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Abstract—The work considers the N -server distributed com-
puting setting with K users requesting functions that are arbi-
trary multi-variable polynomial evaluations of L real (potentially
non-linear) basis subfunctions of a certain degree. We aim to
reduce both the computational cost at the servers and the
communication load between the servers and the users. To do so,
we introduce a novel approach, which involves transforming our
distributed computing problem into a sparse tensor factorization
problem F̄ = Ē ×1 D, where tensor F̄ represents the requested
non-linearly-decomposable jobs expressed as the mode-1 product
between tensor Ē and matrix D, where D and Ē respectively
define the communication and computational assignment, and
where their sparsity respectively allows for reduced communi-
cation and computational costs. We here design an achievable
scheme, designing Ē ,D by utilizing novel fixed-support SVD-
based tensor factorization methods that first split F̄ into properly
sized and carefully positioned subtensors, and then decompose
them into properly designed subtensors of Ē and submatrices
of D. For the zero-error case and under basic dimensionality
assumptions, this work establishes an achievable system rate
K/N , given a specific communication and computational load.

I. INTRODUCTION

There is a growing demand for massive parallel computing
to efficiently distribute the computations across servers [1],
[2]. To address this challenge, numerous works have proposed
methods, focusing on scalability [3]–[5], privacy and secu-
rity [6]–[10], completion time, latency, or straggler mitiga-
tion [11]–[13], among others. For comprehensive surveys of
the related works, the reader is referred to [14], [15].

Beyond these considerations, the renowned computation-
versus-communication tradeoff lies at the heart of distributed
computing as a foundational principle with far-reaching impli-
cations. This tradeoff emerges as a critical limiting factor in
numerous distributed computing scenarios [16]–[18], including
the practical settings of multi-user, multi-server distributed
computation of linearly-separable functions, addressing several
classes of computing problems, e.g., gradient coding [19]–
[21], linear-transform computation [22]–[24], matrix multi-
plication [25], or multivariate polynomial computation [11],
[26]–[29], also training of large-scale machine learning algo-
rithms and deep neural networks with massive data [16], [30],
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where communication and computation are the interdependent
bottlenecks that significantly shape overall performance.

The advent of large language models (LLMs), whose un-
precedented scale necessitates distributed training and infer-
ence, has intensified the need for communication/computation-
efficient distributed systems. Particularly, training and infer-
ence in LLMs rely on non-linear transformations [31], most
prominently, activation functions [32] and attention mecha-
nisms [33], that capture multiplicative interactions beyond
linearly separable functions. While non-linear computation
has been extensively studied in contexts such as neural net-
works [34], approximation theory [35], and non-linear opti-
mization [36], a systematic characterization of the fundamental
limits of the distributed computation for non-linearly separable
functions remains unexplored. Although existing frameworks,
such as matrix factorization in [37], can compute non-linearly
separable functions, they require an excessive number of basis
subfunctions, leading to substantial resource overhead. In con-
trast, the proposed tensor factorization approach in this work
captures non-linearly separable functions more efficiently by
folding the power ranges of substantially fewer basis subfunc-
tions into high-order tensors, thereby significantly reducing
resource requirements.

Summary of our contributions: We study the problem
of multi-user distributed computing of non-linearly separable
functions in an N -server, K-user setting, where each user
requests arbitrary multivariate polynomial evaluations of L
real (potentially non-linear) basis subfunctions, represented
by a full-rank tensor F̄ , detailed in Section II. The sparse
factorization F̄ = Ē ×1 D of user requests provides a natural
framework for reducing both computation and communication
costs. Here, the sparse encoding tensor Ē determines assigning
a specific range of exponents of special subsets of basis
subfunctions to a selected subset of servers to compute, while
the sparse decoding matrix D specifies a selected subset of
users to which servers transmit. This formulation, detailed
in Section III, establishes a direct link between distributed
computing and tensor factorization, identifying fixed-support
tensor factorization as a central component of our real-valued
multi-user distributed computing problem. It generalizes dis-
tributed gradient coding [20], which arises as the special case
of linearly separable tasks. Unlike gradient coding, our frame-
work also handles non-linear separations, permits arbitrary (not



just cyclic) task allocations, and supports multiple users. In
this paper, we only focus on the lossless case and establish
an achievable scheme for the single-shot1 system rate (see
Theorem 1 in Section IV) by employing novel concepts and
algorithms for fixed-support sparse matrix factorization and
multilinear singular value decomposition (SVD) introduced in
[38], [39], respectively, that allows us first to split F̄ into
properly sized and carefully positioned subtensors, and then
decompose them into properly designed subtensors of Ē and
submatrices of D. Finally, we discuss the concluding remarks
and our future directions in Section V.

Notations. For a positive integer n, we let [n] = [1 :
n] ≜ {1, . . . , n}. For a, b ∈ Z+ such that a < b, [[a : b]]
denotes an ordered set of integers, ranging from a to b, and
a | b denotes a divides b. We will use supp(.) to represent
the support of an array, describing the set of indices of non-
zero elements. [A,B] indicates the horizontal concatenation
of the two matrices. For any matrix X ∈ Rm×n, then
X(i, j), i ∈ [m], j ∈ [n], represents the entry in the ith row
and jth column, while X(i, :), i ∈ [m] and X(:, j), j ∈ [n]
represent its ith row and jth column, respectively. For two
index sets I ⊂ [m],J ⊂ [n], then X(I,J ) represents the
submatrix comprised of the rows in I and columns in J . All
the above matrix notations are extended to tensors. 1(.) is the
indicator function, returning 1 for the corresponding condition.
For a vector x ∈ RN , ∥x∥0 denotes the number of non-zero
elements while ∥x∥ is the Euclidean norm.

We next briefly review the essential concepts of tensors.
Tensor Notation and Operations. An order-N tensor

X̄ ∈ RI1×···×IN is a multi-way array with N modes. The
(i1, . . . , iN )-th scalar entry of X̄ is denoted by X̄ (i1, . . . , iN ),
where the mode n ∈ [N ] has a dimensionality in ∈ [In].

A mode-n unfolding of a tensor X̄ is the mapping of its
elements to a matrix. For instance, mode-1 unfolding of X̄ ∈
RI1×I2×···×IN is represented as X̄(1) ∈ RI1×I2I3···IN .

The stacking operation corresponds to grouping of order-N
tensor samples X̄j ∈ RI1×···×IN , j ∈ [J ] to form an order-
(N + 1) tensor Ȳ = stackN+1

(
X̄1, . . . , X̄J

)
∈ RI1×···×IN×J .

The mode-n product takes as input an order-N tensor, X̄ ∈
RI1×I2×···×IN , and a matrix A ∈ RJ×In , to produce another
tensor, Ȳ , of the same order as the original tensor X̄ . The
operation is denoted by Ȳ = X̄ ×n A, and provides a direct
generalization of matrix multiplication.

