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Abstract—In this paper, we investigate the rate-distortion-
perception function (RDPF) of a source modeled as a Gaussian
Process (GP) over a measure space Ω, under mean squared error
(MSE) distortion and squared Wasserstein-2 perception metrics.
First, we show that the optimal reconstruction process is itself a
GP, whose covariance operator shares the same set of eigenvectors
as the source’s covariance operator. This structural property,
akin to the classical rate-distortion function (RDF), allows us to
reformulate the RDPF problem in terms of the Karhunen–Loève
(KL) transform coefficients of the involved GPs. Leveraging the
similarities with the finite-dimensional Gaussian RDPF, we derive
a tight analytical upper bound on the RDPF for GPs, which
recovers the optimal solution in the “perfect realism" regime.
Finally, for stationary GPs over the interval [0, T ] with Lebesgue
measure, we derive an upper bound on the rate and distortion for
a fixed perceptual level and T → ∞ as a function of the spectral
density of the source process. We complement our theoretical
findings with relevant simulation studies.

I. INTRODUCTION

The rate-distortion-perception (RDP) trade-off, formulated
simultaneously by Blau and Michaeli in [1] and Matsumoto
in [2], [3], proposes a generalization of the classical rate-
distortion (RD) theory [4] introducing the concept of percep-
tual quality, that is, the property of a sample to appear pleasing
from a human perspective. This is enacted by extending
the classical single-letter RD formulation, incorporating a
divergence constraint between the source distribution and its
estimation at the destination. The divergence constraint acts
as a proxy for human perception, quantifying the satisfaction
experienced when using data, as shown by its correlation
with the human opinion scores in [5], [6]. Moreover, this
divergence constraint may have multiple interpretations, such
as a semantic quality metric that measures the relevance of
the reconstructed source from the observer’s perspective [7].

Multiple coding theorems have been developed for the
RDP framework. Under the assumption of infinite common
randomness between the encoder and the decoder, Theis and
Wagner in [8] prove a coding theorem for stochastic variable-
length codes in both the one-shot and asymptotic regimes.
Originally in the context of the output-constrained RDF, but
also valid for the “perfect realism" RDP case, Saldi et. al.
[9] provide coding theorems for when only finite common
randomness between encoder and decoder is available.

Similarly to the classical RD theory, the mathematical
embodiment of the RDP framework is represented by the rate-

distortion-perception function (RDPF), which, as its classical
counterpart, does not enjoy a general analytical solution.
The absence of a general closed-form solution has prompted
research into computational methods for RDPF estimation.
Data-driven solutions have garnered significant attention in the
field, predominantly involving architectures based on genera-
tive adversarial schemes that minimize a linear combination
of distortion and perception metrics, see, e.g., [1], [10], [11].
However, while these approaches can directly optimize image
or video codecs using only source samples, they often require
substantial computational and data resources and may exhibit
limited generalization capabilities. On the other hand, algorith-
mic results for the RDPF computation are proposed by both
Serra et. al. in [12] and Chen et. al. in [13] considering the case
of discrete sources, while [14] proposes a general algorithm for
continuous sources for the “perfect realism" regime, i.e., when
the reconstructed process and source process are constrained
to have the same statistics. However, despite the general
complexity, certain analytical expressions have been developed
for specific categories of sources. For instance, binary sources
subject to Hamming distortion and total variation distance
have closed-form expressions, as discussed in [1]. Similarly,
[15] provides closed-form expressions for the case of scalar
Gaussian sources under mean squared error (MSE) distortion
and various perceptual metrics.
Most theoretical results in the literature primarily focus on
scalar or finite-dimensional sources, using the derived insights
to guide specific design choices for data-driven architectures.
Although this approach may be suitable for image data,
sources like audio signals may require special attention be-
cause of their inherent suitability for modeling as stochastic
processes.

