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Abstract—In this work, we investigate uplink communication in
Semi-Blind Cell-Free (CF) Massive Multiple-Input Multiple-Output
(MaMIMO) systems. A key challenge in CF MaMIMO systems is pilot
contamination, which arises when multiple user terminals (UTs) share
the same pilot sequence due to an imbalance between the number of UTs
and the length of the pilot sequence. Semi-blind approaches have been
proposed to address this issue by enabling access points (APs) to jointly
estimate both the channel and user data. This joint estimation, however,
leads to a bilinear problem. To develop a tractable algorithm that exploits
the finite alphabet of the user data, we analyze the constrained Bethe
Free Energy (BFE) of the bilinear system and propose a message-passing
algorithm based on minimizing the constrained BFE. We decompose
complex quantities into in-phase and quadrature components, removing
circular Gaussian constraints. Additionally, we find that replacing normal
covariance constraints with average covariance constraints significantly
reduces computational complexity. Simulation results indicate that this
simplification incurs negligible performance loss.

I. INTRODUCTION

In Cell-Free (CF) Massive Multiple-Input Multiple-Output
(MaMIMO) systems, user terminals (UTs) are simultaneously
served by all access points (APs) in a given region. A significant
challenge in CF MaMIMO systems is pilot contamination, which
occurs when the number of users exceeds the length of the pilot
sequences. Consequently, APs cannot estimate the channel solely
based on pilot sequences. To address this issue, semi-blind channel
estimation is employed [1]. In Semi-Blind settings, APs jointly
estimate the channel and user data based on received signals and
limited pilot sequences.

A. Prior Work

Bayesian estimation in semi-blind structures holds significant po-
tential [1], but it also presents challenges due to high-dimensional
and intractable integrals. Message-passing algorithms, particularly
Expectation Propagation (EP) [2] and Belief Propagation (BP) [3], are
widely used in Bayesian estimation. Both EP and BP assume a fac-
tored joint probability density function and simplify high-complexity
global inference problems into manageable local inference tasks. EP
further reduces complexity by approximating the factors of the joint
pdf with simpler forms, such as Gaussian distributions.
Variable-Level EP (VL-EP) was introduced for Gaussian input data
by combining Expectation-Maximization (EM) with EP [4]. To
improve its convergence properties, hybrid EM-EP and loop-free EM-
EP algorithms were proposed in [5]. However, these approaches are
not designed to handle user symbols from finite alphabets.
1) Expectation Propagation for Gaussian Mixture Models: The bilin-
ear combination of a Gaussian distribution (e.g., channel distribution)
and a discrete distribution (e.g., input data distribution) leads to a
Gaussian Mixture Model. To address the limitations of VL-EP, a
distributed bilinear-EP algorithm was proposed in [6], which adopts
a brute-force approach to inference over finite alphabets, avoiding
high-dimensional computations by considering only one data symbol
at a time. Inspired by [6] and [7], the authors of [8] proposed a
simplified decentralized bilinear-EP algorithm.

2) Bethe Free Energy: The Bethe Free Energy (BFE) is another
powerful tool for Bayesian inference. It represents the variational
energy of a factored joint pdf under a specific trial distribution, whose
form is determined by the factorization scheme of the joint pdf. It
has been demonstrated [9] that various message-passing algorithms,
such as EP and BP, can be derived by optimizing BFE under different
constraints on the trial distribution.
Hybrid Vector Message Passing (HVMP) [10] was proposed based on
BFE optimization, introducing a mean-field constraint for the bilinear
factor. However, this method does not account for finite alphabets and
entirely neglects the correlation between the channel and data.

B. Main Contributions

We propose a low-complexity algorithm for semi-blind channel
and data estimation, leveraging a framework based on BFE con-
strained optimization. To effectively handle posterior interference,
we introduce an auxiliary variable, which enables a more tractable
optimization process. Unlike prior works such as [6] and [8], our
method treats the entire data sequence of a single user as a single
atomic variable, significantly simplifying the estimation procedure.
To address non-analytical integrals that arise during posterior estima-
tion, we incorporate mean-field assumptions into the belief factors
by including delta functions. This approximation streamlines the
derivations and reduces computational complexity. Furthermore, we
derive the algorithm by separating complex quantities into their in-
phase and quadrature components.
Lastly, we introduce a covariance averaging operation to further
minimize complexity while maintaining robust performance. This
combination of methods ensures a computationally efficient and
scalable approach to semi-blind estimation.

