
and total UPDRS score.

10. Infrared Thermography Temperature: that contains 33 features corresponding
to gender, age, ethnicity, ambiant temperature, humidity, distance, and various
temperature readings from the thermal images for 1020 individuals. The prediction
task on this dataset a regression to predict the oral temperature of each patient using
other features.

11. EEG Eye State: that contains 14,980 entries of 14 features extracted from one con-
tinuous EEG measurement. The prediction task on this dataset is binary classification
of the eye state (i.e. open or closed).

12. Minimal Sepsis Records: that contains 16,278∗ admissions of patients diagnosed
with diagnosed with infections, systemic inflammatory response syndrome, sepsis by
causative microbes, or septic shock. The prediction task is binary classification of
whether a patient survived in the 9 days after their admission, using only 3 features.

13. Hepatitis C Virus: that contains 28 features corresponding to demographics, and
laboratory results of 1385 patients who underwent treatment dosages for Hepatitis C
virus. The prediction task is multiclass classification of liver fibrosis.

14. Thoracic Surgery Data: that contains 16 features collected during post-operative
clinical examinations of 470 patients with lung cancer. The prediction task on this
dataset is binary classification of survival.

Most ML models are not inherently robust to imbalanced datasets, and most of the time
learning on imbalanced data leads to failure: despite a high accuracy score, models simply
predict the majority class at inference time. In this analysis, we have under-sampled (Pereira
and Saraiva, 2020) the datasets that present a strong class imbalance in the labels. They
are denoted by a star (*) above. Their reported numbers of observations correspond to the
downsampled sizes.

4.4.2.2 Missing Values Generation

For each of the 14 UCI datasets, we generate several versions where we artificially introduce
missing data, resulting in 384 augmented variants. The missing data is generated using
different missing values mechanisms (see Section 4.2). We consider the following settings, as
described in Mayer et al. (2019):
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– MCAR. The variables X and M are independent. The pattern M is generated
according to a homogeneous Bernoulli distribution, such that M ∼ B(p), where p is
the probability for a value to be missing, and p is uniform across the dimensions of X.

– MAR. The missing values pattern M depends on the observed values. The data X is
separated into two randomly selected subsets X(1) and X(2), such that X(1) is always
fully observed. The missing pattern M associated to X(2) is generated according to a
logistic model parametrised by β, such that P(M = 1|X(1)) = σ(βX(1)), where σ(.) is
the sigmoid function, and the weights vector β is drawn randomly and re-scaled to
attain the desired proportion of missing values p on X(2).

– MNAR logistic. The missing values pattern M depends on both the observed values
and the missing values. The missing values probabilities are computed according to a
logistic model parametrized by random weights β, taking all variables as inputs, such
that P(M = 1|X) = σ(βX). That way, values that are inputs to the logistic model
can also be missing.

– MNAR self-masked. Whether a variable Xj is missing or not only depends on
Xj itself, hence the denomination of self-masking. The missing values pattern M is
generated according to a self-masking logistic model parametrized by random weights
β such that P(M = 1|Xj) = σ(βXj). In other terms, a variable Xj have missing
values probabilities given by a logistic model taking the same variable Xj as input.

– MNAR with quantile censorship. The missing values are generated on the q-
quantiles. A subset X(1) of variables which will have missing values is randomly
selected. Then, missing values are generated on the q-quantiles of X(1) only, such
that M ∼ B(p). As such, whether a variable has missing values depends on quantile
information, that is masked. Additionally, 10% missing values generated completely
at random are added on top.

For each UCI dataset, multiple scenarios under each of the mechanisms described above are
generated: we randomly select the number of variables on which to introduce missing values,
as well as the amount of missing values to generate – resulting in 384 different versions in
total. Lastly, on each generated dataset, we make sure that no column or row is left without
any values. Our implementation is based on the code provided by Muzellec et al. (2020).

4.4.2.3 Fingerprints Extraction

In order to analyze how the characteristics of a dataset impact the performances of state-of-
the-art models, we extract a set of 15 descriptive characteristics from the 384 datasets, that
we call fingerprints. In particular, we extract characteristics related to the size and content
type of the dataset. Namely: the number of observations in the dataset n; the number of
dimension in the dataset d; the sample-to-dimension ratio n/d; the proportion of categorical
variables in the dataset dc/d; and the proportion of numerical variables in the dataset dn/d.
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Figure 4.2: Visualization of the characteristics of the 384 augmented datasets in our collection.
Dataset sizes (a) are reported, along with the distributions of corr30 (b); the missing values
mechanisms (c); dm (d); and mean pm (e) across the collection.

In addition, we extract measures describing the missing values in the dataset: the proportion
of variables with missing values in the dataset dm/d; the proportion of categorical variables
with missing values among the total number of variables with missing values dcm/dm; the
proportion of numerical variables with missing values among the total number of variables
with missing values dnm/dm; the global proportion of missing values in the whole dataset
p; the average proportion of missing values in the variables with missing entries mean pm;
the minimal proportion of missing values in the variables with missing entries min pm; the
maximal proportion of missing values in the variables with missing entries max pm; the
total number of distinct patterns of missing values across the dataset; and the mechanism
used to generate the missing values. Lastly, we extract corr30, corresponding to the average
number of variables correlated to other variables with an absolute correlation coefficient
larger than 30% (as described in Perez-Lebel et al. (2022).
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The fingerprints of the 384 augmented datasets are visualized in Figure 4.2. Overall,
the datasets obtained for our study are varied in terms of size and content. In addition,
our collection comprises datasets with both very low and very high correlation between
features. The amounts of missing values across the collection are also diverse, allowing us to
encompass a large range of different scenarios in our study. Lastly, while the distribution of
the datasets in MAR, MCAR, slef-masked MNAR and logistic MNAR is rather uniform, we
have generated less datasets in the MNAR with quantile censorship setting for two reasons:
due to the difficulty of the task; and to ensure realistic scenarios in our collection.

4.4.3 Benchmark and Evaluation Criteria

We use the 384 generated datasets to benchmark existing state-of-the-art approaches to
handle missing values in supervised learning. In addition to prediction performances, we
measure 8 additional criteria to assess their reliability within healthcare applications.

4.4.3.1 Methods

We evaluate 5 different state-of-the-art models taken from each category of approaches
identified in Section 4.3. In particular, we evaluate the following methods.

Mean impute-then-regress. The missing values are imputed by the mean of each
feature. Predictions are made using gradient boosted trees, taking as input the imputed data
concatenated with the missing patterns mask M . While imputation by the mean is frowned
upon in statistical practice, Josse et al. (2019); Le Morvan et al. (2021) have demonstrated
that in the supervised setting, powerful enough models (such as boosted trees) trained on
datasets imputed by the mean can achieve good prediction performances. Following the
protocol presented by the authors, in our experiments we impute the test sets using the
constants learned on the training data.

MICE impute-then-regress. The missing values are first imputed using the conditional
imputation algorithm MICE. We implement this approach using the IterativeImputer
function of scikit-learn (Pedregosa et al., 2011), that uses linear models to learn the
impute the missing values. We impute the test sets using the model learned on the training
data. Predictions are made using gradient boosted trees, taking as input the imputed data
concatenated with the missing patterns mask M .

KNN impute-then-regress. The missing values are first imputed using conditional KNN
imputation. The implementation is done using the KNNImputer of scikit-learn. As for
the other impute-then-regress methods, we impute the test sets using the model learned on
the training data. Predictions are made using gradient boosted trees, taking as input the
imputed data concatenated with the missing patterns mask M .

supMIWAE. The imputation and prediction functions are jointly learned using the sup-
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MIWAE model (Ipsen et al., 2022). For datasets where data is missing under a MAR or
MCAR assumption, we use a MIWAE imputer (Mattei and Frellsen, 2019), following the
original paper. For datasets in MNAR scenarios, we use a not-MIWAE imputer (Ipsen et al.,
2021). Having encountered some issues with the code that authors have made available, we
have implemented our version in Pytorch. We use the same hyperparameters as the original
implementation for the depth and width of the imputer and predictor. We train the imputer
for 200 epochs, and the predictor for 200, and select the best epoch. For both cases we use
a batch size of 256, and an Adam optimizer with an initial learning rate set at 1e−3.

Gradient-boosted regression trees (GBRT). We use a decision tree-based approach to
handle missing data without imputation. We use the HistGradientBoostingRegressor of
scikit-learn to implement histogram-based gradient boosting (Friedman, 2001). In this
implementation, the missing values are handled using a MIA approach.

The implementation choices made for the impute-then-regress baselines can be justified as
follows: (1) we have chosen to use gradient boosted trees for the prediction tasks, as they
have been shown to achieve state-of-the-art performances on tabular datasets Grinsztajn
et al. (2022); Shwartz-Ziv and Armon (2022); (2) Josse et al. (2019); Sperrin et al. (2020)
have shown that adding the mask M as input to the classifier helps the prediction task, by
providing information discriminating between values that are observed and values that are
imputed; (3) lastly, we impute the test sets using the models learned on the training data
(rather than the whole dataset) to avoid data leakage, and ensure that we report accurate
performances.

Little to no pre-processing is applied to the datasets before benchmarking the models. For
each dataset, categorical features are transformed into a numerical representation. The
features are standardized to the same range, defined on the training set and applied to the
test set before imputation (as suggested by Karpievitch et al. (2012)). No feature selection
is performed. A 80-20 ratio is used to split the data into training and testing sets. Each
model is evaluated on 5 random repetitions for each dataset. We consider the averages over
5 repetitions to report the performances

4.4.3.2 Evaluation Criteria

Rather than focusing on prediction performances only, we compute 10 additional criteria to
assess the quality of imputation of the models (when applicable), their impact on features
interactions, and interpretability. First, we compare the prediction performances of models
trained on imputed data, with those trained on the complete datasets (14 original UCI
datasets). We then compare the feature distributions of datasets imputed with each model
to those of the complete data, computing various robust discrepancy scores between the
complete dataset and the imputed dataset. Shadbahr et al. (2023) have highlighted three
distinct classes of discrepancy scores used to assess imputation quality: (1) sample-wise
scores, computing the error between imputed values and the corresponding ground truths,
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widely used in much of the literature; (2) feature-wise distribution discrepancy scores, that
quantify the reconstruction quality of individual features distributions. Thurow et al. (2021);
Shadbahr et al. (2023) analyze many of these scores in more detail in their works; and
lastly (3) dataset-wise discrepancy scores that assess the differences between the whole
distributions of the complete and imputed datasets. We compute scores from all three
categories in our analysis. Additionally, we compare the features interactions between the
complete and imputed datasets to check for the presence of new spurious relations. Lastly,
we compare the feature importance of models trained on complete datasets with those of
models trained on imputed ones.

Relative prediction performances. We compute the relative prediction score of each
method on each dataset, defined as:

∆score = score(fref (X), Y )− score(f(X̃), Y ), (4.5)

where X denotes the complete data, fref denotes the model used to compute the reference
performances on the complete dataset, f denotes the considered model to handle missing
values, and X̃ denotes the imputed dataset. In all our experiments, we use gradient boosted
trees for fref . As score, we select the accuracy for classification tasks, and the MSE
for regression tasks. For the particular case of the GBRT baselines that do not rely on
imputation, the relative score is given by ∆score = score(fref (X), Y )− score(f(Xobs), Y ).

Imputation MSE. To measure imputation quality, we first compute the average sample-
wise imputation error for each imputed dataset, defined as:

MSEimp =
1

d

1

n

d∑
j=1

n∑
i=1

(Xi,j − X̃i,j)
2, (4.6)

where X̃ denotes the imputed dataset, and the indices i, j refer to the j-th feature of the
i-th sample of the dataset.

Goodness-of-fit tests. We perform univariate statistical tests between the features of
the complete data, and the imputed features. Specifically, we test goodness-of-fit between
each Xj and X̃j using two-sample Kolmogorov-Smirnov tests on numerical features, and
χ2 tests on categorical ones. For each method, on each dataset, we report the proportion
of variables for which the null hypothesis (i.e. that the two samples come from the same
distribution) is not rejected, defined as:

tratio =
1

d

d∑
j=1

1H0:Xj ,X̃j∼D (4.7)
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where D corresponds to a common distribution that Xj and X̃j should follow, and 1H0

denotes the acceptance of this hypothesis.

Average energy distance. We then compute a first feature-wise discrepancy measure:
the average energy distance, defined as

Edist =
1

d

d∑
j=1

D(Pj , P̃j), (4.8)

where Pj and P̃j are the univariate cumulative distribution functions of features Xj and
X̃j respectively, and D(P, P̃ ) is the energy distance, that characterizes the equality of the
distributions. For two random vectors X and Y with cumulative distributions F and G, the
energy distance between the two distributions F and G is given by

D(F,G) = (2E|X − Y | − E|X −X ′| − E|Y − Y ′|)1/2, (4.9)

where E denotes the expected value, and | · | is the length of a vector. A low energy distance
indicates a high similarity in the compared distributions.

Average W1-Wasserstein. Then, we compute a second feature-wise metric: the average
1d W1-Wasserstein distance, defined as

W1dist =
1

d

d∑
j=1

W1(Pj , P̃j), (4.10)

where Pj and P̃j are the univariate probability distributions of features Xj and X̃j respec-
tively, and where W1(P, P̃ ) is the W1-Wasserstein metric. For two probability distributions
P and Q, the Wp-Wasserstein distance is defined as

Wp(P,Q) = inf
γ∈Γ(P,Q)

(E(x,y)∼γd(x, y)
p)1/p, (4.11)

where Γ(P,Q) is the set of all joint distributions whose marginals are P and Q. Again, a
low W1-Wasserstein distance indicates a high similarity in the compared distributions.

Earth-mover’s distance. We compute a final metric for evaluating the imputation
quality: the d-dimensional W1-Wasserstein distance between X and X̃ (see Eq 4.11), also
known as the earth mover’s distance. This metric is a dataset-wise measure, and as such
compares the whole distributions of the complete datasets to the whole distributions of the
imputed datasets.
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Remark 4.4.1. As the GBRT does not rely on imputation, all imputation-related metrics
described above are computed to compare X with Xobs directly (instead of X̃) in this case.
As such, we are evaluating whether handling the missing values natively allows to preserve
a data distribution that is close to the reel underlying distribution, rather than assessing
the quality of imputation.

Frobenius norm. In addition to imputation quality, we want to assess whether new
spurious relationships have been introduced in the datasets. To do so, we compare the
features correlation on the complete datasets, to the ones computed on the imputed datasets.
We compute the Frobenius norm between the two matrices, given by

||(C − C̃)||f =

√∑
i,j

|ci,j − c̃i,j |2, (4.12)

where C and C̃ correspond to the correlation matrices computed on the complete and
imputed datasets respectively. A high Frobenius norm indicates a large difference in the
compared matrices.

Correlation matix distance (CMD). We additionally compute the correlation matrix
distance described in Herdin et al. (2005), defined as

dcorr(C, C̃) = 1− tr(C · C̃)

||C||f ||C̃||f
∈ [0, 1], (4.13)

where || · ||f denotes the Frobenius norm. This metric goes to zero if the compared correlation
matrices are equal up to a scaling factor, and goes to one if they differ completely.

Rank-biased overlap score (RBO). Then, we compare the feature importance of
models trained on complete datasets against models trained on imputed ones to assess the
reliability of the interpretability of state-of-the-art approaches. To do so, we start by using
the SHAP framework (Lundberg, 2017) to derive feature importance rankings: for each
feature of a dataset, SHAP assigns an importance to each individual sample, quantifying
its impact on the model outcome. We define the feature importance vector of a model
RSHAP := (r1, . . . , rd) as the feature-wise averaging of the SHAP values across all the
observations of the dataset, such that:

RSHAP := (r1, . . . , rd) =

(
1

n

n∑
i=1

ci,1, . . . ,
1

n

n∑
i=1

ci,d

)
, (4.14)
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where the ci,j coefficient correspond to the SHAP value associated to the i-th observation of
the j-th feature in a dataset. Ultimately, we evaluate the interpretability of a model f by
comparing its feature importance vector to the one of the reference models fref computed
on the complete data, using the rank-biased overlap score (Webber et al., 2010). The RBO
is a similarity measure between incomplete, top-weighted and indefinite rankings, as such it
is perfectly adapted to compare feature importance rankings. For two rankings Rref and R,
it is defined as:

RBO(Rref , R) = (1− p)
∞∑

dp=0

pdp−1 ·Adp , (4.15)

where dp corresponds to the depth of the ranking to be examined, Adp = Xdp/dp is the
agreement between Rref and R, Xdp = |Rref :dp ∩ R:dp | is the size of the overlap between
Rref and R up to depth dp, and p ∈ [0, 1] is a parameter used to determine the contribution
of the top dp ranks to the final value of the RBO. In our experiments we set dp = d to
ensure that the whole feature importance rankings are evaluated, and p = 0.4 such that the
first 40% of features have more weight in the final RBO. A RBO value of zero indicates the
lists are completely different, and a RBO of one means completely identical.

Computation time. Lastly, and less critically, we consider the computational time of
each approach, consisting of the time required to train the imputer; impute the missing
values; and train the downstream prediction model.

4.4.4 Analysis of the Results and Model Selection

As expressed in the introduction of Section 4.4, in this study we aim to assess whether
state-of-the-art models are able to generate reliable imputations; whether these models
are able to capture and preserve the interactions between features of the underlying true
distributions; and whether the interpretations that these models provide are reliable. We
are particularly interested in understanding if the characteristics of a dataset impact the
reliability of these methods. As such, after evaluating 5 different state-of-the-art models on
384 varied datasets using 10 distinct evalutation criteria, we analyze the outcomes of the
benchmark to identify any insights into the questions.

4.4.4.1 Exploratory Analysis of the Results

ANOVA analysis. One of the key aims of our study is to identify and quantify the
influence of different dataset characteristics on the different facets of the performance of
state-of-the-art models. As a first step, we perform multiple one-way analysis of variance
(ANOVA) for each of the obtained 10 evaluation criteria, across all methods, to determine
the impact of each fingerprint described in Section 4.4.2.3 on it. The results of the analysis,
reported in Figure 4.3, highlight several strong – yet unsurprising – influential factors: the
prediction performances are strongly impacted by the amounts of missing values in the
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Figure 4.3: One-way ANOVA analyses for the 10 evaluation criteria computed on our
benchmark. The results are reported across all models combined. Each row corresponds
to a response variable of separate ANOVA analyses (i.e. the criteria being analyzed), and
columns correspond to the single explanatory variables, or impact factors being tested (i.e.
fingerprints). Factors not significant at the 5% level are denoted in white.

dataset; the feature-wise distributions metrics – especially the average energy distance and
W1-Wasserstein distance – are strongly impacted by the mechanism generating missing
values in the data; the metrics related to feature interaction, as well as interpretability,
are greatly impacted by the amount of feature correlation in the true distributions of the
datasets.

