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Abstract—Semantic communications offer promising prospects
for enhancing data transmission efficiency. However, existing
schemes have predominantly concentrated on point-to-point
transmissions. In this paper, we aim to investigate the validity
of this claim in interference scenarios compared to baseline
approaches. Specifically, our focus is on general multiple-input
multiple-output (MIMO) interference channels, where we pro-
pose an interference-robust semantic communication (IRSC)
scheme. This scheme involves the development of transceivers
based on neural networks (NNs), which integrate channel state
information (CSI) either solely at the receiver or at both
transmitter and receiver ends. Moreover, we establish a com-
posite loss function for training IRSC transceivers, along with
a dynamic mechanism for updating the weights of various
components in the loss function to enhance system fairness
among users. Experimental results demonstrate that the proposed
IRSC scheme effectively learns to mitigate interference and
outperforms baseline approaches, particularly in low signal-to-
noise (SNR) regimes.

Index Terms—Semantic communication, MIMO interference
channels, channel state information, neural networks.

I. INTRODUCTION

Recent times have witnessed a resurgence of interest in se-
mantic communications [1], propelled by the expanding realm
of intelligent applications such as augmented reality/virtual
reality (AR/VR) [2]. These advanced applications impose
stringent requirements on communication services, prompting
the exploration of novel theories and technologies in wireless
networks. Semantic communication, as a new paradigm, aims
to convey the meaning of data rather than focusing solely on
the precise transmission of individual symbols [3]. This ap-
proach holds significant potential to reduce data traffic, thereby
greatly improving communication efficiency and effectively
supporting various intelligent applications.

With advancements in deep learning (DL), particularly in
natural language processing (NLP) and computer vision (CV),
significant research efforts have been dedicated to exploring
the domain of semantic communications [4], [5]. Neural
networks (NNs) are employed in [4], [5] to construct seman-
tic encoder/decoder models, which are subsequently trained
on large-scale datasets to acquire the ability to extract and
interpret semantic information. These NNs-based semantic
communication systems can handle various types of data,
including images [6], speech [7] and text [8]. Compared to

conventional communication systems based on source-channel
separation, these systems demonstrate superior performance
at the same transmission rate. However, most current research
focuses on simple single-user channel models, such as additive
white Gaussian noise (AWGN) channels or fading channels,
and does not adequately address interference issues. Inter-
ference, particularly for users located at the edge of cell
networks, is a common challenge in wireless communications.
An unexpected signal received by the user forms interference
that may lead to erroneous semantic recovery. Traditional
communication systems often rely on interference alignment
to solve the interference issue. However, this technique re-
quires accurate channel state information (CSI) and involves
complex signal pre-processing, which is difficult to achieve
in dynamically changing environments, especially in high-
mobility scenarios.

To address the above issues, we propose an interference-
robust semantic communication (IRSC) scheme to optimize se-
mantic transmission in multiple-input multiple-output (MIMO)
interference channels. Instead of relying on the traditional
CSI processing method, IRSC use DL to optimize transmitter
and receiver design, and directly learn and adapt to channel
interference by integrating CSI. We explore two variations in
our design: one with CSI provided only at the receiver end and
another with CSI available at both transmitter and receiver
ends. The transceivers are trained using a composite loss
function. Additionally, we develop a dynamic mechanism to
adjust the weights of various components in the loss function,
thereby enhancing system fairness among users. The results
demonstrate the effectiveness of the proposed IRSC scheme
in mitigating interference. Compared to benchmark schemes,
our approach performs well in low SNR regimes.

II. SYSTEM MODEL

As depicted in Fig. 1, we consider a system comprising K
transmitter-receiver pairs, all of which operate over a shared
physical channel. Without loss of generality, we presume
that each transmitter is equipped with Nt antennas, and
each receiver with Nr antennas. In this setup, transmitters
send semantic information to their corresponding receivers.
However, each receiver can also accidentally receive seman-
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Fig. 1. Semantic communication system model over MIMO interference
channels. The direct link is depicted by a solid line, and the interfering link
is depicted by a dashed line.

tic information from other transmitters, causing interference
between users, as illustrated by the dashed lines in Fig. 1.

A. Transmitter

Let Sk ∈ Rn represent the image input of user k, where n
denotes the dimension of the input images and k = 1, · · · ,K.
As shown in Fig. 1, the transmitter consists of semantic
encoder and joint source-channel (JSC) encoder. The semantic
encoder extracts semantic information from Sk and then the
JSC encoder maps them to symbols X̃k ∈ CNtNB to ensure
reliable transmission over the channel. Here, NtNB denotes
the number of complex-valued symbols. This encoding process
can be represented as follows:

X̃k = fβk
(fαk

(Sk)), (1)

where fαk
(·) and fβk

(·) represent the semantic encoder
function and JSC encoder function for the transmitter k,
parameterized by αk and βk respectively. The symbols X̃k

are normalized and reshaped before transmission according to

Xk = Reshape

√
PNtNB

X̃k∥∥∥X̃k

∥∥∥
2

 , (2)

where P is the average transmit power constraint; Reshape(·)
is a function that changes the shape of input; and Xk ∈
CNt×NB is the signal matrix transmitted by transmitter k.