Tensor Contraction Product (TCP) generalizes the mode-n
product to product of tensors with possibly different orders.
Given tensors X̄ ∈ RI1×···×IN and Ȳ ∈ RJ1×···×JM , with
common modes In = Jm, then their (n,m)-contraction,
denoted by ×m

n , yields an order-(N+M−2) tensor Z̄ = X̄×m
n

Ȳ ∈ RI1×···×In−1×In+1×···×IN×J1×···×Jm−1×Jm+1×···×JM .
Generalized TCP contracts a whole ordered block of modes

(a multi-index) between two tensors. Given tensors X̄ ∈
RI1×···×IN and Ȳ ∈ RJ1×···×JM , assume the tails match

1In the single-shot scenario, a server broadcasts a single non-linear combina-
tion of the output files to its connected users. While in the multi-shot settings,
a server can broadcast multiple non-linear combinations of the output files,
not necessarily to the same set of users.

pairwise, i.e., (In, . . . , IN ) = (Jm, . . . , JM ) and N −n+1 =
M − m + 1. Then, their ([[n : N ]], [[m : M ]])-contraction,
denoted by ×[[m:M ]]

[[n:N ]] , yields an order-(n + m − 2) tensor

Z̄ = X̄ ×[[m:M ]]
[[n:N ]] Ȳ ∈ RI1×···×In−1×J1×···×Jm−1 .

A comprehensive description of the tensor-related defini-
tions can be found in Appendix A.

II. MULTI-USER NON-LINEARLY SEPARABLE
DISTRIBUTED COMPUTING

We focus on the very broad and arguably practical N -
server distributed computing framework with K users request-
ing arbitrary multi-variable polynomial evaluations of L real
(potentially non-linear) basis subfunctions of a certain degree
from distributed servers, as we will detail below.

Our setting, as depicted in Figure 1, initially considers a
master node that coordinates, in three phases, a set of N
distributed servers that compute functions requested by the
K users. During the initial demand phase, each user k ∈ [K]
independently requests the computed output of a single real
function Fk(.). Under the real-valued non-linear separability
assumption2, these functions take the basic form

Fk(.) =
∑

p∈
∏

ℓ∈[L][Pℓ]

fk,p
∏
ℓ∈[L]

W pℓ−1
ℓ (1)

where Wℓ ≜ fℓ(x), x ∈ D, denotes the real-valued output
file of fℓ(·) for a multi-variate input x from any domain
set D, fℓ(·) denotes a basis subfunction, and fk,p ∈ R
denotes a real-valued basis coefficient, where p ≜ (p1, . . . , pL)
describes the exponent vector of each demand. If p ∈
{(p1, . . . , pL) | |supp(Ip)| > Γ}, where Ip ≜ (1(p1 >
1),1(p2 > 1), . . . ,1(pL > 1)), then fk,p = 0. Subsequently,
during the computing phase, the master assigns to each server
n ∈ [N ], a set of basis subfunctions Sn ⊆ [L] to be computed
locally and also a set of indices of multiplicative terms
Pn ∈ 2

∏
ℓ∈[L][Pℓ], representing the set of exponent vectors of

server n, to generate the corresponding multiplicative terms∏
ℓ∈[L] W

pℓ−1
ℓ for each p ∈ Pn from the computed output

subfunctions, which determines how to compute the powers
of different basis subfunctions, and how to multiply the output
subfunctions computed locally on each server. Then, during the
communication phase, each server n forms signals

zn ≜
∑
p∈Pn

en,p
∏
ℓ∈[L]

W pℓ−1
ℓ , ∀n ∈ [N ] (2)

which are multivariate maps as dictated by the encoding
coefficients en,p ∈ R, n ∈ [N ], and we will design later on.
Note that pℓ = 1, ℓ /∈ Sn, reflects the absence of certain basis
subfunctions and their powers in the multiplicative terms for
computation by server n. Subsequently, server n proceeds to
transmit zn to a subset of users Tn ⊆ [K], via an error-free

2This nicely captures non-linearly separable functions, where each Fk(.),
taking L subfunctions as input, can be written as a non-linear combination of
L univariate basis subfunctions, each with a specific range of exponents.
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Fig. 1. The lossless (K,N,L,Γ,∆, {Pℓ,Λℓ}ℓ∈[L]) distributed computing
setting with N servers and K users. Each server n computes the basis
subfunctions {fℓ(.), ∀ℓ ∈ Sn, ℓ ≜ in,j , j ∈ [|Sn|]} and produces
multiplicative terms {W pℓ−1

ℓ , ∀ℓ ∈ Sn, ℓ ≜ in,j , j ∈ [|Sn|]}, where
the exponent vector of server n takes the form (pℓ)ℓ∈[L] ∈

∏
ℓ∈[L][Pℓ],

where pℓ = 1 if ℓ /∈ Sn. Furthermore, each server communicates a linear
combination of the multiplicative terms to users in Tn, under computational
constraint |Sn| ≤ Γ ≤ L, communication constraint |Tn| ≤ ∆ ≤ K, and
multiplication constraint Λℓ ≤ Pℓ, ℓ ∈ [L], which bounds the number of self
multiplication of each basis subfunction.

shared link. Finally, during the decoding part of the last phase,
user k linearly combines its received signals to get

F ′
k ≜

∑
n∈[N ]

dk,nzn (3)

as dictated by the decoding coefficients dk,n ∈ R, k ∈ [K], n ∈
[N ]. Naturally, dk,n = 0,∀k /∈ Tn, simply because user k does
not receive any symbols from server n.

Furthermore, we consider computation, communication, and
multiplication costs

Γ ≜ max
n∈[N ]

|Sn| , ∆ ≜ max
n∈[N ]

|Tn| , (4)

Λℓ ≜ max
p∈Pn

pℓ − min
p∈Pn

pℓ + 1 (5)

respectively representing the maximum number of basis sub-
functions to be locally computed at any server3, the maximum
number of users that a server can communicate to, and
finally, the power range of basis subfunctions that must be
computed, which in turn determines the maximum number
of multiplications required locally at each server4 among all
multiplicative terms in (1). Simplifying the multiplication cost
in (5) for Λℓ = Pℓ = 2, our system model reduces to the
special case of linearly separable functions in [37].

We next determine the cost of evaluating the required powers
of each basis subfunction in (1) using (5). Consider a power
term Wα

ℓ in the demanded functions, where the exponent α

3We highlight that the constraints Γ, ∆, and Λℓ are strict, meaning they
must be satisfied for every instance of the problem.