II. SYSTEM MODEL

We examine the uplink cell-free semi-blind network containing K
single-antenna user terminals (UTs) and L access points (APs). Each
AP is equipped with M antennas. The received signals of the l-th
AP is[

Ŷp,l Ŷl

]
= Ĥl

[
X̂T

p X̂T
]
+
[
V̂p,l V̂l

]
∈ CM×(P+T ), (1)

where Ĥl ∈ CM×K models the channel matrix, X̂p ∈ CP×K

models the pilot sequences of all the users, X̂ ∈ CT×K models
the transmitted data sequences.
The complex model can be transformed into in-phase and quadrature
representation[
ℜ[Ŷp,l] ℜ[Ŷl]

ℑ[Ŷp,l] ℑ[Ŷl]

]
=

[
ℜ[Ĥl] −ℑ[Ĥl]

ℑ[Ĥl] ℜ[Ĥl]

][
ℜ[X̂T

p ] ℜ[X̂T]

ℑ[X̂T
p ] ℑ[X̂T]

]
+V,

(2)

where V =

[
ℜ[V̂p,l] ℜ[V̂l]

ℑ[V̂p,l] ℑ[V̂l]

]
.



For simplicity, we define the following notations

Yp,l =

[
ℜ[Ŷp,l]

ℑ[Ŷp,l]

]
; Yl =

[
ℜ[Ŷl]

ℑ[Ŷl]

]
; Hl =

[
ℜ[Ĥl]

ℑ[Ĥl]

]
;

xk,ℜ = ℜ[x̂k]; xk,ℑ = ℑ[x̂k]; X
T
k =

[
xT

k,ℜ
xT

k,ℑ

]
; xk = vec[XT

k ]

We assume that Hl is column-wise independent, with the distri-
bution of its k-th column given by hlk ∼ N (hlk|0,Ξhlk ). Let
S = {s1, . . . , s|S|} denote the set of symbol constellations. Each data
symbol is assumed to be independent of others, with a distribution
p(xkt), where xkt represents the t-th column of Xk.
The power of each pilot sequence (complex) is assumed to be Pσ2

x.
The noise is modeled as additive white Gaussian noise (AWGN),
with each entry in V having power σ2

v/2. For simplicity, we define
Cv =

σ2
v
2
I.

A. Orthogonal Pilots

When orthogonal pilots are used, we correlate the received pilot
signals Yp,l with the g-th pilot sequence x̃p,g (not to confuse with
the pilot sequence of the g-th user) to obtain the correlated version
of the received pilot signals ỹp,lg:̂̃yp,lg = Ŷp,l

̂̃x∗
p,g = Pσ2

xĤlGg1|Gg| +
̂̃vp,lg, (3)

where we use Gg to denote the UTs groups using the g-th pilot
sequence. The columns of ĤlGg are composed of the complex
channel coefficients corresponding to the users using the g-th pilot,
i.e., ĥlk is a column of ĤlGg if x̂p,k = ̂̃xp,g . We denote ̂̃vp,lg =

V̂p,l
̂̃x∗
p,g which is the transformed noise following a distribution

CN (0, σ2
xσ

2
vP IM ). The complex expression is transformed into in-

phase and quadrature expression. Denote

ỹp,lg =

[
ℜ[̂̃yp,lg]

ℑ[̂̃yp,lg]

]
; ṽg =

[
ℜ[̂̃vg]

ℑ[̂̃vg]

]
(4)

Thus, we have
ỹp,lg = Pσ2

x

∑
k∈Gg

hlk + ṽg, (5)

where ṽg ∼ N (vg|02M ,
σ2
vσ

2
xP

2
I2M ). For simplicity, denote Cv,p =

σ2
vσ

2
xP

2
I2M and define HlGg to be a matrix whose columns are hlk

such that k ∈ Gg and its vectorization hlGg = vec(HlGg ).

