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Abstract—The work considers the N -server distributed com-
puting scenario with K users requesting functions that are
linearly-decomposable over an arbitrary basis of L real (po-
tentially non-linear) subfunctions, and the aim is to receive
the function outputs with zero error, reduced computing cost
(γ; the fraction of subfunctions each server must compute),
and reduced communication cost (δ; the fraction of users each
server must connect to). For a matrix F ∈ RK×L representing
the linearly-decomposable form of the K requested functions,
our problem is made equivalent to the open problem of zero-
error sparse matrix factorization that seeks F = DE over
a special subset of γ-sparse and δ-sparse E ∈ RN×L and
D ∈ RK×N matrices that respectively define which servers
compute each subfunction, and which users connect to each
server. We here design an achievable scheme designing E,D by
utilizing a fixed-support SVD-based matrix factorization method
that first splits F into properly sized and carefully positioned
submatrices, and then decomposes these into properly designed
submatrices of D and E. For the zero-error case and under basic
dimensionality and single-shot assumptions, this work reveals
that the optimal number of servers can be upper-bounded as
Nopt ≤ min(∆,Γ)⌊K/∆⌋⌊L/Γ⌋ + min(mod(K,∆),Γ)⌊L/Γ⌋ +
min(mod(L,Γ),∆)⌊K/∆⌋+min(mod(K,∆),mod(L,Γ)). In the
special case, it reveals that the maximum possible ratio K/N or
the zero-error capacity of this system for any feasible single-shot
scheme satisfying δ−1, γ−1 ∈ N is C = max(K/Lδ, γ).
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I. INTRODUCTION

A. Multi-User Linearly-Decomposable Distributed Computing

We focus on the very broad and arguably practical setting
of multi-user, multi-server distributed computation of linearly-
decomposable real functions, which nicely captures several
classes of computing problems that include distributed gradi-
ent coding problems [1]–[3], the distributed linear-transform
computation problem [4], [5], the distributed matrix multipli-
cation or the distributed multivariate polynomial computation
problems [6], [7], as well as the distributed computing problem
of training large-scale machine learning algorithms and deep
neural networks with massive data [8]. These constitute a
broad collection of problems where both computation and
communication costs are crucial [9], [10].
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Our setting, as is depicted in Fig. 1, initially considers
a master node that coordinates, in three phases, a set of
N distributed servers that compute functions requested by
the K users. During the initial demand phase, each user
k ∈ {1, 2, . . . ,K} independently requests the computed output
of a single real function Fk(.). Under the real-valued linear
decomposability assumption1, these functions take the basic
form

Fk(.) =

L∑
ℓ=1

fk,ℓfℓ(.) =

L∑
ℓ=1

fk,ℓWℓ (1)

where fℓ(·) denotes a (basis or component) subfunction, where
fk,ℓ denotes a real-valued combining coefficient, and where
Wℓ = fℓ(x), x ∈ D denotes the real-valued output file of
fℓ(·) for an input x from any domain set D.

Subsequently, during the computing phase, the master as-
signs to each server n ∈ [N ], a set of subfunctions Sn ⊆ [L]
to compute locally2 in order to generate the corresponding
Wℓ, and then during the communication phase, server n forms
signals

zn,t ≜
∑
ℓ∈[L]

en,ℓ,tWℓ, n ∈ [N ], t ∈ [T ] (2)

as dictated by the encoding coefficients en,ℓ,t ∈ R, n ∈
[N ], t ∈ [T ], ℓ ∈ [L], and proceeds to transmit zn,t during
time-slot t = 1, 2, . . . , T to a subset of users Tn,t ⊆ [K], via
a dedicated error-free broadcast channel. Finally, during the
decoding part of the last phase, each user k linearly combines
its received signals to get

F ′
k ≜

∑
n∈[N ],t∈[T ]

dk,n,tzn,t (3)

as dictated by the decoding coefficients dk,n,t ∈ R, n ∈
[N ], t ∈ [T ], k ∈ [K]. Naturally dk,n,t = 0,∀k /∈ Tn,t simply
because user k ∈ [K] does not receive any symbol from server
n ∈ [N ] during time t ∈ [T ]. Note that both encoding and
decoding coefficients are determined by the master node after
the demand phase, and are independent of the instance of the
input to the requested functions.

1This nicely captures linearly separable functions (see for example [11])
where each Fk(.), taking L subfunction as input, can be written as a linear
combination of L univariate subfunctions. In our work, these subfunctions
need not be univariate. Furthermore, the real-valued exposition entails a
variety of additional advantages over finite-field approaches [11]–[14], such
as accuracy advantages stemming from using real-valued fixed point data
representations, as well as advantages regarding computation overflows,
quantization errors and scalability barriers [15]–[17].

2We will interchangeably use Sn to describe sets of indices (of subfunc-
tions), as well as the subfunctions themselves.
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Fig. 1. The K-user, N -server, T -shot setting. Each server n computes the
subfunctions in Sn = {fin,1 (.), fin,2 (.), . . . , fin,|Sn| (.)} and communi-
cates to users in Tn,t, under computational constraint |Sn| ≤ Γ ≤ L and
communication constraint |Tn| ≤ ∆ ≤ K, yielding a system with normalized
constraints γ = Γ

L
, δ = ∆

K
where γ, δ ∈ [0, 1].

In case of error, we consider

E =

K∑
k=1

|F ′
k − Fk|

2
, E ∈ R, ∀k ∈ [K] (4)

to be the Euclidean distortion during function retrieval. For
Tn = ∪T

t=1Tn,t, we consider the computation and communi-
cation costs

Γ ≜ max
n∈[N ]

|Sn|, ∆ ≜ max
n∈[N ]

|Tn| (5)

respectively representing the maximum number of subfunc-
tions to be locally computed at any server1, and the number
of users that a server can communicate to. After normalization,
we here consider the normalized costs

γ ≜
Γ

L
δ ≜

∆

K
. (6)

The three parameters are bounded2 between 0 and 1.
Another two parameters of interest are

ζ ≜
∆

L
(7)

where ζ normalizes the number of activated communication
links by the number of subfunctions.

In a system defined by K,N and L, our goal is to find
schemes that can recover any set of desired functions without

1Our focus on the cost of computing the component subfunctions fℓ(·)
stems from the point of view that these functions typically capture compu-
tationally intensive (and generally non-linear) tasks which would dominate,
in terms of load, the remaining easier linear manipulations at the servers and
users during encoding and decoding.