A. Our Approach and Contributions

The aim of this work is to characterize the RDPF for a
source modeled as a Gaussian process (GP-RDPF), defined
over a measure space Ω under MSE distortion and the squared
Wasserstein-2 distance as the perception metric. To this end,
we show that the optimal reconstruction of the source is itself
a GP, designed such that its covariance operator shares the
same set of eigenvectors with the source. The common set of
eigenvalues allows the formulation of the RDPF problem as a
function of the Karhunen–Loève (KL) transform coefficients



of the involved GPs, similar to the classical RDF for GPs
[16], [17]. Noticing the similarities with the finite-dimensional
Gaussian RDPF studied in our earlier work [15], we formulate
an analytical upper bound to GP-RDPF able to recover the
optimal solution in the “perfect realism” regime. Moreover,
focusing on the specific case where the source is a stationary
GP and Ω is the interval [0, T ] equipped with the Lebesgue
measure, we characterize a tight upper bound on the rate and
distortion levels for a fixed perceptual level and for T → ∞
as a function of the power spectral density of the source
process. We validate our theoretical results through illustrative
numerical simulations.

II. PRELIMINARIES

A. Rate-Distortion-Perception Tradeoff

We begin by providing the definition and some properties
of the RDPF for general alphabets.

Definition 1: (RDPF) Let a source X be a random variable
defined in an alphabet X and distributed according to PX ∈
P(X ). Then, the RDPF for X ∼ PX under the distortion
measure ∆ : X 2 → R+

0 and divergence function d : P(X ) ×
P(X ) → R+

0 is defined as follows:

R(D,P ) ≜ min
PY |X

I(X,Y )

s.t. E [∆(X,Y )] ≤ D

d(PX ||PY ) ≤ P

(1)

where the minimization is among all conditional distributions
PY |X : X → P(X ).
We point out the following remark on Definition 1.

Remark 1: (On Definition 1) Following [1], it can be
shown that (1) has some useful functional properties, under
mild regularity conditions. In particular, [1, Theorem 1] shows
that R(D,P ) is (i) monotonically non-increasing in both
D ∈ [Dmin, Dmax] ⊂ [0,∞) and P ∈ [Pmin, Pmax] ⊂ [0,∞);
(ii) convex if d(·||·) is convex in its second argument.

B. Gaussian Processes

A GP X is a collection of real random variables indexed
by an index set T , such that for any finite subset T ′ ⊂ T ,
the collection {f(t)}t∈T ′ has a joint Gaussian distribution.
A GP is parameterized by m(t) = E [X(t)] and k(t, s) =
E [(X(t)−m(t))(X(s)−m(s))], where m : T → R and
k(·, ·) : T 2 → R denote the mean and covariance functions,
respectively. From its definition it follows that k is a positive
semidefinite symmetric function. For a strictly positive k, the
associated GP f ∼ GP(m, k) is referred to as non-degenerate.
Furthermore, in the case where T is the Euclidean space
Rd, a GP is said to be stationary if the covariance function
k(t, s) = k(τ) is a function of the difference vector τ = t−s.
In this case, the GP can be alternatively characterized by its
power spectral density S(f), i.e., the Fourier transform of its
covariance function k(τ), see, e.g., [16, Chapter 8].

C. Separable Hilbert spaces and L2-spaces

A Hilbert space (H, ⟨·, ·⟩) is said separable if there ex-
ists a countable orthonormal set of vectors B = {ei}∞i=1,
i.e., a Schauder basis, such that the closed linear hull of
B spans H [18]. For a separable Hilbert space, the trace
Tr(·) of a bounded linear operator T on H is defined as
Tr(T ) ≜

∑
B′⟨Tei, ei⟩, independently of the chosen basis

B′. Furthermore, a bounded operator T is said trace class
if and only if (iff) Tr[(T ∗T )

1
2 ] < ∞, where T ∗ indicates

the adjoint operator of T . Let Ω = (X ,ΣX , µ) be a measure
space and let L2(Ω) be the space of L2-integrable functions
from X to R. Equipping L2(Ω) with the inner product
⟨f, g⟩ =

∫
Ω
f(x)g(x)µ(dx), for f, g ∈ L2(Ω), it becomes

a Hilbert space1. Throughout this paper, we assume that the
underlying measure space X is such that (L2(Ω), ⟨·, ·⟩) is
separable.

D. Covariance Operators and Mercer’s Theorem

Given a covariance function k ∈ L2(Ω × Ω), we can
define the associated Hilbert–Schmidt (HS) integral operator
K : L2(Ω) → L2(Ω) as

[Kϕ](t) =

∫
Ω

k(x, s)ϕ(x)µ(dx) t ∈ X .