B. Factored Joint Distribution

Introduce an auxiliary variable

Zlk = H̃lkX
T
k = hlkx

T
ℜ,k + Shlkx

T
ℑ,k (6)

where

S =

[
−IM

IM

]
; H̃lk =

[
hlk Shlk

]
. (7)

The vectorization Zlk can be represented as zlk = vec[Zlk].
Therefore, the likelihood of Zlk is captured by Dirac function
p(Zlk|hlk,xk) = δ(Zlk − hlkx

T
ℜ,k − Shlkx

T
ℑ,k). The joint proba-

bility density function (PDF) can be derived as

p(Ŷp,{l}, Ŷ{l}, Ẑ{l}{k}, Ĥ{l}, X̂)

=
∏
l

p(Yl|Zl{k})
∏
l

∏
k

p(Zlk|hlk,xk)∏
l

∏
g

p(ỹp,lg,HlGg )
∏
k

p(xk).

(8)

For simplicity, we define

fzl(zl{k}) ∝ p(Yl|Zl{k}); fhlGg
(hlGg ) ∝ p(ỹp,lg,HlGg )

fxk (xk) = p(xk); fδlk (zlk,hlk,xk) ∝ p(Zlk|hlk,xk).
(9)

The factorization given by (8) admits a factor graph [3]. We denote
F = {fzl , fhlGg

, fxk , δlk} as the set of all factor nodes and V =
{zlk,hlk,xk} as the set of all variable nodes.

III. BETHE FREE ENERGY OPTIMIZATION FRAMEWORK

Bethe free energy is the approximated variational free energy between
the true probability (8) and a constrained Bethe approximation trial
function. For a given factored pdf p, its trial pdf b is obtained by:

p(θ) ∝
∏
α

fα(θα) ⇒ b(θ) =

∏
α bfα(θα)∏

i bθi(θi)
|Ni|−1

, (10)

s.t.
∀α, θi ∈ θα,

∫
bfα(θα)dθi = bθi(θi) (11)

where |Ni| denotes the number of factors fα that contain θi and θi

denotes all the variables except θi.
With (10)-(11), the BFE can be obtained as

BFE=D[b(θ)∥
∏
α

fα(θα)]=
∑
α

D(bfα∥fα)+
∑
i

(|Ni|−1)H(bθi),

(12)
where we define D(b∥q) =

∫
b(θ) ln b(θ)

q(θ)
dθ, and H(·) as entropy.

It is worth noticing that (12) only holds if the factorization (10) is
loop-free and strict constraints (11) are applied. Otherwise, (12) is
only an approximation.

A. Bethe Approximation with Constraints

Following [9], the BFE of (8) is:

BFE =
∑
l

D[bfzl (zl{k})∥fzl(zl{k})]

+
∑
l,g

D[bfhlGg
(hlGg )∥fhlGg

(hlGg )]+
∑
k

D[bfxk
(xk)∥fxk (xk)]

+
∑
l,k

D[bδlk (zlk,hlk,xk)∥fδlk (zlk,hlk,xk)]+
∑
l,k

H[bzlk (zlk)]

+
∑
l,k

H[bhlk (hlk)] +
∑
k

L ·H[bxk (xk)]. (13)

where all the factor-level beliefs bfzl , bδzlk , bfhlGg
, bfxk

, and
variable-level beliefs bhlk , bzlk , bxk are proper distributions normal-
ized to one. Furthermore, to make all these factors consistent, the
variable-level beliefs must be the marginal distribution of the factor-
level beliefs. For all l ∈ [1, L], k ∈ [1,K], the constraints for the xk

are ∫
bδlk (zlk,hlk,xk)dzlkdhlk = bxk (xk) (14)

bfxk
(xk) = bxk (xk). (15)

However, satisfying the strict constraints of hlk and zlk will lead
to an intractable problem. Therefore, we relax the strict constraints
to first and second-order moment constraints (specifically, mean and
covariance constraints). W.l.o.g., we denote those sufficient statistics
as ϕhlk (hlk), ϕzlk (zlk)

Ebfzl
[ϕzlk (zlk)] = Ebzlk

[ϕzlk (zlk)] (16)

Eδlk [ϕzlk (zlk)] = Ebzlk
[ϕzlk (zlk)] (17)

EbfhlGg

[ϕhlk (hlk)] = Ebhlk
[ϕhlk (hlk)] (18)

Ebδlk
[ϕhlk (hlk)] = Ebhlk

[ϕhlk (hlk)] (19)



Moreover, to make the further derivation tractable with finite input
X, we only consider the average covariance constraints of elements
within every size-2M block ∀t ∈ [1, T ], [zlk]2M(t−1)+1:2Mt.