All these outcomes are coherent and in line with research on missing values. First, Shadbahr
et al. (2023) have already highlighted that prediction performances of state-of-the-art models
are most strongly impacted by the amounts of missing values in the datasets. Second,
it is expected that the imputation quality performances are impacted by missing values
mechanisms: in MNAR setting where the missing values are unrelated from the observed
values, reconstructing the real underlying features distributions is not a trivial task. Lastly,
it is natural that the amount of correlation between features in the true distributions of
the data have an impact on the ability of different models to recover these relationships. In
particular, approaches leveraging conditional-imputation are specifically designed to take
advantage of this type of data settings.

Our end-goal is to understand how to choose the most reliable way to handle missing values.
Thus, we build on these observations to explore the performances of each of the 5 models.
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Figure 4.4: Relative prediction performances of the state-of-the-art models with respect
to the missing values mechanism in the datasets. For visualization purposes, only relative
accuracy scores on classification tasks are reported here.

Prediction performances. In Figure 4.4, we show how each state-of-the-art model
performs in terms of relative prediction score. The results are reported across the whole
collection of datasets, with respect to the mechanism generating missing values in each
of the 384 datasets. Overall, there is no clear patterns that strongly sets a model apart,
as most approaches perform rather equivalently. Nonetheless: (1) approaches based on
conditional imputation (i.e. KNN and MICE) appear to yield slightly best prediction
performances, consistently across the collection. In particular, as expected they perform
considerably better than other models in MAR scenarios. Along with mean-impute, they
also perform remarkably well in self-masked MNAR settings. They are, however, less
adapted to the logistic MNAR scenario. (2) They are closely followed by the imputation-free
model (GBRT). However, unlike conditional-imputation approaches, GBRT performs con-
sistently well in all scenarios. (3) In contrast, the impute-and-regress model (supMIWAE)
demonstrate a high variability across the collection – highlighting that the approach is
not adapted for all datasets and tasks. (4) Despite the low amount of variability in the
MNAR with quantile censorship scenarios (due to the small number of datasets in our col-
lection), it appears that MICE-based models generally perform better than other approaches.

Remark 4.4.2. Missing values models occasionally perform better than the reference models
(i.e. negative tails on the boxplots), suggesting that on some tasks the presence of missing
values is informative and helps improve prediction performances.
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(a)

(b) (c)

Figure 4.5: Impact of different data characteristics on the average energy distance achieved
by the models in our benchmark. We report the global distributions of the performances of
each model across the whole collection of datasets (a); the performances of each model with
respect to the missing values mechanism of the datasets (b); and the performances of each
model with respect to the global amount of missing values p in the datasets (c).

Quality of imputation. In Figure 4.5, we show the reliability of imputation (when
applicable) for each state-of-the-art model. Specifically we analyze the performances in
feature-wise distribution reconstruction, using the average energy distance achieved by the
models in our benchmark on each dataset. As highlighted in Figure 4.5(a), GBRT models
perform globally better across the datasets in the collection. Figures 4.5(b) and 4.5(c) also
suggest that GBRT demonstrates a clear advantage in performances with respect to the
missing values mechanisms and the global missing rate p respectively. This superiority is
largely due to the fact that GBRT does not rely on imputation; instead, the distances being
computed reflect the comparison between the true underlying distributions of features and the
observed distributions, rather than imputed ones. This highlights the significant advantage
of inherently handling missing values, as it ensures that downstream analyses and tasks
rely on data that remains closer to the true underlying data structure. Nonetheless, while
methods like MICE and mean-imputation fall notably short in comparison, KNN-imputation
and supMIWAE perform reasonably well too.
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(a)

(b) (c)

Figure 4.6: Impact of different data characteristics on the Frobenius norm. We report the
distributions of the performances of each model with respect to: the amount of correlation
in true data distribution (a); the average missing values rates pm in the datasets (b); and
the missing values mechanisms in the datasets (c).

Features interaction. In Figure 4.6, we analyze how well each model preserves the
feature interactions present in the true data distributions. We analyze the performances
in the Frobenius norm between the correlation matrices of the true data, and the imputed
(or observed) data. Figure 4.6(a) shows that in datasets where a large proportion of
variables exhibit more than 30% correlation with other features, conditional-imputation
models achieve the lowest values of the norm, i.e. minimal difference in feature interaction
between the real and imputed data. This aligns with the nature of these models, which excel
in highly correlated datasets by imputing missing values conditionally on other observed
variables. Figure 4.6(a) demonstrates that GBRT also consistently maintains a low value of
the norm, underscoring again the benefits of natively handling missing values. Figure 4.6(b)
highlights a clear impact of the average proportion of missing values pm in incomplete
variables on feature interaction – suggesting that high levels of missingness may introduce
spurious relationships into the datasets. Finally, Figure 4.6(c) highlights the difficulty of the
logistic MNAR and MNAR with quantile censorship scenarios, where accurately recovering
the original feature interactions in the data becomes nearly impossible.
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(a)

(b) (c)

Figure 4.7: Analysis of the impact of different data characteristics on RBO. We report
the global distributions of the performances of each model across the whole collection of
datasets (a); the distributions of the performances of each model with respect to the amount
of correlation in true data distribution (b); and the performances of each model with respect
to the global amount of missing values p in the datasets (c).

Reliability of the interpretability. Lastly, we analyze in Figure 4.7, the impact of
missing data on the interpretability of each model, using the RBO score computed between
the feature importance vectors of the reference models fref and the models in our benchmark.
Figure 4.7(a) reveals that mean, KNN and MICE achieve the highest overall similarity
scores. This observation is further supported by Figures 4.7(b) and 4.7(c), which show that
conditional-imputation models consistently yield the highest RBO scores when considering
the amount of correlation in the datasets corr30 and the global proportion of missing values
p, respectively. Two hypotheses can explain these results: (1) in healthcare, the presence
of a value itself can carry intrinsic information. In these cases, a good imputation may
enhance interpretability of subsequent prediction models by recovering meaningful missing
values, as noted by Perez-Lebel et al. (2022); (2) inversely, in MAR and MCAR settings,
the presence of missing values is not necessarily informative. This scenario is incidentally
where GBRT, that handles missing values using MIA – and therefore gives importance to
the missingness, is limited and is prone to creating spurious conclusions. As a result, while
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GBRT exhibits reasonable performance across the analyses, they remain inferior to other
approaches. Lastly, supMIWAE shows the lowest performances, suggesting that its jointly
learned imputation compromises the interpretability of the prediction model.

4.4.4.2 Model Selection

Our ultimate goal is to determine the most reliable approach for handling missing values
in health-related datasets. However, the previous analyses reveal that no single model
consistently outperforms all others across all the criteria we have defined. More so, the
results emphasize how the choice of model is very much dependent on the characteristics of
the dataset and the trade-offs between accuracy, bias, and interpretability. To further our
analysis, and identify the importance of different dataset characteristics on model choice,
we propose an approach to determine the best model on each of the 384 datasets of our
collection.

Specifically, we propose to use a linear combination of the ranking of each model on each
criteria. On each dataset of the collection, the procedure is as follows:

1. We rank the performances of the 5 considered models on each of the 10 criteria
separately, such that for each model i we obtain a vector of 10 rank positions called
Ri := (r1, . . . , r10), where rk ∈ {1, 5}.

2. For each model i, we then compute the average ranking r̄i across the 10 criteria, such
that r̄i =

∑
rk∈Ri

wk · rk, where w is a vector of weights such that wk ∈ [0, 1].

3. Finally, we rank the resulting average model rankings r̄i among them to determine
the model that ensures the best trade-off between accuracy, bias, and interpretability.

Figure 4.8 compares the model selections obtained with 4 different sets of weights w (defined
according to the following order of criteria: ∆Score, Edist, W1dist , EMDdist, tratio, MSEimp,
Frob, dcorr, RBO and time).

Scenario 1: in Figure 4.8(a) the model selection considers the prediction performance as sole
criteria. Scenario 2: in Figure 4.8(b) the linear combination of performances corresponds
to an unweighted average of the 10 criteria we have defined. As 5 of these criteria are related
to imputation quality, GBRT shows an unsurprising advantage over other models. We
have demonstrated in previous experiments the benefits of learning prediction tasks on the
obeserved data Xobs directly, rather than imputed datasets. Scenario 3: in Figure 4.8(c)
the weights are re-scaled such that prediction performances, imputation quality, feature
interaction and interpretability are equally important in the model selection (whereas the
weight associated to computational time is reduced). Under this scenario, model selection is
more nuanced. No single model outperforms all other across the collection of datasets, and
the best choices are divided between GBRT and conditional imputation. Scenario 4: lastly,
in Figure 4.8(d) the weights are re-scaled such that imputation quality, feature interaction
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(a) (b) (c) (d)

w=(1,.3,.3,.3,.1,
.1,.5,.5,1.,.5)

w=(1.,1.,1.,1.,1.,
1.,1.,1.,1.,1.)

w=(1.,.5,.5,.5,.2,
.2,1.,1.,2..5)

w=(1.,0.,0.,0.,0.,
0.,0.,0.,0.,0.)

Figure 4.8: Model selection across the collection of 384 datasets, performed with 4 different
sets of weights. The selection is performed using: prediction performances solely (a); an
unweighted average of the 10 evaluation criteria (b); weights giving equal importance to
prediction performances, imputation quality, feature interaction and interpretability (c);
and weights giving twice more importance to imputation quality, feature interaction and
interpretability than prediction performances (d).

and interpretability are assigned twice the importance of prediction performances. Again,
in this scenario the process of model selection is more refined, highlighting that almost all
methods show advantages on certain datasets.

The considerable variation in the best model choices across the four scenarios emphasizes
that the selection of a model should not rely solely on prediction performance, as is often
the case in studies evaluating imputation methods (Jäger et al., 2021; Perez-Lebel et al.,
2022). Instead, it is crucial to ensure that models are reliable in terms of imputation quality
and interpretability. Finding a good trade-off may sometimes require giving less importance
to prediction performance or, at the very least, avoiding model selection based exclusively
on it.

4.4.5 Decision tree-based Approach for Model Choice

In the last part of our study, we investigate how to choose the most reliable way to handle
missing values, given the characteristics of a dataset. We propose a tree-based approach to
analyze the results of our benchmark and extract decision rules for model choice. We aim
to ultimately use these rules to help us derive a set of guidelines for learning with missing
data in health-related datasets. We use the fingerprints extracted in Section 4.4.2.3, and the
results of the model selection processes described in Section 4.4.4.2 to constitute a dataset of
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(a) (b) (c) (d)

Figure 4.9: Performances of the tree based models with the highest accuracy. We report
the class distribution in the target (a); the normalized confusion matrix of the DT (b); the
confusion matrix of the RF (c); and the feature importance rankings extracted from the RF
(d).

fingerprints. This dataset is used for training multiple tree-based models to predict the best
approach to handle missing values, using dataset characteristics as inputs. We consider the
following classification task: predicting the best model choice as identified using the scenario
3 of model selection (see Section 4.4.4.2). Due to their low occurrences, we exclude the
instances where the best model is supMIWAE. Additionally, we regroup the instances where
the best model is KNN or MICE under a single class that we name conditional imputation.
As a result, the tasks is a 3-class classification problem.

We train a random forest (RF) classifier and a decision tree (DT). Our interest in tree-
based models mainly lies in their interpretability properties. Specifically, we aim to extract
feature importance rankings from the trained RF to identify which fingerprints have the
greatest influence on model selection. Additionally, we seek to retrieve interpretable decision
rules from the DT for choosing a model based on its characteristics. Every tree model
is trained and hyper-parametrized using 10-fold cross validation and an 80-20 train-test
split. Additionally, due to the strong imbalance of labels in the task, we over-sample the
training sets using SMOTE to enhance the performances of the trees. We select the models
from the 3 splits that achieve the highest accuracies for further analysis of their properties.
We obtain RF classifiers achieving 81% accuracy, and DTs reaching 72% accuracy. The
lower performances on the DTs are due to the fact that we put the constraint of a maximal
tree depth of 5 to facilitate ulterior interpretations. The obtained DTs can be found in
Appendix C.1. Additional performance metrics, along with the feature importance rankings
extracted from the RF are reported in Figure 4.9.

Preliminary analyses of the trained RF (see Figure 4.9(d)) suggest that key factors in
choosing the most appropriate model for handling missing values include the amount of
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feature correlation corr30 in data, the missing value rates pm, and the features types, i.e. the
proportion of categorical features present in the data. Surprisingly, the feature importance
rankings of the RF also suggest that the missing values mechanisms are less critical in the
choice of model. This can be explained by the fact that all the models evaluated in our
experiments can perform sufficiently well in MNAR settings: no model in our benchmark
shows clear advantage over all other baselines across all datasets. Le Morvan et al. (2021);
Perez-Lebel et al. (2022) have suggested that the practice of adding the missing values
pattern M as input in state-of-the-art approaches can make them robust even to MNAR
scenarios.

Additionally, we draw several conclusions from the analysis of the obtained DTs. (1) In
highly correlated datasets, impute-then-regress approaches using conditional-imputation
provide the most reliable predictions. (2) When the amounts of missing values are high,
the imputation-free approach, i.e. the GBRT, consistently delivers the best (i.e. reliable)
performances. (3) The GBRT model scales well to large datasets. (4) In smaller datasets
with low feature correlation, imputation by the mean makes reliable predictions, and can be
chosen over other approaches. (5) In datasets where the patterns of missing values are few,
imputation by the mean even performs better than other approaches in MNAR scenarios.
These observations highlight once again that there is no one-fits-all model to reliably handle
missing values in health data, and instead, the choice of model is very much specific to the
characteristics of each dataset.

4.5 Guidelines for Handling Missing Values in Health Data

By combining the analyses of the outcomes of our benchmark of 5 state-of-the-art approaches
on 384 datasets (see Section 4.4.4), and the analysis of the properties of the tree models in
Section 4.4.5, we summarize the key findings of our study. Additionally, we propose novel
and clear directives for handling missing values in health-related datasets.

4.5.1 Main Takeaways: a Practical Guide with Flowcharts

Imputation-free methods reduce the introduction of bias in the data. As demon-
strated in Section 4.4.4.1, the imputation-free approach exemplified by the GBRT in our
experiments, minimizes the introduction of bias into the data distributions. Specifically,
in most cases the distributions of the observed unaltered (i.e. not imputed) data Xobs is
closest to the true underlying distribution of X and thus, preserves best the integrity of the
original data. As a result, eliminating the need for imputation ensures that the data reflects
the underlying patterns more accurately. In contrast, all imputation-methods introduce
some kind of distortion, particularly when the imputation method does not fully capture
the complexity of the missing data, e.g. in MNAR scenarios.
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Conditional imputation may help interpretability of downstream predictors. As
highlighted in Section 4.4.4.1, conditional-imputation methods are particularly effective in
highly correlated datasets. By definition, these models leverage on the interactions between
variables to estimate missing values while accounting for the dependencies between features.
As such, they may help recover the true state of feature correlations, in turn improving the
interpretability of downstream prediction models. In contrast, GBRT models handle missing
values using MIA, i.e. using the missing values to compute the splitting criterion itself in
the decision tree. While this enhances predictive performance and can be particularly useful
in MNAR scenarios, it can also lead to creating spurious conclusions in MAR and MCAR
settings by overemphasizing the importance of the presence of missing values in the model’s
outcome.

Reliability is a trade-off between accuracy, bias and interpretability. Overall,
GBRT and approaches relying on conditional imputation yield the best predictive perfor-
mance. However, prediction accuracy alone is not a marker of reliability – as each approach
has its own drawbacks. A key takeaway from this study, emphasized in Section 4.4.4.2, is that
model selection in health applications should not be based solely on prediction performance.
It is equally important to ensure that models also provide high-quality imputations and
maintain reliable interpretability properties. As such, achieving the right balance may
sometimes mean giving less importance to performance. Ultimately, ensuring that a model
is reliable involves a trade-off between accuracy, bias, and interpretability.

Choosing a reliable model is dependent on dataset characteristics. In Section 4.4.5,
we have identified several key factors influencing model choice. These include the amount of
feature correlation in the data, missing values rates and variable types, among others. As
such, our most important recommendation is to first analyze the characteristics of a dataset
to select the most appropriate model, tailored to the application of interest.

More so, our analyses have provided valuable insights that allow us to derive clear directives
for choosing a reliable method for handling missing values according to a specific datasets
characteristics. These guidelines are summarized in a flowchart, illustrated in Figure 4.10.
We have designed these to be general, and usable for any application. For this reason, we
focus on quantifiable, known characteristics that can be computed for any dataset. As such,
we do not make the choice of model dependent on the exact knowledge of the underlying
mechanisms behind the missing values in a dataset, that are often hard to determine in
real-world settings. Our conclusions not only align with existing research and theoretical
properties of the models considered, but they also include novel answers supported by
thorough experimental validation.

75



Is the data 
highly 

correlated? 
(corr30>20%)

Are values 
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many 
features? 
(dm>65%)

Is the 
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(n<2,000)
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numerical? 
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features?
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True

False

Is the 
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large?

(n>10,000) 

Is the 
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(d>100) 

Boosted trees 
with MIA

Figure 4.10: Guidelines for handling missing values in healthcare. This selection process
ensures a trade-off between prediction performances, minimizing imputation bias, and
preserving reliable interpretability. The choice is dependent on measurable quantities only,
and can be applied to any dataset.
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4.5.2 Illustration on Healthcare Datasets

To further illustrate the benefits of choosing a model based on its reliability rather than
prediction performances, we evaluate state-of-the-art models on 7 real-life problems with
missing values. In these tasks, the true data X is not known, and instead only Xobs is
available.

