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Abstract—In this work, we investigate low-complexity remote
system state estimation over wireless multiple-input-multiple-
output (MIMO) channels without requiring prior knowledge
of channel state information (CSI). We start by reviewing the
conventional Kalman filtering-based state estimation algorithm,
which typically relies on perfect CSI and incurs considerable
computational complexity. To overcome the need for CSI, we
introduce a novel semantic aggregation method, in which sensors
transmit semantic measurement discrepancies to the remote state
estimator through analog aggregation. To further reduce compu-
tational complexity, we introduce a constant-gain-based filtering
algorithm that can be optimized offline using the constrained
stochastic successive convex approximation (CSSCA) method.
We derive a closed-form sufficient condition for the estimation
stability of our proposed scheme via Lyapunov drift analysis.
Numerical results showcase significant performance gains using
the proposed scheme compared to several widely used methods.

Index Terms—Remote state estimation, semantic commu-
nications, MIMO communications, channel state information,
Lyapunov drift analysis, stochastic convex approximation.

I. INTRODUCTION

Remote state estimation has gained widespread interest
recently [1], with extensive applications in areas such as
robotic control and autonomous navigation. A typical remote
state estimation system consists of a physical dynamic plant,
multiple geographically scattered sensors, and a remote state
estimator, as shown in Fig. 1. The wireless sensors measure
the instantaneous internal states of the dynamic plant and
deliver the state measurements to the remote state estimator
over a wireless network. The remote state estimator generates
the timely state estimation for the dynamic plant based on the
received noisy measurements from the sensors. The wireless
network between the remote state estimator and the sensors
induces various impairments, such as fading and noise, which
significantly degrade the estimation performance of the dy-
namic system.

Remote state estimation over a wireless network presents
significant challenges. First, many existing works on remote
state estimation overly simplify the wireless communication
channels within the systems. For example, [2] utilizes an
additive white Gaussian noise (AWGN) channel model, while
[3], [4] explores independent and identically distributed (i.i.d.)
on-off failures in the wireless networks. However, these
models overlook practical channel impairments, and directly

Fig. 1: Typical architecture of a remote state estimation
system over a wireless network.

applying such solutions to general fading channels may lead
to estimation instability.

Second, most existing works on remote state estimation as-
sume dedicated radio resource allocation for multiple sensors
[5], resulting in poor spectral efficiency as sensor numbers
grow. To address this, shared radio resource allocation for
geographically dispersed sensors is preferred. Coordination of
transmissions can be achieved using multiple access schemes
such as ALOHA [6] and non-orthogonal multiple access
(NOMA) [7]. However, these schemes face challenges with
large sensor networks due to collision bottlenecks, and error
propagation in the successive interference cancellation (SIC)
process at the remote state estimator. Analog aggregation
protocols [8], which enable simultaneous transmission of sen-
sor measurements without coordination, have recently been
proposed to enhance spectral efficiency. However, these pro-
tocols rely on accurate CSI for state estimation, requiring pilot
signal transmissions from each sensor for channel estimation
at the remote state estimator [9]. This significantly increases
communication overhead and introduces channel estimation
noise [10], which can undermine system stability.

Recent advancements in semantic communications, as high-
lighted in [11]–[13], emphasize the importance of transmitting
relevant and useful application-specific information to reduce
communication overhead. In the context of remote state
estimation, this involves sending tailored sensor data rather



than raw measurements. For instance, [14] investigates local
Kalman filtering with central consensus, where local estimates
are transmitted instead of raw data, potentially degrading per-
formance due to measurement correlations. This underscores
the need for further exploration of semantic communication
strategies in remote state estimation.