4With uniform server computational capacity, the maximum number of
multiplications of basis subfunction ℓ with itself is bounded by Λℓ. If servers
had heterogeneous capacities, the bound would instead depend on n.

is decomposed as α ≜ qΛℓ + r, q ∈ N, r ∈ [[0 : Λℓ − 1]].
Each server computes the specific assigned range [[qΛℓ + 1 :
(q + 1)Λℓ]] of exponents. The cost of evaluating Wα

ℓ is
⌊log2(qΛℓ + 1)⌋ + (r − 1), where the logarithmic cost is
due to repeated squaring, i.e., computing successive powers
of two until reaching the desired anchor exponent, which is
negligible compared to the (r − 1) multiplications required
within the range of exponents. Hence, the overall complexity
induced by multiplications per server for obtaining exponents
of ℓth basis subfunction is in order O(Λℓ), versus O(α) for
naive repeated multiplications. For example, with α = 851,
Λℓ = 100, and Pℓ = 1000, the computation requires only
≈ 50 multiplications, compared to 850 in the naive approach.

In a system parametrized by (K,N,L,Γ,∆, {Pℓ,Λℓ}ℓ∈[L]),
our goal is to find schemes that can recover any set of desired
functions without error, with the smallest possible computa-
tion, communication, and multiplication loads. Accordingly,
for each server n, we must specify the basis subfunctions Sn,
the exponent vectors Pn, and the users Tn it communicates
with. Having to serve many users with fewer servers naturally
places a burden on the system, bringing to the fore the concept
of the system rate

R ≜
K

N
(6)

and the corresponding system capacity C, representing the
supremum of all rates.

Toward analysing our non-linearly separable distributed
computing problem, the desired functions in (1) are fully
represented by a tensor F̄ ∈ RK×P1×...×PL of the coefficients
fk,p. With F̄ in place, we must decide on the computation
assignment (encoding) and the communication protocol (de-
coding). As we have seen in [39], for the error-free case,
this task is equivalent — directly from (2),(3)— to solving
a (sparse) tensor factorization problem of the form

F̄ = Ē ×1 D . (7)

where, as we will specify later on, the N × P1 × . . . × PL

computing-and-encoding tensor Ē holds the coefficients en,p
from (2), while the K×N communication matrix D holds the
decoding coefficients dk,n from (3). Furthermore, we aim to
decompose a given tensor F̄ as a mode-1 product of a tensor
Ē and a matrix D, satisfying sparsity constraints Γ,∆, and Λℓ.
Particularly, we leverage tensors as high-dimensional arrays to
precisely capture the multiplicative terms associated with each
basis subfunction in each user’s demand.

We next present the formulation of our multi-user non-
linearly separable distributed computing problem in the loss-
less case, establishing its connection to tensor factorization.

III. PROBLEM FORMULATION

We here describe in detail the main parameters of our model,
defining matrix D and tensors Ē , F̄ and the various metrics,
rigorously linking the distributed computing problem and the
tensor factorization in (7) for our error-free case.



Let us consider

f ≜ [F1, F2, . . . , FK ]⊺ ∈ RK , (8)

F̄k(p) ≜ fk,p, F̄k ∈ RP1×P2×...×PL , k ∈ [K] , (9)

W̄(p) ≜ W p1−1
1 W p2−1

2 . . .W pL−1
L , W̄ ∈ RP1×P2×...×PL ,

∀p ∈ [P1]× [P2]× . . .× [PL] (10)

where f represents the vector of desired function outputs Fk,
F̄k is the tensor of function coefficients fk,p for the function
requested by user k, and W̄ denotes the tensor of multiplicative
terms of the output files Wℓ = fℓ(·), all from (1). Then,
recalling the encoding coefficients en,p and transmitted signals
zn from (2), as well as the decoding coefficients dk,n and
decoded functions F ′

k from (3), we have

Ēn(p) ≜ en,p, Ēn ∈ RP1×P2×...×PL , (11)

dk ≜ [dk,1, dk,2, . . . , dk,N ]⊺ ∈ RN , k ∈ [K] (12)

and thus from (8), we have the output vector

f = stack1(F̄1, . . . , F̄K)×[[1:L]]
[[2:L+1]] W̄ (13)

as well as the transmitted signal by server n, taking the form

zn = Ēn ×[[1:L]]
[[1:L]] W̄ . (14)

This allows us to form the tensors

F̄ ≜ stack1(F̄1, . . . , F̄K) ∈ RK×P1×P2×...×PL , (15)

Ē ≜ stack1(Ē1, . . . , ĒN ) ∈ RN×P1×P2×...×PL , (16)

D ≜ [d1, . . . ,dK ]⊺ ∈ RK×N (17)

where F̄ denotes the K × P1 × . . . × PL tensor of all
function coefficients across all the users, Ē represents the
aforementioned N×P1×. . .×PL computing tensor, capturing
the computing and linear encoding tasks of servers, and D
represents the K × N communication matrix, capturing the
communication and linear decoding task done by each user.

To see the transition to the tensor factorization problem, we
first note that from (2) and (14), the overall transmitted vector
z ≜ [z1, z2, . . . , zN ] ∈ RN takes the form

z = Ē ×[[1:L]]
[[2:L+1]] W̄ (18)

and then that given the decoding phase from (3), each retrieved
function takes the form

F ′
k = d⊺

kz (19)

thus resulting in the vector of all retrieved functions taking
the form f ′ = [d1,d2, . . . ,dK ]⊺z. We aim to set the recovery
error to zero as follows.

∥f ′ − f∥2 = 0 . (20)

Directly from the above and as in (7), we see that for the
error-free case, resolving our distributed computing problem
requires that F̄ be decomposed as F̄ = Ē ×1 D.

In terms of the corresponding connection to the sparsity
of D and Ē , we recall from (4) our metrics Γ,∆, and Λℓ,

which directly from (12)–(14) and from (15)–(17), imply the
computation constraint as

max
n∈[N ]

∑
ℓ∈[L]

∣∣∣1(supp
(
Ē(n,◁, [2 : Pℓ],▷)

)
̸= ∅

)∣∣∣ ≤ Γ

where ◁ ≜ :, . . . , :︸ ︷︷ ︸
ℓ−1 terms

and ▷ ≜ :, . . . , :︸ ︷︷ ︸
L−ℓ terms

, the communication

constraint as
max
n∈[N ]

∣∣supp
(
D(:, n)

)∣∣ ≤ ∆

and the multiplication constraint as

∥Ē(n, p1, p2, . . . , pℓ−1, :, pℓ+1, . . . , pL)∥0 ≤ Λℓ ,

∀ℓ ∈ [L], pℓ ∈ [Pℓ] .

IV. MAIN RESULT

We present the achievable rate result for the pro-
posed lossless distributed computing setting, parametrized by
(K,N,L,Γ,∆, {Pℓ,Λℓ}ℓ∈[L]), in Theorem 1. All the results
hold without any restriction on the dimensions, provided that
each subtensor of F̄ has full rank, a condition that is easily
justified in our real-valued function settings.

Theorem 1. The achievable rate of the lossless
(K,N,L,Γ,∆, {Pℓ,Λℓ}ℓ∈[L]) distributed computing system,
under (∆|K, Λℓ|Pℓ), takes the form R = K/N , where

N ≤ K

∆

(LΓ)∑
i=1

min
(
∆,

∏
ℓ∈Qi

Λℓ

)
×

∏
ℓ∈Qi

Pℓ

Λℓ
(21)

where Qi = {i1, . . . , iΓ} ∈ subset([L],Γ),∀i ∈ [
(
L
Γ

)
] denotes

the subsets of basis subfunctions with cardinality Γ.