Datasets. We consider 7 classification problems on 3 different databases. (1) MIMIC
III (Johnson et al., 2016): the dataset, developed by the MIT Lab for Computational
Physiology, includes demographics, vital signs, laboratory tests, and more features associated
with about 60,000 intensive care unit (ICU) admissions. We focus on 2 tasks. M1: predicting
30-days mortality in patients with sepsis, as described in Hou et al. (2020); and M2:
predicting in-hospital mortality in patients with heart failure, as described in Li et al. (2021).
In both tasks, we use the same features and preprocessing as the authors. (2) Breast
Cancer (Razavi et al., 2018): the dataset is derived from an oncology database collected
at Memorial Sloan Kettering Cancer Center. It contains genomic profiling tumor samples
with detailed clinical variables and outcomes for each patient and the therapy administrated
over the time of treatment. We focus on the task of classifying types of breast cancer (BC)
using features described in Shadbahr et al. (2023). (3) UK Biobank (Sudlow et al., 2015):
the dataset is a prospective epidemiology cohort with biomedical measurement recorded on
500,000 participants. We define 4 tasks on this dataset. UKB1: diagnosing breast cancer
using the features described in Läll et al. (2019); UKB 2: diagnosing cardiovascular diseases
from diverse genetic biomarkers using the features and preprocessing described in Widen
et al. (2021); UKB3: diagnosing diabetes using the same subset; and UKB4: diagnosing
liver problems using the same features. To ensure a robust analysis, datasets with strong
class imbalance in the labels are under-sampled. The characteristics after preprocessing of
each of the datasets are visualized in Figure 4.11.

Baselines. In addition to the 5 state-of-the-art baselines considered in our previous
experiments, we evaluate MIDA imputation (Gondara and Wang, 2018). MIDA is a
multiple imputation model based on deep denoising autoencoders, falling in the category of
impute-then-regress approaches. We also evaluate an impute-and-regress method proposed
by Le Morvan et al. (2021) that uses a NeuMiss block (Le Morvan et al., 2020a) for
imputation, chained with an MLP for prediction.

Results. Table 4.1 reports the prediction performances in terms of area under curve (AUC)
for the 7 models on the 7 real-life problems we have defined. The results are averaged over
10 random cross validation loops. For each dataset, we compare the best model in terms of
AUC with the expected most reliable model, according to our guidelines. Two insights can
be drawn from Table 4.1. (1) The divergence between the models with highest AUC scores
and the models recommended through the guidelines (i.e. M1, M2, UKB2, UKB4) highlights
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Figure 4.11: Characteristics of the 7 datasets defined on the MIMIC III, Breast Cancer and
UK Biobank databases. We report the feature types (a); the amount of feature correlation
(b); the sizes (c); the missing values rates per variable (d); and the proportion of variables
with missing values and number of distinct missing values patterns M (e) for each dataset.

Table 4.1: Test AUC (mean±std) over 10 random repetitions on the Breast Cancer, MIMIC
III and UK Biobank datasets. Bold values denote the best prediction performances. Starred∗

values denote performances that significantly outperform the mean-imputation baseline.
Values highlighted in blue denote the most reliable performances according to our guidelines.

M1 M2 BC UKB1 UKB2 UKB3 UKB4
Imp.-then-reg.

Mean 79.7±2.1 72.1±4.6 64.9±4.5 78.4±0.5 76.3±0.5 86.0±0.3 64.2±1.5
KNN 79.6±2.7 72.2±3.7 64.2±4.6 62.3±0.7 76.1±0.5 85.4±0.3 63.1±1.5
MICE 79.6±1.9 73.4±4.2* 67.6±3.3* 55.8±11.8 76.5±0.4 86.0±0.3 63.0±1.4
MIDA 79.9±2.1 72.0±4.0 66.1±2.4* 66.1±12.0 76.1±0.4 85.6±0.4 61.6±1.5

Imp.-and-reg.
NeuMiss 75.4±2.5 73.5±4.4* 64.0±3.2 51.5±1.0 71.9±1.0 82.5±0.7 57.1±3.2

supMIWAE 76.8±3.0 71.6±4.0 66.7±5.7* 76.1±4.5 73.1±2.1 83.8±1.1 58.5±1.2
Imp.-free

GBRT 79.9±2.3 75.2±5.2* 65.7±3.1* 78.4±0.5 76.3±0.3 86.2±0.3 62.9±1.3
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again that good prediction performances do not necessarily imply reliable predictions. (2)
On several tasks (e.g. M1, UKB2, UKB3), and many real-world datasets, there is little
to no significant difference in the prediction performances of various models. This lack of
distinction makes the usual model selection process all the more challenging, as there is no
clear criterion left to guide the choice. In such cases, focusing on the reliability of the models
rather than solely on performance metrics provides a more informed approach. Prioritizing
reliability ensures that the selected model carries minimal bias and remains interpretable,
offering a more conscious alternative to purely performance-driven decision-making.

4.6 Application to StressID

As a reminder, StressID is a multimodal dataset comprising five distinct modalities. However
some are missing for certain participants. In Chapter 3, we have developed multimodal
models employing feature-level and decision-level fusion, that integrate handcrafted and
DL-based features in the form of a tabular dataset. As a result, in our applications, missing
modalities translate to missing values within this tabular representation. Previously, we
have opted to handle missing entries using list-wise deletion. However, this approach is
highly restrictive, particularly in scenarios with limited data, and can be counter-intuitive
as it excludes potentially valuable information rather than leveraging all available data.
Therefore, we are interested in assessing whether state-of-the-art approaches for handling
missing values can be leveraged to enhance the performances of the feature-level fusion
multimodal models previously used for the analysis of StressID.

Preprocessing and fingerprint extraction. Before evaluating the 7 models defined in
Section 4.5.2, we apply feature selection to the dataset. Precisely, we use univariate ANOVA
tests to determine the 20 features with the highest impact on the outcome for each modality.
After fusion, we obtain a tabular dataset of size n = 711 and d = 100, where values are
missing on 60% of the features, with an average missing rate per variable with missing
values pm = 20%, and a global missing rate p = 12.5%. The dataset contains numerical
features solely, and 14% of the variables have an absolute correlation of 20% or more with
other variables.

Results. Table 4.2 reports the performances on StressID, of each state-of-the-art model
for handling missing values. They are compared to the reference feature-fusion and decision-
fusion multimodal baselines obtained in Chapter 3, where missing values have been handled
using list-wise deletion. Several conclusions can be drawn from the results. (1) Nearly all
seven considered models improve the performances of the two multimodal models using
list-wise deletion, particularly in terms of accuracy. (2) Since the models evaluated in
this chapter employ feature-level fusion, the most relevant comparison is with the previous
multimodal model that also used feature-level fusion. In this case, performance improves
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Table 4.2: Test F1-scores and accuracies (mean ± std) of state-of-the-art methods for the
classification of stress. Bold values denote the best prediction performances. Starred∗

values denote performances that significantly outperform the reference feature-level fusion
model. Values highlighted in blue denote the most reliable performances according to our
guidelines.

2-class
#tasks F1-score (↑) Accuracy (↑)

Multimodal (ref)
Feature fusion 355 66.4 ± 4.3 61.2 ± 3.7
Decision fusion 355 72.9 ± 4.8 65.2 ± 4.9

Impute-then-regress
Mean 711 74.8±2.1* 73.7±2.7*
KNN 711 73.7±3.2* 72.8±2.9*
MICE 711 73.8±5.5* 73.4±5.5*
MIDA 711 74.3±3.1* 73.7±2.7*

Impute-and-regress
NeuMiss 711 68.4±5.1* 58.0±4.7

supMIWAE 711 74.8±4.0* 73.8±3.9*
Imputation-free

GBRT 711 73.9±2.8* 73.2±2.8*

significantly, highlighting the importance of properly handling missing values and ensuring
stress identification models are robust to this challenge. (3) Lastly, according to our
guidelines, the model that guarantees the best trade-off between prediction performance,
bias reduction, and interpretability is the one based on mean imputation. While it does not
achieve the highest accuracy score on the binary classification of stress, its F1-score and
accuracy remain significantly better than the reference multimodal model using feature-
fusion, demonstrating that missing values can be managed reliably without sacrificing
predictive performance.

4.7 Discussion

In this chapter, we have studied the rich existing literature on missing values in tabular
datasets. We have designed a framework specifically tailored to evaluating the reliability of
state-of-the-art methods in health applications. We have benchmarked 5 approaches from 3
different categories of methods on 384 datasets – using 10 evaluation criteria focusing on
aspects like imputation quality, impact on feature interaction and impact on interpretability
of downstream predictors. We have extensively analyzed its outcomes and have investigated
how the characteristics of a dataset can impact the reliability of these different models –
leveraging on tree-based classifiers.
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Several aspects of our study could be improved in further analyses. (1) Most datasets used
for evaluation are classification tasks. Including more regression tasks would ensure a more
comprehensive analysis. Additionally, while the largest dataset considered contains 70,000
samples, many are on a smaller scale; larger datasets would provide better insights into
scalability and performance. (2) Our benchmarking includes five different approaches from
three different categories. The current set-up involves training each model on 384 datasets,
using 5 fold cross validation each. Due to the computational costs of an analysis of this scale,
we have not evaluated any multiple-imputation approach, although Perez-Lebel et al. (2022)
have illustrated their competitiveness in their work. (3) Model selection in the evaluation of
the benchmark relies on a weighted average of the 10 criteria, using deterministic weights.
Developing an automated method to assign weights based on the importance of each criterion
would be a valuable improvement. (4) The tree models designed to derive guidelines could
be enhanced to achieve higher accuracy. Their current performances are limited by their
reliance on highly aggregated input features (i.e. fingerprints), which may lack the granularity
needed for more accurate predictions. Addressing this issue by incorporating more detailed
characteristics in the fingerprints could help.

Nonetheless, the obtained results have provided valuable insights into the reliability of
state-of-the-art methods. As a result, we have derived a set of clear guidelines for choosing
the most reliable approach for dealing with incomplete entries, given a specific dataset.
We have identified that key factors include the amount of feature correlation in the data,
missing value rates, and datasets sizes. Surprisingly, we have also found that missing value
mechanisms are less critical in model choice, as most approaches perform equivalently in our
study (notably due to the practice of using the missing values pattern M as input to the
downstream predictors, as highlighted by many studies (Josse et al., 2019; Le Morvan et al.,
2021; Perez-Lebel et al., 2022)). Additionally, we found that imputation-free and conditional
imputation-based approaches achieve comparable prediction performances. However, on one
hand the imputation-free approach introduces the least bias in the datasets by far, as it
avoids imputation entirely and instead processes unaltered observed data; on the other hand,
the boosted-tree approach (GBRT) we have evaluated significantly alters interpretability,
whereas in contrast, conditional imputation methods excel in highly correlated datasets –
even helping recover the interpretability of models trained on complete data. Still, relying on
imputed values for interpretation remains problematic and should be approached cautiously.
Ultimately, the most important conclusion of this analysis is that no single method is
superior to others across all aspects, making the choice dependent on dataset characteristics
and trade-offs between accuracy, bias, and interpretability – and therefore underlining
the necessity of having clear directives to help choose the most reliable method. Even
more so, we have shown that focusing on the reliability of the models rather than solely
on performance metrics offers an informed approach when there is little to no significant
difference in the prediction performances of various models. Using the derived guidelines, we
have also evaluated state-of-the-art models on StressID, demonstrating that they can be
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leveraged to ensure the robustness and reliability of baseline models for stress identification.

Our analyses have highlighted the considerable advantages of avoiding imputation and
training models directly on the observed data Xobs: the dataset remains close to the true
distribution X, and preserves original feature correlations. Building on this observation,
in Chapter 5 we propose to leverage these benefits. We also address the interpretability
challenges of GBRTs by investigating how to ensure that interpretations rely on observed
data solely, avoiding biases from missing or imputed values. By doing so, we aim to bridge
a critical gap in the current state-of-the-art and offer a more reliable and robust approach
that aligns with key criteria for healthcare applications, where trustworthiness is critical.
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Chapter 5

PicMi: Imputation-free Supervised
Learning in the Presence of Missing
Values in Health Data
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Abstract. In Chapter 4 we have identified that robustness to high missing rates,
and reliability of imputations and interpretations are key aspects in ensuring
trustworthiness of AI models handling missing values in health-related data.
However, currently no available method meets all of these criteria. In this
chapter, we introduce PicMi, a novel model specifically designed to address this
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issue. As it does not rely on imputation; is agnostic to the different missing
value mechanisms; and is locally interpretable, it is equipped to meet the all the
demands of developing robust and reliable healthcare applications.

5.1 Introduction

As highlighted in Chapter 4, supervised learning with missing values faces additional
significant challenges specific to healthcare applications. Aspects such as robustness of the
models to different missing values scenarios, and reliability of imputation and interpretability
mechanisms are crucial factors to consider, for several reasons. (1) In practice the mechanisms
behind missing values are not always known, and the misuse of models designed for specific
data settings can result in poor imputations and predictions. (2) Imputation can introduce
significant bias in data distributions, and subsequent supervised models. We further illustrate
this claim in Figure 5.1, that depicts distributions of multiple features from the UCI Heart
Disease dataset (Janosi et al., 1989). It compares the features imputed with different methods
to the initial distribution without missing values, and the observed distribution (i.e. missing
values, no imputation) under several missing values settings. In all cases, the imputed
distributions differ strongly from the original ones. This underlines the difficulty of imputing
values accurately, and the potential reliance on inaccurate data in ensuing predictors. In
contrast, the observed distributions remain the most similar to the original ones, highlighting
the advantages of imputation-free models that are able to avoid introducing additional bias
in subsequent prediction tasks. (3) Perez-Lebel et al. (2022) have shown that even features
with high amounts of missing values have important impacts on the outcomes of models.
Yet, poorly imputed data can compromise the interpretability of subsequent classifiers. We
illustrate this limitation in Figure 5.2. We compare the feature importance of random forests
(RF) trained on the complete Heart Disease dataset (and averaged over 10 repetitions on
the same split), to those of RFs trained on data imputed by different methods, using the
same missing values scenarios as in Figure 5.1. The rankings of imputed data strongly differ
from the initial one. This highlights how poor imputations can lead to incorrect conclusions
about the impact of a feature on an outcome. This is all the more problematic in medical
applications, where it leads to interpretations relying on values that were not genuinely
recorded (i.e. diagnosing a patient on the basis of a feature that was not recorded for them).
We have shown in Chapter 4 that no state-of-the-model is superior to another across all
these aspects. In particular, we have found that using imputation-free approaches, such as
tree-based ones using MIA to handle missing values ensure learning on the most reliable data
distributions. Yet, their interpretability remains a limitation. However, models designed for
healthcare applications should ideally meet all these criteria to ensure their reliability once
deployed.

For this reason, in this chapter we propose an alternative to state-of-the-art works for
handling missing values, that is specifically designed to address the limitations that can arise
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Figure 5.1: Impact of imputation on feature distribution. The distributions of fully observed
features from the Heart Disease dataset are compared to: no imputation; imputed with
simple imputation (mean); multiple imputation (MICE (Van Buuren, 2018)); and jointly
learned imputation model (supMIWAE (Ipsen et al., 2022)). The missing values settings
correspond to MAR with a global missing rate of r = 0.5, self-masked MNAR with r = 0.5,
and MNAR with quantile censorship with r = 0.5 in the upper half of the data.

MNAR quantiles with q=0.2MAR with p=0.5 Self-masked MNAR with p=0.5

Figure 5.2: Impact of imputation on importance rankings. The ranking of a model trained
on fully observed features is compared to the rankings of models trained with data imputed
using the same models and under the same scenarios as in Figure 5.1.
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in healthcare application. Specifically, we aim to leverage the benefits of avoiding imputation
without compromising the reliability of the predictor’s interpretability. We propose PicMi, a
Permutation-Invariant Conditional model for supervised learning with Missing values. Our
model does not rely on imputation; is agnostic to the different missing value mechanisms;
and is locally interpretable. Specifically, PicMi bypasses the need to impute missing values
by reformulating the problem of predicting inputs with missing values as one of predicting
sets of observations, using a permutation-invariant architecture (Zaheer et al., 2017). This
relaxes the requirement of fixed-dimensional data inputs of traditional models, and results in
a very natural data representation where missing values are simply not represented anymore.
Robustness to different complex missing data mechanisms and high amounts of missing
values is ensured by introducing a conditioning module enabling the learning of a sparse
representation of the input data that integrates the missing patterns as observed variables.
Lastly, the reliability of interpretability is achieved by using self-attention mechanisms that
quantify the individual weights of each observed elements of a set only.

The remainder of this chapter is organized as follows. In Section 5.2, we briefly discuss
related work leveraging on permutation-invariant architectures to handle incomplete data.
In Section 5.3, we describe our permutation-invariant framework, introduce a conditioning
module that makes our model robust to different missing data mechanisms, and describe
how we enable our model to make interpretable predictions using self-attention mechanisms.
We then demonstrate the benefits of our model through experiments on 11 different health-
related databases in Section 5.4. We evaluate PicMi on StressID in Section 5.5. Finally,
we summarize our work and discuss future directions.

5.2 Related Work

We have discussed in Chapter 4 the existing solutions for handling missing values in
supervised learning. We have identified three categories of methods: (1) impute-then-regress
methods, that consist of using an imputation model (Van Buuren and Groothuis-Oudshoorn,
2011; Troyanskaya et al., 2001; Stekhoven and Bühlmann, 2012; Mattei and Frellsen, 2019)
to fill the missing entries of a dataset before training a prediction model on it; (2) impute-
and-regress methods, that propose to jointly learn the imputer and the prediction model to
ensure that they are adapted to one another (Le Morvan et al., 2021; Ipsen et al., 2022); and
(3) imputation-free methods that handle missing values directly in their design (Le Morvan
et al., 2020b; Ayme et al., 2022; Twala et al., 2008). PicMi fits in the latter category. Using
a permutation-invariant architecture, it bypasses the need to impute incomplete datasets,
and instead allows varying sized-inputs.