2In brief, γ is the fraction of subfunctions that must be computed locally,
and δ is the fraction of available links to be activated. Having γ = 1
corresponds to the centralized scenario of having to locally calculate all
subfunctions, while δ = 1 matches an extreme parallelized scenario that
activates all available communication links.

error, with the smallest possible computation and communi-
cation loads γ, δ. To do so, we must carefully decide which
subfunctions each server computes, and which combinations of
computed outputs each server sends to which users. Having to
serve many users with fewer servers naturally places a burden
on the system (suggesting higher γ, δ), bringing to the fore
the concept of the system rate

R ≜
K

N
(8)

and the corresponding system capacity C representing the
supremum of all rates.

B. Connection to sparse matrix factorization, and related
works

Toward analysing our distributed computing problem, we
can see from (1) that the desired functions are fully represented
by a matrix F ∈ RK×L of the aforementioned coefficients
fk,ℓ. With F in place, we must decide on the computation-
assignment and communication (encoding and decoding) pro-
tocol. As we have seen in [14], [18], for the error-free case,
this task is equivalent — directly from (2),(3) and (4) — to
solving a (sparse) matrix factorization problem of the form

DE = F (9)

where, as we will specify later on, the NT×L computing-and-
encoding matrix E holds the coefficients en,ℓ,t from (2), while
the K × NT communication matrix D holds the decoding
coefficients dk,n,t from (3). Focusing on functions over finite
fields, the work in [14], after making the connection between
distributed computing and the above factorization problem,
employed from coding theory the class of covering codes and a
new class of partial covering codes, in order to derive bounds
on the optimal communication and computation costs for the
error-free case. In brief, by choosing D to be the sparse parity-
check matrix of a (shown to exist) sparse partial covering code,
each column of E was subsequently produced to be the coset
leader from syndrome decoding (with the syndrome being)
the corresponding column3 of F. This allowed for reduced
communication and computation costs, where for example in
the single shot scenario with a q-ary finite field, the (slightly
different from here) normalized computation cost γ ∈ (0, 1]
was bounded as a function of the q-ary entropy function Hq

to be in the range γ ∈ [H−1
q (

logq(L)

N ), H−1
q (KN )].

A first exposition of the real-valued variant of our comput-
ing problem, again for the error-free case can be found in [19],
which reformulated the equivalent sparse matrix factorization
problem DE = F into the well-known compressed sensing
problem Ax = y which seeks to efficiently identify unique
sparse solutions to an under-determined system of equations4.
This reformulation allowed for conditional bounds on γ of

3Thus for example, the first column of E is the coset leader to the coset
corresponding to the syndrome described by the first column of F and the
code whose parity check matrix is D.

4This reformulation identifies the observed vector y with the vectorized F,
the sparse solution x with the vectorized E, and the alphabet matrix A with
the Kronecker product of the decoding matrix D with the identity matrix.



the form γ ≤ − 1
r
K
NW−1

1 (−2K
erN ), where though these bounds1

remained loose and also conditional for two main reasons.
The first reason stems from the fact that the focus of the com-
pressed sensing machinery is mainly on the search efficiency
and uniqueness of the sparse solutions, rather than on the level
of sparsity itself2. The second reason is that, while in our
computing setting our decoding matrix D must be a function
of F, compressed sensing places its focus on designing A in
a manner that is oblivious to the instance of y. This mismatch
is addressed in our work here, allowing us to directly explore
the fundamental principles of our computing problem.

C. New connection between distributed computing, fixed sup-
port matrix factorization, and tessellations

As we will see almost directly from (2), (3) and (4), (9),
solving our distributed computing problem will be equivalent
to solving the approximate matrix factorization problem

Ê = min
D,E

∥DE− F∥2F (10)

under dimensionality constraints posed by K,NT,L, and
under sparsity constraints on D and E posed by δ and γ
respectively. These sparsity constraints will be described in
detail later on.

This problem encompasses the problem of compressed
sensing, and it is known to be hard [20]. In general, finding the
optimal solution (D̂, Ê) = argmin

D,E
∥DE−F∥2F to (10), under

the aforementioned dimensionality and sparsity constraints,
requires an infeasible coverage of the entire space of solutions.
Otherwise, establishing optimality of an algorithmic solution,
generally requires establishing uniqueness of that solution
which is hard [21], [22]. Furthermore, to date, little is known
in terms of clear guarantees on the optimal error performance
Ê , for any given F and any given dimensionality and sparsity
constraints on D,E.

Recently, the work in [23] explored the problem of Fixed
Support (sparse) Matrix Factorization (FSMF) which — un-
der the same dimensionality and sparsity constraints of the
unbounded problem of (10) — seeks to find

ÊI,J = min
D,E

∥DE− F∥2F , (11)

Subject to: supp(D) ⊆ I, supp(E) ⊆ J

where I ⊆ [K]×[NT ] and J ⊆ [NT ]×[L] respectively define
the support constraint supp(D) and supp(E) of D and E such
that D(i, j) = 0, ∀(i, j) /∈ I and E(i, j) = 0, ∀(i, j) /∈ J .

1Here W1(.) is the first branch of the Lambert function, while r calibrates
the statistical distribution of D.

2Search efficiency and uniqueness are not fundamental to our distributed
computing problem. For example, what a compressed sensing exposition
of our problem effectively shows is that, under the assumption that the
sparsest solution for E has sparsity-level not more than the above γ =
− 1

r
K
N
W−1

1 (−2K
erN

), and under the additional assumption that this solution
is unique, then — with high probability, in the limit of large N — there
is an l1-minimization approach that will efficiently find this sparsest unique
solution. For us, the efficiency of identifying E is of secondary importance,
and the possibility of having another equally sparse E is not an issue.

FSMF remains a broad3 and challenging problem, partly
because, as argued in [23], it does not directly accept the
existing algorithms from the unconstrained problem in (10).

After showing that ill-conditioned supports may lead certain
algorithms [23] to converge to local minima (referred to as
‘spurious local valleys’), the same work in [23] revealed
that for some specific I,J , some algorithms can provably
converge to the corresponding ÊI,J which is shown to be
unique but, clearly, optimal only within the space of D,E
defined by the specific support I,J . The work in [23] placed
some of its focus on a particular class of ‘disjoint’ supports,
corresponding to the class of those supports I,J that (as we
will clarify later on) map onto disjoint4 regions of F. The
finding in [23] is that such ‘disjoint’ I,J render (11) tractable.

Naturally, depending on I,J , even such optimal ‘support-
limited’ solutions in (11) can have unbounded gaps ÊI,J − Ê
to the global optimal Ê from (10), as we simply do not know
how badly the performance deteriorates by limiting the search
within the specific fixed-support set of matrices.