In this work, we introduce a novel CSI-free, low-
complexity remote state estimation algorithm over wireless
MIMO fading channels using semantic analog aggregation.
The contributions of this work are summarized as follows:

• Semantic Aggregation over Wireless MIMO Fading
Channels. Analog aggregation [8] improves spectral
efficiency and reduces latency in mission-critical appli-
cations but incurs substantial overhead due to the trans-
mission of raw sensor data and pilot signals. To address
this, we propose a semantic aggregation scheme in which
sensors transmit only the discrepancy between predicted
and actual measurements, leveraging predictions fed
back from the remote state estimator. This approach
preserves information integrity while drastically reducing
communication overhead.

• CSI-Free Low-Complexity State Estimation Solution.
Existing remote state estimation methods that rely on
Kalman filtering [3]–[5], [8] require complex computa-
tions and perfect CSI. In contrast, we propose a constant-
gain filtering algorithm that simplifies computation and
eliminates the need for CSI. This approach avoids the
transmission of pilot signals from the sensors and by-
passes channel estimation at the remote state estimator,
streamlining the entire process.

• Estimation Stability Analysis. Using Lyapunov stability
theory [15], we derive a closed-form sufficient condition
for ensuring estimation stability and propose a CSSCA-
based offline algorithm to efficiently optimize the con-
stant filtering gain.

Notation: Uppercase and lowercase boldface letters denote
matrices and vectors, respectively. The operators (·)T and
Tr(·) represent the transpose and trace of a matrix, respec-
tively. 0m×n and 0m denote an m×n matrix and an m×m
matrix with all elements equal to 0, respectively. IS represents
the S×S identity matrix. Rm×n, Sm+ , Sm, Z+, and R+ denote
the set of m×n real matrices, the set of m×m positive definite
matrices, the set of m×m positive semi-definite matrices, the
set of positive integers, and the set of positive real numbers,
respectively. ||A||, A∥F and ||a|| represent the spectral norm
of a matrix A, the Frobenius norm of a matrix A and the
Euclidean norm of a vector a, respectively. [A]i,j denotes the
i-th row and j-th column of the matrix A. [a]i denotes the
i-th element of the vector a.

II. SYSTEM MODEL

In this section, we introduce the system model for the
dynamic plant, wireless sensors, wireless communication
channels, and remote state estimator.

A. Dynamic Plant Model

We consider a discrete-time system with S ∈ Z+ state
variables. The physical plant state x(t) ∈ RS×1 evolves

according to first-order coupled linear difference equations:

x(t+ 1) = Ax(t) +w(t), t = 0, 1, 2, . . . , (1)

where A ∈ RS×S is the plant dynamics and w(t) ∼
N (0S×1,W) is the plant noise with zero mean and finite
noise covariance matrix W ∈ SS+. The initial plant state value
x(0) = x0 ∈ RS×1.

B. Wireless Sensor Model

We consider a system consisting of M ∈ Z+ wireless
sensors jointly monitoring the real-time plant state x(t).
Each sensor has Nt ∈ Z+ transmission antennas and shares
radio resources for high spectral efficiency. The connection
topology of the wireless sensors defines the connectivity
between the plant and sensors.

Definition 1: (Connection Topology of Sensors) The con-
nection topology of (wireless) sensors is defined by a set of
real matrices, {C1,C2, . . . ,CM} ∈ RNt×S , where each Cm

represents the connection between the dynamic plant and the
m-th sensor. Specifically, an element [Cm]i,s is non-zero if
and only if the i-th element [Cmx(t)]i of the m-th sensor
measurement includes s-th plant state component [x(t)]i.

C. Semantic Signal Extraction and Wireless Communication
Channel Model

As illustrated in Fig. 1, each m-th sensor accesses the
plant state x(t) and converts it into an analog state mea-
surement Cmx(t) ∈ RNt×1. The sensor then generates
the semantic signal sm(t) ∈ RNt×1 by utilizing the state
measurement Cmx(t) and incorporating the real-time state
prediction x̂f (t) ∈ RS×1 fed back from the remote state
estimator, as follows.

sm(t) = fm(Cmx(t), x̂f (t)) (2)

where fm(·) represents the semantic signal extraction process
for the m-th sensor and will be detailed further in Section III.