Multiple works have leveraged on permutation-invariant architectures (Zaheer et al., 2017;
Qi et al., 2017) to handle incomplete datasets. Horn et al. (2020) have used them to handle
irregularly sampled multivariate time series by encoding temporal information as a set of
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observations. Ma et al. (2018a,b) proposed to deal with missing values in MAR and MCAR
settings, using permutation-invariant models for distribution estimation, imputation and
image generation. Leveraging on these works, we propose an approach specifically designed
for supervised learning. Ipsen et al. (2022) have already evaluated a primitive adaptation
of the works of Ma et al. (2018a,b) for prediction tasks. We have developed it further
and propose a model that is robust to all missing data mechanisms thanks to an encoder
conditioned on the missing data patterns; is interpretable and yields improved performances
thanks to the use of attention mechanisms that quantify the importance of each elements of
a set in the final outcome.

5.3 Method

We briefly remind the problem formulation introduced in Chapter 4. We consider n ∈ N
independent input and output pairs {(X1, y1), . . . , (Xn, yn)} where X ∈ Rd and y ∈ R. For
simplicity, we denote a single observation Xi as x in the remainder. An indicator vector
m ∈ {0, 1}d is used to denote the positions of missing values in x such that mj = 1 if and
only if xj is missing. For realizations of m, we denote by obs(m) the indices of the observed
variables of x, and by xobs(m) the vector of observed elements of x, such that xobs(m)j = na
if mj = 1. The observed data xobs(m) can be written as xobs(m) = (1 −m) ⊙ x +m ⊙ na
where ⊙ is the term-by-term product.

Our learning goal is to predict y given xobs(m) and m. We propose to do so by using a
permutation-invariant architecture conditioned on m, taking sets of varying-size as input.
The overview of our model is illustrated in Figure 6.1. In our framework, all elements of
xobs(m) are encoded individually, and a sum of the encodings weighted by self-attentions
weights is passed to a classification network.

5.3.1 Permutation-invariant Architecture

Standard machine learning models are built to handle data inputs of a fixed size. Therefore,
they are not directly applicable when data have missing values, as working with fixed-size
vectors implies that the missing values present in the data need to be replaced by something
else (e.g. 0, mean, more complex imputations). In contrast, we aim to alleviate this
constraint, and intend on learning without the use of any form of imputation – thus, with
entries of different dimension where the missing values are simply not represented. To do so,
we propose to learn a permutation-invariant function f operating on sets. This formulation
relaxes the requirement of fixed-dimensional data. We introduce the following definition to
describe our model.

Definition 5.3.1. (Set representation of an observation with missing values) Let xobs(m) of
instance i be an entry with missing values. Its set representation is given by Si of p = |Si|
observed elements sk, such that Si = {s1, . . . , sp}, where p ≤ d. Each observation sk is
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Figure 5.3: Overview of PicMi. A sample with missing values is reformulated as a set
with observed values only. Each element of the set is individually encoded through φ, that
is conditioned on m via the CNM network. The φ(x) encodings are then summed using
attention-weights produced by the AM network. Finally, the aggregation is processed by ρ
to make predictions.

represented as a tuple (xj , ej) consisting of an observed value xj ∈ R, and a variable ej
describing its identity.

The identity variable ej can be defined in various ways, including as a positional embedding, a
one-hot embedding of the d variables of x, or an unknown embedding to be optimized during
training. Similarly, there are different ways to construct sk, a common choice being the
simple concatenation of xj and ej as proposed by Qi et al. (2017). Def. 5.3.1 is deliberately
left flexible to allow observations of varying dimensions. Thereby, it does not require nor
expects all observations to have the same number of elements and it fully allows observations
with missing values. A d-dimensional vector xobs(m) containing na values can simply be
expressed as a set S of size p ≤ d where the na values are not represented anymore.

We leverage on the findings of Zaheer et al. (2017), who proposed a learning framework
that considers permutation invariant functions operating over sets. The structure of such
functions is characterized as follows.

Theorem 5.3.1. Zaheer et al. (2017) A function f operating on a set X having elements
in a countable universe, is a valid set function if and only if there exist functions φ : R → L
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and ρ : L → R such that
f(X) = ρ

(∑
x∈X

φ(x)
)

In other words, f is invariant to the permutations of its input, if it is sum-decomposable via
a latent space L of dimension dL.

Following Def. 5.3.1 and Theorem 5.3.1, we reformulate our learning goal as one of learning
a conditional set function f of the form

f(xobs(m)|m) = ρ

∑
sk∈S

αkφ(sk|m)

 (5.1)

where S is the set representation of vector xobs(m) of instance i from Def. 5.3.1, sk is a
single element of the instance S, and αk is the attention weight vector associated to sk. The
functions φ : R× {0, 1}d → Rdl and ρ : Rdl → R are implemented as neural networks, and
dl ∈ N+ is the dimension of the latent space.

In practice, a given observation vector with missing values xobs(m) is encoded as a as a set
of unordered measurements S where no new information (e.g. imputed values) is added
(Def. 5.3.1). Each element sk ∈ S is then transformed into a representation φ(sk|m) through
the network φ, conditioned by the indicator vector m denoting the missing elements of x.
The representations φ(sk|m) are weighted by an attention weight vector α, and aggregated
using a permutation invariant operation such as the sum, the mean or the maximum. By
transforming individual elements sk of S at a time, and then aggregating the transformations,
our network encodes sets of varying sizes into a fixed representation

∑
αkφ(sk|m). This

aspect is particularly relevant, as it is what enables handling a dataset with missing values
as an unordered set. Finally, the aggregation is processed through the network ρ, which
allows to predict the target y corresponding to the input xobs(m).

5.3.2 Conditioning Module

As missing values mechanisms are often unknown in real-life datasets, robustness of models
to different data scenarios is crucial for generalization. As suggested by Le Morvan et al.
(2021); Perez-Lebel et al. (2022), and further demonstrated in Chapter 4, adding the missing
values indicator mask m as input is key to making state-of-the-art imputation-based models
robust to MNAR scenarios, as it provides additional information about the patterns of the
underlying missing values mechanisms. However, in our case, this task is not so trivial; due
to the nature of PicMi itself, we cannot concatenate a mask of size d with an input of size
p ≤ d. Instead, we propose to ensure this property by conditioning our model on missing
scenarios. Following the hypothesis of Collier et al. (2020), we consider the missing values
in the input x to be the result of a corruption process m, resulting in the corrupted version
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Figure 5.4: A single conditionned layer of φ. The dot denotes a Hadamard product.

xobs(m) of x. By considering m as an additional observed variable, we are able to integrate
its structure into the learning of a sparse representation of the input data, in the form of a
condition on the φ network, as illustrated in Figure 6.1.

To do so, we introduce a conditional normalization module (CNM) inspired by De Vries
et al. (2017); Perez et al. (2018) that learns to adaptively modulate the activations of φ,
by applying an affine transformation on the network’s intermediate features. Specifically,
the CNM learns arbitrary functions g and h (implemented by neural networks) that, for
each observation of instance i, take the associated condition mi as input, and output
γi,c = g(mi) and βi,c = h(mi) respectively, for each layer c of φ. Concretely, φ is conditioned
by transforming each layer’s activations as follows:

CNM(ai,c|γi,c, βi,c) = γi,c ⊙ ai,c + βi,c

where ai,c corresponds to the activations of the i-th instance at the c-th layer of the network
φ. Figure 5.4 illustrates the conditionning of a single layer.

The encoder network being thus conditioned on m, coerces the model into being agnostic
to the missing values mechanisms, and learning to make predictions whether the data is
MCAR, MAR or MNAR. This aspect also makes the network robust to datasets with large
numbers of missing values patterns.

5.3.3 Attention Module

Understanding how a model makes decisions based on its input is essential in the healthcare
domain. However, in the presence of missing values, general interpretability (i.e. feature
importance) of simpler models can be biased by missing or imputed values, and neural-
network based models ones are not inherently explainable. We propose to address this
limitation by enabling our model to make interpretable predictions using self-attention
mechanisms that quantify the individual weights of each observed elements of a set, in
a similar fashion to Horn et al. (2020). In particular, we introduce an attention module
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(AM) that learns an attention vector α = {α1, . . . , αp} for each observation S of our dataset.
Then, α can be used to compute the reinforced aggregation

∑
αkφ(sk), as illustrated in

Figure 6.1. We define our attention weights following Amekoe et al. (2023). Given an input
set S of size p, the attention vector α is defined as:

α =

∑
dk Q⊙K

dk

where K,Q ∈ Rp×dk , defined respectively as K = [k1, . . . , kp]
T and Q = [q1, . . . , qp]

T , are
projections of the input data into p keys of dimension dk. In practice, K and Q are generated
using two separate MLPs with sigmoid activations, bounding all their elements in [0, 1].

This allows our model to identify the features that contributed the most to its output, but
also take into account potential strong feature interactions, unlike many state-of-the-art
post-hoc interpretability tools (Chen and Guestrin, 2016; Lundberg, 2017), and Horn et al.
(2020) that operate on single data points. In addition, the sum or mean aggregation functions
can be sensitive to extreme values and redundant information in the data, and the influence
of a single observation can decrease as the size of the set increases. Our approach palliates
these limitations, as the weighted aggregation favors the most relevant elements of the
input sets, over irrelevant ones. Ultimately, the AM of PicMi represents a valuable tool for
healthcare applications: while some other approaches for handling missing values can offer
general interpretability, none provide patient-specific interpretations. In contrast, our model
computes the weights of each observed feature in the final diagnosis, at the patient-level.

5.3.4 Theoretical Guarantees and Optimization

The Deep Set model introduced by Zaheer et al. (2017) is a theoretically sound framework,
and the additions we brought to the architecture do not change any of the guarantees of the
original model: (1) conditioning the model has already been covered and discussed by the
authors in their original paper; (2) it is trivial that weighting a sum or average preserves
the permutation-invariant nature of the operation.

The optimization of a set function f that predicts a target variable from the set representation
of the incomplete observation xobs(m) given the missing pattern m, simply accounts to solving
the following optimization problem

f∗ ∈ argmin
f :Ω→R

E[ℓ(y, f(xobs(m)|m))],

where ℓ(·) is a task-specific loss function, and f∗ is the estimated set function operating on
observations with missing values. We optimize a cost function defined as

L(θ1, θ2) = E(S,Y )∈D

[
ℓ
(
Y, ρθ2

(∑
sk∈S

φθ1αθ3k(sk|m)
))]

.
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5.4 Experiments and Results

We first evaluate our method on health datasets, and compare it to multiple state-of-the art
models. We then study the performances of PicMi with respect to missing values mechanisms
and rates to further highlight its robustness to diverse scenarios.

5.4.1 Comparison with State-of-the-Art Methods

Datasets. To evaluate the performances of our models and compare our approach to
current state-of-the-art, we select a large range of health-related datasets with varied
characteristics. We consider classification problems on the 10 following datasets:

1. MIMIC III (Johnson et al., 2016): The dataset, developed by the MIT Lab for
Computational Physiology, includes demographics, vital signs, laboratory tests, and
more features associated with about 60,000 intensive care unit (ICU) admissions. Here,
we use features described in Li et al. (2021) to predict in-hospital mortality in ICU
patients with heart failure. After processing, we obtain a balanced subset of 338
samples and 49 features, with missing values in more than 35% of the variables.

2. Stroke prediction: The dataset consists of 10 variables representing various health
measurements such as BMI, average glucose level or smoking status, and a target
variable corresponding to stroke occurrence. It is publicly available on Kaggle. We
select a balanced subset of 502 samples, containing 10% missing values on BMI
measurements.

3. Pima Indians Diabetes Database (Smith et al., 1988): The dataset originates
from the National Institute of Diabetes, and Digestive and Kidney Diseases. It gathers
8 health measurement to use to diagnose whether or not the patients have diabetes.
We select a balanced subset of 556 samples, containing up to 48% missing values in 5
variables.

4. MIMIC II: The dataset corresponds to 43 variables extracted from MIMIC-II (Gold-
berger et al., 2000), including demographics and clinical observations collected during
patients’ first ICU stays. The outcome is mortality on the 28th day. We select a
balanced subset of 586 samples that contains up to 28% missing values in 16 variables.

5. Breast Cancer (Razavi et al., 2018): the dataset is derived from an oncology dataset
collected at Memorial Sloan Kettering Cancer Center. It contains genomic profiling
tumour samples with detailed clinical variables and outcomes for each patient and
the therapy administrated over the time of treatment. We use the features described
in Shadbahr et al. (2023) in our analyses. We select a balanced subset of 784 samples,
containing missing values in more than 50% of the features.

6. Myocardial Infarction Complications (Golovenkin and Voino-Yasenetsky, 2020):
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The dataset is available in the UCI repository (Dua et al., 2017). It gathers 111
features from 1700 subjects, with missing values in almost all variables.

7. Covid-19: The dataset gathers 20 features corresponding to symptoms, status and
medical history of Covid-19 patients to predict whether they are high risk. It was
provided by the Mexican government and is currently available on Kaggle. We select
a balanced subset of 2120 samples containing up to 56% missing values in 5 features.

8. Support 2: The dataset is available in the UCI repository. It comprises 42 features
from critically ill patients across 5 United States medical centers, used to predict
6-month survival rates based on several physiologic, demographics, and disease severity
information. It consists of 5,826 samples and has missing values in more than 70% of
the variables.

9. Diabetes 130-US Hospitals (Clore and Strack, 2014): The dataset is available in
the UCI repository. It consists of 47 features corresponding to hospital records of
patients diagnosed with diabetes collected at 130 US hospitals. The goal is to predict
the early readmission of the patient. We select a balanced subset of 20,000 samples,
that have missing values in approximately 20% of the features.

10. UK Biobank (Sudlow et al., 2015): The dataset is a prospective epidemiology cohort
with biomedical measurement recorded on 500,000 participants. Here, we use features
described in Läll et al. (2019) to diagnose breast cancer. After processing, we obtain
a dataset of 36,642 and 11 features, with missing values in more than 60% of the
variables.

The characteristics related to the size of the dataset, as well as summary statistics on the
missing values in each datasets after pre-processing are summarized in Table 5.4.1. Figure 5.5
provides a visual representations of these attributes. It is useful to note that most ML
models are not inherently robust to imbalanced datasets. As this is not the focus of our work,
we have simply used a widespread method to remedy this issue: undersampling (Pereira
and Saraiva, 2020).

Baselines. We compare our method against models for supervised learning with missing
values from each category presented in Section 5.2. More specifically, we evaluate:

– Impute-then-regress strategies where mean, MICE (Van Buuren, 2018) imputations
averaged over 20 repetitions, and KNN (Troyanskaya et al., 2001) are performed before
fitting gradient-boosted trees. MICE and KNN imputations are performed using the
IterativeImputer of scikit-learn (Pedregosa et al., 2011).

– Impute-and-regress strategies where imputation and prediction functions are learned
jointly using NeuMiss+MLP (Le Morvan et al., 2021), and supMIWAE (Ipsen et al.,
2022) networks.
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Table 5.1: Description of the datasets. The global proportion of missing values, the
proportion of variables with missing values, the average rate of missing values and the
maximal rate of missing values in those variables are denoted respectively as r, dm, mean
pm and max pm.

n d n/d ratio r (%) dm (%) mean rm (%) max rm (%)
MIMIC III 338 49 7 3.1 36.7 8.4 22.7

Stroke 518 10 52 1.1 10.0 10.2 10.2
Diabetes 556 8 70 12.7 75.0 16.9 49.8
MIMIC II 586 43 13 1.7 39.5 4.2 26.6

Breast Cancer 784 16 49 2.5 56.2 4.5 16.8
Myocardial 1,700 111 15 8.5 99.0 8.5 99.7
Covid-19 2,170 20 108 7.8 25.0 31.5 55.8
Support 2 5,826 42 138 11.7 76.2 13.5 60.1

UCI Diabetes 20,000 47 425 7.8 19.1 40.8 96.8
UK Biobank 32,642 11 2967 9.6 63.6 15.1 65.6

(a) Dataset sizes (b) Missing values amounts

Figure 5.5: Visualization of the characteristics of the datasets used in our experiments.
Dataset sizes (left) as well as average and maximal pm rates per variable with missing data
(right) are reported.
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– An Imputation-free strategy where predictions are made using gradient-boosted
regression trees (GBRT) (Friedman, 2001) that handle missing data directly, with-
out the need for imputation. The method is performed using the HistGradient-
BoostingRegressor of scikit-learn.

As many studies (Josse et al., 2019; Le Morvan et al., 2021; Perez-Lebel et al., 2022) have
highlighted the benefits of using the mask m concatenated as input in impute-then-regress
methods, we have adopted this approach in all baselines.

Results. We report the performances of all models in 2 tables, based on the dimensions d
of the datasets. Table 5.2 reports the average accuracies over 10 repetitions on the datasets
with d < 40, namely the Covid-19, Stroke, Diabetes, Breast Cancer and UK Biobank
datasets Table 5.3 reports the performances on the MIMIC III, MIMIC II, Support 2, UCI
Diabetes and Myocardial datasets. We performed significance tests in all our experiments.
We assess the significance of all models with respect to the baseline (mean impute). The
results highlight the competitiveness of our model. First, they highlight that PicMi performs
particularly well on datasets with high numbers of available samples n: it outperforms all
baselines on the Support2, UCI Diabetes, and the UK Biobank datasets. Second, our model
is also very efficient on datasets with high amounts of missing values: along with MICE and
KNN, it reaches the best accuracy on the Covid-19 dataset, and it outperforms all other
baselines on the Diabetes dataset (in addition to Support2, UCI Diabetes, and the UK
Biobank datasets that also suffer from large missing rates). Third, on the Stroke dataset,
PicMi outperforms every competitor. On this task, the values are missing on the BMI
features, which is an important factor in cardiovascular diseases. The lower performances of
other baselines highlight how imputation of such an important values can be problematic.
Fourth, PicMi yields good performances in cases where the available n/d ratio are greater
than 20 samples per dimension (i.e. Stroke, Diabetes, Breast Cancer, Covid-19, Support2,
UCI Diabetes and UK Biobank). We remark nonetheless, that all neural-network based
models (i.e. ours, NeuMiss and supMIWAE) are less efficient when learning with low
n/d ratios – especially when the total amount of available samples n is small, and are
outperformed by impute-then-regress strategies on those datasets (i.e. MIMIC II and III,
and Myocardial). This suggesting that neural-network based approaches are not the best
choice for high-dimensional datasets with few samples.