B. Bethe Free Energy Optimization

The optimization criteria can be concluded by

min
b

BFE

s.t. (14) ∼ (19).
(20)

We observe the term D[bδlk (zlk,hlk,xk)∥δ(Zlk −hlkx
T
k)] in (13).

Since we need to minimize the BFE, the posterior factor bδlk must
contain the factor δ(Zlk − hlkx

T
k) to avoid infinity BFE value. In

order to have an analytical algorithm, we use the following mean-field
approximation for the joint belief bδlk :

bδlk (zlk,hlk,xk)=bδh,lk (hlk)bδx,lk (xk)p(Zlk|hlk,xk), (21)

where the belief bδh,lk and bδx,lk are beliefs normalized to one.
By using Lagrangian method, we can obtain the following message-
passing style system of equations along with (21):

bfzl (zl{k})=p(Yl|zl{k})
∏
k

µzlk;fzl
(zlk) (22)

bfhlGg
(hlGg ) = p(ỹp,lg,hlGg )

∏
k∈Gg

µhlk;fhlGg
(hlk) (23)

bfxk
(xk) = p(xk)µxk;fxk

(xk) (24)

bδh,lk(hlk)=µhlk;δlk (hlk)e
∫
bδx,lk

(xk)lnµzlk;δlk
(vec(hlkx

T
k))dxk (25)

bδx,lk(xk)=µxk;δlk(xk)e
∫
bδh,lk

(hlk) lnµzlk;δlk
(vec(hlkx

T
k))dhlk (26)

bzlk (zlk) = µzlk;fzl
(zlk)µzlk;δlk (zlk) (27)

bhlk (hlk) = µhlk;fhlGg
(hlk)µhlk;δlk (hlk) (28)

bxk (xk) = [µxk;fxk
(xk)

∏
l

µxk;δlk (xk)]
1/L, (29)

The equations (21)∼ (26) describes the factor level beliefs while
(27)∼(29) are variable level beliefs. For all f ∈ F, θ ∈ V, we
interpret µθ;f as the variable to factor message. Furthermore, we
can define the factor to variable messages such that the following
relation holds [11]

∀f ∈ N(θ), µθ;f (θ) =
∏

f ′∈N(θ)/{f}

µf ′;θ(θ), (30)

where N(θ) denotes the neighborhood around θ in the corresponding
factor graph. Thus, (29) can be rewritten into the message passing
form

bxk (xk) = µfxk
;xk (xk)

∏
l

µδlk;xk (xk) (31)

Since the sufficient statistics we consider here are first and second-
order moments, the messages µfhlGg

;hlk , µδlk;hlk , µfzl ;zlk
and

µδlk;zlk are all (unnormalized) Gaussian distributions.

IV. ALGORITHM DERIVATION

A. Message from δlk to xk

By satisfying the constraint (14) between (26) and (31), we obtain
the iterative updating expression for the message from δlk to xk:

µδlk;xk (xk) = e
∫
bδh,lk

(hlk) lnµzlk;δlk
[A(hlk)xk]dh, (32)

where µzlk;δlk (zlk) = µfyl;zlk
(zlk), and we define the linear

transformation matrix

A(hlk) = IT ⊗
[
hlk Shlk

]
. (33)

For simplicity, denote

H̃lk =
[
hlk Shlk

]
. (34)

The message µzlk;δlk can be explicitly described as

µzlk;δlk (zlk) = N (zlk|mzlk;δlk ,Czlk;δlk ), (35)

where Czlk;δlk is a 2TM × 2TM block diagonal matrix

Czlk;δlk = blkdiag(Czlk1;δlk , . . . ,Czlkt;δlk , . . . ,CzlkT ;δlk ), (36)

with blocks of size 2M × 2M and the operation blkdiag(·) forms
a block diagonal matrix the same way as defined in MatLab. The
expression in (32) expands as a Gaussian distribution of xk.
We denote the first and second-order moments of the belief of hlk

at factor node δlk as

Ebδlk
[hlk] = mbδhlk

; Ebδlk
[hlkh

T
lk] = Rbδhlk

, (37)