Proof. Due to a lack of space (partly because our proofs
require a sizable set of definitions), we present the proof in the
supplementary document (cf. Appendix C), which describes
the achievability of the corresponding decomposition Ē×1D =
F̄ , and how this is translated into our distributed computing
setting while abiding by the constraints on communication (∆),
computation (Γ), and multiplication (Λℓ). To provide some
insights, we next present a proof sketch.

Sketch of the proof: The proof consists of an achievable
scheme, consisting of three main steps. In the first step,
the master node divides F̄ into properly sized hypercubic
subtensors (corresponding to ‘tiles’) where the tiles must
cover all elements of F̄ , and maintain a width limit ∆ and
modal constraint Λℓ, ℓ ∈ [L] for Γ modes in subset Qi of
L modes (cf. Definition 2 in Appendix A). In the second
step, the master node performs a multilinear SVD for each
tile (the aforementioned subtensors of F̄), which defines the
way each tile is the mode-1 product of a subtensor by a
submatrix (the so-called right and left factors of the multilinear
SVD, as detailed in Appendix B). Finally, in the third step,
the right and left factors are carefully positioned to form
the desired Ē and D, which in turn, define the computation
and communication protocols of the distributed computing



Fig. 2. Corresponding to Example 1, this figure illustrates the partitioning of F̄ into 8 tiles of size (∆×Λ1×Λ2) = (2×2×2), and also illustrates the sparse
tiling of D and Ē with tiles Lj and R̄j , respectively, resulting in the full tiling of F̄ = Ē ×1 D, which is covered by the 8 tiles S̄j = R̄j ×1 Lj , j ∈ [8],
guaranteeing the sparsity constraints ∆

K
= 1

2
for D, Λ1

P1
= Λ2

P2
= 1

2
, and Γ

L
= 1 for Ē , thus satisfying the per-server communication and computing

constraints, while yielding lossless reconstruction of F̄ and thus of the desired functions.

problem, respectively. To elaborate on the number of required
servers for the proposed scheme, we consider a mode-1 matrix
unfolding5 of tensor F̄ and utilize its rank properties.

We next present a basic example of a multi-user non-linearly
decomposable problem and compare the performance of our
scheme with the matrix factorization approach in [37].

Example 1. Consider our setting, parametrized by (K =
4, N, L = 2,Γ = 2,∆ = 2, {Pℓ = 4,Λℓ = 2}ℓ∈[2]), where
N servers are tasked with computing functions requested by
K = 4 users. Each function is a non-linear combination of
L = 2 basis subfunctions that takes the form

Fk(.) =
∑

p≜(p1,p2)∈[4]×[4]

fk,p W p1−1
1 W p2−1

2 , k ∈ [4] . (22)

The coefficients fk,p are described by tensor F̄ , as demon-
strated in Figure 2. Given the design constraints, we seek
the minimum number of servers needed to guarantee lossless
reconstruction of (22) at the users, and for this, we directly
use (21) to conclude that we need N = 16 servers. To tackle
this challenge of reconstruction, we need to construct

1) The (N × P1 × P2) = (16× 4× 4) computing tensor Ē ,
specifying the computational tasks of each server.

2) The (K × N) = (4 × 16) communication matrix D,
determining the server-user connections.

5Unfolding, also referred to as matricization or flattening, is the process of
rearranging the elements of a multi-dimensional array into a matrix format.

These originate from the decomposition of (K×P1×P2) =
(4× 4× 4) tensor F̄ (cf. (15)) as F̄ = Ē ×1 D, representing
the requested functions. The solution is then as follows.

1) Initially, we partition F̄ into K
∆ ×

∏
ℓ∈[L]

Pℓ

Λℓ
= 2 ·2 ·2 = 8

disjoint 2×2×2 subtensors S̄j ∈ R∆×Λ1×Λ2 = R2×2×2,
where j ranges from 1 to 8. This is illustrated in Figure 2.

2) Next, using the standard tensor decomposition form (cf.
Appendix B), we decompose each S̄j as S̄j = R̄j ×1

Lj , where R̄j ∈ R2×2×2,Lj ∈ R2×2 for all j ∈ [8],
noting that such full decomposition is feasible since the
maximum rank of each S̄j is min(∆,Λ1Λ2) = 2.

3) Finally, we construct D ∈ R4×16 and Ē ∈ R16×4×4 by
tiling them with Lj and R̄j , respectively, as illustrated in
Figure 2. Thus, for example, the upper left 2×2 submatrix
of D is equal to L1, the 2× 2 tile to the right of that is
zero, while the lower right corner of Ē is equal to R̄8.

The above example provides a glimpse, albeit a partial illus-
tration, of the general principle behind creating our achievable
scheme. In brief, corresponding to (21), we begin by splitting
our K × P1 × P2 tensor F̄ , into K

∆
P1

Λ1

P2

Λ2
subtensors of size

∆×Λ1×Λ2. We decompose (using the tensor decomposition
form) each subtensor into the Lj , j ∈ [8] part that becomes a
tile of D, and into the R̄j , j ∈ [8] part that becomes a tile of Ē .
The tile placement must respect the sparsity constraints from
Γ,∆,Λℓ and must yield Ē ×1 D = F̄ . Regarding the required
number of servers, the general rule is that N is simply the
number of subtensors, multiplied by the rank of each subtensor.



Since we had 8 subtensors, each of rank 2, we employed
N = 16 servers.

To solve this problem with the matrix factorization approach
of [37], LM =

∏
ℓ∈[L] Pℓ − 1 = 15 basis subfunctions are

needed to capture all multiplicative terms. The number of
required servers with the same computation and communi-
cation cost as the tensor-based approach is thus K

∆

[⌊
LM

Γ

⌋
×

min(∆, Γ) + min(∆, mod(LM , Γ))
]
= 30. This means our

proposed tensor-based approach, for Example 1, has a gain
≈ 47% over the matrix-based approach in [37].

V. CONCLUSION

In this work, we investigate the performance of lossless
multi-user distributed computing for real-valued multi-variable
polynomials, establishing clear connections to fixed-support
tensor factorization and high-dimensional tessellation theory.
Theorem 1 specifies an achievable rate K

N by characterizing an
upper bound on the number of required servers for the error-
free reconstruction of users’ demands, given the computation
and communication limits to support a specific set of users in
evaluating the range of exponents of the basis subfunctions.