The benefits and utility of our method do not only lie in prediction performances. Our
method represents a competitive imputation-free alternative for handling missing data, that
performs as well as, or outperforms state-of-the-art methods, while eliminating the limitations
discussed in Section 5.1. Our proposed approach eliminates the issue of classical imputation-
based approaches introduce non-negligible bias in data distributions, and consequently
impact the interpretability of downstream classifiers.
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Table 5.2: Test accuracies (mean±std) over 10 random repetitions on the Covid-19, Stroke,
Diabetes, Breast Cancer and UK Biobank datasets. Bold values denote the best performances.
Starred values denote models that are significantly better than the baseline.

Stroke Diabetes Breast Cancer Covid-19 UK Biobank
Impute-then-regress

Mean 75.2±2.9 76.4±2.1 64.3±4.4 90.2±0.7 78.3±0.3
MICE 75.3±2.2 75.0±2.0 67.5±3.4* 90.9±0.7 55.8±11.7
KNN 74.3±3.3 76.1±4.5 64.2±4.6 90.6±1.0 62.3±0.7
MIDA 74.1±2.2 72.7±3.3 66.0±2.4* 90.6±1.2 66.1±12.9

Impute-and-regress
NeuMiss 72.4±2.9 75.5±6.2 63.8±3.1 84.7±6.6 51.5±4.4

supMIWAE 75.0±2.5 76.1±2.5 66.6±5.6* 89.8±2.4 76.1±4.4
Imputation-free

GBRT 72.7±4.9 78.2±1.0* 65.6±3.1 90.1±0.2 78.3±0.4
PicMi (ours) 79.1±1.9* 83.2±3.0* 69.4±0.8* 90.9±1.7 79.6±0.7*

Table 5.3: Test accuracies (mean±std) over 10 random repetitions on the MIMIC III,
MIMIC II, Support 2, UCI Diabetes and Myocardial datasets. Bold values denote the best
performances. Starred values denote models that are significantly better than the baseline.
"Not def." means that the algorithm could not be computed, because not defined.

MIMIC III MIMIC II Support 2 UCI Diabetes Myocardial
Impute-then-regress

Mean 72.3±4.8 96.1±1.2 75.7±0.9 61.2±0.2 53.7±7.6
MICE 73.5±4.1 96.2±0.7 75.4±1.3 62.2±0.3 64.0±2.4*
KNN 72.3±3.9 96.1±0.4 75.5±0.8 62.3 ±0.3 67.1±1.1*
MIDA 72.2±4.0 96.4±0.5 75.4±1.7 Not def. Not def.

Impute-and-regress
NeuMiss 73.5±4.6 93.5±1.2 73.7±0.9 65.9±0.1* 57.4±5.7

supMIWAE 71.9±4.1 94.3±0.9 73.8±1.4 65.2±0.5* 64.2±3.4*
Imputation-free

GBRT 75.3±5.1* 98.1±0.5* 76.5±1.1* 65.9±0.3* 67.9±2.1*
PicMi (ours) 62.4±0.8 93.5±1.0 76.5±0.6* 66.4±0.2* 64.8±0.7*
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5.4.2 Robustness to Complex Scenarios

To further highlight the robustness of PicMi, we conduct additionale synthetic experiments.
To illustrate the flexibility of our model, we evaluate it under various complex scenarios.
We randomly generate missing patterns m to introduce missing values on the UCI Heart
Disease dataset (Janosi et al., 1989) that initially contains no missing data. It is composed
of 13 attributes corresponding to various physical and physiological measurements for 303
patients. The task is the prediction of heart disease in patients (i.e. binary classification).

Missing values mechanisms. We consider the following settings for m, as described
in Mayer et al. (2019):

– MAR: A subset of 2 variables that are always observed are randomly selected. The
remaining variables have missing values probabilities given by a logistic model with
random weights taking the observed variables as inputs;

– MNAR self-masked: Variables have missing values probabilities given by logistic
models taking themselves as input. Whether a variable has missing values or not only
depends on itself, hence the denomination of self-masking;

– MNAR with quantile censorship: The missing values are generated on the q-
quantiles. Whether a variable has missing values depends on quantile information,
that is masked.

Our experiments have been designed to cover various missing data mechanisms that are
currently identified in the literature to demonstrate that our model works well in diverse
scenarios. We have evaluated the models under both the mechanisms where state-of-the-art
algorithms perform best (MAR) and more complex mechanisms often overlooked in the
literature (various types of MNAR).

Results. Figure 5.6 reports the average test accuracies over 10 repetitions for our model,
mean and MICE imputation, NeuMiss and GBRT. The models are evaluated under missing
rates r = [0.25, 0.75] in MAR and self-masked MNAR settings. 25 and 75% missing values
are generated on the upper quantiles q = 0.5 of each feature in the MNAR with quantile
censorship scenario, resulting in rates r = [0.35, 0.50]. The results show the effectiveness of
PicMi in complex missing values scenarios. It systematically outperforms all competitors
under higher missing rates: while all other models show a significant drop from their
performances when the rates of missing values increase, our method remains consistent.
In addition, while competitors performances decrease as soon as we step out of the MAR
scenario, PicMi is robust to all mechanisms and appears to be the best choice in most MNAR
scenarios. This demonstrates the robustness of our model to various difficult data settings
– which is an essential element for real-life healthcare applications, where the underlying
mechanisms behind missing values are often unknown.
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Figure 5.6: Robustness to complex mechanisms and high amounts of missing values. The test
performances over 10 random repetitions are reported for our method (permutation-inv.);
mean imputation (simple imp.); MICE imputation (multiple imp.); supMIWAE (imp-and-
regr.); and imputation-free tree-based prediction (GBRT).

Table 5.4: Ablation study. Performances (mean±std) over 5 random splits.
Stroke Diabetes Support 2

Perm-inv. 61.9±11.0 64.2±12.7 51.6±.5
Perm-inv. + condition 76.7±.1 76.8±1.4 76.1±1.0

PicMi (condition + attention) 78.4±1.9 82.9±3.0 76.4±1.2

5.4.3 Ablation Study and Implementation Details

Ablation study. We have performed an ablation study to analyze the roles of the
conditioning (CNM) and attention (AM) modules in our model. The results are reported in
Table 5.4. They highlight that the CNM is an indispensable element of PicMi, as it is what
allows our model to reach state-of-the-art level performances. Additionally, the high variance
of performances achieved by the bare model suggest that the conditional normalization helps
stabilize our model. Lastly, the AM slightly improves the performances on 2 of the 3 tasks
we have evaluated, suggesting that while its main role resides in introducing interpretability
to the model, it also helps the model to better understand interactions in the data.

Implementation details. We built the sets sk in PicMi as a concatenation of the observed
values xj and their corresponding identity variables ej , similarly to Qi et al. (2017). We
define ej as an unknown embedding trained during optimization. The size of the embedding
e is chosen by CV. The φ, and ρ networks are implemented as multilayer perceptrons
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Table 5.5: Grid search of hyper-parameters for each evaluated model.
Model Hyper-parameters Grid search values Best choice
NeuMiss neumiss_depth 3, 5, 10 5

mlp_depth 2, 3, 5 2
mlp_width d, 10, 20, 50 d

supMIWAE miwae_depth 1, 3, 5 3
miwae_width 10, 20, 50 10
mlp_width 10, 20, 50 50
n_samples 10, 100, 1000 100

GBRT max_iter 100, 200 100
learning_rate 0.0001, 0.001, 0.01 0.001

PicMi (ours) phi_depth 1, 2, 3 2
rho_depth 1, 2 1

width 0.5d, d, 2d d

e_size 2, 5, 10 5
attention_dim 5, 10, 15 5

aggregation_func ’sum’, ’mean’, ’max’ ’sum’

(MLPs). The number of hidden layers and hidden units of each network are chosen by CV.
We note that in practice, the encoder φ needs to project the input set to a higher or of equal
dimension space to ensure a good learning of the set function f , as highlighted by Wagstaff
et al. (2019) who have demonstrated that a universal function representation of set functions
can only be guaranteed if dl ≥ maxi|Si| is satisfied. We use ReLU activation functions in
our implementation. We use the sum operation for the aggregation of the outputs of the
network φ. However, any other permutation-invariant pooling operation, such as the sum or
the maximum, would also be appropriate. We train our model for 200 epochs, using a batch
size of 128, and an Adam optimizer with an initial learning rate set at 1e−3.

The exhaustive list of the different hyper-parameterisations tested for our model, and all
other baselines is reported in Table 5.5. We perform 3-fold CV on all tasks presented in
the paper, and select the best performing combinations for each model by voting across
tasks. All final performances are obtained using the thus chosen hyper-parameters. All
experiments are run on a MacBook Air with a 1,6 GHz Intel Core i5 dual core processor.
All models are implemented using PyTorch and scikit-learn, using train-test splits with
a 80-20 ratio.

5.5 Application to StressID

Finally, we evaluate PicMi on StressID, and compare it’s performances with state-of-the-art
methods for handling missing values, as well as the reference multimodal models for stress
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Table 5.6: Test F1-scores and accuracies (mean ± std) of state-of-the-art methods for the
classification of stress. Bold values denote the best prediction performances. Starred∗ values
denote performances that significantly outperform the reference feature-level fusion model.
Values highlighted in blue denote the most reliable performances according to the guidelines
derived in Chapter 4.

2-class
#tasks F1-score (↑) Accuracy (↑)

Multimodal (ref)
Feature fusion 355 66.4 ± 4.3 61.2 ± 3.7
Decision fusion 355 72.9 ± 4.8 65.2 ± 4.9

Impute-then-regress
Mean 711 74.8±2.1* 73.7±2.7*
KNN 711 73.7±3.2* 72.8±2.9*
MICE 711 73.8±5.5* 73.4±5.5*
MIDA 711 74.3±3.1* 73.7±2.7*

Impute-and-regress
NeuMiss 711 68.4±5.1* 58.0±4.7

supMIWAE 711 74.6±4.0* 73.8±3.9*
Imputation-free

GBRT 711 73.9±2.8* 73.2±2.8*
PicMi 711 75.0±1.0* 72.7±1.5*

identification (see Chapter 3).

Preprocessing and fingerprint extraction. We follow the same set-up as in Chapter 4:
we select the 20 features with the highest impact on the outcome for each modality, using
univariate ANOVA tests. After fusion, the dataset contains 711 samples and 100 features,
with missing on 60% of them. The average missing rate per variable with missing values
pm = 20%, and a global missing rate p = 12.5%.

Results. Table 5.6 reports the performances of PicMi on StressID, along with state-
of-the-art approaches for handling missing values. They are compared to the reference
feature-fusion and decision-fusion multimodal baselines obtained in Chapter 3, where missing
values have been handled using list-wise deletion. Several observations can me made: (1)
PicMi significantly outperforms both initial fusion multimodal models used to analyze
StressID; (2) it outperforms all missing values state-of-the-art approaches on the F1-score –
including the most reliable one; (3) it achieves competitive performances in terms of accuracy,
yet does not outperform other models. A plausible explanation for this performance is the
size of the StressID dataset. As discussed in Section 5.4, PicMi performs optimally in large
datasets, and especially when the sample to dimension ratio n/d is high – whereas n/d = 7
in StressID.
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Nonetheless, while the mean-imputation baseline (identified as the most reliable one) intro-
duces a considerable bias in the data distributions, PicMi eliminates the imputation step
and learns from the observed data directly. In addition, its interpretability is also unbiased,
as it leverages on observed values solely. As such, PicMi offers an alternative that achieves
comparable prediction performances, all the while eliminating the main limitations of the
impute-then-regress approach.

Remark 5.5.1. We have tried to enhance the benefits of PicMi on StressID by further
reducing the dimension of the dataset – selecting fewer features to obtain a n/d ratio of 20.
However, we have found that this considerably decreases the prediction performances.

5.6 Discussion

We have introduced PicMi, an end-to-end framework for supervised learning in the presence
of missing values that offers many interesting properties. (1) It relaxes the requirement
of fixed-dimensional datasets of traditional models – and thus, does not suffer from the
complexity added by the need to choose the right imputation model, as it eliminates
altogether the need to fill in missing entries. (2) Our conditional architecture allows our
model to integrate the structure of the missing values patterns directly into its learning
objective to take into account the corruption processes behind the missing values. This
aspect is particularly important in practice, as the underlying mechanism behind missing
values in real-world data is often unknown and hard to determine. (3) Our approach offers
unbiased local interpretability, a highly desirable property in healthcare applications that
is unique to our model. Through experiments, we have demonstrated the advantages of
PicMi showing that it outperforms several state-of-the-art strategies on real-life tasks. We
additionally show that it is also robust to various missing data mechanisms, including in
difficult MNAR settings, and high missing rates. This is especially relevant since we have
shown in Chapter 4 that the performance of the state-of-the-art methods are highly affected
by the amount of missing values.

While our model achieves good performances, it has a few limitations. PicMi outperforms
other baselines on MNAR data with high missing rates. However, it is not the best-
suited choice for MAR scenarios with moderate amounts of missing values, where multiple
imputation methods still outperform competitors in terms of prediction performances.
Moreover, PicMi performs optimally on datasets with high n/d ratios, but is less effective
with higher-dimensional datasets where n/d < 20. In our experiments, this limitation
is shared by other DL based approaches (i.e. supMIWAE, NeuMiss). In addition, the
experimental set-up we have proposed in this chapter could be improved in the following
aspect: although we have proposed an extensive framework to compare PicMi to competitor
methods, our study lacks an efficient method for the evaluation of the interpretability
of our model. Indeed, our model does not provide a feature ranking (FR), but simply
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computes weights to obtain a reinforced latent representation of an observation, in the form
of the aggregation

∑
αkϕ(sk) that is passed to a ρ network for prediction. As so, directly

computing summary statistics on the weights and comparing them with FRs of other models
would not be a reasonable approach and bear no meaning (even more-so as the whole goal
of computing weights is to obtain patient-specific interpretations). Similarly, using post-hoc
methods based on perturbation such as SHAP would not be significant on data with NaNs.
To the best of our knowledge, there is no efficient way identified in the literature to compare
attention weights with feature importance rankings.

Nevertheless, we have demonstrated that PicMi is a competitive alternative for handling
missing values in tabular data, that performs as well as, or outperforms state-of-the-art
methods, while eliminating the limitations they suffer from. It does not rely on imputation,
which is particularly relevant in sensitive fields such as healthcare, where using imputed
data can raise concerns about the trustworthiness of algorithms. In addition, PicMi is
locally interpretable, unlike competitors that provide general FRs, or rely on post-hoc tools.
More so, while the interpretability of other baselines is greatly impacted by imputation (see
Figure 5.2), our model provides weights for observed elements only and is not biased by
attributing importance to fake values. Lastly, we have evaluated our model on StressID
and have shown that not only PicMi significantly outperforms multimodal baselines obtained
using list-wise deletion, but also achieves prediction performances that are comparable to
state-of-the-art approaches for handling missing values, while eliminating all their limitations.

Using a permutation-invariant architecture to represent observations of varying sizes as
sets where the missing values are simply not represented anymore is a very natural way
to handle missing values. Therefore, we propose to take further advantage of this type of
architectures, and explore in Chapter 6 whether our approach can be extended to handle
missing modalities. In particular, we investigate whether permutation-invariant architecture
can be used to design DL-based classification models that operate on the modality inputs
directly rather than tabular databases of extracted features, and that are reliable and robust.
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Chapter 6

HyperMM : Robust Multimodal
Learning with Varying-sized Inputs
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Abstract. In Chapter 5, we have demonstrated that using a permutation-
invariant architecture offers a natural, efficient and robust way to handle inputs
with missing entries. In this chapter we propose to extend this approach to
multimodal learning with missing modalities. We propose HyperMM, a model
that directly operates on modality inputs, and offers a robust DL-based approach
for learning from varying numbers of modalities using mid-level fusion. It is
particularly relevant for the development of trustworthy applications using
wearable devices data, and more generally medical applications, where it is
common to have incomplete modalities in practice. The work presented in this
chapter is based on a conference paper published in a workshop in MICCAI
2024 (Chaptoukaev et al., 2024).
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6.1 Introduction

As discussed in Chapter 1, multimodal learning (MML) is a promising avenue for the
AI-driven analysis of wearable devices data, as it allows to combine modalities from various
sources that depict a single subject from multiple views, thus providing both shared and
complementary information. We have shown the potential of such models for predicting
stress from multimodal inputs in Chapter 3. In reality, MML has shown considerable
advantages in multiple other domains (Baltrušaitis et al., 2018; Xu et al., 2023). For
instance, multimodal imaging techniques are widely used both in clinical practice and
medical research. Simultaneous acquisition and analysis of multiple imaging modalities, such
as Emission Tomography (PET), Computed Tomography (CT), or Magnetic Resonance
Imaging (MRI), has shown to be beneficial in the diagnosis of Alzheimer’s disease (Teipel
et al., 2015), or detection of cancers (Tempany et al., 2015), among others. Accordingly, DL
methods designed to learn from multimodal medical images, and more generally multimodal
health-related data (Sun et al., 2023), have seen rapid growth. However, most current
multimodal models assume completeness of the training and testing data, which is rare in
real-world applications: due to their ambulatory nature, systems using wearable sensors
data are particularly prone to data loss due to factors like sensor malfunction or user non-
compliance; in routine clinical practice obtaining several modalities for the same subject is not
a standard, for multitudes of reasons, including unavailability of acquisition material (Gallach
et al., 2020), or simply patient refusal to partake in specific examinations. As a result, having
varying numbers of modalities per patient is common in real-life, which results in multimodal
datasets where one or more modalities can be missing. This makes MML challenging as it
prevents the straightforward use of the existing methods, as highlighted in Chapter 3. More
so, multimodal models trained on complete datasets become unusable (without complex
additional processing steps) if modalities are missing at testing time, which severely restricts
their usage to complete samples only. Therefore, the robustness of multimodal models to
missing modalities is of paramount importance for the use of MML in real-life applications.