The semantic signals {s1(t), . . . , sM (t)} from M sensors
are delivered to the remote state estimator through analog
aggregation [8]. The received signal y(t) ∈ RNr×1 at the
remote state estimator represents the aggregated semantic
signals from multiple sensors, given by1

y(t) =

M∑
m=1

δm(t)Hm(t)sm(t) + v(t), (3)

where Nr ∈ Z+ is the number of receiving antennas at the
remote state estimator. δm(t) ∈ {0, 1} models the random
activity of the m-th sensor, which is i.i.d. over the sensors and
timeslots, satisfying Pr(δm(t) = 1) = p ∈ [0, 1]. Hm(t) ∈
RNr×Nt represents the MIMO channel gain, capturing path
loss, shadowing, and fading between the m-th sensor and
the remote state estimator. 2 It remains constant within each
timeslot and is i.i.d. over sensors and timeslots. Each element
of Hm(t) follows a certain distribution with mean h ∈ R, and

1In this work, we assume the active signals {sm(t)} are synchronized
in transmission, which can be achieved using traditional methods like pilot-
aided or decision-directed synchronization [16].

2To simplify the notation, we assume the system is real. The model can
be extended to a complex case by augmenting the complex symbol into R2.



finite variance σ2 > 0. v(t) ∼ N (0Nr×1, INr
) is the additive

channel noise at the remote state estimator.
Remark: (Modulation-Free Analog Aggregation [8]) Con-

ventional digital transmission focuses on decoding individual
signals using modulation to differentiate devices. In contrast,
our approach prioritizes state estimation by leveraging col-
lided, modulation-free analog sensor measurements, which
inherently capture richer information about the plant state,
leading to significantly improved estimation performance.

D. State Estimation at the Remote State Estimator

The objective of the remote state estimator is to com-
pute the minimum mean square error (MMSE) estimate of
the real-time plant state x(t) based on the received signal
yt
0 ≜ {y(0), . . . ,y(t)} from the sensors. For brevity, we

denote:
x̂(t) ≜ E[x(t)|yt

0]; (4)

x̂f (t) ≜ E[x(t)|yt−1
0 ]; (5)

P(t) ≜ E[(x(t)− x̂(t))(x(t)− x̂(t))T |yt
0]; (6)

Pf (t) = E[(x(t)− x̂f (t))(x(t)− x̂f (t))T |yt−1
0 ], (7)

where x̂(t) ∈ RS×1, x̂f (t) ∈ RS×1, P(t) ∈ SS+ and Pf (t) ∈
SS+ denote the estimated plant state, predicted plant state,
posterior error covariance matrix, and prior error covariance
matrix for the plant state at t-th timeslot, respectively.

In traditional Kalman filtering, the signal y(t) at the remote
state estimator is an aggregation of raw sensor measurements,
given by sm(t) = Cmx(t). The state estimation algorithm
is divided into two sequential steps: the prediction step and
the estimation step, both performed in an online manner.
Specifically, during the prediction step, the predicted plant
state x̂f (t) and the prior error covariance matrix Pf (t) are
updated as follows:

x̂f (t) = Ax̂(t− 1); (8)

Pf (t) = AP(t− 1)AT +W. (9)

In the estimation step, the estimated plant state x̂(t) and the
posterior error covariance matrix P(t) are updated as follows:

x̂(t) = x̂f (t)︸ ︷︷ ︸
predicted value

+K(t) Π(t)︸︷︷︸
innovative deviation

; (10)

P(t) = (IS −K(t)H(t))Pf (t)(IS −K(t)H(t))T +K(t)KT (t),
(11)

where Π(t) = (y(t) − H(t)x̂f (t)) ∈ RNr×1, H(t) =∑M
m=1 δm(t)Hm(t)Cm ∈ RNr×S represents the CSI and

K(t) ∈ RS×Nr denotes the Kalman filtering gain, given by

K(t) = Pf (t)HT (t)(H(t)Pf (t)HT (t) + INr )
−1. (12)