Our future work will focus on deriving an optimal solution
by establishing a converse to Theorem 1. We will also extend
the framework to the multi-shot setting, which expands the
span of transmitted signals and reduces the number of required
servers. Moreover, we will investigate the lossy setting, where
users can recover the requested functions within a bounded
error, thus characterizing the system capacity and the funda-
mental tradeoff between communication and computation for
distributed computing of arbitrary polynomials.
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APPENDIX

Supplementary Notations. The matrix I(X ,Y) ∈ Rm×n

has all entries equal to zero, except at positions (i, j), i ∈
X , j ∈ Y . Supp(A) ∈ {0, 1}m×n is a binary matrix, repre-
senting the locations of non-zero elements of A ∈ Rm×n.
For a real number x ∈ R, ⌈x⌉, ⌊x⌋, represent respectively the
ceiling and floor function of x. 1(ℓ ∈ Q) is the indicator
function, returning 1 for ℓ ∈ Q. We use ⊙ to represent the
Hadamard product of tensors of the same dimensions, i.e., the
elementwise product. ∨ denotes a logical “OR” operator.

A. Basic Tensor Definitions

We here review the basic concepts of tensors.

Definition 1. An order-N tensor, X̄ ∈ RI1×···×IN , is a multi-
way array with N modes, with the nth mode of dimensionality
In, for n ∈ [N ]. Special cases of tensors include matrices as
order-2 tensors (e.g., X ∈ RI1×I2 ), vectors as order-1 tensors
(e.g., x ∈ RI1 ), and scalars as order-0 tensors (e.g., x ∈ R).

Definition 2. A mode-n unfolding of a tensor is the pro-
cedure of mapping the elements from a multidimensional
array to a two-dimensional array (matrix). Conventionally,
such a procedure is associated with stacking mode-n fibers
(modal vectors) as column vectors of the resulting matrix.
For instance, mode-1 unfolding of X̄ ∈ RI1×I2×···×IN is
represented as X̄(1) ∈ RI1×I2I3···IN , and given by

X̄(1)

(
i1, i2i3 . . . iN

)
= X̄ (i1, i2, . . . , iN ) . (23)

Note that the overlined subscripts refer to linear indexing (or
Little-Endian) [40], is given by

i1i2 . . . iN = 1 +

N∑
n=1

(in − 1)

n−1∏
k=1

Ik (24)

= 1 + i1 + (i2 − 1)I1 + · · ·+ (iN − 1)I1 . . . IN−1.

Definition 3. Any given vector x ∈ RI1I2...IN can be folded
into an N th order tensor, X̄ ∈ RI1×I2×···×IN , with the relation
between their entries defined by

X̄ (i1, i2, . . . , iN ) = x(i), ∀in ∈ [In] (25)

where i = 1 +
∑N

n=1(in − 1)
∏n−1

k=1 Ik.

Definition 4. Consider grouping J order-N tensor samples
X̄j ∈ RI1×···×IN , j ∈ [J ], so as to form an order-(N+1) data
tensor, Ȳ ∈ RI1×···×IN×J . This stacking operation is denoted
by

Ȳ = stackN+1

(
X̄1, . . . , X̄J

)
. (26)

In other words, the combined tensor samples introduce
another dimension, the (N + 1)th mode of Ȳ , such that its
mode-(N + 1) unfolding Ȳ(N+1) ∈ R(I1I2···IN )×J is

Ȳ(N+1)

(
i1i2i3 . . . iN , j

)
=

[
x1, . . . ,xJ

]
(27)

where xj ∈ RI1I2···IN denotes the vectorization of the tensor
X̄j , obtained by stacking all its entries into a single column
vector in Little-Endian order consistent with (24).

Definition 5. The mode-n product takes as input an order-
N tensor, X̄ ∈ RI1×I2×···×IN , and a matrix A ∈ RJ×In , to
produce another tensor, Ȳ , of the same order as the original
tensor X̄ . The operation is denoted by

Ȳ = X̄ ×n A (28)

where Ȳ ∈ RI1×···×In−1×J×In+1×···×IN . The mode-n product
is comprised of 3 consecutive steps:

X̄ → X̄(n) ,

Ȳ(n) = AX̄(n) ,

Ȳ(n) → Ȳ .

(29)

Definition 6. Tensor Contraction Product (TCP) is at the core
of tensor decompositions, an operation similar to the mode-
n product, but the arguments of which are multidimensional
arrays that can be of a different order. For instance, given
an N th order tensor X̄ ∈ RI1×···×IN and another M th order
tensor Ȳ ∈ RJ1×···×JM , with common modes In = Jm, then
their (n,m)-contraction denoted by ×m

n , yields a third tensor
Z̄ ∈ RI1×···×In−1×In+1×···×IN×J1×···×Jm−1×Jm+1×···×JM of
order (N +M − 2), Z̄ = X̄ ×m

n Ȳ with the entries

Z̄(i1, . . . , in−1, in+1, . . . , iN , j1, . . . , jm−1, jm+1, . . . , jM )

=
∑

in∈[In]

X̄ (i1, . . . , in−1, in, in+1, . . . , iN )

× Ȳ(j1, . . . , jm−1, in, jm+1, . . . , jM ) . (30)

The overwhelming indexing associated with the TCP opera-
tion in (30) becomes unmanageable for larger tensor networks,
whereby multiple TCPs are carried out across a large number
of tensors. Manipulation of such expressions is prone to errors
and prohibitive to the manipulation of higher-order tensors.

We next generalize the TCP operation for the cases where
there is more than one common mode between two tensors.

Definition 7. Generalized TCP is an operation similar to
TCP, but it contracts a whole ordered block of modes (a
multi-index) between two tensors. For instance, given an N th

order tensor X̄ ∈ RI1×···×IN and an M th order tensor
Ȳ ∈ RJ1×···×JM , assume the tails match pairwise, i.e.,
(In, . . . , IN ) = (Jm, . . . , JM ) and N − n+ 1 = M −m+ 1.
Then, their ([[n : N ]], [[m : M ]])-contraction, denoted by
×[[m:M ]]

[[n:N ]] , yields a third tensor Z̄ ∈ RI1×···×In−1×J1×···×Jm−1 ,
where

Z̄ = X̄ ×[[m:M ]]
[[n:N ]] Ȳ

of order (n+m− 2), with entries

Z̄(i1, . . . , in−1, j1, . . . , jm−1)

=
∑
i∈I

X̄ (i1, . . . , in−1, in, . . . , iN )

× Ȳ(j1, . . . , jm−1, in, . . . , iN )

where N ≜ [[n : N ]] denotes the range of contracted modes,
i ≜ (in)n∈N = (in, . . . , iN ) refers to their corresponding
indices, and I ≜

∏
n∈N [In]. The sum ranges over all i ∈ I



and contracts N−n+1 paired modes (from n to N ), resulting
in an order-(n+m− 2) tensor Z̄ .

Before proceeding with the scheme, we provide a brief
reminder of the fundamental concepts related to SVD decom-
positions for high-dimensional data.

B. A Primer on Multilinear SVD

The multilinear SVD (MLSVD) extends the concept of the
matrix SVD into the multilinear domain [39]. This decom-
position provides a powerful tool for analyzing tensors and
obtaining low-rank multilinear approximations.