Extending the work we have introduced in Chapter 5, we now address the issue of supervised
MML with missing modalities by proposing an end-to-end reconstruction-free strategy –
as opposed to many existing solutions that rely on complex and computationally costly
modality reconstruction models. Building on conditional hypernetworks (Ha et al., 2016),
we formulate a novel strategy for training a universal modality-agnostic feature extractor
using pre-trained networks. We then reformulate the problem of predicting multimodal
observations with missing modalities as one of predicting sets of observations of varying size.
We implement this approach through a permutation-invariant neural network (Zaheer et al.,
2017), allowing the mid-level fusion of varying-sized multimodal inputs, hence eliminating
the need to reconstruct missing modalities. By combining these elements into a two-step
training framework, we formulate HyperMM, a novel task and model-agnostic strategy for
MML from incomplete datasets.
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The remainder of this chapter is organized as follows. We first provide an overview of related
work for handling missing data in multimodal inputs in Section 6.2. We introduce HyperMM
and describe the separate elements of our strategy in Section 6.3. We then show through
experiments how our approach is suited for various medical applications, illustrating its
benefits on 2 different multimodal imaging tasks in Section 6.4. Finally, we summarize our
work and discuss future directions.

6.2 Related Work

MML aims to build models that process and combine information from multiple sources (Bal-
trušaitis et al., 2018), i.e. multiple modalities. The most prominent way to combine
multi-source information resides in fusion methods that can be classified in three categories:
early fusion, mid-level fusion, and decision-level fusion of modalities (Xu et al., 2023). In
practice, summation and averaging are common and straightforward techniques used for
fusion. However, when modalities are missing, these operations are impossible for early and
mid-level fusion in classical multimodal architectures. They are usually not designed to
handle varying-sized inputs and fail to account for missing data.

A vast majority of existing solutions to missing modalities in supervised learning consists of
first training a generative model on a complete dataset, and using it to reconstruct missing
modalities before learning a discriminative model for prediction (Cai et al., 2018; Kim
and Chung, 2020; Sun et al., 2021; Zhang et al., 2023b). This approach has considerable
limitations in practice. Firstly, an unreasonable number of samples may be needed for
training a good missing-modality reconstruction model. For instance, generative adversarial
networks (GANs) (Isola et al., 2017; Zhu et al., 2017), often used for image generation and
reconstruction, can typically require up to 106 samples for efficient training (Karras et al.,
2020). This considerably limits their uses in medical applications where data is often scarce.
In addition, the complexity of the prediction model strongly depends on the choice of the
reconstruction model. The imputer and predictor networks need to be adapted to each
other (Le Morvan et al., 2021; Lu, 2024), which can be difficult to ensure in practice.

Some studies (Suo et al., 2019; Wang et al., 2023a) address this limitation by focusing on
jointly learning imputation of the latent modality representations and prediction tasks, but
these models rely on complex and computationally costly training strategies. Instead, our
approach is simple to optimize thanks to its two-phase training strategy, and can integrate
pre-trained models to further reduce computational costs.

Some recent works have also proposed handling missing data without using reconstruction of
missing modalities (Parthasarathy and Sundaram, 2020; Zhou et al., 2023; Chen et al., 2024;
Mordacq et al., 2024). Instead of directly imputing the missing modalities, they replace
them with dummy inputs, such as a constant or generated data (e.g., zeros or Gaussian
noise), and then learn to ignore these during training using masking strategies. In contrast,
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we propose to simply learn with varying-sized inputs to avoid model degradation caused by
poor reconstructions or the presence of dummy data.

While the methods discussed here-above are not an exhaustive list of existing solutions,
they are a good representation of those most widely used in practice, clinical studies, and
medical research. For a more comprehensive overview, Wu et al. (2024) provide an extensive
survey and taxonomy of recent advancements in MML with missing modalities.

6.3 Method

We consider a dataset D of n ∈ N independent input and output pairs such that D :=
{(X1, Y2), . . . , (Xn, Yn)}, and for which the goal is to predict Y given X. Each X :=
{x1, . . . , xd} corresponds to a d-modal observation, where each xi represents one of the
available modalities. Let us now introduce the indicator vector v ∈ {0, 1}d to denote the
positions of missing modalities in X, such that vi = 1 if xi is missing, and 0 otherwise.
The observed data of X can be expressed as Xobs = (1− v)⊙X + v ⊙ na, where ⊙ is the
term-by-term product. In this setting, the learning goal becomes the prediction of Y given
Xobs.

6.3.1 Overview of the Method

We intend on learning without the use of any form of reconstruction of missing modalities,
and therefore, with entries of different dimensions. However, standard including MML
models are built to handle data inputs of a fixed size. In contrast, we aim to learn a
sum-decomposable function f of the form f = ρ(

∑
φ(xi)), operating on sets and thus

relaxing the requirement of fixed-dimensional data. We propose a two-step framework
that we call HyperMM to implement our method. Figure 6.1 presents an overview of our
strategy. In a first step, we learn a neural network φ that can extract features from any
modality present in D. Then in a second step, we freeze the learned φ, use it to encode each
element of Xobs, and feed the combination of the encoded inputs to a classifier ρ through a
permutation-invariant architecture.

6.3.2 Universal Feature Extractor

A single network φ that can encode all observed modalities in D is a requirement for learning
a set function as described in Sec. 6.3.1. We propose to achieve this by first learning such a
universal feature extractor φ using a conditional hypernetwork (Ha et al., 2016). In this
first step, we train a network on all available images x in the dataset, without any modality
pairing. As illustrated in Figure 6.1, we introduce an auxiliary network h that takes as input
m, the modality identifier corresponding to the image x, and generates conditional weights
for the last layer of the encoder φ. By doing so, the last feature extraction step is different
for each modality but still performed by the same network. Specifically, modality-specific
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Figure 6.1: Overview of our HyperMM framework. A network φ is trained to extract
features from any modality in D by jointly optimizing feature reconstruction and unimodal
prediction (step 1). The learned φ network is frozen, and used to process multimodal inputs,
the latent features are then aggregated and processed through a network ρ for prediction
(step 2).

layers are generated through a common hypernetwork, which facilitates information sharing
across modality-specific layers.

In practice, our universal feature extractor φ can be implemented using transfer learning
and networks pre-trained on natural images such as VGGs (Simonyan and Zisserman, 2014).
First, we use the pre-trained encoding layers of a VGG to extract features from our dataset.
Then, we adapt the obtained general features into medical ones by training an additional
layer on top of the VGG extractor, that is conditioned using the auxiliary network h. By
stacking these elements together, we obtain our universal feature extractor φ that is adapted
to the modalities of our dataset.

To ensure that the features learned by φ are relevant, the network is jointly trained to
predict y from the single modality images (i.e. unimodal prediction), and reconstruct z,
the features outputed by the second-to-last layer of φ. This is achieved by optimising a
loss function of the form L = LMSE + LCE , where LMSE denotes the mean squared error
between z and zrec, and LCE the cross-entropy loss between y and ypred. This optimisation
loss has been chosen by cross-validation, as it yielded better performances than optimising
on the classification or reconstruction only.
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6.3.3 Permutation Invariant Multimodal Classifier

Once we have learned φ, we freeze it, and use it to implement a permutation invariant
network for supervised MML with missing modalities. To do so, we define S, the set
representation of the q = |S| observed elements of Xobs, such that S := {s1, . . . , sq}, with
q ≤ d. Each element sj is represented as a tuple (xi,mi) consisting of an observed modality
xi, and the corresponding modality identifier mi. This reformulation allows observations
of varying dimensions. Thereby, it does not require nor expects all observations to have
the same number of elements and it fully allows observations with missing modalities. A
d-modal observation Xobs containing na values can simply be expressed as a set S of size
q ≤ d where the na values are not represented anymore.

Using this definition, we leverage on the findings of (Zaheer et al., 2017), who proposed a
learning framework that considers permutation invariant functions operating over sets. We
reformulate our learning goal as one of learning a set function f of the form

f(Xobs) = ρ

∑
sk∈S

φ(sk)

 , (6.1)

where the function φ : R × {r × r}d → Rdl corresponds the encoder obtained from the
pre-training phase, the function ρ : Rdl → R is implemented as neural network, r is the size
of each image and dl ∈ N+ is the dimensionality of the latent space of φ.

As illustrated in Figure 6.1, a given observation Xobs with missing modalities is encoded as
a set S. Each element sk ∈ S is then transformed into a representation φ(sk) := φ(xi|mi)
through the frozen network φ conditioned by the modality identifier m. The representations
φ(sk) are aggregated using a permutation invariant operation such as the sum, the mean
or the maximum. The aggregation is processed through the network ρ, which allows to
predict the target Y corresponding to the input Xobs. The proposed architecture interprets
each observation S of a dataset as a set of unordered modalities, where all information
available in Xobs is conserved and no new information, such as imputed images, is added. By
transforming individual elements sk of S at a time and then aggregating the transformations,
our network encodes sets of arbitrary sizes into a fixed representation

∑
φ(sk). This aspect

is particularly relevant and further justifies handling our dataset with missing modalities as
unordered sets.

Our permutation invariant model is learned by optimising the loss function

L(θ) := E(S,Y )∈D

[
ℓ
(
Y, ρθ

(∑
sk∈S

φ(sk)
))]

, (6.2)

where ρ is parametrised by θ, and ℓ is the cross-entropy loss. As φ is optimised in the
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pre-training step, its weights are not updated in this step.

6.4 Experiments and Results

6.4.1 Alzheimer’s Disease Detection

In a first application, we illustrate the performances of HyperMM and its robustness to
missing modalities on the task of binary classification of Alzheimer’s disease (AD) using
multimodal images from the ADNI dataset (Mueller et al., 2005). We select a subset of 300
patients for which both T1-weighted MRIs and FDG-PET images are available, resulting in
165 cognitively normal (CN) and 135 AD observations. Before learning, all the samples are
skull stripped using HD-BET (Isensee et al., 2019), resampled through bicubic interpolation
to set an uniform voxel size, standardised, and normalised using min-max scaling.

Baselines. We first evaluate the advantages of our strategy for MML with complete data.
We compare the performances of HyperMM against:

– Uni-CNN: unimodal CNNs as implemented by (Liang et al., 2021).

– Multi-CNN: a multimodal CNN as proposed by (Venugopalan et al., 2021).

– Multi-VAE, a multimodal VAE (Wu and Goodman, 2018) that we adapt for classifi-
cation.

Then, we compare our method against state-of-the-art techniques for MML with missing
modalities in two scenarios: complete MRIs +50% of PETs available for training and testing,
and complete PETs +50% of MRIs available. Specifically we compare to:

– pix2pix: a strategy where an image-to-image translation model (Isola et al., 2017) is
trained on the subset of the training data containing only modality-complete samples,
is then used to impute the missing modality of the incomplete data, and once imputed
the data is classified using a Multi-CNN.

– cycleGAN: the same strategy, only using a cycleGAN (Zhu et al., 2017) for recon-
struction.

Implementation details. We randomly split the data into train, validation and test sets
with a 6:1:3 ratio on the patient-level, and repeat all experiments 3 times. For simplicity
and fairness, we use the same feature extraction strategy (Figure 6.2) in all baselines,
following (Liang et al., 2021). Specifically, 3D MRI and PET images are processed as
batches of 2D slices that are each fed to a pre-trained frozen VGG11 (Simonyan and
Zisserman, 2014) feature extractor. We feed all 2D slices of a 3D volume to the VGG, and
apply a 1D max pooling on the slice dimension to the resulting feature blocks to obtain
a single block per 3D image. The resulting block is passed through a 1 × 1 convolution
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VGG11

Fig. 5: An illustration of different architectures that are used in this study.

two different locations: 1) early fusion and 2) late fusion.
Figure 4 shows the illustrates the ideas of both strategies.

In early or late fusing strategies, the words “early” and
“late” are respective to a CNN feature extractor. An early
fusion strategy converts a 3D image to 2D before feeding the
image to the feature extractor. A temporal pooling operation
is usually applied on the pixel-level.

Oppositely, a late fusion strategy converts a 3D image to
2D after feeding it to a feature extractor. More specifically,
each imaging slice of a 3D image is feeding into a 2D CNN
feature extractor one after another. Multiple blocks of feature
maps are generated at this step. Then, a temporal pooling
method is applied to all the blocks of feature maps and
converts them to a single block of feature maps. Finally,
the fused block of feature maps is feed into the classifier for
final prediction.

C. Network Architectures and Implementation

We implement the proposed method using three different
architectures with different combinations of fusion strategies
and temporal pooling methods. More specifically, we have
one for early fusion strategy with dynamic image pooling and
two for late fusion strategies with max-pooling and dynamic
image pooling, respectively.

Each architecture contains an ImageNet pre-trained CNN
feature extractor and a classifier. The pre-trained feature
extractor is frozen during the training stage, while the
classifier is fully optimizable. The classifier contains a 1⇥ 1

TABLE I: Detailed Architecture

Model Feature Extractor Fusion Strategy Pooling Method

Alex Early-Dyn AlexNet Early Dynamic Image
Alex Late-Max AlexNet Late Max-Pooling
Alex Late-Dyn AlexNet Late Dynamic Image
Res Early-Dyn ResNet-18 Early Dynamic Image
Res Late-Max ResNet-18 Late Max-Pooling
Res Late-Dyn ResNet-18 Late Dynamic Image

Conv layer and two FC layer with 512 neurons and 2
neurons, respectively. The Conv layer aims to convert the
ImageNet pre-trained features to AD-specific classification
feature (Figure 5).

For each architecture, we use two different backbone
feature extractors, AlexNet and ResNe-18, separately. All the
Conv layers of the AlexNet and ResNet-18 models are used
as the feature extractors. In total, six models with different
architectures are trained in this work (Table I). We implement
the networks in Pytorch [24]. Weighted cross-entropy is used
as the loss function. Adam [25] optimizer with learning rate
of 0.0001 is used for all the models.

III. EVALUATION

A. Dataset

We use a subset from the ADNI dataset for our work.
In total, 100 cases are used in this study, 51 cognitively
normal (CN) samples and 49 AD samples. The dataset size
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Figure 6.2: Feature extraction strategy used in the ADNI baselines (see (Liang et al., 2021)).
All 2D slices of one 3D volume are fed to a VGG11. A 1D max pooling on the slice dimension
is applied to the resulting feature blocks to obtain a single block per 3D image. The latter
is passed through a 1× 1 convolution layer to obtain AD-specific features that can then be
fed to a classifier.

layer after the pre-trained VGG encoder, allowing us to adapt the pre-trained features into
AD-specific ones.

This corresponds to the training of the φ network in the step 1 of our framework, where
we simply make the last 1 × 1 convolution layer conditional. In step 2, the ρ network is
implemented by 3 linears layers separated by ReLU activations. All models are implemented
with PyTorch, and trained on an Nvidia TITAN Xp GPU for a maximum of 100 epochs
using an early stopping strategy, where training stops after 10 iterations without a decrease
in the validation loss. We use a batch size of 1 and an Adam optimiser with an initial
learning rate of 1e−4.

Results. Performances of all models are reported in Table 6.1. Several observations can
be drawn from these results. First, MML shows considerable improvements over unimodal
baselines. In particular, HyperMM achieves the best performances for binary classification of
AD using complete multimodal data and considerably improves the F1-score, recall metric,
and precision/recall balance. Second, MML with missing modalities still achieves better
results than unimodal models. Notably, HyperMM trained on MRIs available even for
only 50% of the patients performs better than an unimodal model trained on PETs only.
Inversely, having access to PETs for 50% of the patients improves the F1-score and recall
of learning from MRIs only. Third, HyperMM outperforms state-of-the-art strategies on
MML with missing modalities. While GAN-based strategies can handle missing PETs in
the input data, they are considerably less efficient in terms of precision/recall balance when
the missing modality is MRI. In this scenario, the missing high-resolution MRIs need to
be translated from the available low-resolution PETs before learning. This limitation is
further illustrated in Figure 6.4.1. While PET reconstruction yields realistic images, the
imputed MRIs are of poor quality: they suffer from important structural deformations
and a great loss of information (as highlighted by the SSIM and PSNR scores between
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Table 6.1: Performances (mean±std) on the ADNI dataset. Bold values denote the best
performing baselines.

Acc. (↑) AUC (↑) F1 (↑) Prec. (↑) Rec. (↑) Time (↓)
Complete unimodal

Uni-CNN PET 0.61±.05 0.58 ±.05 0.58±.06 0.65±.06 0.31±.05 < 20 min
Uni-CNN MRI 0.71±.02 0.69±.02 0.58±.02 0.85±.03 0.43±.05 < 20 min

Complete multimodal
Multi-VAE classifier 0.66±.03 0.65±.03 0.54±.04 0.74±.04 0.41 ±.03 < 30 min

Multi-CNN 0.70±.02 0.70±.01 0.67±.01 0.67±.02 0.68±.02 < 30 min
HyperMM w/o 2-steps (ours) 0.62±.03 0.61±.02 0.53±.02 0.61±.03 0.46±.03 < 20 min
HyperMM w/ 2-steps (ours) 0.74±.02 0.73±.02 0.70±.01 0.70±.02 0.70±.02 < 1 h
100% MRI + 50% PET

pix2pix 0.65±.02 0.64±.02 0.62±.02 0.62±.03 0.61±.02 > 14+1 h
cycleGAN 0.62±.09 0.60±.07 0.57±.07 0.61±.08 0.54±.08 > 30+1 h

HyperMM (ours) 0.67±.02 0.66±.02 0.61±.03 0.61±.03 0.61±.03 < 1 h
100% PET + 50% MRI

pix2pix 0.62±.04 0.62±.03 0.53±.03 0.61±.05 0.48±.05 > 14+1 h
cycleGAN 0.62±.09 0.59±.1 0.47±.07 0.60±.07 0.39±.07 > 30+1 h

HyperMM (ours) 0.64±.02 0.63±.02 0.61±.02 0.61±.03 0.61±.03 < 1 h

the reconstructions and the original images). In contrast, as HyperMM does not rely on
any reconstruction, it performs well in both scenarios, and trains in significantly less time
than competitors. Lastly, these results highlight the importance of the pre-training and
conditioning step of the HyperMM framework.