In summary, to date, in terms of explicit solutions to the
matrix factorization problem in (10), little is known in terms
of designing good supports, while in terms of optimality
guarantees, these are restricted to within the specific problem
in (11) where the search is for a given specific support. To
date, little is known about explicitly characterizing a desired
error performance Ê under any desired sparsity constraints.

a) Summary of our contributions on the problem of multi-
user distributed computing of linearly-decomposable func-
tions: Having made the connection between matrix factor-
ization and distributed computing, we here identify the FSMF
problem to be key in the resolution of our real-valued multi-
user distributed computing problem, for which we provide the
following results.

In this paper we only focus on the single shot T = 1
and lossless case of E = 0. By employing an achievable
scheme using novel concepts and algorithms introduced in
[23] and a converse using combinatorial tilling arguments [29],
Theorem 1 establishes the single shot system capacity under
the disjoint support assumption to take the form C = K

Nopt

where

KL

T max(Γ,∆)
≤ Nopt ≤ min(∆,Γ)⌊K

∆
⌋⌊L

Γ
⌋

+min(mod(K,∆),Γ⌋)⌊L
Γ
⌋

+min(mod(L,Γ),∆)⌊K
∆
⌋

+min(mod(K,∆),mod(L,Γ)).

This general case is of particular interest because the tessel-
lation patterns that we must design, must accommodate for

3For connections between the FSMF problem with Low rank matrix
approximation [24], LU decomposition [25], Butterfly structure and fast
transforms [26], Hierarchical H -matrices [27] and matrix completion [28],
the reader may read [23].

4Equivalently, this ‘disjoint support’ assumption simply says that each
element of F is approximated only by a single SVD.



tiles of various sizes and shapes. In terms of insight, of more
interest is the simplified case of (33), which applies to the
relatively broad setting of δ−1, γ−1 ∈ N (corresponding to
having ∆|K,Γ|L), where the capacity now takes the insightful
form

C = max(ζ, γ). (12)

D. Paper Organization

The rest of the paper is organized as follows. Section II
formulates the system model for the setting of multi-user dis-
tributed computing of linearly-decomposable functions. Sec-
tion III addresses the error-free case, providing schemes and
converses that lead to Theorem 1. Subsequently, In Section IV,
we conclude the paper.

Notations: We define [n] ≜ {1, 2, . . . , n}. For matrices A
and B, [A,B] indicates the horizontal concatenation of the
two matrices. For any matrix X ∈ Rm×n, then X(i, j), i ∈
[m], j ∈ [n], represents the entry in the ith row and jth
column, while X(i, :), i ∈ [m], represents the ith row, and
X(:, j), j ∈ [n] represents the jth column of X. For two
index sets I ⊂ [m],J ∈ [n], then X(I,J ) represents the
submatrix comprised of the rows in I and columns in J . We
will use ω(X) to represent the number of nonzero elements of
some matrix (or vector) X. We will use supp(x⊺) to represent
the support of some vector x⊺ ∈ Rn, describing the set
of indices of non-zero elements. Also supp(X) to represent
the support of some matrix X ∈ Rm×n, describing the set
of two-dimensional indices (i, j) ∈ [m] × [n] of non-zero
elements. We will also use the notation E(n) to represent an
expression which, in the limit of large n, vanishes to zero.
I(X ,Y) ∈ Rm×n represents a matrix that all of its elements
are zero except the elements, I(i, j), i ∈ X , j ∈ Y . Supp(A) ∈
{0, 1}m×n,A ∈ Rm×n, is a binary matrix representing the
locations of non-zero elements of A. ∥x∥0 corresponds to
norm zero of a vector x ∈ Rn. For two binary matrices
I,J ∈ {0, 1}m×n, (I∪J)(i, j) ≜ I(i, j)∨J(i, j), (I∩J)(i, j) ≜
I(i, j) ∧ J(i, j), I′(i, j) ≜ ¬I(i, j), I\J(i, j) = I ∩ ¬J, where
∨,∧ and ¬ are logical ”or”, ”and” and ”negation”, respectively.
The sign 1n defines an all-one n dimensional column vector in
real numbers and 0m defines an all-zero m dimensional col-
umn vector. The operation ⊙ represents a Hadamard product.
Note also that ∥A∥F =

√∑m
i=1

∑n
j=1 a

2
i,j is the Frobenius

norm of the matrix A. For a real number x ∈ R, ⌈x⌉, ⌊x⌋,
represents respectively the ceiling and floor function of x.

II. PROBLEM FORMULATION:

We here describe in detail the main parameters of our model,
defining matrices D,E,F and the various metrics, rigorously
making the link between the distributed computing problem
and the factorization in (9) (see also (29)) for our error-free
case. Let us consider

f ≜ [F1, F2, . . . , FK ]⊺ ∈ RK , (13)

fk ≜ [fk,1, fk,2, . . . , fk,L]
⊺ ∈ RL, k ∈ [K], (14)

w ≜ [W1,W2, . . . ,WL]
⊺ ∈ RL (15)

where f represents the vector of desired function outputs
Fk from (1), where fk represents the vector of function
coefficients fk,ℓ from (1) for the function requested by user
k, and where w denotes the vector of output files Wℓ = fℓ(·)
again from (1). Then recalling the encoding coefficients en,ℓ,t
and transmitted signals zn,t from (2), as well as the decoding
coefficients dk,n,t and decoded functions F ′

k from (3), we have

en,t ≜ [en,1,t, en,2,t, . . . , en,L,t]
⊺ ∈ RL, n ∈ [N ], t ∈ [T ],

(16)

zn ≜ [zn,1, zn,2, . . . , zn,T ]
⊺ ∈ RT , n ∈ [N ], (17)

En ≜ [en,1, en,2, . . . , en,T ]
⊺ ∈ RT×L, n ∈ [N, ] (18)

dk,n ≜ [dk,n,1, dk,n,2, . . . , dk,n,T ]
⊺ ∈ RT , k ∈ [K], n ∈ [N ],

(19)

dk ≜ [d⊺
k,1,d

⊺
k,2, . . . ,d

⊺
k,N ]⊺ ∈ RN×T , k ∈ [K] (20)

and thus (Cf. (13)) we have the output vector taking the form

f = [f1, f2, . . . , fK ]⊺w (21)

as well as the transmitted vector by server n taking the form

zn = Enw = [en,1, en,2, . . . , en,T ]
⊺w. (22)

This allows us to form the matrices

F ≜ [f1, f2, . . . , fK ]⊺ ∈ RK×L, (23)

E ≜ [E⊺
1 ,E

⊺
2 , . . . ,E

⊺
N ]⊺ ∈ RNT×L, (24)

D ≜ [d1,d2, . . . ,dK ]⊺ ∈ RK×NT (25)

where F represents the K × L matrix of all function coeffi-
cients across all the users, where E represents the aforemen-
tioned NT ×L computing and encoding matrix capturing the
computing and linear-encoding tasks of servers in each shot,
and where D represents the K × NT communication and
decoding matrix capturing the communication protocol and
the linear decoding task done by each user.