For matrices, the SVD is well-known and expressed as

M = UΣV⊺ (31)

where M ∈ RJ1×J2 is an arbitrary real-valued matrix, Σ ∈
RI1×I2 is a diagonal matrix with the entries σ1 ≥ σ2 ≥ . . . ≥
σmin(I1,I2) ≥ 0 in descending order, and U ∈ RJ1×I1 and
V ∈ RJ2×I2 are orthogonal matrices.

Using mode-n tensor-matrix products, we have:

M = Σ×1 U×2 V
⊺ . (32)

The MLSVD generalizes this decomposition to higher-order
tensors. In the literature, e.g., [39], it is also referred to as the
higher-order SVD or Tucker decomposition, though “Tucker
decomposition” has evolved into a broader term. The MLSVD
of a N th order tensor is represented as

T̄ = S̄ ×1 U
(1) ×2 U

(2) . . .×N U(N) (33)

where T̄ ∈ RJ1×J2×...×JN , S̄ ∈ RI1×I2×...×IN , and U(n) ∈
RJn×In , n ∈ [N ]. Similar to the matrix case, where U
and V serve as orthonormal bases for the column and row
spaces, the MLSVD computes N orthonormal mode matrices
U(n) ∈ RIn×Jn , n ∈ [N ], each spanning the subspace of
mode-n vectors. These mode matrices are directly analogous
to the singular vector bases in the matrix SVD. Concretely,
the MLSVD unfolds the tensor along each mode, applies the
matrix SVD to the resulting unfolding, and collects the mode-
n singular vectors to form the factor matrices, yielding an
orthogonal decomposition of the tensor into a core tensor and
its mode matrices. The subtensors S̄in=α of S̄ are obtained by
fixing the nth index to α with the following properties:

• All-orthogonality6: Subtensors S̄in=α and S̄in=β are or-
thogonal for all possible n, α, β if

⟨S̄in=α, S̄in=β⟩ = 0 when α ̸= β (34)

where the scalar product of two tensors T̄ , S̄ ∈
RI1×...×IN is defined as

⟨T̄ , S̄⟩ ≜
∑
i1

. . .
∑
iN

ti1...iN si1...iN (35)

where t and s represent the elements of tensors T̄ and S̄ ,
respectively.

6Arrays with a scalar product of zero are considered orthogonal.

• Ordering:

σ
(n)
1 ≥ σ

(n)
2 ≥ . . . ≥ σ

(n)
In
≥ 0 (36)

where symbols σ(n)
i represent the n-mode singular values

of S̄, and are equal to the Frobenius-norms ∥S̄in=i∥, i ∈
[In], where the Frobenius-norm of tensor T̄ is described
by

∥T̄ ∥ ≜ ⟨T̄ , T̄ ⟩ . (37)

The mode-n rank (or n-rank) of a tensor is defined using the
matrix-based methods. Specifically, it is the rank of the mode-
n unfolding of the tensor, i.e., the dimension of the subspace
spanned by its mode-n vectors. The mode-n vectors of T̄ are
precisely the column vectors of its mode-n matrix unfolding
T̄(n). We thus have:

rankn(T̄ ) = rank(T̄(n)) . (38)

With the above in place, we proceed to describe the achiev-
able scheme for the lossless case.

C. Scheme for Lossless Reconstruction and Achievability
Proof for Theorem 1

We proceed to describe the design of the communication
matrix D and the computing tensor Ē that yield Ē ×1D = F̄ ,
while maintaining N as well as a maximum of ∆ non-zero
elements in any column of D and a maximum of Λℓ non-
zero elements in ℓth dimension of subtensors of Ē for any
subset of L subfunctions with maximum cardinality Γ. These
constraints guarantee that each of the N servers can locally
calculate up to a range Λℓ of exponents of Γ basis subfunctions
and can engage in communication with at most ∆ users. The
design borrows concepts and definitions from the blockwise
SVD approach of [38], generalized to the multilinear scenario
in [39] by utilizing tensors.

In this proof, we first, in Part C1, define the nth rank-
one contribution support, representative rank-one support, or
tile, along with their related parameters. These tiles represent
classes of rank-one contribution supports, which show how any
support constraint on D and Ē contributes to the supports on
Ē ×1 D. The correspondence above is shown via Lemma 1.
Then in Part C2, we show how to design the tiles for the
product matrix Ē ×1 D, create and fill the non-zero tiles in D
and Ē , and place the filled tiles in D and in Ē for single-shot
settings. The number of servers required for the single-shot
scenario is obtained by associating the rank of each tile with
the servers and then summing the ranks over all tiles 7.

1) Basic Concepts and Definitions: We first present the
following definitions, which capture the basic concepts and
preliminaries of our proposed scheme.

7Quickly recall that for a (L+1)- dimensional tensor Ē , then Ē(n, :, . . . , :)
represents a L dimensional subtensor and D(:, n) for a matrix D is its nth

column, and Supp(D) (Supp(Ē)) is a binary matrix (tensor), indicating the
support of D (Ē). Also, when we refer to a support constraint, this will be
in the form of a binary matrix (tensor) that indicates the support (the position
of the allowed non-zero elements) of a matrix (tensor) of interest.



Definition 8. Given two support constraints I ∈ {0, 1}K×N

and J̄ ∈ {0, 1}N×P1×P2×...×PL , then for any n ∈ [N ], we
refer to S̄n(I, J̄ ) ≜ J̄ (n, :, . . . , :) ×1 I(:, n) as the nth rank-
one contribution support.

We note that when the supports are implied, we may
shorten S̄n(I, J̄ ) to just S̄n. The aforementioned I and J̄
will generally represent the support of D and Ē respectively,
while S̄n(I, J̄ ) will generally capture some of the support of
Ē ×1D and thus of F̄ . We have the following lemma for this.

Lemma 1. For I ≜ supp(D) and J̄ ≜ supp(Ē), then

∪Nn=1S̄n(I, J̄ ) = ∪Nn=1J̄ (n, :, . . . , :)×1 I(:, n)

⊇ Supp(Ē ×1 D) . (39)

Proof. The above follows from Definition 8 and from the fact
that Ē ×1 D =

∑N
n=1 Ē(n, :, . . . , :)×1 D(:, n).

We also need the following definitions.

Definition 9. Given two supports I ∈ {0, 1}K×N and J̄ ∈
{0, 1}N×P1×P2×...×PL , the equivalence classes of rank-one
supports are defined by the equivalence relation i ∼ j on [N ],
which holds if and only if S̄i = S̄j , as represented in Figure 3.

The above splits the columns of D (and correspondingly the
rows of Ē) into equivalence classes such that i ∼ j holds if
and only if J̄ (i, :, . . . , :)×1 I(:, i) = J̄ (j, :, . . . , :)×1 I(:, j).