In addition, the results illustrate how HyperMM tackles the main limitations of existing
methods. First, as our model does not require training an reconstruction model prior to
prediction, it does not call for the large amounts of data typically required for training GANs
efficiently. The results observed in Table 6.1 highlight the poor performances of cycleGAN
for translating PETs into MRIs, which could be due to insufficient training data. Second, our
model is agnostic to the missing modality, whereas the prediction and reconstruction quality
in other approaches strongly depends on it, as highlighted by our experiments. Indeed,
because HyperMM bypasses the reconstruction step altogether, our approaches eliminates
the need to ensure that the imputer and predictor are adapted to each other. This, in turn,
leads to drastically reduced computing time and learning complexity. Lastly, as our method
does not employ any imputed or dummy data, it avoids model degradation caused by poor
reconstructions or noisy data.
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Figure 6.3: Examples of real and imputed slices of MRI and PET images for one patient.
While the PET reconstructions (bottom right) translated from the corresponding MRI (top
left) are reasonably similar to the original PET image (bottom left), the MRI reconstructions
(top right) translated from the low-resolution PET (bottom left) are much less consistent
with reality (top left).
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6.4.2 Breast Cancer Classification

In a second application, we demonstrate the flexibility of HyperMM and its benefits
for learning with varying-sized datasets, beyond the scenario of missing modalities. We
investigate the usage of HyperMM for the slightly different task of analysing multi-resolution
histopathological images. Because potential tumors are typically acquired at multiple
magnification levels, the numbers of samples per patients in histopathology datasets are often
highly varying. We perform binary classification of breast cancer using histopathological
images from the BreaKHis dataset (Spanhol et al., 2015). BreaKHis contains multiple
images per sample (i.e. patient) of benign or malignant tumors observed through different
microscopic magnifications: 40×, 110×, 200×, and 400×. We select a balanced subset of the
data composed of samples of 24 benign and 29 malignant tumors, resulting in 5,575 images
in total. We use the images as they are for learning, and do not perform any pre-processing
or data augmentation.

In clinical practice, pathologists combine the complimentary information present in images
captured under different magnifications in order to make a patient-level decision. Nonetheless,
most current learning approaches consist of magnification-specific models, due to the difficulty
of processing images of different natures with a single model. Moreover, because the number
of available images can vary a lot from one patient to another, traditional algorithms cannot
be applied at the patient-level. Existing methods rather predict from individual images,
and later combine the predictions in order to form a global decision. Instead, we propose to
tackle this problem using HyperMM, conditioning the universal feature extractor on the
different magnification levels. We classify tumors at patient-level by combining all available
images during training directly.

Baselines. We evaluate the benefits of HyperMM for learning from histopathology data,
and compare its performances with:

– CNN, a magnification-specific CNN is trained to classify tumor types from individual
images, and patient-level prediction is obtained by averaging the classification scores
of individual images (Spanhol et al., 2015).

– Incremental-CNN, in which a magnification-agnostic CNN is trained by incre-
mentally updating its weights on successive batches of 40×, 100×, 200× then 400×
magnifications, as proposed in (Mayouf and Dupin de Saint-Cyr, 2022). The patient-
level decision is obtained similarly to the previous baseline.

The differences between our approach and traditional ones are further illustrated in Figure 6.4.

Implementation details. We randomly split the data into train-test with a 8:2 ratio at the
patient-level, and repeat all experiments 5 times. We use a pre-trained VGG11 (Simonyan
and Zisserman, 2014) feature extractor for all baselines, and adapt the features to our
application by adding a 1 × 1 convolution block on top of the frozen VGG encoder. All
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Figure 6.4: Comparison of decision strategies for patient-level tumor classification. Our
method (left) enables the combination of a subject’s available images during training,
regardless of the magnification level to obtain a patient-level decision. In opposition,
traditionnal approaches (right) make prediction on the image-level, and combine the final
predictions to obtain a patient-level decision.

models are trained for a maximum of 50 epochs using an early stopping strategy such that
training stops after 10 iterations without a decrease in the validation loss. We train the
model with an Adam optimiser with an initial learning rate of 1e−4. We use a batch size of
16 for image-level baselines (i.e. CNN and Incremental-CNN) and 1 for HyperMM.

Results. All performances averaged over 5 repetitions are reported in Table 6.2. They
underline the clear benefits of HyperMM for cancer classification from histopathological
images. In particular, our method outperforms magnification-specific models, and is closely
followed by Incremental-CNN, which highlights the benefits of combining the information
carried by different magnifications. Moreover, while Incremental-CNN maximises the recall
score of the task, HyperMM maximises precision, and overall improves upon Incremental-
CNN. This shows that learning to predict an early latent combination of features (i.e.
combining multiple images of a same patient during model training directly) yields better
performances than combining predictions made on individual images.

While the analysis of multi-resolution images is not a multimodal application by definition,
our method is designed to enable mid-level fusion of latent features of varying-sized inputs,
and is therefore adapted for this use case. Because of the varying number of images per
patient in histopathology datasets, traditional approaches are not equiped to combine
multiple resolutions directly during training to make patient-level decisions, and instead rely
on the late fusion of image-level decisions. In contrast, HyperMM offers this possibility. It
opens a new and different way to classify cancer patients. Moreso, our experiments suggest
that mid-level fusion even considerably improves the performances of existing late fusion
models.
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Table 6.2: Performances (mean ± std) on the BreaKHis dataset. Bold values denote the
best performing baselines.

Acc. (↑) AUC (↑) F1 (↑) Prec. (↑) Rec. (↑)
Magnification-specific

CNN 40× 0.83±0.07 0.81±0.07 0.83±0.06 0.85±0.08 0.83±0.08
CNN 100× 0.85±0.08 0.85±0.08 0.87±0.06 0.85±0.07 0.90±0.07
CNN 200× 0.84±0.07 0.84±0.09 0.84±0.05 0.80± 0.11 0.90± 0.09
CNN 400× 0.83±0.09 0.83±0.09 0.85±0.10 0.88±0.11 0.83±0.15

Magnification-agnostic
Incremental-CNN 0.89±0.11 0.88±0.12 0.90±0.10 0.88±0.12 0.93±0.09
HyperMM (ours) 0.92±0.06 0.91±0.07 0.90±0.08 0.94±0.09 0.88±0.10

6.5 Discussion

We have proposed HyperMM, an end-to-end framework designed for learning with varying-
sized inputs – with a focus on supervised MML with missing modalities. We introduced a
novel strategy for training a universal feature extractor using a conditional hypernetwork,
and proposed a permutation-invariant neural network that can handle inputs of varying
dimensions to process the extracted features, in a two-phase task-agnostic framework. We
illustrated the relevance of our method in two multimodal imaging tasks: Alzheimer’s disease
detection and breast cancer classification – demonstrating that flexibility of our strategy
allows it to handle varying-sized datasets beyond the scenario of missing modalities.

Although HyperMM is designed to handle multimodal inputs, its current implementation
is limited to inputs of the same nature (e.g. multimodal images only, or multimodal phys-
iological signals only). To fully foster its potential, it is crucial to extend the approach
to accommodate the integration of diverse data sources, and enable the combination of
imaging data with time-series data or textual information. Doing so would allow HyperMM
to fully take advantage of multimodal data of StressID. This would enable our approach
to address a broader range of applications that better reflect the complexity of real-world
data. Additionally, the current feature fusion strategy used in HyperMM relies on sim-
ple aggregation methods, such as summation or averaging. While these operations are
computationally efficient, they are not the best-suited for capturing and leveraging the
complementary information present in multimodal inputs. As a result, valuable interactions
between modalities may be underutilized. Therefore, a more efficient method to fuse multiple
modalities needs to be investigated in order to (1) maximize the use of marginal information
provided by each modality and (2) dynamically assign greater importance to the most
relevant modalities depending on the context, using tools such as attention mechanism as
proposed in Chapter 5.
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Nonetheless, our method has considerable advantages: (1) Unlike many competitors, it
is end-to-end: HyperMM eliminates the time-consuming steps of manually imputing the
missing modalities using a previously trained reconstruction model, before finally training a
prediction model. On the contrary, our two-step model is trained without interruption or
human intervention. (2) As it eliminates the need to use complex and computationally costly
reconstruction strategies, it significantly decreases model training times. More generally,
it relies on a simple optimization problem making it computationally efficient. (3) Unlike
competitors, its performances are not dependent on which modality is missing in the data.
(4) by only using the observed modalities of the incomplete dataset, HyperMM avoids
prediction bias caused by poor reconstruction. (5) Lastly, our strategy is task-agnostic, and
can be easily used beyond the applications we have presented in this chapter. While we
used pre-trained feature extractors in all our experiments for simplicity, HyperMM is also
model-agnostic and adaptable to any neural network-based feature extractor or predictor.

Ultimately, HyperMM represents a significant step towards the development of trustworthy
AI-driven multimodal healthcare applications. It is robust to one of the most common
perturbations encountered in real-life datasets: missing data. As it does not really on
generated data, it is also considerably more reliable than many current approaches that
reconstruct missing modalities – which can raise concerns about the trustworthiness of AI
and set back the adoption and deployment of AI models in real-life applications. As such,
HyperMM represents a solid foundation for building solutions that can be effectively applied
across diverse medical contexts and real-world scenarios. By addressing the limitations we
have identified here, it has the potential to become an even more versatile and effective
framework for multimodal applications combining heterogeneous data sources, beyond the
case of wearable sensors data. In Chapter 7, we conclude this thesis and present some
perspectives to tackle these aspects.
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Chapter 7

Conclusion and Perspectives
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7.1 Conclusion

The unprecedented rise in access to wearable medical devices, advances in data processing,
and AI have driven the growth of e-health solutions. As such, AI analysis of multimodal data
from affordable wearable sensors offers a promising way to improve access to healthcare –
enabling prevention and reducing reliance on costly clinical examinations. However, concerns
about the reliability and robustness of AI persist today, preventing the deployment and
adoption of AI-driven healthcare research in real-life. In this thesis, we have contributed to
the development of robust AI solutions for healthcare applications, focusing on innovative
methodologies that are robust to missing data, and evaluated with real wearable sensor data.
While centered on wearable data, these methods are adaptable to diverse health applications,
from physiological signal analysis to clinical studies with multimodal imaging. The work
presented in this thesis spans the entire process of developing e-health applications, with
the main contributions summarized below.

StressID: a novel dataset collected with wearable devices. In Chapter 2, we have
introduced StressID, a multimodal dataset for stress identification that we made available
for research. The dataset aims to fill the gap in the existing related databases. It features
both physiological and behavioral modalities and includes a large number of participants.
It exploits varied stimuli (i.e. emotional video-clips, cognitive tasks, and social stressors
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based on public speaking) to guarantee the collection of a wide range of responses and thus,
ensure more versatility in downstream applications, and includes participants’ replies to
4 self-assessment questions providing insights on the subject’s emotional state. Moreover,
analyses of the dataset highlight high engagement and a wide range of diverse responses to
the stimuli, both between individuals and within the same individual. This highlights that
the selected tasks are well-designed, offering sufficient variety and effectively challenging all
participants.

Despite the careful design of StressID, some limitations can be noted. The dataset is
recorded in a relatively controlled environment and does not take into consideration the
external factors that contribute to the psychological mental state of participants; relying on
self-assessed scales for data annotation is a participant-subjective process, and can lead to
bias in subsequent analyses; the dataset suffers from missing modalities for some participants,
making MML a challenging task as it prevents the straightforward use of traditional methods;
it presents a gender imbalance representative of the female/male ratio in STEM studies and
workforce, a common issue in human data collection.

Nonetheless, StressID is a valuable resource for research. It has the potential to improve the
understanding of the sources, demographics, and both physical and physiological mechanisms
of stress responses. It is designed for the development of reliable algorithms for stress
identification that can improve the quality of life of our society by helping prevent stress-
related issues. Lastly, it is useful to the machine learning and deep learning communities, as
it can be used to further evolve multimodal learning algorithms, or to study how to make
algorithms learning with human data more reliable.

Baseline models for the analysis of wearable sensors data. In Chapter 3, we have
established the state of the art in stress identification using physiological signals, video, and
audio data. Building on the models identified in the literature, we have proposed a suite of
methods for unimodal and multimodal analysis of StressID. We made our implementations
public, providing a valuable tool for researchers interested in working with the dataset.
Through experiments, we have effectively shown that combining multiple modalities carrying
complementary information through multimodal learning has considerable benefits for stress
identification, and generally, wearable sensors data analysis.

We have identified several limitations in current state-of-the-art approaches, and the steps
needed to ensure reliability and robustness of models built on StressID. We demonstrated
that models trained on real-world data are prone to bias, such as ones caused by an
imbalanced gender representation, highlighting the necessity of taking appropriate measures
to ensure systems are reliable before deploying them in real-world applications; more critically,
we highlighted that currently, most state-of-the-art models for stress identification are not
inherently designed to handle missing values. This underlines the need to either develop
novel innovative solutions or adapt existing models to make them robust to missing data.
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Nonetheless, the baseline models we have introduced have considerable advantages. They
are representative of the state-of-the-art in the domain, where most works rely on ML-based
and hybrid methods (i.e. combining feature extraction, via handcrafted techniques or DL,
with traditional ML algorithms for classification). These methods are attractive for several
reasons. They considerably reduce input data complexity. Their low-complexity make them
particularly suited for real-time data processing necessary in wearable sensor applications.
Lastly, they enable the use of diverse ML models for the classification of tabular feature
datasets and thus, the rich existing literature on handling missing values in tabular data.

Novel guidelines for handling missing values in healthcare. Having identified
missing data as a major challenge in the development of reliable and deployable AI systems
for e-health, in Chapter 4, we have studied the rich literature on missing values in tabular
datasets. We have designed a framework tailored to evaluating the reliability of state-of-
the-art methods within healthcare applications. Specifically, we have investigated how the
characteristics of a dataset can impact the performances of these different models – focusing
on aspects like the bias introduced in imputed data distributions, feature interaction and
impact on interpretability of downstream predictors. We have evaluated 5 approaches from
3 different categories on 384 datasets, using 10 criteria to determine the best choice. Lastly,
we proposed a decision tree-based approach to analyze the outcomes of this study.

Several aspects of our study could be improved in future work: most of the datasets used
for the evaluation framework are classification tasks; many datasets contain less than
5,000 samples, and evaluating on larger datasets would improve scalability analysis; our
analysis could benefit from adding more models in our benchmark; currently selection
of the best model relies on a linear combination of 10 performance criteria using either
unweighted averages or deterministic weights. Developing an automated weighting method
would improve objectivity; lastly, the tree models designed for guideline derivation could be
enhanced to achieve higher accuracy by incorporating more granulated dataset characteristics
in its training data.

Nonetheless, the obtained results have provided valuable insights to derive guidelines on
how to chose the most reliable method to handle missing values. We have identified that
key factors include the amount of feature correlation in data, missing value rates, dataset
size, and variable types. Overall, boosted tree-based approaches that inherently handle
missing entries achieve the best prediction performances; they also introduce the least bias
in data distributions as they avoid imputation entirely. However their interpretability is
significantly altered. In contrast, conditional-imputation methods excel in highly correlated
datasets, even helping recover the interpretability of models trained on complete data. We
have also found that missing value patterns and mechanisms are less critical in choice of
model as most approaches perform equivalently in our study. Ultimately, we have shown
that no single method is superior across all aspects, making the choice dependent on dataset
characteristics and the trade-offs between accuracy, bias, and interpretability. This further
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highlights the necessity of having clear guidelines to help chose the model best adapted for
a health-related dataset in order to ensure reliability and trustworthiness of the developed
applications. More so, focusing on the reliability rather than solely on performance metrics
offers an informed approach when no significant difference can be found in the prediction
performances of various models. Lastly, we have found that state-of-the-art models for
handling missing values can be reliably leveraged to improve the performances of multimodal
baselines on StressID.

PicMi: a robust method for handling missing values. Motivated by our findings, in
Chapter 5 we introduced PicMi, an end-to-end imputation-free model designed for supervised
learning with missing values. It uses a permutation-invariant architecture to handle inputs
of varying sizes. By relaxing the requirement of fixed-dimensional datasets of traditional
models, PicMi eliminates altogether the need to impute missing entries. It uses a conditional
architecture to integrate the structure of the missing values pattern directly into its learning
objective, making it robust to diverse missing data scenarios. Lastly, using attention-
weights,it offers local interpretability, a highly desirable property in healthcare applications
that is unique to our model. Through experiments, we demonstrated the advantages of our
method on 11 health datasets.

However, while PicMi achieves good performances we have uncovered several limitations: it
is not the best-suited choice for MAR scenarios with moderate amounts of missing values,
where multiple imputation methods still outperform competitors in terms of prediction
performances; and it performs optimally with high n/d ratios but is less effective with
high-dimensional datasets. In addition, although we have proposed an extensive framework
to compare PicMi to competitor methods, our study lacks an efficient method for the
evaluation of the interpretability of our model. To the best of our knowledge, there is no
efficient way identified in the literature to compare attention weights with feature importance
rankings.

Nevertheless, our experiments on StressID, and 11 other health datasets, have shown that
PicMi is a competitive alternative for handling missing data, that performs as well as, or
outperforms state-of-the-art methods, while eliminating the limitations they suffer from.
It does not rely on imputation, which is particularly relevant in sensitive fields such as
healthcare, where using fake (i.e. imputed) data can raise concerns about the trustworthiness
of algorithms. In addition, PicMi is locally interpretable, and provides weights for observed
elements only. Additionally, we have shown that our approach is robust to both various
missing data mechanisms, including in difficult MNAR settings, and high missing rates.
These aspects are particularly important in practice: the underlying mechanism behind
missing values in real-world data is often unknown and hard to determine; and existing
studies (Shadbahr et al., 2023), as well as our analyses in Chapter 4 have shown the
performance of the prediction models in impute-then-regress methods are highly affected
by the percentage of missing values in the data. By focusing on challenges overlooked in
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current research, our model advances towards establishing more trustworthy AI-systems for
healthcare applications.

HyperMM: a robust method for handling missing modalities. In Chapter 6,
we have introduced HyperMM, an end-to-end framework designed for MML with missing
modalities without using reconstruction before training. Many existing solutions for handling
missing modalities rely on complex, computationally costly modality reconstruction strategies.
Instead, we have introduced a novel strategy for training a universal feature extractor using
a conditional hypernetwork, and proposed a permutation-invariant neural network that
can handle inputs of varying dimensions to process the extracted features, in a two-phase
task-agnostic framework. Additionally, our approach is model-agnostic i.e. can be transposed
to many applications by adapting the backbone architecture used for feature extraction.
Through experiments, we highlighted the benefits of HyperMM on multiple medical imaging
analysis applications.