The corresponding covariance matrix of xk can be computed from
(32) as

Cδlk;xk = blkDiag(Cδlk,xk1 , . . . ,Cδlk,xkt , . . . ,Cδlk,xkT ) (38)

where

Cδlk;xkt =

[
γδlk;xkt,ℜℜ γδlk;xkt,ℜℑ

γδlk;xkt,ℑℜ γδlk;xkt,ℑℑ

]−1

, (39)

γδlk;xkt,ℜℜ = tr[C−1
zlkt;δlk

Rbδhlk
]

γδlk;xkt,ℜℑ = tr[C−1
zlkt;δlk

SRbδhlk
]

γδlk;xkt,ℑℜ = tr[C−1
zlkt;δlk

Rbδhlk
ST]

γδlk;xkt,ℑℑ = tr[C−1
zlkt;δlk

SRbδhlk
ST].

(40)

Similarly, the mean of the feedback Gaussian message is obtained by
the integral

mδlk;xk =
[
mT

δlk;xk1
, . . . ,mT

δlk;xkT

]T
, (41)

where

mδlk;xkt = Cδlk;xktM
T
bδ

H̃lk

C−1
zlkt;δlk

mzlkt;δlk , (42)

with Mbδ
H̃lk

=
[
mbδhlk

Smbδhlk

]
.

B. Message from xk to δlk and the Belief bx,k

Due to (14), (26) and (31), the belief of xk at δlk is

bδx,lk (xk) = bxk (xk) = µxk;δlk (xk)µδlk;xk (xk)

= p(xk)
∏
l

µδlk;xk (xk) ∝ p(xk)N (xk|my|xk
,Cy|xk

) (43)

where

Cy|xk
=

(∑
l

C−1
δlk;xk

)−1

; my|xk
=Cy|xk

(∑
l

C−1
δlk;xk

mδlk;xk

)
(44)

Due to the block diagonal structure of the covariance matrix, we
denote the t-th block as

Cy|xkt
= [Cy|xk

]2(t−1)+1:2t,2(t−1)+1:2t

my|xkt
= [my|xk

]2(t−1)+1:2t

(45)



The symbol-wise posterior mean and covariance matrix for xkt

according to (43) are

mbx,kt =
1

Z

∑
i

cip(xkt = si)N (si|my|xkt
,Cy|xkt

)

Cbx,kt =
1

Z

∑
i

cis
T
i p(xkt = si)N (si|my|xkt

,Cy|xkt
)

−mbx,ktm
T
bx,kt

,

where Z =
∑

i p(xkt = si)N (si|my|xkt
,Cy|xkt

).

Combine the symbol-wise means and covariance matrices into
sequence-wise mean and covariance matrix

mbx,k =
[
mT

bx,k1
, . . . ,mT

bx,kT

]T
Cbx,k = blkdiag(Cbx,k1 , . . . ,Cbx,kT )

(46)

Thus, the posterior means and covariance matrices of the real and
imaginary parts become

mbx,k,ℜ = F1mbx,k ; mbx,k,ℑ = F2mbx,k

Cbx,k,ℜℜ = F1Cbx,kF
T
1 ; Cbx,k,ℜℑ = F1Cbx,kF

T
2

Cbx,k,ℑℜ = F2Cbx,kF
T
1 ; Cbx,k,ℑℑ = F2Cbx,kF

T
2

(47)

where F1 = IT ⊗
[
1 0

]
, F2 = IT ⊗

[
0 1

]
. It is easy to see

that Cbx,k,ℜℜ is a T × T diagonal matrix where the T -th diagonal
entry corresponds to the top-left elements of the T -th block matrix in
the block diagonal matrix Cbx,k . Similarly, Cbx,k,ℜℑ , Cbx,k,ℑℜ and
Cbx,k,ℑℑ correspond to the top-right, bottom left and bottom right
elements of the T -th block matrix in Cbx,k respectively.