Then, K is a self-adjoint, compact, positive, and trace-class
operator, and the space of such covariance operators is a
convex space. Moreover, since the mapping k → K is an
isometric isomorphism from L2(Ω × Ω) to the space of
Hilbert-Schmidt operators in L2(Ω), we use interchangeably
the notations GP(m, k) and GP(m,K).
The constructed HS operator K also satisfies the conditions of
Mercer’s Theorem [19]. Let {ϕi}∞i=1 and {λi}∞i=1 be the sets
of eigenfunctions and associated eigenvalues of K. Then, the
covariance function k can be represented by the expansion

k(t, s) =

∞∑
i=1

λiϕi(t)ϕi(s) (t, s) ∈ X 2,

with absolute and uniform convergence on Ω × Ω, implying
that K can be expressed as

[Kψ](t) =

∞∑
i=1

λi⟨ψ, ϕi⟩ϕi(t) t ∈ X ,

i.e., K is a diagonizable operator. Furthermore, a zero-mean
stochastic process X can be represented as

X(t) =

∞∑
i=1

Xiϕi(t) t ∈ X

where Xi = ⟨X,ϕi⟩ is a random variable with E [Xi] = 0 and
E [XiXj ] = λiδi,j . Additionally, if X ∼ GP(0,K), then Xi

is Gaussian distributed and, consequently, ∀(i, j) Xi ⊥ Xj .
Therefore, given a suitable base of L2(Ω), GP X can be

1Formally, ⟨·, ·⟩ is a semi-inner product. However, introducing the equiv-
alence classes of functions that differ only in µ-negligible sets, i.e., f =
g ⇐⇒ f − g = 0 µ− a.e., ⟨·, ·⟩ becomes an inner product.



represented by a countable set {Xi}∞i=1 of independent Gaus-
sians. This representation is commonly referred to as the KL
transform [20] and we refer to {Xi}∞i=1 as the KL coefficients
of the process X .

E. Squared Wasserstein-2 distance for GP

Squared Wasserstein-2 distance was originally introduced
in [21] as a specific instance of the optimal transport problem
(see, e.g., [22, Chapter 7]). In particular, squared Wasserstein-2
distance is defined as follows

W2
2(PX , PY )≜ min

Π(PX ,PY )
E
[
||X − Y ||2

]
(2)

where Π(PX , PY ) is the set of all joint distributions PX,Y

with marginals PX and PY . Following [23, Definition 1], the
Wasserstein-2 distance can be extended to GPs. Let X ∼
GP(mX , kX) and Y ∼ GP(mY , kY ) with mX ,mY ∈ L2(Ω)
and kX , kY ∈ L2(Ω × Ω), then the squared Wasserstein-2
distance between GPs X and Y is given by

W2
2(X,Y ) = d2(mX ,mY )

+ Tr

[
KX +KY − 2

(
K

1
2

XKYK
1
2

X

) 1
2

]
where d2(·, ·) is the canonical distance in L2(Ω) and KX ,KY

are the HS operators associated with kX and kY , respectively.

III. MAIN RESULTS

We start this section by providing a formal characterization
of the RDPF problem for sources modeled as GPs.

Theorem 1: (GP-RDPF) Let D ≥ 0, P ≥ 0, and X ∼
GP(0,KX) be a source modeled by a GP. Then, the associ-
ated RDPF under MSE distortion and squared Wasserstein-2
divergence is achieved by a reconstruction Y ∼ GP(0,KY )
(i.e., is itself a GP), such that KX and KY share the same set
of eigenvectors. Additionally, the RDPF can be expressed as

RGP (D,P ) = min
{PYi|Xi

}∞
i=1

∞∑
i=1

I(Xi;Yi)

s.t.
∞∑
i=1

E
[
||Xi − Yi||2

]
≤ D

∞∑
i=1

W2
2(Xi, Yi) ≤ P

(3)

where {Xi}∞i=1 and {Yi}∞i=1 are the KL coefficients of the GP
X (source) and the GP Y (reconstruction), respectively.