Definition 10. For two supports I ∈ {0, 1}K×N , J̄ ∈
{0, 1}N×P1×P2×...×PL , and for C being the collection of
equivalence classes as in Definition 9, then for each class
P ∈ C, we call S̄P to be the representative rank-one support
of class P , which will also be called the tile labeled8 by
P . Furthermore, for each tile S̄P , let cP ≜ I(:, n), n ∈ P
(resp. rP ≜ J̄ (n, :, . . . , :), n ∈ P) be the corresponding
component column (resp. component row) of the representative
rank-one support. Finally, CP ≜ supp(cP) ⊂ [K] describes
the set of the indices of the non-zero elements in cP , while
RP ≜ supp(rP) ⊂ [P1]×. . .×[PL] describes the set of indices
of the non-zero elements in rP . This is illustrated in Figure 4.

Definition 11. For every set C′ ⊆ C of equivalence classes, let
us define the union of the representative rank-one supports
SC′ ≜ ∪P∈C′ S̄P to be the point-wise logical OR of the
corresponding S̄P .

In the above, SC′ is simply the area of the product tensor
covered by all the tiles P in C′. Furthermore, we have the
following definition.

Definition 12 ([38]). The maximum rank of a representative
rank-one support of class P ⊂ C is

rP ≜ min(|CP |, |RP |) . (40)

The above simply says that for the case of I = supp(D)
and J̄ = supp(Ē), then the part of tensor Ē ×1 D covered by
tile S̄P can have rank which is at most rP .

8Note that S̄n = S̄P for any n ∈ P . Furthermore, the term tile will be
used interchangeably to represent both S̄P and P .

Fig. 3. The figure on the left illustrates the support constraints I and J̄ on
D and Ē respectively. The constraints I(:, 1) and J̄ (1, :, :) on the columns
and rows of D and Ē respectively are colored green, I(:, 2) and J̄ (2, :, :)
are colored cyan and I(:, 3) and J̄ (3, :, :) are colored red. The product of
a column with a row of the same color yields the corresponding rank-one
contribution support S̄n(I, J̄ ), n = 1, 2, 3, as described in Definition 8, and
as illustrated on the right side of the figure.

Fig. 4. This figure illustrates three different rank-one contribution supports
S̄1, S̄2, S̄3, where the first two fall into the same equivalence class S̄P1

=
S̄1 = S̄2, while S̄P2 = S̄3.

With the above in place, we proceed to describe the method
used to design the matrix D and the tensor Ē .

2) Construction of D, Ē: The steps will involve
• Designing the sizes of the tiles for the product tensor
Ē ×1 D, and placing them.

• Creating and filling the non-zero tiles in D and Ē .
• Placing the filled tiles in D and in Ē
3) Designing D, Ē:

a) Step 1: Designing the sizes of the tiles for the
K × P1 × . . . × PL product tensor Ē ×1 D, and placing the
tiles: We initially partition the set of equivalent classes C (cf.
Definition 10) into the following set of equivalence classes

C ≜ {PQi | CPQi
= [1 + (k − 1)∆ : min(k∆,K)] ,

RPQi
=

∏
ℓ∈[L]

[1] ∪ (1(ℓ ∈ Qi)× [1 + (jℓ − 1)Λℓ :

min(jℓΛℓ, Pℓ)]) ,

∀(k, j1, . . . , jL) ∈ [⌈K
∆
⌉]× [⌈P1

Λ1
⌉]× . . .× [⌈PL

ΛL
⌉] ,

Qi = {i1, . . . , iΓ} ⊆ [L], |Qi| = Γ, ∀i ∈
[(L

Γ

)]
} (41)

where CPQi
are the indices of the corresponding columns of I,

RPQi
are the indices of the corresponding rows of J̄ , which

are defined in Definition 10, and jℓ is the corresponding index
to the ℓth basis subfunction in tensor F̄ . To cover all the
possibilities for our tensor-based tiling problem, we consider
the broad scenario where Pℓ ≥ Λℓ, ∀ℓ ∈ [L] and find the
general form for the upper bound on the required number of



servers N as the sum of the total number of tiles with different
maximum representative rank-one supports.

To decompose the high-dimensional tiles in this problem, we
consider the multilinear SVD approach, detailed in Appendix
B, which is based on the matrix SVD on mode-1 unfolding
of Γ-dimensional tiles S̄P , denoted as S̄P(1)

. We then use the
rank properties of the matrix unfolding of a tensor, where we
have rank(S̄P) = rank(S̄P(1)

).

The maximum rank of each representative rank-one support
for such tiles, i.e., of each tile P of Ē ×1 D, from (40) and
Definition 12, therefore takes the form

rP = rP(1)
= (42)

min
(
∆,

∏
ℓ∈Qi

Λℓ

)
, P ∈ C1 ,

(k, j1, . . . , jL) ∈ [⌊K∆ ⌋]×
∏

ℓ∈[L]

[1] ∪
(
1(ℓ ∈ Qi)× [⌊Pℓ

Λℓ
⌋]
)
,

min
(

mod(K,∆),
∏

ℓ∈Qi

Λℓ

)
, P ∈ C2 ,

(k, j1, . . . , jL) ∈
∏

ℓ∈[L]

[1] ∪ (1(ℓ ∈ Qi)× [⌊Pℓ

Λℓ
⌋]) ,

min
(
∆,

∏
ℓ Λℓ

∏
ℓ′ mod(Pℓ′ ,Λℓ′)

ℓ,ℓ′∈Qi: Λℓ|Pℓ, Λℓ′ ∤Pℓ′

)
, P ∈ C3 ,

(k, j1, . . . , jL) ∈ [⌊K∆ ⌋]×
∏

ℓ∈[L]

[1] ∪
(
1(ℓ ∈ Qi)×(

{[⌈Pℓ

Λℓ
⌉]} ∪ {1(Λℓ|Pℓ)× [⌊Pℓ

Λℓ
⌋]}

))
,

min
(

mod(K,∆),
∏

ℓ Λℓ

∏
ℓ′ mod(Pℓ′ ,Λℓ′)

ℓ,ℓ′∈Qi: Λℓ|Pℓ, Λℓ′ ∤Pℓ′

)
, P ∈ C4 ,

(k, j1, . . . , jL) ∈
∏

ℓ∈[L]

[1] ∪
(
1(ℓ ∈ Qi)×(

{[⌈Pℓ

Λℓ
⌉]} ∪ {1(Λℓ|Pℓ)× [⌊Pℓ

Λℓ
⌋]}

))
where the equivalence classes Ci, i ∈ [4] follow from Defini-
tion 9 for all possible scenarios where ∆ | K, Λℓ | Pℓ, ∆ ∤ K,
and Λℓ ∤ Pℓ. We note that for the cases ∆ | K and Λℓ | Pℓ,
we divide each (Γ + 1)-dimensional space corresponding to
each Qi, ∀i ∈ [

(
L
Γ

)
] to K

∆ ×
∏

ℓ∈Qi

Pℓ

Λℓ
tiles with dimensions

∆×Λi1× . . .×ΛiΓ . A similar procedure holds for the residual
space for the general cases ∆ ∤ K and Λℓ ∤ Pℓ.