C. Message from δlk to hlk

We consider the feedback message

µδlk;hlk (hlk) = e
∫
bx,k(xk) lnµzlk;δlk

[B(xk)hlk]dxk , (48)

where B(xk) = xℜ,k ⊗ I2M +xℑ,k ⊗S. The expression (48) result
to a Gaussian distribution of hlk. Due to the expectation (integral)
operation, we get

Cδlk;hlk

=

(∑
t

rbx,kt,ℜℜC
−1
zlkt;δlk

+ rbx,kt,ℑℑS
TC−1

zlkt;δlk
S

rbx,kt,ℜℑC
−1
zlkt;δlk

S+ rbx,kt,ℑℜS
TC−1

zlkt;δlk

)−1

,

(49)

and the mean

mδlk;hlk = Cδlk;hlk

·
∑
t

(mbx,kt,ℜI2M +mbx,kt,ℑS
T)C−1

zlkt;δlk
mzlkt;δlk .

(50)

D. Message from δlk to zlk

The vectorization of Zlk can be expressed as

zlk = xℜ,k ⊗ hlk + xℑ,k ⊗ (Shlk). (51)

The posterior (belief) mean according to the relation (21) becomes

mbδz,lk
=mbx,k,ℜ ⊗mbδh,lk

+mbx,k,ℑ ⊗ (Smbδh,lk
) (52)

The correlation matrix of zlk is:

Rbδz,lk
= Rbx,k,ℜℜ ⊗Rbδh,lk

+Rbx,k,ℜℑ ⊗ (Rbδh,lk
ST)

+Rbx,k,ℑℜ ⊗ (SRbδh,lk
) +Rbx,k,ℑℑ ⊗ (SRbδh,lk

ST)
(53)

To make the algorithm trackable, we project bδz,lk to Gaussian with
block diagonal covariance matrix (block size 2M ).

Cbδz,lk
= blkdiag2M [Rbδz,lk

−mbδz,lk
mT

bδz,lk
], (54)

where the operation blkdiag2M [·] : R2MT×2MT → R2MT×2MT

keeps only the block matrices of size 2M along the diagonal while
setting all the other elements to zero. Another treatment is to project
to Gaussian with identical block diagonal matrices:

Cbδz,lk
= IT ⊗ 1

T
blktrace2M [Rbδz,lk

−mbδz,lk
mT

bδz,lk
], (55)

where blktrace2M [·] : R2MT×2MT → R2M×2M sums over all the
block matrices of size 2M along the diagonal. Thus, the feedback
message becomes

µδlk;zlk (zlk) =
N (zlk|mbδz,lk

,Cbδz,lk
)

N (zlk|mzlk;δlk ,Czlk;δlk )
. (56)

Note that the above division may lead to a message that cannot be
normalized to a distribution.
Define the eigenvalue matrix Λδlk;zlk and unitary eigenvector
Uδlk;zlk such that Cδlk;zlk = Uδlk;zlkΛδlk;zlkU

T
δlk;zlk

. We propose
the following correction: for all λ ∈ diag[Λδlk;zlk ], we clip λ−1 to
the range [10−8, 108]. Since we are using the iterative algorithm to
find the fixed point of the BFE, resetting the value will not change
the final result.

E. Message from fhlGg
to hlk and Belief at fhlGg

The posterior belief at fhlGg
is

bfhlGg
(hlGg ) = N (ỹp,lg|Pσ2

x

∑
k′∈Gg

hlk′ ,Cv,p)∏
k′∈Gg

µhlk′ ;fhlGg
(hlk′)p(hlk′),

(57)

where µhlk;fhlGg
(hlk) = µδlk;hlk (hlk). The feedback message is

µfhlGg
;hlk (hlk) =

∫
bfhlGg

(hlGg )dhlk/µfhlGg
;hlk (hlk)

=

∫
N (hlk|

ỹp,lg

Pσ2
x

−
∑

k′∈Gg/{k}

hlk′ ,
Cv,p

(Pσ2
x)2

)

·
∏

k′∈Gg/{k}

µhlk′ ;fhlGg
(hlk′)p(hlk′)

︸ ︷︷ ︸
Gaussian interference distribution

dhlk

(58)

We denote the interference plus noise mean and covariance as

Ch
lk

=
Cv,p

(Pσ2
x)2

+
∑

k′∈Gg/{k}

Chlk′ |y

mh
lk

=
∑

k′∈Gg/{k}

mhlk′ |y,
(59)

where

Chlk|y = (Ξ−1
hlk

+C−1
hlk;fhlGg

)−1

mhlk|y = Chlk|y(C
−1
hlk;fhlGg

mhlk;fhlGg
).