Proof: Before we delve into the technicalities of the
proof, we give some useful notation. We denote with {ϕi}+∞

i=0

and {λi}+∞
i=0 the set of eigenvectors and eigenvalues of KX .

Moreover, let {ηi}+∞
i=0 ⊂ L2(Ω) be any countable orthonormal

set of eigenvectors. Then, we can construct the HS operator
KY and the associated process Y as

[KY ψ] =

∞∑
i=1

νi⟨ψ, ηi⟩ηi Y =

∞∑
i=1

Yiηi, (4)

with E [Yi] = 0 and E [YiYj ] = νiδi,j . As a result, the mutual
information between processes X and Y can be expressed as
I ({Xi}∞i=1; {Yi}∞i=1). Note that until now, we did not assume
that {Yi}∞i=0 is necessarily Gaussian distributed.

We now show that the assumption {ηi}∞i=1 = {ϕi}∞i=1

and {Yi}∞i=1 Gaussian distributed is optimal. Leveraging the
equivalence between GP and non-degenerate Gaussian mea-
sures, [24, Proposition 2.4] allows to lower bound the W2

2(·, ·)
perception as follows

W2
2(fX , fY )

(a)

≥
∞∑
i=1

W2
2(Xi, Yi)

(b)

≥
∞∑
i=1

|µXi − µYi |2 +
∞∑
i=1

(
√
λi −

√
ηi)

2

where (a) and (b) hold with equality iff {ηi}∞i=1 = {ϕi}∞i=1 and
{Xi}∞i=1 and {Yi}∞i=1 are Gaussian distributed, respectively.
The optimality of the assumptions considered with respect to
the mutual information and MSE distortion is derived from
their proven optimality in the classical RDF [17]. Conse-
quently, the MSE of the two processes can be expressed as

E
[
||X − Y ||2

]
= E

∣∣∣∣∣
∣∣∣∣∣
∞∑
i=0

(Xi − Yi)ϕi

∣∣∣∣∣
∣∣∣∣∣
2


=

∞∑
i=0

E
[
|Xi − Yi|2

]
.

Furthermore, since {Yi}∞i=0 is a set of uncorrelated Gaussian
random variables, and therefore independent, the mutual in-
formation I ({Xi}∞i=1; {Yi}∞i=1) becomes

I ({Xi}∞i=1; {Yi}∞i=1) =

∞∑
i=1

I(Xi, Yi).

This concludes the proof.
Theorem 1 provides a structural characterization of the RDPF
problem for GPs and serves as an optimization problem on
the set of joint random variables {(Xi, Yi)}∞i=1 defining the
statistics of the source and reconstruction GPs. This process
can be seen as selecting the proper set of orthonormal vectors,
i.e., the eigenvectors of KX , so that the problem "diagonal-
izes", similarly to the finite-dimensional Gaussian RDPF [15].
The following corollary further simplifies (3) leveraging
knowledge of the analytic solution of the scalar Gaussian
RDPF under MSE distortion and W2

2(·, ·) perception.
Corollary 1: The optimization problem in (3) can be cast

as follows

RGP (D,P ) = min
{(Di,Pi)}∞

i=1

∞∑
i=1

RXi(Di, Pi)

s.t.
∞∑
i=1

Di ≤ D

∞∑
i=1

Pi ≤ P

(5)

where RXi(·, ·) is the RDPF under MSE distortion and squared
Wasserstein-2 perception for the Gaussian Xi ∼ N (0, λi).



Proof: Introducing the additional constraints
E
[
|Xi − Yi|2

]
≤ Di and W2

2(Xi, Yi) ≤ Pi, we can
express (3) as

RGP (D,P ) = min
{(Di,Pi)}∞

i=1∑∞
i=1 Di≤D∑∞
i=1 Pi≤P

∞∑
i=1

min
PYi|Xi

E[|Xi−Yi|2]≤Di

W2
2(Xi,Yi)≤Pi

I(Xi, Yi)

where each element in the summation can be recognized to be
the definition of the RDPF RXi

(Di, Pi) for a Gaussian source
Xi. This concludes the proof.