To see the transition to the matrix factorization problem,
we first note that from (2) and (21) we have that the overall
transmitted vector z ≜ [z⊺1 , z

⊺
2 , . . . , z

⊺
N ]⊺ ∈ RN×T takes the

form

z = [E⊺
1 ,E

⊺
2 , . . . ,E

⊺
N ]⊺w = Ew (26)

and then that given the decoding from (3), each retrieved
function takes the form

F ′
k = d⊺

kz (27)

thus resulting in the vector of all retrieved functions taking the
form f ′ = [d1,d2, . . . ,dK ]⊺z. Our aim is to set the recovery
error

E ≜ ∥f ′ − f∥2 (28)

equal to zero.
Directly from the above, we see that for the error-free case

of E = 0, which means that we must decompose F

F = DE (29)



as seen in (9).
In terms of the corresponding connection to the sparsity of

D and E, we recall from (5) our metrics Γ ≜ maxn∈[N ] |Sn|
and ∆ ≜ maxn∈[N ] |Tn|, which, directly from (20)–(22) and
from (23)–(25), imply that

max
n∈[N ]

| ∪T
t=1 supp(D(:, (n− 1)T + t)| ≤ ∆ (30)

and that

max
n∈[N ]

| ∪T
t=1 supp(E((n− 1)T + t, :))| ≤ Γ (31)

and thus we see how the normalized costs δ = ∆
K , γ = Γ

L
from (6) form the upper bound on the fraction of non-zero
elements of the columns of D and rows of E respectively.

Finally, from (8) we recall the system rate R = K
N , the

corresponding system capacity C representing the supremum
of all rates for error-free function reconstruction.

III. MAIN RESULTS

Definition 1. [Disjoint Support Assumption] We say that two
matrices D ∈ RK×NT ,E ∈ RNT×L, accept the disjoint
support assumption if and only if for any two columns
D(:, i),D(:, i′), i, i′ ∈ [NT ] of D and the respective two rows
E(i, :),E(i′, :) of E, then supp(D(:, i)E(i, :)) = supp(D(:
, i′)E(i′, :)) or supp(D(:, i)E(i, :))∩ supp(D(:, i′),E(i′, :)) =
∅.

Theorem 1. The optimal achievable rate of a K,N, T =
1,Γ,∆ lossless distributed computing setting under the Dis-
joint support assumption takes the form C = K/Nopt, where

Nopt = min(∆,Γ)⌊K
∆
⌋⌊L

Γ
⌋+min(mod(K,∆),Γ⌋)⌊L

Γ
⌋

+min(mod(L,Γ),∆)⌊K
∆
⌋

+min(mod(K,∆),mod(L,Γ)). (32)

For the broad setting where δ−1, γ−1 ∈ N, the optimal
performance takes the form

C = max(ζ, γ) (33)

Proof. Due to lack of space (partly because our proofs require
a sizeable set of definitions), we choose to present the proof
in the Appendix document (Appendix Section B available
online at Dropbox) which describes the achievability of the
corresponding decomposition DE = F, and how this is
translated into our distributed computing setting, while abiding
by the communication and computation cost constraints. Our
solutions are proven optimal for T = 1, as the result of
the converse whose proof is also presented in the Appendix
document (Appendix Section C available online at Dropbox).
The extended version of the theorem for multi-shot setting is
available in Section III of [30]. To provide some insight, we
present a proof sketch.

Sketch of the proof: The proof consists of an achievable
scheme and a converse. The achievable scheme consists of
three main steps. In the first step, the master node divides

F into properly sized rectangular submatrices (corresponding
to ‘tiles’) where the tiles must remain disjoint, must cover all
elements of F, and must maintain a width and length that does
not exceed ∆ and Γ respectively. In the second step, the master
node performs an SVD decomposition for each tile (for each of
the aforementioned submatrices of F), so that this SVD defines
the way each tile is the product of two submatrices (the so-
called left factor and right factor of the SVD). Finally, in the
third step, the left and right factors are carefully positioned in
order to form the desired D and E matrices that in turn define
the computation and communication protocol of the distributed
computing problem. The converse argument consists of six
lemmas. The first lemma establishes restrictions for a one-
to-one mapping between the servers and the tiles of F in
all schemes. The second Lemma establishes the necessity of
having tiles that jointly cover the entire matrix F , the third
lemma restricts the size of each tile under the computation
and communication costs conditions, and the fourth lemma
presents the equivalence between disjoint support assumption
and disjoint tiles and at the end, combining the above steps via
fifth and sixth lemma allows us to derive the lower bound on
the optimal number of servers required to achieve error-free
recovery of functions.

IV. CONCLUSION

In this work, we investigated the fundamental limits
of multi-user distributed computing of real-valued linearly-
decomposable functions by making clear connections to the
problem of fixed support matrix factorization and tessellation
theory. The error-free system capacity C = K

Nopt
in Theo-

rem 1 revealed the minimal computational and communication
resources γ, δ,N required to accommodate a certain number
of users and subfunctions. We observe two optimal operating
points, (γ = K

N , δ = 1
K ) and (γ = 1

L , δ = L
N ), compared

to baseline points A = (γ = 1, δ = 1/K) and B = (γ =
1/L, δ = 1). Point A represents a fully-centralized scheme
where servers n ∈ [K] handle all subfunctions, while others
handle none, and point B corresponds to a fully-parallelized
scheme where each server computes a single subfunction
output and sends it to all users. These cases align with trivial
decompositions F = [IK 0(K,K−N)] · [F⊺ 0(L,N−K)]

⊺ and
F = [F 0(K,N−L)] · [IL 0(L,N−L)], respectively. The first
optimal point achieves a lower γ than A for the same δ when
N ≥ K, while the second achieves a lower δ than B for the
same γ when N ≥ L [31].

https://www.dropbox.com/scl/fi/h6u2knbq6xpnuwvypanou/Lossless_Tessellated_Distributed_Computing.pdf?rlkey=cfyrn9k8l37hzx8t7lozpevp8&st=eslvpqfg&dl=0
https://www.dropbox.com/scl/fi/h6u2knbq6xpnuwvypanou/Lossless_Tessellated_Distributed_Computing.pdf?rlkey=cfyrn9k8l37hzx8t7lozpevp8&st=eslvpqfg&dl=0
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APPENDIX

A. Appendix: A Primer on SVD Matrix Decomposition

It is well known that SVD is the optimal way to approximate
matrices.