(60)

Due to the Gaussian reproduction lemma [], the feedback message
can be obtained as

CfhlGg
;hlk = (C−1

h
lk

+Ξ−1
hlk

)−1

mfhlGg
;hlk = CfhlGg

;hlk

[
C−1

h
lk

(
ỹp,lg

Pσ2
x

−mh
lk

)]
.

(61)



Algorithm 1 Proposed Method
Require: ∀l, g, k, ỹp,lg , yl, p(xk), p(hlk), p(yl|zl1, . . . , zlK)

1: Initialize: All the factor-to-variable messages are set to zero mean
and unit covariance matrices.

2: [∀l, At AP l, execute the following loop]
3: repeat [∀l′ ∈ N(l)k, g]
4: CfhlGg

;hlk and mfhlGg
;hlk by (60) → (59) →(61)

5: Cfyl
;zlk and mfyl

;zlk by (65)
6: Cbδh,lk

and mbδh,lk
by (62)

7: Rbδh,lk
= Cbδh,lk

+mbδh,lk
mT

bδh,lk

8: Cδlk;xk and mδlk;xk by (40) → (39) → (42) → (41) →
(38)

9: Compute mbx,k,ℜ , mbx,k,ℑ , Cbx,k,ℜℜ , Cbx,k,ℜℑ , Cbx,k,ℑℜ ,
Cbx,k,ℑℑ via (45)-(47)

10: Cδlk;hlk and mδlk;hlk by (49) and (50)
11: Cδlk;zlk and mδlk;zlk via (52) → (53) → {(54) or (55)} →

(56)
12: until Convergence

According to relation (58), the mean and covariance matrix of the
belief are

Cbδh,lk
=

(
C−1

fhlGg
;hlk

+C−1
δlk;hlk

)−1

mbδh,lk
= Cbδh,lk

(
C−1

fhlGg
;hlk

mfhlGg
;hlk +C−1

δlk;hlk
mδlk;hlk

)
(62)

F. Message from fyl to zlk

The belief at fyl is

bfyl
(zl{k}) = N (yl|

∑
k

zlk,Cv)
∏
k

µzlk;fyl
(zlk), (63)

where µzlk;fyl
(zlk) = µδlk;zlk (zlk). The feedback message is then

obtained by

µfyl
;zlk (zlk) =

∫
bfyl

(zl{k})dzlk
µzlk;fyl

(zlk)
(64)

which can be computed to be a Gaussian with mean and covariance
matrix:

mfyl
;zlk = yl −

∑
k′ ̸=k

mzlk;fyl
; Cfyl

;zlk = Cv +
∑
k′ ̸=k

Czlk;fyl
.

(65)

For the algorithm with covariance averaging, the overall complexity
at every AP is O(M3K+M2KT ). While the CPU has a complexity
of O(LKT +KT |S|). For algorithms using (54) instead of (55), the
complexity at the APs will be O(M3KT ).

V. SIMULATION RESULTS

In this section, we verify the algorithm using numerical simulations.
We consider a 400m × 400m area with M = 16 APs and K = 8
UTs. The APs are located at the coordinates ( 400

3
i, 400

3
j), where

i, j ∈ {0, . . . , 3}. The UTs are uniformly randomly distributed over
this area. The fading model we use is [6],

σ2
l,k[dB] = −30.5− 36.7 log10(dlk), (66)

where dlk is the distance between AP l and UT k. To induce pilot con-
tamination, the pilot sequence length is set to P = 4. Furthermore,
the pilots are randomly assigned to the users. We utilize 4-QAM and
16-QAM modulation schemes to generate X, with the data length set
to T = 16. To ensure fairness in the simulations, power control is
applied for each UT, maintaining equal total received power across
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all users. Our proposed method is compared to an alternative BFE-
based approach derived under circular complex Gaussian constraints.
In Genie-Aided scenarios, we assume the user data to be known for
performance benchmarking.
Compared to the complex version of EP [12] with a complexity
of O[(M3 + |S|)KT ] at each AP, the complexity of our proposed
method with covariance averaging is O(M3K +M2KT ).

VI. CONCLUSIONS

We propose a BFE-constrained optimization algorithm that separates
complex quantities into in-phase and quadrature components, en-
abling it to handle a wider range of messages for approximating
the true posterior. Furthermore, the complexity of the algorithm is
effectively managed by employing averaged covariance matrices.
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