Although HyperMM is designed for multimodal inputs, it currently focuses on inputs of
the same nature (e.g. multimodal images only, or multimodal physiological signals only).
To fully foster its potential, it is essential to extended the approach to the combination of
different sources of data. This will enable us, in the future, to fully take advantage of rich
multimodal datasets such as StressID. Moreover, the current approach to feature fusion
relies on simple aggregation methods, such as summation or averaging. This approach
is not optimal for leveraging the complementary information lying in multimodal inputs.
Therefore, a more efficient method to integrate multiple modalities needs to be investigated
in order to: maximize the use of the marginal information from each; and assign greater
importance to the most relevant modalities when necessary.

Still, HyperMM has many advantages: unlike reconstruction-based methods, our approach
is end-to-end and eliminates the time-consuming steps of manually reconstructing the
missing modalities using a previously trained reconstruction model; as such, it significantly
decreases model training time; and unlike competitors, its performances are not dependant
on which modality is missing in the data. In addition, we have shown that the flexibility of
HyperMM alleviates the constraints usually met in applications with varying-sized datasets
and opens up a whole new range of possible learning strategies, beyond the scenario of
missing modalities. As so, our approach represents a significant step forward in advancing
the development of robust AI-driven multimodal healthcare applications. It represents a
solid foundation for building solutions that can be effectively applied across diverse medical
contexts and real-world scenarios.
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7.2 Perspectives

While the works presented in this thesis have provided several insights into the development
of robust and reliable AI systems for healthcare applications, they have also highlighted
several follow-up questions that warrant further investigation. We conclude this thesis by
outlining a handful of possible future directions that could follow this work.

Improving multimodal learning through intelligent feature fusion. To fully take
advantage of the framework we have proposed in Chapter 6, we aim to extend it to MML with
inputs of different types, combining images with text or time series for instance. As such, our
next step is to adapt this framework for the analysis of StressID. A clear direction for this
task is the use of modality-specific encoders, as done in numerous MML approaches (Han
et al., 2019; Aguilar et al., 2019; Mordacq et al., 2024; Wang et al., 2023b; Zhang et al.,
2023a). However, efficiently fusing features from modalities of different types into a single
latent space remains a challenge.

In Chapter 3, we introduced early and late fusion MML models for the analysis of StressID.
While they have yielded good performances for stress identification, MML models relying
on mid-level fusion have shown more advantages in many studies (Baltrušaitis et al., 2018;
Guarrasi et al., 2024). As mid-level fusion MML models are not inherently robust to missing
modalities, we introduced a solution with HyperMM in Chapter 6. While effective, our
current fusion approach relies on simple aggregation operations, due to the nature of the
permutation-invariant architecture we have used. Moving forward, we plan to investigate
more elaborate fusion techniques, beginning with the use of attention mechanisms to compute
weighted aggregations, as explored in Chapter 5. Attention-based approaches have been
widely used by researchers for this task (Pan and Wang, 2022; Mordacq et al., 2024; Chen
et al., 2024). We have also identified other alternatives in the current literature, that
represent interesting perspectives. For instance, Zadeh et al. (2017) proposed to reformulate
the problem of multimodal analysis as one of modeling intra-modality and inter-modality
dynamics end-to-end, using innovative tensor product operations. Other methods have
focused on mutual information (MI) maximization. Han et al. (2021), for example, proposed
hierarchically maximizing MI within unimodal input pairs; and between the multimodal
fusion output and unimodal inputs. Doing so, they ensure that relevant information is
preserved during multimodal fusion. Other works like Wang et al. (2022a); Shen et al. (2024)
have also explored complementary information (CI) learning. It is particularly relevant
in multimodal medical imaging, where clinicians rely on multiple imaging modalities for
segmentation and diagnosis due to the limitations of individual modalities. CI learning
can effectively help model and mitigate the negative impact of inter-modal redundancy –
which can lead to issues such as misjudging modality importance or ignoring specific modal
information.

In future work, our focus will be on developing a fusion method that remains invariant
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to permutations, such that it can be integrate into HyperMM and preserve robustness to
missing values.

Leveraging multimodal learning for enhanced unimodal predictions. As high-
lighted by Lu (2024), in practice a model trained on multiple modalities can outperform a
finely-tuned unimodal model on unimodal tasks. In future work, we aim to build on this
observation and explore if we can develop supervised MML models trained on complete
multimodal datasets that remain robust to unimodal inputs at inference. Our goal will be
to leverage the relationships learned between modalities during training, to allow richer
and deeper information to be extracted from unimodal inputs at inference, thus enabling
enhanced unimodal predictions benefiting from multimodal knowledge.

Such an approach requires effectively learning a function bridging the modalities (Lu, 2024).
Several existing works offer promising directions for this objective. Han et al. (2019) proposed
a joint training model that implicitly fuses information from multiple modalities in the
training procedure by using one modality-specific network per individual modality and one
shared network to map cues of each modality into final predictions. Doing so, they take
advantage of multiple modalities to train models that perform well in unimodal scenarios.
Similarly, Wang et al. (2023a) designed an approach to take advantage of all available input
modalities during training and evaluation by learning shared and specific features to better
represent the input data. Aguilar et al. (2019) developed a multimodal representation that
captures relevant information from multiple modalities during training but operates with
a single modality during inference through disjoint models. In addition, while the main
focus is handling missing modalities, several works have proposed approaches to learn a
rich multimodal latent space that aligns well with our goals, by doing the equivalent of
implicit imputation of latent features. For instance, Zhang et al. (2022) have proposed
imputing the information from missing modalities directly in the latent space by leveraging
on the data from similar observations. Lastly, several works (Wang et al., 2020, 2023b)
have proposed MML approaches based on distillation knowledge. In particular, Wang et al.
(2023b) have proposed a cross modal knowledge distillation model to adaptively identify
important modalities and distill knowledge from them to enhance other modalities roles,
which could be beneficial for our objectives.

If successful, leveraging multimodal learning for enhancing unimodal predictions could
significantly impact the democratization of healthcare. For instance, models trained on
multimodal datasets combining clinical 12-lead ECGs with wearable device single-lead
ECGs could learn a rich representation of the mutual. Once trained, such a model could
detect complex cardiac issues using only single-lead ECGs from wearable devices, replacing
expensive and less accessible clinical exams with cost-effective e-health solutions.
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Ensuring generalization and fairness of e-health applications. Lastly, we plan to
conduct further analyses on StressID with a focus on fairness and reliability. As discussed in
Chapters 2 and 3, research datasets often fail to represent real-world populations accurately.
Even carefully designed data collection processes are susceptible to suffer from representation
bias and lack of heterogeneity. Ignoring this aspect leads to models that fail to generalize,
neglect underrepresented groups, and produce unreliable scientific discoveries. As such, we
intend to explore methods for developing heterogeneity-aware models.

A potential area of interest for this objective is domain generalization. There exists several
algorithms designed to perform well on distributions different from those seen during training.
For example, distributionally robust optimization (DRO) (Sagawa et al., 2019) performs
empirical risk minimization that increases the importance of domains with larger errors, thus
preparing models for worst-case scenario once deployed and applied on new data. Invariant
risk minimization (IRM) (Arjovsky et al., 2019), learns an invariant feature representation
across domain seen in training to ensure that models generalize well to new environments.
While Gulrajani and Lopez-Paz (2020) have shown that there is currently no one-size-fits-all
solution for domain generalization, they have proposed a thorough framework for evaluating
existing approaches. It offers valuable insights and could be highly beneficial for healthcare
applications, which are often based on human data with inherent variability.

By addressing the lack of heterogeneity in training data, we aim to improve fairness,
reliability, and trustworthiness of AI systems. Advancing these aspects is critical for the
real-world adoption and deployment of healthcare applications, as they rely on accurate and
equitable performance across diverse populations.
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Appendix A

StressID: A Multimodal Dataset for
Stress Identification

A.1 Experimental Protocol

Figure A.1 shows the self-assessments questions as presented to the participants. Figure A.2
shows examples of tasks participants of StressID were asked to partake in. They show the
instructions presented to the participants, and the set time limit.

How did you feel during the task ?

0
Unhappy

10
Happy

1         2         3         4         5         6         7         8         9  

Neutral

How stressed were you?

0
Not stressed

10
Very stressed

1         2         3         4         5         6         7         8         9  

How involved were you in the task?

0
Calm/
Not involved

10
Excited/
Very involved

1         2         3         4         5         6         7         8         9  

Attentive/
Involved

How relaxed were you?

0
Not relaxed

10
Very relaxed

1         2         3         4         5         6         7         8         9  

Please answer out loud

Stress assessment

Self-assessment Manikin

Scale 1 : Relaxation Scale 2 : Stress

Scale 3 : Valence Scale 4 : Arousal

Figure A.1: Illustration of the four self-assessment questions used in StressID.
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Task 8 : Math

Interactive tasks

Task 10 : Counting3

Interactive tasks

Figure A.2: Examples of tasks and stressors used in StressID.

A.2 Calibration and Synchronization of the Sensors

The wearable sensors are set-up first to enable good electrodes/skin interfacing, as the
gel of the Ag/AgCl electrodes can take some minutes to correctly hydrate the skin. The
BioSignalsPlux acquisition system is mounted with the ECG sensor, the EDA sensor, and
the piezoelectric respiration belt. The experimenter starts by placing 3 Ag/AgCl electrodes
on the ribcage of the subjects to capture the ECG signal, as the BioSignalsPlux ECG
sensor is designed to record single lead ECG signals using 3 derivation configurations.
Then, 2 Ag/AgCl electrodes are attached to the palm of the non-dominant hand of the
subject to acquire the EDA signal. Finally, the experimenter helps the subjects put on the
respiration chest-belt, and adjust it to their morphology – making sure the participants are
as comfortable as possible wearing the sensors.

After setting up the electrodes, the device is connected to the OpenSignals (R)evolution
platform for recording and streaming the physiological data, thus allowing the experimenter
to observe a real-time reading of the signals. To ensure accurate and low-noise data, the
experimenter checks the sensors’ wires placement, as well as the posture and position of the
subject before the start of the experiment. He adjusts and fixes the wires of the sensors
using medical tape so that the presence of motion artifacts in the data during the collection
is minimized.
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Next, the Logitech QuickCam Pro 9000 RGB with integrated microphone is prepared. The
camera is adjusted such that each subject is recorded in the middle of the frame with a
neutral background. The participants sit approximately 50cm from the microphone. The
start of the video/audio recording is marked on the OpenSignals (R)evolution platform
using the event annotation plug-in.

Finally, once all devices are set up and the participants are installed, the experiment
instructions are displayed on a screen placed in front of the participants. The beginning
of the experiment is indicated by a beep sound. Another event annotation is added at the
beep. This ensures the synchronization of the video, audio, and physiological signals for
each task of the experiment.

A.3 Human Subject Considerations

The StressID project was approved by the Institutional Review Board (IRB) of Uni-
versité Côte d’Azur, namely the Committee on Ethics for Non-Interventional Research
(CERNI/CER). The project has been conducted under agreement n° 2021-033 for data
collection, and n° 2023-016 for the publication of the dataset.

Safety risks included those associated with the wearable sensors used in StressID. Notably,
the use of Ag/AgCl electrodes can cause discomfort or cutaneous irritations in subjects –
however, using clinical grade electrodes during the data collection campaign, we did not
encounter any issue of this type. In addition, the wearable devices used in StressID should
not be used in patients with implanted electronic devices of any kind, including pacemakers,
electronic infusion pumps, stimulators, defibrillators, or similar. All subjects were made
aware of this fact, and could not participate in the experiment if they fell in any of the
mentioned categories. The experiment presented no safety risks associated with tasks.
Participants were informed they could stop the experiment at any time. The subjects were
also informed that they can withdraw their consent at any time. In that case, the data
collected prior to the creation of the database will be destroyed. If the database has already
been created and the subjects have given consent to the use of physiological data or audio,
as these are pseudo-anonymous, they cannot be deleted. Video data will not be shared with
other people after the withdrawal request. However, data that has already been shared
cannot be modified. Once the database has been shared with other authorized researchers,
the subjects will no longer be able to exercise their right of withdrawal on that copy of the
database.

Given the identifying nature of the videos, privacy was a primary concern in this project.
Therefore, the data collection protocol of StressID considered the privacy risks for the
participants as much as possible. Before the start of the experiment, they were introduced
to the purpose and contents of the project, and public release modalities and privacy
concerns were described. The participants explicitly consented to the recording of their
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session, the dataset creation, and its release for research purposes following General Data
Protection Rules (GDPR). The personal information (sex, age, education), and the acquired
physiological and audio signals are pseudonymized, and an alphanumeric code is given for
each participant. The goals and implications of publishing personally identifiable facial
videos were clearly described to each participant, and a dedicated media release consent
form was signed to acknowledge participants’ willingness for their video to be part of the
public release of the data. The participants could ultimately select between two options:
Option A: research use and public release of all their recorded data, including identifying
data (i.e. physiological, audio, and video). Option B: research use of all their recorded
data, but no public release of identifying data (i.e. only physiological and audio data, but
no video). The videos of the participants who selected option B were removed from the
public version of the dataset. Among the 65 participants, 62 opted for option A and 3 opted
for option B (2 women and 1 man). Although the participants explicitly consent to the
recording of their session, the dataset creation, and its public release for research purposes,
no attempts should be made to actively identify the subjects included in the dataset. The
data should also not be modified or augmented in a way that further exposes the subjects’
identities.

A.4 Ethical Considerations

In general, recording and usage of human activity data is associated with high ethical
implications, including privacy, bias, and impact on society. If new projects use the
StressID experimental protocol to replicate the study, using similar sensors and identifying
modalities, the privacy of any new subjects should be protected, and the implications of the
project clearly described to the participants. In addition, future applications that use the
StressID protocol and/or dataset for building and training new learning pipelines, should
consider the societal implications of their work. StressID is designed as a resource for
improving the monitoring, modeling, and understanding of the mechanisms of human stress
conditions. All intended applications have the potential to improve the quality of life of
the population by helping prevent stress-related issues. However, researchers need to be
aware of potential representation bias in their analyses. Indeed, StressID and subsequent
analysis may present an imbalance in gender, race, age, or background of the participants –
which could lead to unanticipated consequences. Additional information is provided about
the participants’ demographics along with the dataset and should be taken into account
when developing new applications based on the StressID dataset.

We are aware that despite all the precautions, the dataset can be misused by bad-intentioned
users. The authors declare that they bear all responsibility in case of any violation of rights
during the collection of the data or other work, and will take appropriate action when
needed, e.g., by removing data with such issues.
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A.5 Dataset Accessibility

Given the identifying nature of the facial videos, the dataset is made accessible through
open credentialized access only, for research purposes. Users are required to sign an end-user
license agreement to request the data. Once validated, a link to the repository with a
username and a password will be given to grant access. TheStressID dataset represents 5.29
GB of data. It is hosted on Inria servers, using storage intended for long-term availability,
and ensuring sufficient space to hold all collected data. This space is maintained by the
INRIA infrastructure team. It is also easily accessible to the research team, allowing new
data to be added as it is collected, or withdrawn if needed. This storage thus, allows the
dataset to be both dynamic and persistent. The front-end website1 describes the StressID
project, access instructions for downloading the data, the adopted sensors, the recording
framework, dataset composition details, and the baseline models. It is hosted on Inria
servers intended for long-term persistent websites and also maintained by the infrastructure
team. The website acts as a portal pointing to all relevant visualizations, data, code, and
instructions. The code for the baselines and analyses uses an open-source 3-Clause BSD
License Initiative. (2023), and is available on GitHub2. It includes ReadMe files describing
the code structure, installation, and usage. In addition, third-party services for archival
code repositories will be explored.

1https://project.inria.fr/stressid/
2https://github.com/robustml-eurecom/stressID
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Appendix B

Stress Identification from
Physiological Signals, Videos and
Audio Data

B.1 Additional Experiments: Emotion Recognition

We report here additional experiments performed with binary labels extracted from the 4
self-assessments. We evaluate our learning pipeline on 4 binary classification tasks; namely
discriminate between stressed (1) vs not stressed (0), relaxed (1) vs not relaxed (0), high
valence (1) vs low valence (0), and high arousal (1) vs low arousal (0).

Each continuous value of the self-assessment is split as follows; if value is less than 5 then
the label is 0, and if value is equal or greater than 5, then the label is 1. The created stress
label is balanced and composed of 48% and 52% of class 0 and 1 respectively. Similarly,
the relax label is composed of 54% and 46% of 0 and 1 respectively, and the valence label
consists of 50% of each class. On the other hand, the arousal label is severely imbalanced
and consists of 71% of high arousal (1) and 29% of low arousal (0).

The classification performances for all modalities and each label are reported in Table ??.
Our analysis confirms that the labels and the acquired data are coherent and meaningful,
and the labels are predicted from the data with f1-scores well above the random.

Despite the different number of trials for each modality, some general observations can be
highlighted. The valence appears here as the most difficult label to predict. This is especially
true for audio and video, while physiological data seems to carry more useful information
to discriminate between positive and negative valence. For the video, this can be related
to the fact that a positive or negative valence in this set-up can be expressed with similar
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Table B.1: Baseline f1-scores for different classification tasks. Each unimodal baseline is
trained and tested on all available tasks of the corresponding modality (#tasks).

Data subset (#tasks) Binary stress Binary relax Binary arousal Binary valence
Physiological (711) 0.73 ± 0.04 0.67 ± 0.06 0.66 ± 0.06 0.64 ± 0.07

Video (587) 0.62 ± 0.04 0.62 ± 0.06 0.67 ± 0.10 0.54 ± 0.07
Audio-HC (385) 0.67 ± 0.04 0.62 ± 0.1 0.79 ± 0.09 0.55 ± 0.09

expressions. A person can smile because they are amused by the task or they can smile
nervously. Recognizing a positive smile from a negative one is still a challenging task to this
day in the field of emotion recognition.

On the other hand, the arousal is better predicted by the audio. This can be due to the fact
that when people are more engaged in the task their tone of voice is incremented.

For the tasks of identifying stress and relaxation, the physiological signals appear as the
most meaningful modality. Nonetheless, the results highlight good performances for all
modalities, highlighting the strong correlations between the recorded data and the labels.
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Appendix C

How to Handle Missing Values in
Healthcare Data?

C.1 Decision Trees

We have trained multiple decision trees to retrieve interpretable decision rules for choosing a
model based on its characteristics. Figures C.1, C.2 and C.3 visualizes the 3 best performing
trees we have obtained, and used for further analysis.
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