For the case of m > n, this decomposition takes the form

Am×n = Um×mSm×nV
⊺
n×n (34)

where U and V are orthogonal matrices, and where S is an
diagonal m × n matrix whose diagonal entries σ1 ≥ σ2 ≥
. . . ≥ σn ≥ 0 are in descending order.

Thin SVD: Since m ≥ n, the decomposition also can take
the form

Am×n = Um×nSn×nV
⊺
n×n (35)

here Sn×n = diag(σ1, σ2, . . . , σn).
When the rank of A is r ≤ min(m,n), then its SVD takes

the form

A = Um×rSr×rV
⊺
r×n (36)

=
[
u1,u2, . . . ,ur

]

σ1 0

σ2

. . .
0 σr



v⊺
1

v⊺
2
...
v⊺
r

 (37)

=

r∑
i=1

σiuiv
⊺
i (38)

where U and V are orthogonal matrices, where S is diagonal
with entries σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0 being the singular values
in descending order, where u1,u2, . . . ,ur are the columns of
Um×r, and where v⊺

1 ,v
⊺
2 , . . . ,v

⊺
r are columns of Vn×r.

B. Scheme for Lossless Reconstruction and Achievability
Proof for Theorem 1

We proceed to describe the design of the communication
matrix D and the computing matrix E that yield DE = F,
while maintaining N,T = 1 as well as a maximum of ∆ non-
zero elements in any column of D and a maximum of Γ non-
zero elements in any row of E. These constraints guarantee
that each of the N servers can locally calculate up to Γ
subfunctions and can engage in communication with at most
∆ users. The design borrows concepts and definitions from
the blockwise SVD approach of [23].

In this proof we first in Part B1 begin with defining the nth
rank-one contribution support, representative rank-one support,
or tile and their related parameters. These tiles are actually
classes of rank-one contribution supports which shows how
any support constraint on D,E contributes to the supports
on DE. The aforementioned correspondence is shown via
Lemma 1. Then in Part B2, we show how to design the tiles
for the product matrix DE, create and fill the non-zero tiles
in D and E and place the filled tiles in D and in E for both
single-shot. The number of servers required for the single-shot
required the rank of each tile to the servers and then summing
the ranks over all tiles. Example 1 illustrates the performance
of our scheme in the cases where ∆ ∤ K,Γ ∤ L, T = 1.

1) Basic Concepts and Definitions: We first present the
following definitions1.

Definition 2 ( [23]). Given two support constraints I ∈
{0, 1}K×N and J ∈ {0, 1}N×L, then for any n ∈ [N ], we refer
to Sn(I,J) ≜ I(:, n)J(n, :) as the nth rank-one contribution
support.

We note that when the supports are implied, we may shorten
Sn(I,J) to just Sn. The aforementioned I and J will generally
represent the support of D and E respectively, while Sn(I,J)
will generally capture some of the support of DE and thus of
F. On this, we have the following lemma.

Lemma 1. For I ≜ supp(D) and J ≜ supp(E), then

∪N
n=1Sn(I,J) = ∪N

n=1I(:, n)J(n, :) ⊇ supp(DE). (39)

Proof. The above follows from Definition 2 and from the fact
that DE =

∑N
n=1 D(:, n)E(n, :).

We also need the following definition.

Definition 3 ([23]). For I ∈ {0, 1}K×N and J ∈ {0, 1}N×L,
the equivalence classes of rank-one supports are defined by
the equivalence relation i ∼ j on [N ] which holds if and only
if Si = Sj .

The above splits the columns of D (and correspondingly
the rows of E) into equivalence classes such that i ∼ j holds
if and only if I(:, i)J(i, :) = I(:, j)J(j, :).

Definition 4. For two supports I ∈ {0, 1}K×N ,J ∈
{0, 1}N×L, and for C being the collection of equivalence
classes as in Definition 3, then for each class P ∈ C,
we call SP to be the representative rank-one support of
class P , which will also be called the tile labeled2 by P .
Furthermore for each tile SP , let cP ≜ I(:, n), n ∈ P (resp.
rP ≜ J(n, :), n ∈ P) be the corresponding component column
(resp. component row) of the representative rank-one support.
Finally CP ≜ supp(cP) ⊂ [K] describes the set of the indices
of the non-zero elements in cP , while RP ≜ supp(rP) ⊂ [L]
describes the set of indices of the non-zero elements in rP .

Definition 5. For every set C′ ⊆ C of equivalence classes, let
us define the union of the representative rank-one supports
SC′ ≜ ∪P∈C′SP to be the point-wise logical OR of the
corresponding SP , and let S̄P ≜ {1}K×L − SP be its
complement.

In the above, SC′ is simply the area of the product matrix
covered by all the tiles P in C′. Furthermore we have the
following definition.

1We quickly recall that for a matrix A, then A(:, n) represents its nth
column, A(n, :) its nth row, supp(A) the binary matrix indicating the support
of A, while for a vector a, then supp(a) represents the set of indices of a
with non-zero elements.

2Note that Sn = SP for any n ∈ P . Also the term tile will be used
interchangeably to represent both SP and P .



Fig. 2. The figure on the left illustrates the support constraints I and J on
D and E respectively. The constraints I(:, 1) and J(1. :) on the columns
and rows of D and E respectively are colored green, I(:, 2) and J(2. :) are
colored cyan and I(:, 3) and J(3. :) are colored red. The product of a column
with a row of the same color, yields the corresponding rank-1 contribution
support Sn(I,J), n = 1, 2, 3, as described in Definition 2, and as illustrated
on the right side of the figure.

Fig. 3. This figure illustrates three different rank-1 contribution supports
S1,S2,S3, where the first two fall into the same equivalence class SP1

=
S1 = S2, while SP2 = S3.

Definition 6 ([23]). The maximum rank of a representative
rank-one support of class P ⊂ C is

rP ≜ min(|CP |, |RP |). (40)

The above simply says that for the case of I = supp(D)
and J = supp(E), then the part of DE matrix covered by tile
SP can have rank which is at most rP .

With the above in place, we proceed to describe the method
used to design the two matrices D,E.

2) Construction of D,E: The steps will involve 1) De-
signing the sizes of the tiles for the product matrix DE, and
placing them, 2) Creating and filling the non-zero tiles in D
and E, 3) Placing the filled tiles in D and in E. We first
address the case of T = 1, which we then generalize to larger
T . There will also be two clarifying examples that follow the
description of the design.