Serra et. al. [15] analyze the finite-dimensional version
of (5), designing a solving algorithm based on alternating
minimization for the computation of the optimal allocations
{(Di, Pi)}∞i=1. Their solution leverages an alternating mini-
mization scheme, where {Di}∞i=1 and {Pi}∞i=1 are alterna-
tively optimized while fixing the other set of variables. Alas,
this computational approach cannot be implemented in (5) due
to the cardinality of the set of optimization variables. However,
fixing the perceptual levels {Pi}∞i=1 allows us to characterize
the optimal distortion allocation and associated per-dimension
rates, as shown in the following theorem.

Theorem 2: Let the perception allocations {Pi}∞i=1, such
that

∑∞
i=1 Pi ≤ P , be given. Then, the associated optimal

distortion allocations {D̃i}∞i=1 and the per-dimension rates
{R̃Xi

}∞i=1 are

D̃i =


min {γ, λi} if

√
Pi ≥

√
λi −

√
λi −min{λi, γ}

Pi + 2
√
λi
(√
λi −

√
Pi

)
+γ −

√
4λi

(√
λi −

√
Pi

)2
+ γ2 otherwise.

R̃Xi =


1
2 log

+
(

λi

γ

)
if

√
Pi ≥

√
λi −

√
λi −min{λi, γ}

1
2 log

(
2λi(

√
λi−

√
Pi)

2

γ
(√

4λi(
√
λi−

√
Pi)2+γ2−γ

)) otherwise.

where log+(x) = max{x, 0} and γ ≥ 0 is chosen such that∑∞
i=1 D̃i ≤ D.

Proof: The proof of the optimal distortion allocation {D̃i}
follows as a limit case of [15, Theorem 7] for the finite-
dimensional case. The additional assumption

∑∞
i=1 Pi ≤ P

is required to ensure that
∑∞

i=0 D̃i < ∞ independently of γ,
since

∞∑
i=1

D̃i <

∞∑
i=1

Pi + 2

∞∑
i=1

λi
(a)
< +∞

where (a) derives from {λi}∞i=1 being the eigenvalues of
the trace-class operator KX . The associated per-dimension
rates {RXi}∞i=1 result from the scalar Gaussian RDPF [15]
evaluated at (D̃i, Pi). This concludes the proof.
We stress the following technical remark for Theorem 2.

Remark 2: Fixing the perceptual levels {Pi}∞i=1, the para-
metric solutions recovered in Theorem 2 can be interpreted as
an extension of the classical water-filling solution for GP-RDF.

In fact, we note that the first branch of the function D̃i and
R̃Xi

recovers the classical RDF solutions [17]. Conversely,
the second branch of the functions can be interpreted as an
adaptive water-level solution; D̃i, through the dependence on
the ith dimension second moment λi, gets adapted to each
dimension, thus guaranteeing that all source components are
present in the reconstructed signal.

It should be noted that the analytical characterization of
optimal perception levels {P ∗

i }∞i=1 remains an open prob-
lem, even in the finite-dimensional setting. However, for
any convergent series {P̃i}∞i=1, Theorem 2 characterizes the
associated minimizing distortion allocation {D̃i}∞i=1 and the
per-dimension rates {R̃Xi}∞i=1, which identify an analytical
upper bound to the GP-RDPF, i.e.,

RGP (D,P ) = min
{Di,Pi}∞

i=1

∞∑
i=1

RXi
(Di, Pi) ≤

∞∑
i=1

R̃Xi
.

Nevertheless, the numerical results for the finite-dimensional
Gaussian RDPF from [15, Alg. 1] hint at a relative propor-
tionality in the perceptual level assignment. Based on this
observation, we propose a heuristic perceptual levels allocation
proportional to the second moments of {Xi}∞i=1, i.e.,

P̃i = αλi =⇒ α

∞∑
i=1

λi = P (6)

where α acts as a proportionality constant to enforce the
desired perception level P . The advantage of this allocation
is that it recovers the optimal solution for P → 0, i.e., for all
i = 1, 2, . . . Pi → 0, while still providing an excellent bound
in the general case.