The Kalman filtering equations (8)-(12) present several
challenges that must be carefully addressed:

• High Computational Complexity. Matrix inversions
in Kalman filtering involve a computational cost of
O(S3), which becomes significant for large S. To reduce
complexity, [17] proposed a fixed-gain estimator for
static channels (i.e., H(t) = H ∈ RNr×Nt ,K(t) =

K ∈ RS×Nr ) using pole-zero placement to satisfy the
stability condition ∥A − AKH∥ < 1. However, this
method does not apply to our time-varying system, where
H(t) changes dynamically, as continuously maintaining
the stability condition under such variations is highly
challenging.

• Perfect CSI Requirement. As indicated in (10) and
(11), Kalman filtering requires precise knowledge of
the CSI, denoted as H(t). To acquire H(t), channel
estimation has to be performed at the remote state
estimator, which relies on transmitted pilot symbols from
all sensors. However, this procedure incurs considerable
communication overhead at the sensors due to pilot sig-
nal transmissions. Moreover, channel estimation is prone
to noise [9], which can further degrade performance.
Applying Kalman filtering with inaccurate CSI through
brute-force methods can severely compromise the quality
of state estimation.

In the following section, we propose a CSI-free, low-
complexity state estimation solution that involves semantic
information delivery at sensors and static gain-based filtering
at the remote state estimator. We demonstrate that estimation
stability can be maintained in our time-varying system by
appropriately designing the filtering gain through an offline
optimization process.

III. CSI-FREE LOW-COMPLEXITY REMOTE STATE
ESTIMATION VIA SEMANTIC ANALOG AGGREGATION

In this section, we propose a semantics-empowered remote
state estimation scheme. We present the process of semantic
information generation at the sensors and a state estimation
algorithm at the remote estimator with a static filtering gain.
Through Lyapunov drift analysis, we derive a stability con-
dition and propose an offline CSSCA algorithm to optimize
the filtering gain.

A. Generation of Semantic Information at Sensors

In conventional Kalman filtering, sensor measurements
are used to calculate the innovative deviation during the
estimation step, as shown in (10). Consequently, to optimize
communication, instead of transmitting the raw sensor mea-
surement Cmx(t), we can exploit the structure of Kalman
filtering by transmitting only the discrepancy between the
predicted and actual measurements at each m-th sensor, given
by Cmx(t) − Cmx̂f (t), where the state prediction x̂f (t) is
fed back from the remote state estimator at the (t − 1)-th
timeslot. In mathematical terms, this can be expressed as:

sm(t) = Cm(x(t)− x̂f (t)). (13)

Our design ensures that the aggregated signal y(t) at the
remote state estimator equals the innovation Π(t) as defined
in (10). Consequently, the estimator effectively captures the
Kalman filtering innovation without requiring CSI H(t).

It is also noteworthy that the discrepancy between the
predicted and the actual measurements, denoted as Cmx(t)−
Cmx̂f (t), is generally smaller in magnitude than the actual
state measurement Cmx(t), i.e., ∥Cmx(t)−Cmx̂f (t)∥ <<



∥Cmx(t)∥. As a result, our proposed method not only im-
proves estimation efficiency but also significantly reduces
power consumption at the wireless sensors.

B. CSI-Free Low-Complexity State Estimation Algorithm at
the Remote State Estimator

By leveraging a constant filtering gain at the remote state
estimator, we can implement a CSI-free, low-complexity state
estimation algorithm that builds upon traditional Kalman
filtering principles, as detailed in Algorithm 1. Removing the
need for CSI offers significant advantages for both the sensors
and the remote state estimator. From the perspective of the
sensors, this approach significantly reduces the communica-
tion overhead caused by pilot transmissions. On the side of
the remote state estimator, it removes the necessity of channel
estimation, thereby reducing computational complexity and
also circumventing the degraded state estimation performance
typically caused by channel estimation noise in existing
approaches (e.g., see [10]).