3) Designing D,E for the case of T = 1:
a) Step 1: Designing the sizes of the tiles for the product

K × L matrix DE, and placing the tiles: As the first step,
we assign the families of the equivalence classes of rank-one
supports as follows

C1 ≜ {Pi,j |cPi,j
= [0⊺

(i−1)∆,1
⊺
∆,0

⊺
K−i∆]

⊺, rPi,j
= [0⊺

(j−1)Γ,

1⊺
Γ,0

⊺
L−iΓ], (i, j) ∈ [⌊K

∆
⌋]× [⌊L

Γ
⌋]}, (41)

C2 ≜ {Pi|cPi = [0⊺
(i−1)∆,1

⊺
∆,0

⊺
K−i∆]

⊺,

rPi = [0⊺
L−mod(L,Γ),1

⊺
mod(L,Γ)], i ∈ [⌊K

∆
⌋]}, (42)

C3 ≜ {Pj |cPj
= [0⊺

K−mod(K,∆),1
⊺
mod(K,∆)]

⊺,

rPj = [0⊺
(j−1)Γ,1

⊺
Γ,0

⊺
L−iΓ], j ∈ [⌊L

Γ
⌋]}, (43)

C4 ≜ {P|cP = [0⊺
K−mod(K,∆),1

⊺
mod(K,∆)]

⊺,

r⊺P = [0⊺
L−mod(L,Γ),1

⊺
mod(L,Γ)]}. (44)

The number of representative rank-one supports in each class,
is

|C1| = ⌊K
∆
⌋⌊L

Γ
⌋, |C2| = ⌊K

∆
⌋, |C3| = ⌊L

Γ
⌋, |C4| = 1. (45)

Also, from (40) and Definition 6, we see that the maximum
rank of each representative rank-one support takes the form

rP =


min(∆,Γ), if P ∈ C1,
min(mod(K,∆),Γ), if P ∈ C2,
min(mod(L,Γ),∆), if P ∈ C3,
min(mod(K,∆),mod(L,Γ)), if P ∈ C4.

(46)

Having established the classes and the corresponding (position
of the) tiles of F, we proceed to fill (and crop) the F tiles, as
follows:

FP ≜ (F⊙ SP)(RP , CP), ∀P ∈ ∪4
i=1Ci. (47)

The first step F⊙SP simply fills up SP with the corresponding
entries of F, and the second step (F ⊙ SP)(RP , CP) crops
these1.

b) Step 2: Creating and filling the non-zero tiles in D and
E: This step starts with the SVD decomposition as (described
in Section A) of the cropped tile FP where this decomposition
takes the form

FP = DPEP (48)

where DP ∈ R|RP |×rP ,EP ∈ RrP×|CP |. In particular F,D
and E are associated to A, US and V in all complete SVD
decompositions of (34), (35) and (36). Naturally rank(FP) ≤
rP .

c) Step 3: Placing the filled cropped tiles DP and EP
in D and E: Let

∪4
i=1Ci = {P1,P2, . . . ,Pm}, m ∈ N (49)

describe the enumeration we give to each tile. Then the
position that each cropped tile takes inside D, is given by

RPj
, [

j−1∑
i=1

T ⌈rPi

T
⌉+ 1 :

j∑
i=1

T ⌈rPi

T
⌉], ∀Pj ∈ ∪4

i=1Ci (50)

and the position of each cropped tile in E is given by

[

j−1∑
i=1

T ⌈rPi

T
⌉+ 1 :

j∑
i=1

T ⌈rPi

T
⌉], CPj

, ∀Pj ∈ ∪4
i=1Ci. (51)

1We here see a small distinction between the previously uncropped tiles,
and the tiles here that are cropped. These cropped tiles will be the outcomes of
an SVD decomposition of submatrices of F, which will yield our SVD-based
factorization.



In particular, for T = 1 this yields

D(RPj , [

j−1∑
i=1

rPi + 1,

j∑
i=1

rPi ]) = DPj (52)

and

E([

j−1∑
i=1

rPi + 1,

j∑
i=1

rPi ], CPj ) = EPj (53)

while naturally the remaining non-assigned elements of D and
E are zero. Finally, as one can readily verify, the above design
corresponds to

N =
∑
i∈[4]

∑
P∈Ci

rP |Ci| (54)

= min(∆,Γ)⌊K
∆
⌋⌊L

Γ
⌋ (55)

+min(mod(K,∆),Γ)⌊L
Γ
⌋

+min(mod(L,Γ),∆)⌊K
∆
⌋ (56)

+min(mod(K,∆),mod(L,Γ)) (57)

corresponding to Theorem 1 for the case of T = 1. To evaluate
the performance of our scheme as described in (33), we note
that the capacity follows as

C0
(a)
=

K

Nopt

(b)
=

∆Γ

Lmin(∆,Γ)

(c)
= (1/L)(∆Γ/min(∆,Γ)),

where (a) follows by definition, (b) follows from Theorem (1),
and (c) follows after basic algebraic manipulations. The claim
is then completed directly after applying (7) and (6).

C. Appendix:Proof of The Converse for Theorem 1

The converse that we provide here will prove that the
scheme for the single shot case is exactly optimal when
Γ ≥ ∆,Γ|L, T |∆ or ∆ ≥ Γ,∆|K,T |Γ and also the scheme
for the multi-shot case is optimal when T ≥ min(∆,Γ).
We begin with three lemmas that will be useful later on.
First, Lemma 2 will state the necessity of having a one-to-one
correspondence between each rank-one contribution support1

and each server, then Lemma 3 will state the necessity of
having a tessellation pattern that covers the whole area of
F, and then Lemma 4 will elaborate more on size limits of
each tile as a consequence of the communication and com-
putation constraints. Lemma 5 then establishes the conceptual
equivalence between Definition 1 and disjoint tiles. Lemma 6,
lower bounds the number of tiles is each equivalence class by
the number of subtiles (cf. Definition 6) corresponding to a
tile. Subsequently, Lemma 7, gives the necessary number of
subtiles, so that a covering scheme can be constructed, then
via combining the last two of the aforementioned lemmas, we
give a lower bound on the number of rank-one contribution
supports for any covering scheme with proper sizes, and then

1Recall that the nth rank-one contribution support takes the form
Sn(I,J) = I(:, n)J(n, :).

using Lemma 2, we finalize our converse by giving a lower-
bound on the number of servers.

Before presenting the lemmas, let us recall that rank-
one contribution supports were defined in Definition 2, that
representative supports (i.e. tiles) were defined in Definition 4,
as well as let us recall from the same definition that the
collection of all classes is represented by C.

The following lemma, while stating the obvious, will be
useful in associating the number of servers to the number of
rank-one contribution supports.