The number of representative rank-one supports for tiles P
in each equivalence class is therefore

|C1| = ⌊
K

∆
⌋
(LΓ)∑
i=1

∏
ℓ∈Qi

⌊Pℓ

Λℓ
⌋ ,

|C2| =
(LΓ)∑
i=1

∏
ℓ∈Qi

⌊Pℓ

Λℓ
⌋ ,

|C3| = ⌊
K

∆
⌋
(LΓ)∑
i=1

∏
ℓ∈Qi: Λℓ|Pℓ

⌊Pℓ

Λℓ
⌋ ×

∏
ℓ′∈Qi: Λℓ′ ∤Pℓ′

⌈Pℓ′

Λℓ′
⌉ ,

|C4| =
(LΓ)∑
i=1

∏
ℓ∈Qi: Λℓ|Pℓ

⌊Pℓ

Λℓ
⌋ ×

∏
ℓ′∈Qi: Λℓ′ ∤Pℓ′

⌈Pℓ′

Λℓ′
⌉ . (43)

The above information will be essential in enumerating our
equivalence classes and associating each such class with a
collection of servers.

b) Step 2: Filling tiles in Ē ×1 D as a function of F̄:
Recall that we have a tile S̄P(RP , CP) corresponding to the
non-zero elements of S̄P . This tile is “empty” in the sense that
all non-zero entries of S̄P are equal to 1.

To avoid assigning any entry of F̄ to more than one tile,
we fix a strict total ascending order ≺ on the tiles {P}, e.g.,
lexicographic on (k, j1, . . . , jL,Qi), and maintain a binary
maskM (same size as F̄), initialized to zero. We process tiles
in the order ≺, and for each tile P we zero–force previously
owned positions:

S̄◦P ≜ S̄P ⊙ (1−M) .

Consequently, all entries already assigned by earlier tiles are
set to zero. If S̄◦P = 0, we skip P . Otherwise, we define the
induced index sets

C◦P ≜{k : ∃p s.t. (k,p)∈Supp(S̄◦P)} , (44)

R◦
P ≜{p : ∃ k s.t. (k,p)∈Supp(S̄◦P)} (45)

to form the cropped subtensor, factored aŝ̄FP ≜
(
F̄ ⊙ S̄◦P

)(
R◦

P , C◦P
)

and set the rank budget r◦P = min
(
|C◦P |, |R◦

P |
)
. We then

compute the MLSVD of ̂̄FP aŝ̄FP = R̄P ×1 LP

with LP ∈ R|C◦
P |×r◦P and R̄P ∈ Rr◦P×|R◦

P(1)|×···×|R◦
P(L)|.

The columns of D reserved for tile P (one column per rank-
1 component) are filled with LP on the rows indexed by C◦P
and zeros elsewhere. The matching frontal slices of Ē are filled
with RP on the indices R◦

P and zeros elsewhere. Finally, we
update the mask by

M ← M ∨ Supp(S̄◦P) .

By construction, the owned supports {Supp(S̄◦P)}P are pair-
wise disjoint, hence no entry of F̄ is assigned twice. Therefore,
the later tiles automatically see zeros on intersections.

c) Step 3: Creating and filling the non-zero tiles in D and
Ē: This step starts with MLSVD (as described in Section B)
of the cropped tile F̄P , where this decomposition takes the
form

F̄P = ĒP ×1 DP (46)

where DP ∈ R|C◦
P |×r◦P and ĒP ∈ Rr◦P×|R◦

P |. In particular,
F̄P ,DP , and ĒP are associated to T̄ , U(1), and S̄ in all com-
plete SVD decomposition of (33). Naturally, rank(F̄P) ≤ r◦P .



Let
4⋃

i=1

Ci ≜ {P1,P2, . . . ,Pm}, m ∈ N (47)

describe the enumeration we give to each tile. Then, the
position that each cropped tile takes inside D, is given by

C◦Pj
,
[ j−1∑

i=1

r◦Pi
+ 1 :

j∑
i=1

r◦Pi

]
, ∀Pj ∈

4⋃
i=1

Ci (48)

and the position of each cropped tile in Ē is given by[ j−1∑
i=1

r◦Pi
+ 1 :

j∑
i=1

r◦Pi

]
, R◦

Pj
, ∀Pj ∈

4⋃
i=1

Ci . (49)

In particular, these yield

D(C◦Pj
, [

j−1∑
i=1

r◦Pi
+ 1,

j∑
i=1

r◦Pi
]) = DPj

(50)

and

Ē([
j−1∑
i=1

r◦Pi
+ 1,

j∑
i=1

r◦Pi
],R◦

Pj
) = ĒPj

(51)

while naturally the remaining non-assigned elements of D and
Ē are zero.

Moreover, the total number of required servers is obtained
as N ≤

∑
P r◦P while the design constraints (Γ,∆, {Λℓ}ℓ∈[L])

are satisfied at each server. Finally, as one can readily verify,
the above design corresponds to

N ≤
∑
i∈[4]

∑
P∈Ci

r◦P

= ⌊K
∆
⌋
(LΓ)∑
i=1

min
(
∆,

∏
ℓ∈Qi

Λℓ

)
×

∏
ℓ∈Qi

⌊Pℓ

Λℓ
⌋

+

(LΓ)∑
i=1

min
(

mod(K,∆),
∏
ℓ∈Qi

Λℓ

)
×

∏
ℓ∈Qi

⌊Pℓ

Λℓ
⌋

+ ⌊K
∆
⌋
(LΓ)∑
i=1

min
(
∆,

∏
ℓ

Λℓ

∏
ℓ′

mod(Pℓ′ ,Λℓ′)

ℓ,ℓ′∈Qi: Λℓ|Pℓ, Λℓ′ ∤Pℓ′

)

×
∏

ℓ∈Qi: Λℓ|Pℓ

⌊Pℓ

Λℓ
⌋ ×

∏
ℓ′∈Qi: Λℓ′ ∤Pℓ′

⌈Pℓ′

Λℓ′
⌉

+

(LΓ)∑
i=1

min
(

mod(K,∆),
∏
ℓ

Λℓ

∏
ℓ′

mod(Pℓ′ ,Λℓ′)

ℓ,ℓ′∈Qi: Λℓ|Pℓ, Λℓ′ ∤Pℓ′

)

×
∏

ℓ∈Qi: Λℓ|Pℓ

⌊Pℓ

Λℓ
⌋ ×

∏
ℓ′∈Qi: Λℓ′ ∤Pℓ′

⌈Pℓ′

Λℓ′
⌉ (52)

corresponding to Theorem 1 when we consider the special case
where ∆ | K and Λℓ | Pℓ, ∀ℓ ∈ [L].
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