Algorithm 1 CSI-Free Low-Complexity Remote State Esti-
mation via Semantic Analog Aggregation
Initialization: x̂f (0) ∼ N (0S×1,1S).
For t = 0, 1, ...:

• Step 1: (Information Collection at Sensors)
Each m-th sensor obtains Cmx(t) and stores x̂f (t) fed back
from the remote state estimator.

• Step 2: (Signal Extraction and Transmission at Sensors)
sm(t)← Compute (13) using Cmx(t) and x̂f (t);
y(t)← Compute (3) using sm(t).

• Step 3: (State Estimation at the Remote State Estimator)

x̂(t)← x̂f (t) +Ky(t), (14)

where K ∈ RS×Nr is the constant filtering gain to be designed
offline as described in Section III-D.

• Step 4: (State Prediction at the Remote State Estimator)

x̂f (t+ 1)← Ax̂(t). (15)

The predicted state x̂f (t+ 1) is broadcast to the sensors.

C. Estimation Stability Analysis

We employ Lyapunov stability theory [15] to estab-
lish the sufficient condition for estimation stability, i.e.,
lim supT→∞

1
T

∑T
t=1 E[Tr(Pf (t))] < ∞, via our proposed

scheme for wireless MIMO fading channels. To facilitate this
analysis, we define a Lyapunov function as follows:

L(Pf (t)) = Tr(Pf (t)), (16)

and the associated Lyapunov drift is given by

Γ(Pf (t)) = E[L(Pf (t+ 1))− L(Pf (t))|L(Pf (t))]. (17)

Substituting (14), (15) and (16) into (17), we have the
following theorem on the Lyapunov drift.

Theorem 1: (Lyapunov Drift) The Lyapunov drift
Γ(P(t)) is bounded as:

Γ(Pf (t)) ≤ Nr∥A∥2∥K∥2+Tr(W)+E[Tr((A−AKH(t))T

(A−AKH(t)))] Tr(Pf (t))− Tr(Pf (t)). (18)

Proof: See Appendix A.
The sufficient condition for estimation stability can be

determined by analyzing whether the Lyapunov drift in (18)
is negative, as summarized in the following theorem.

Theorem 2: (Sufficient Condition for Estimation Stability)
If E[∥IS −KH(t)∥2F ] ≤ (∥A∥2)−1, then the system is stable
with state estimation MSE upper bounded by:

lim sup
T→∞

1

T
E[

T∑
t=1

Tr(Pf (t))] <
Tr(W) +Nr∥A∥2∥K∥2

1− ∥A∥2E[∥IS −KH(t)∥2F ]
.

(19)

Proof: See Appendix B.

D. Optimization of Filtering Gain

The objective of remote state estimation is to minimize the
state estimation MSE while ensuring estimation stability. As
a result, the constant filtering gain K should be designed to
minimize the right-hand side (R.H.S.) of (19), in line with
the sufficient condition for estimation stability outlined in
Theorem 2. This leads to the following optimization problem
for K.

Problem 1: (Constant Filtering Gain Optimization) The
optimal gain K∗ can be obtained by solving the following
optimization problem:

max
K

f0(K), s.t., f1(K) > 0, (20)

where f0(K) =
1−∥A∥2E[∥IS−KH(t)∥2

F ]
Tr(W)+Nr∥A∥2∥K∥2 and f1(K) = 1

∥A∥2 −
E[∥IS −KH(t)∥2F ].

Note that Problem 1 is a non-convex optimization problem.
Our goal is to design an efficient offline CSSCA algorithm
[18] to identify a stationary point. Specifically, in each r-
th iteration, we generate a synthetic Hr(t) according to
the distribution of H(t). Subsequently, Kr+1 is obtained by
solving the following problem.