Lemma 2. For any D,E with respective supports I =
supp(D) ∈ {0, 1}K×N and J = supp(E) ∈ {0, 1}N×L,
there exists a one-to-one mapping between the server indices
n ∈ [N ] and rank-one contribution supports Sn(I,J).

Proof. The proof is direct by first recalling Definition 2 which,
for any n ∈ [N ], says that Sn(I,J) = I(:, n)J(n, :), and then
by recalling from (16),(19),(24) and (25) that, in the single-
shot setting, each server n ∈ N corresponds to the nth column
of D (itself corresponding to I(:, n)) and the nth row of E
(corresponding to J(n, :)).

We proceed with the next lemma, which simply says that
every element of F must belong to at least one representative
support (tile).

Lemma 3. In any lossless function reconstruction scheme
corresponding to DE = F, for each (i, j) ∈ [K]× [L], there
exists a class ∃P ∈ C such that (i, j) ∈ RP × CP .

Proof. The lemma aims to prove that there exists no element
F(i, j) of F that has not been mapped to a tile FP . We will
prove that for each (i, j) ∈ [K]× [L] then ∃P ∈ C : (i, j) ∈
RP × CP and we will do so by contradiction. Let us thus
assume that there exists (i, j) ∈ [K]× [L] such that ∄P ∈ C :
(i, j) ∈ RP ×CP , which would in turn imply — directly from
(52), (53) — that DE(i, j) = 0 as well as would imply the
aforementioned fact that the non-assigned (by the process in
(52), (53)) elements of D and E, are zero. Now we see that

∥(DE− F)w∥22 = ∥
K∑

k=1

(DE− F)(k, :)w∥22

=

K∑
k=1,k ̸=i

L∑
ℓ=1,ℓ̸=j

[(DE− F)(k, ℓ)w(ℓ)]2

+ (DE− F)2(i, j)w2(j)

+ 2(DE− F)(i, j)w(j)
K∑

k=1,k ̸=i

L∑
ℓ=1,ℓ̸=j

(DE− F)(k, ℓ)w(ℓ)

=

K∑
k=1,k ̸=i

L∑
ℓ=1,ℓ̸=j

[(DE− F)(ℓ, k)w(ℓ)]2

+ F2(i, j)w2(j)

− 2F(i, j)w(j)



K∑
k=1,k ̸=i

L∑
ℓ=1,ℓ̸=j

(DE− F)(ℓ, k)w(ℓ). (58)

Let us now recall that lossless function reconstruction implies
that ∥(DE − F)w∥22 = 0 for all F ∈ RK×L and all w ∈
RL. Under the special case of w(ℓ) = 0,∀ℓ ∈ [L]\{j} and
w(j)F(i, j) ̸= 0, we see — directly from (58) — that ∥(DE−
F)w∥22 = F2(i, j)w2(j) ̸= 0, which contradicts the lossless
assumption, thus concluding the proof of the lemma.

The next lemma now limits the sizes of each tile.

Lemma 4. For any feasible scheme yielding DE = F, then
each representative support P ∈ C satisfies

0 < ∥SP(k, :)∥0 ≤ Γ,∀k ∈ RP ,

0 < ∥SP(:, l)∥0 ≤ ∆,∀l ∈ CP
which means that each SP can have at most Γ non-zero
elements in each row and ∆ non-zero elements in each
column.

Proof. We first recall from Definition 2 that supp(D) =
I, supp(E) = J. We also recall that maxn∈[N ] |∪T

t=1 supp(D(:
, (n − 1)T + t))| ≤ ∆ and maxn∈[N ] | ∪T

t=1 supp(E((n −
1)T + t, :))| ≤ Γ (cf. (30),(31)) must hold for any feasible
scheme. Hence for all n ∈ [NT ], we have that ∥I(:, n)∥0 ≤
∆, ∥J(n, :)∥0 ≤ Γ, and consequently since Sn = I(:, n)J(n, :)
(cf. Definition 2), we must have that ∥Sn(k, :)∥0 ≤ Γ,∀k ∈
[K] , ∥Sn(:, l)∥0 ≤ ∆,∀l ∈ [L] ∀n ∈ [N ]. Then from
Definition 4, we see that for all P ∈ C, there exists an n ∈ [N ]
such that Sn = SP . Note that the lower bound follows from
Definition 4 where RP , CP are defined.

Continuing with the main proof, in order to relate the notion
of tiles to the rank-one contribution supports, we need first to
define the notion of sub-tiles, where each entry of a sub-tile
is a matrix coordinate. We also recall that RP and CP are
respectively the row and column indices of tile P , as given in
Definition 4, as well as note that we here regard RP and CP
as arbitrarily ordered sets.

Definition 7. For each tile P , the set of (at most) ∆ horizontal
sub-tiles takes the form

HP,hP ≜ {(RP(hP), j)|j ∈ CP , hP ∈ [∆]} (59)

while the set of (at most) Γ vertical sub-tiles takes the form

VP,vP ≜ {(i, CP(vP))|i ∈ RP , vP ∈ [Γ]}. (60)

In the above, RP(hP) represents the hP -th element of RP ,
and similarly CP(vP) represents the vP -th element of CP . We
also note (cf. Lemma 4) that each horizontal (resp. vertical)
sub-tile can have at most Γ (resp. ∆) elements. We also need
the following function definition.

Definition 8. For G being the power set of all horizontal
and vertical sub-tiles {HP,hP ,VP,vP}P∈C,hP∈[∆],vP∈[Γ], we
define the function Φ(.) : {0, 1}K×L → G as

Φ(SP) ≜

{
{HP,hP |hP ∈ [∆]}, if |RP | ≤ |CP |,
{VP,vP |vP ∈ [Γ]}, if |RP | > |CP |.

(61)

We now proceed to bound the number of rank-one con-
tribution supports, and we do so under our previously stated
assumption of disjoint supports (cf. Definition 1), which is
equivalent to disjoint tiles assumptions via the following
Lemma,

Lemma 5. For two matrices D,E, the representative supports
{SPi

}mi=1 of DE are disjoint (i.e., SPi
∩ SPj

= 0, j ̸= i) if
and only if D and E accept the disjoint support assumption
of Definition 1.

Proof. Assuming that D ∈ RK×NT ,E ∈ RNT×L abide
by the disjoint support assumption from Definition 1, then
for all i, i′ ∈ [NT ], we have that either Supp(D(:, i)E(i, :
)) = Supp(D(:, i′)E(i′, :)) or that Supp(D(:, i)E(i, :)) ∩
Supp(D(:, i′)E(i′, :)) = ∅. This in turn implies that for
I = Supp(D) ∈ {0, 1}K×NT ,J = Supp(E) ∈ {0, 1}NT×L,
then either I(:, i)J(i, :) = I(:, j)J(j, :) or I(:, i)J(i, :) ∩ I(:
, j)J(j, :) = 0K×L, which in turn yields the assumption
in Definition 3 of disjoint representative support equivalence
classes.