A. GP-RDPF for Stationary Sources

We devote this section to characterizing the particular case
of GP-RDPF for stationary processes. To this end, we consider
Ω = (X ,ΣX , µ) such that X = [0, T ], ΣX is the σ-algebra
of all Lebesgue measurable subsets U ⊆ [0, T ], and µ is the
Lebesgue measure. Similarly to the classical RDF [16], [17],
in this setting, we formulate the RDPF considering normalized
versions of main quantities of interest, i.e.,

R =
1

T

∞∑
i=1

RXi
(Di, Pi), D ≥ 1

T

∞∑
i=1

Di, P ≥ 1

T

∞∑
i=1

Pi.

Under the assumption that the source X is a stationary GP, this
normalization allows us to extend the results of Theorem 2 to
the case where T → ∞, as shown in the following theorem.

Theorem 3: Let X ∼ GP(0, kX) be a stationary process
defined on [0, T ] ⊂ R and let SX be the associated power
spectral density. Then, for T → ∞, the GP-RDPF is upper
bounded by the parametric curve (R̃, D̃, P̃ ) parameterized by
γ > 0 and 0 ≤ α ≤ 1 as

R̃ =
1

2

∫
SRDP

log

(
2S2

X(f)(1−
√
α)2

γ(
√
γ2 + 4S2

X(f)(1−
√
α)2 − γ)

)
df

+
1

2

∫
SRD

log+
(
SX(f)

γ

)
df (7)



D̃ =

∫
SRDP

D̂(SX(f))df +

∫
SRD

min{γ, SX(f)}df (8)

D̂(x) = γ + x(1 + (1−
√
α)2)−

√
4x2(1−

√
α)2 + γ2

and P̃ = α
∫
SX(f)df , where the sets SRD and SRDP are

defined as

SRD ≜ {f ∈ R : SX(f) ≥ γ + (1−
√
α)2SX(f)}

SRDP ≜ R/SRD.

Proof: Considering the proportional perceptual level allo-
cation in (6), the proof follows as a direct application of [16,
Lemma 8.5.3] to the results of Theorem 2.

IV. NUMERICAL EXAMPLE

In this section, we provide a numerical example to better
illustrate the results of Theorem 3. Let the source X be
modeled as a stationary GP with power spectral density SX

as reported in Fig. 1.

-10 -8 -6 -4 -2 0 2 4 6 8 10

f

0

0.05

0.1

0.15

0.2

Fig. 1. Source Power Spectrum SX(f) vs. per-frequency distortion
D̂(SX(f)) for γ = 0.7 and varying α.

We first investigate the per-frequency distortion D̂(SX(f)),
defined as the integral argument of (8), for fixed γ and varying
α ∈ [0, 1]. For α = 1, i.e., no perceptual constraint is enforced,
distortion allocation remains constant and independent of the
source power spectrum SX(f). In this case, it adheres to the
classical RDF water-filling solution [16]. For lower values of
α, i.e., stricter perceptual requirements, distortion allocation is
adapted to the structure of the source power spectrum SX(f),
extending the observations in Remark 2.

Fig. 2 shows the numerically estimated curves of the rate
R̃ (Fig. 2a) and distortion D̃ (Fig. 2b) defined in (7) and (8),
respectively. The curves are calculated considering the param-
eters γ ∈ [0.01, 1] and α ∈ [0, 1]. Similarly to the Gaussian
RPDF in the finite-dimensional setting, the rate penalty due to
the perceptual constraint diminishes in significance in the low
distortion regime, i.e., as γ → 0. However, in the moderate to
high distortion regime, the impact of the perceptual constraint
controlled by α becomes increasingly pronounced.

V. CONCLUSION

In this paper, we characterized the RDPF of a source mod-
eled as a GP, under MSE distortion and squared Wasserstein-2

(a)

(b)

Fig. 2. (a) Rate R̃ and (b) distortion D̃ curves parameterized by (α, γ).

perceptual metrics. We first provided a general characterization
for non-stationary sources using their Karhunen–Loève repre-
sentation, leveraging the structure of both the distortion and
perceptual constraints. We then derived an analytical upper
bound that exactly characterizes the RDPF in the “perfect
realism" regime. Finally, we extended this closed-form result
to the case of stationary GPs on the real line, expressing the
bound as a function of the source’s spectral power density. As
future work, we aim to use our findings to guide the design
of neural compression schemes tailored to audio sources and
to validate our theoretical results through empirical evaluation
in more realistic scenarios.
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