Problem 2: (Iterative Convex Surrogate Approximation
[18])

max
K

f̄r
0 (K), f̄r

1 (K) > 0, (21)

where

f̄r
0 (K) = (1− τ r0 )f̄

r−1
0 (K) + τ r0 (f0(K

r) +∇T
Krf0(K

r)

(K−Kr) + ϵ0∥K−Kr∥2), (22)

with

f̄r
1 (K) = (1− τ r1 )f̄

r−1
1 (K) + τ r1 (f1(K

r) +∇T
(K)rf1(K

r)

(K−Kr) + ϵ1∥K−Kr∥2). (23)

Note that τ0, τ1 ∈ (0, 1] are chosen via the Armijo step-size
rule. ϵ0, ϵ1 < 0 can be any constants.

We summarize the offline optimization algorithm for K in
Algorithm 2 and conclude this section with a lemma on the
convergence of Algorithm 2.



Algorithm 2 Offline Optimization of Constant Filtering Gain
Initialization: The total iteration time R; Initial the constant gain
K0 ∈ RS×Nr .
For r = 1, 2, ..., R:

• Step 1: (Update of the Surrogate)
f̄0(K)← Using (22), Hr(t) and Kr;
f̄1(K)← Using (23), Hr(t) and Kr .

• Step 2: (Update of the Gain)
Kr+1 ← solving (21).

Output: Obtaining solution KR to Problem 1.

Lemma 3: (Convergence of Algorithm 2 [18]) Algorithm
2 converges to the stationary point K∗ of Problem 1 almost
surely, i.e., Pr(limR→∞ KR = K∗) = 1.

IV. NUMERICAL RESULTS

In this section, we assess the performance of the proposed
remote state estimation algorithm by comparing it against the
following baseline schemes:

• Baseline 1: (Kalman Filtering under ALOHA) Each
sensor activates to transmit raw measurement with a fixed
probability pa ∈ [0, 1] per timeslot. In the event of si-
multaneous activations, collision resolution is performed
at the remote estimator. Each active sensor transmits a
dedicated pilot Tm ∈ RNt×Nt . The remote estimator
uses Kalman filtering, with CSI estimated using least-
squares-based channel estimation from the pilots.

• Baseline 2: (Kalman Filtering under Random TDMA)
The remote estimator randomly selects one sensor to
transmit its raw measurement at each timeslot. The state
estimation method used is identical to that of Baseline
1.

• Baseline 3: (Kalman Filtering under Analog Aggrega-
tion) Each sensor that carries raw measurements ran-
domly accesses the wireless network with a fixed prob-
ability p ∈ [0, 1] using analog aggregation. The state
estimation method remains the same as in Baseline 1.

We model the system dynamics as:

x(t+ 1) =

 1.01 0.05 0.01

0.02 0.98 0.01

0.003 0.002 0.98

x(t) +w(t), (24)

where w(t) ∼ N (03×1, I3). Each element of the MIMO
channel fading Hm(t) ∈ R3×3 is Rayleigh distributed with
a scalar parameter of 3, associated with the variance of the
Gaussian components. The signal-to-noise (SNR) ratio is 12.5
dB. The sensors sequentially measure the plant state, with
each m-th sensor observing the ((m−1) mod 3+1)-th state.
Specifically, the matrix Cm ∈ R3×3 where 1 ≤ m ≤ M, is
defined such that [Cm]i,(m−1) mod 3+1 = 0.1 for 1 ≤ i ≤ 3,
while all other elements are set to zero. Each sensor is
activated randomly with a fixed probability of p = pa = 0.3.

A. NMSE versus the Number of Sensors

Fig. 2 shows the normalized MSE (NMSE) of state es-
timation versus the number of sensors M . Baselines 1 and
2 exhibit degraded performance as the number of sensors
increases, primarily due to collision issues in Baseline 1 and

Fig. 2: Normalized state estimation MSE versus the number
of sensors M .