In reverse, if DE accepts the disjoint representative support
assumption, and if C = {P1, . . . ,Pm} is the collection of
the equivalence classes, then ∀P,P ′ ∈ C, CP = CP′ or
CP ∩ CP′ = ∅ and similarly ∀P,P ′ ∈ C,RP = RP′

or RP ∩ RP′ = ∅, which in turn implies that ∀i, i′ ∈
[NT ] then supp(D(:, i)) = supp(D(:, i′)) or supp(D(:, i)) ∩
supp(D(:, i′)) = ∅, as well implies that ∀i, i′ ∈ [NT ] then
supp(E(i, :)) = supp(E(i′, :)) or supp(E(i, :)) ∩ supp(E(i′, :
)) = ∅. Consequently, if supp(D(:, i)) = supp(D(:, i′))
and supp(E(i, :)) = supp(E(i, :)) both hold, then supp(D(:
, i)E(i, :)) = supp(D(:, i′)E(i′, :)) or other wise supp(D(:
, i)E(i, :))∩supp(D(:, i′)E(i′, :)) = ∅, which in turn yields the
assumption in Definition 1 that D and E satisfy the disjoint
support assumption.

We proceed with the next lemma.

Lemma 6. In any lossless function reconstruction scheme cor-
responding to DE = F, the number of rank-one contribution
supports |P| in each class P , satisfies |P| ≥ |Φ(SP)|.

Proof. Recall from Definition 1 and Lemma 5 that in the
context of lossless schemes, each representative support is
disjoint. Then we can see that

|P| ≥ min(min(|RP |, |P|),min(|CP |, |P|))
(a)
= min(rank(DP), rank(EP))

(b)

≥ rank(FP)

(c)
= min(|RP |, |CP |) = rP

where (a) follows from Definition 1 and Lemma 5 which
tells us that in the context of lossless schemes then each
representative support is disjoint which in turn tells us that
(48) applies in which case we have D(RP ,P) = DP and
E(P, CP) = EP . Subsequently (b) follows from the fact that



DPEP = FP , (c) follows from the dimensionality of FP ,
and the last equality holds from the definition of rP .

We now proceed with a lemma that lower bounds the
minimum number of horizontal or vertical sub-tiles needed1

to cover F ∈ RK×L.

Lemma 7. For any single-shot lossless function reconstruction
scheme, and for the corresponding DE = F decomposition,
the minimum number of sub-tiles needed to cover F is at least

KL
max(∆,Γ) .

Proof. Suppose first that Γ ≥ ∆ and consider a scheme that
covers the entire F, with m1 horizontal sub-tiles and m2

vertical sub-tiles. We wish to show that m1+m2 ≥ KL
max(∆,Γ) .

To see this, we first note that since there is no intersection
between each of the tiles (cf. Definition 1 and Lemma 5), and
since there is no intersection between each sub-tile inside a tile
(Definition 8), then we can conclude that for any P,P ′ ∈ C
and any S ∈ Φ(SP),S ′ ∈ Φ(SP′), we must have S ∩S ′ = ∅.
This in turn implies that the sub-tiles can now cover at
most m1Γ + m2∆ elements of F, which in turn means that
m1Γ + m2∆ ≥ KL, which means that KL

Γ − m2
∆
Γ ≤ m1,

which means that KL
Γ +(1− ∆

Γ )m2 ≤ m1+m2. Since ∆
Γ ≤ 1,

we have that KL
Γ ≤ KL

Γ +(1− ∆
Γ )m2, which directly tells us

that m1+m2 ≥ KL
Γ . This concludes the proof for the case of

Γ ≥ ∆. The same process follows directly also for the case
of Γ ≤ ∆, thus concluding the proof.

At this point we can combine our results. We know from
Definitions 7,8 and from Lemma 7 that

∑
P∈C |Φ(SP)| >

KL
max(Γ,∆)) , while we know from Lemma 8 that

∑
P∈C |P| ≥∑

P∈C |Φ(SP)|. Now by recalling that
∑

P∈C |P| is the num-
ber of rank-one contribution supports, and by recalling from
Lemma 2 that each rank-one contribution support corresponds
to a server in any lossless scheme, we can use the lower bound
on the number of sub-tiles in Lemma 7 as a lower bound
on the number of servers, allowing us to thus conclude that
Nopt ≥ KL

max(∆,Γ) , thus concluding the proof of our converse
for the single-shot case.

D. Example

Example 1. Consider a single-shot scenario with K = 7 users,
L = 11 subfunctions, ∆ = 3 and Γ = 5, where naturally F ∈
R7×11. Let us go through the steps described in Subsection B3.

1) Sizes and positions of tiles of DE: To assign the sizes
and locations of the tiles (i.e., of the families of the
equivalence classes of rank-one support) of DE, we
follow Equations (41)–(44), which yield the tessellation
pattern shown in Figure 4. This pattern, which we show
to be optimal, entails four tile families C1, C2, C3, C4, of
respective sizes 3×5, 3×1, 1×5 and 1×1. Each family has
the following number of tiles |C1| = ⌊K

∆ ⌋⌊L
Γ ⌋ = 2× 2 =

1To “cover” in this context means that every element of F has to be in at
least one representative support.

text

Fig. 4. Corresponding to Example 1, the figure (left) represents in black the
families of the equivalent classes from (41)–(44). The 9 equivalent classes
(right) cover the entire F.

4, |C2| = ⌊K
∆ ⌋ = 2, |C3| = ⌊L

Γ ⌋ = 2, |C4| = 1 and the tiles
have a maximum rank (Cf. Definition 6) equal to rP = 3
for P ∈ C1, rP = 1 for P ∈ C2, rP = 1 for P ∈ C3, and
rP = 1 for P ∈ C4. We note that the pattern successfully
covers F, which is naturally a necessary condition.

2) Creating and filling the non-zero tiles of in D and E:
The master node extracts the submatrices corresponding
to each of the tiles as described in (47), and proceeds to
perform 4 complete SVD decompositions to get DP and
EP , ∀P ∈ C1, as described in (48).

3) Placing the filled cropped tiles DP and EP in D and
E: Finally we place the tiles of D and E, by following
exactly the coordinates described in (52) and (53), as we
see in Figure 5.



Fig. 5. Creating our communication and computing matrices D and E, at
the exact coordinates from (50)–(53).
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