Fig. 3: Total transmission power at sensors versus timeslot.
The number of sensors M = 6.

access latency bottlenecks in Baseline 2. In contrast, both
Baseline 3 and our proposed scheme benefit from an increas-
ing number of sensors through the use of analog aggregation.
However, our proposed scheme outperforms Baseline 3 by
achieving a smaller NMSE, as it avoids reliance on imperfect
CSI for state estimation.

B. Total Transmission Power at Sensors versus Timeslot

Fig. 3 illustrates the total transmission power at sensors∑M
m=1 ∥sm(t)∥2 over time, highlighting the communication

overhead associated with state estimation. Specifically, the
figure illustrates that our proposed approach results in a
substantial power savings of at least 40.4% over 300 times-
lots, compared to baseline schemes that transmit full state
measurements and pilot symbols.

C. Total CPU Computational Time versus Plant Dimension

Fig. 4 shows the total CPU computational time as a
function of the plant dimension over 104 timeslots. The results
show that our proposed constant-gain-based filtering scheme
reduces computational time by at least 23.9% compared to
baseline schemes, which rely on the more computationally
intensive standard Kalman filtering.

V. CONCLUSIONS

In this paper, we addressed the challenge of CSI-free,
low-complexity remote state estimation over wireless MIMO
fading channels. We started by examining the limitations of
the traditional Kalman-filtering-based state estimation algo-
rithm, which requires accurate CSI and incurs substantial
computational complexity. To overcome these issues, we



Fig. 4: Total CPU computational time versus plant dimension.
A ∈ RS×S and Cm ∈ RNt×S are generated with elements
following a Gaussian distribution (zero mean, unit variance).
The number of sensors M = 6.

proposed a novel semantic aggregation approach that con-
solidates semantic information at the remote state estimator,
enabling static-gain-based filtering. Through Lyapunov drift
analysis, we demonstrated that our approach stabilizes the
system through careful offline design of the static filtering
gain. Simulation results highlighted the superiority of our
method compared to widely used existing techniques.

APPENDIX

A. Proof of Theorem 1

Let P(t) and Pf (t) represent the posterior and prior state
estimation error covariances, respectively. The state prediction
in Step 4 of Algorithm 1 yields the following error covariance
evolution:

Pf (t+ 1) = AP(t)AT +W. (25)

The state estimation via Step 3 of Algorithm 1 gives the error
covariance evolution as follows:

P(t) = (IS −KH(t))Pf (t)(IS −KH(t))T +KKT . (26)

Combining (25) and (26) leads to

Pf (t+ 1) = A(IS −KH(t))Pf (t)(IS −KH(t))TAT+

AKKTAT +W. (27)

Substituting (27) into (17) yields

Γ(Pf (t)) = E[Tr((A−AKH(t))Pf (t)(A−AK

H(t))T )|Pf (t)] + E[Tr(AKKTAT )] + Tr(W).
(28)

Note that the R.H.S. of (28) can be further upper bounded by
the R.H.S. of (18). This concludes the proof.

B. Proof of Theorem 2

Note that lim supT→∞
1
T E[

∑T
t=1 L(Pf (t))] < ∞ if

E[L(Pf (t+1))−L(P(t))|L(Pf (t))] < α(t)L(Pf (t))+β(t),
where α(t) < 0 and β(t) > 0,∀t ≥ 0. As a result, the system
is stable if E[∥IS −KH(t)∥2F ] ≤ (∥A∥2)−1.

Taking the expectation over random Pf (t) on both sides
of (18), it gives that

E[Tr(Pf (t+ 1))]− E[Tr(Pf (t))] ≤ Nr∥A∥2∥K∥2 +Tr(W)

+ ∥A∥2E[∥(IS −KH(t))(IS −KH(t))T ∥ − 1]E[Tr(Pf (t))].
(29)

Summing up (29) over the timeslot t ∈ {0, 2, . . . , T} yields
a telescoping series. Subsequently, dividing the induced in-
equality over T , using the fact that Tr(P(T + 1)) ≥ 0, and
taking the limit over T , gives (19). This concludes the proof.
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