B. Communication Model

The received symbol matrix at the downlink user k can be
given as

Yk = HkkXk +
K∑

j=1,j ̸=k

HkjXj +Nk, (3)

where Yk ∈ CNr×NB . Hkk ∈ CNr×Nt represents the desired
channel matrix from the k-th transmitter to the k-th receiver,
and Hkj ∈ CNr×Nt stands for the interference channel matrix
from the j-th transmitter to the k-th receiver. Nk ∈ CNr×NB

is the noise matrices with each entry obeying an independent
identical zero-mean Gaussian distribution with variance σ2.
In (3), the first term on the right side of the equation is the

expected signal, the second term is the interference between
users, and the last term is the additive Gaussian noise.

C. Receiver

Similar to the transmitter, the receiver also comprises two
parts, namely a JSC decoder and a semantic decoder. JSC
decoder is used to recover the transmitted symbols, and the
semantic decoder is used to recover the transmitted images.
The decoding process at the receiver k can be written as

Ŝk = fθk
(fγk

(Yk)), (4)

where Ŝk ∈ Rn is the target image of user k; fγk
(·) and fθk

(·)
are the JSC decoder function and semantic decoder function
for the receiver k, parameterized by γk and θk respectively.

D. Problem Description

The interference channels considered in this work may dis-
rupt the transmission of semantic information and distort the
intended meaning of data, thus affecting the overall efficiency
and reliability of the semantic communication system. We aim
to maximize resistance to interference channels for accurate
image transmission. This problem can be formulated as

(α∗
k,β

∗
k,γ

∗
k ,θ

∗
k) = argmin

αk,βk,γk,θk

LMSE(αk,βk,γk,θk)

= argmin
αk,βk,γk,θk

1

M

M∑
i

(Sk,i − Ŝk,i)
2,

(5)

where the function LMSE(·) represents MSE between Sk and
Ŝk. M denotes the number of samples.

III. INTERFERENCE ROBUST SEMANTIC COMMUNICATION

To address problem (5), we design an interference-robust
semantic communication system, named IRSC. Specifically,
we first propose to integrate CSI at the receiver only or at
both the transmitter and receiver ends, allowing IRSC to learn
to adapt to channel interference. Subsequently, we provide a
detailed description of the model design. Finally, we introduce
the design of the loss function and the training strategy.

A. CSI Integration for Enhancing Semantic Communications

CSI plays a critical role in characterizing communication
channels, encompassing aspects such as fading and interfer-
ence. Having knowledge of CSI is imperative for optimizing
the performance of communication systems. In our work,
we propose the integration of CSI into the IRSC system.
Specifically, we consider two different design options. In the
first case, where CSI is available at each receiver, we provide
CSI, denoted as H, along with the received signal Yk to the
JSC decoder. H is the aggregate channel, expressed as

H =


H11 H12 · · · H1K

H21 H22 H2K

...
. . .

...
HK1 HK2 · · · HKK

 . (6)
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Fig. 2. The proposed neural network structure for IRSC.

Initially, H is transformed into a real-valued vector of length
2K2NtNr and then concatenated with Yk, which is similarly
converted into a real-valued vector. In the second scenario,
where CSI is available at both the transmitter and receiver,
the usage of H at the receiver follows the previously described
approach. At the transmitter, H, which is converted into a real-
valued vector with a length of 2K2NtNr, is input to the JSC
encoder together with the extracted semantic information to
learn the features adapted to the interference channel.

B. Model Design

As shown in Fig. 2, the semantic encoder first learns
semantic information from the inputs Sk and outputs the
learned features. It is noteworthy that the proposed IRSC is
a universal framework, and the NN structure of the semantic
encoder is not fixed. For devices with limited computational
and memory resources, we use a fully connected layer as
the semantic encoder network to meet resource constraints.
Assuming abundant computational and memory resources, the
semantic encoder can be composed of ResNet networks. After
passing through the semantic encoder network, we determine
whether CSI is available at the transmitter. If available, the
CSI is fed to the JSC encoder along with the semantic
information. The first layer of the JSC encoder is a reshape
layer that concatenates the semantic information with CSI
and performs dimension transformation. The second layer is a
fully connected layer where the dimensions are reduced to the
length of semantic information. The third layer is also a fully
connected layer, mapping the fused features to channel input
symbols X̃k. If CSI is not available, the JSC encoder directly
maps the semantic information to X̃k, and in this case, the
JSC encoder consists of only a single fully connected layer.
After that, X̃k is normalized and reshaped to Xk.

In order to be able to jointly optimize the communication
system in Fig. 1 in an end-to-end manner, we model the
interference channels as untrainable layers and incorporate
them into the entire neural network architecture. After the
channel layer, Xk is converted to Yk. Yk and CSI are jointly
input into the JSC decoder, and its network structure is the
same as the network structure of JSC encoder when CSI is
available at the transmitter, which is also composed of three

layers. The semantic decoder network reverses the operations
performed by the semantic encoder network and generates
an estimate Ŝk of the original image based on the output of
the JSC decoder. All the transmitters and receivers in IRSC
are trained jointly, the loss is calculated at the end of the
receiver and backpropagated to the transmitter, and the training
parameters are updated simultaneously.

C. Loss Function Design

To jointly optimize the entire IRSC neural network, we use
the weighted combination of (5) as the loss function, which
can be written as

Ltotal = argmin
αk,βk,γk,θk

{ K∑
k

ωkLMSE(αk,βk,γk,θk)

}

= argmin
αk,βk,γk,θk

{
ω1 ·

1

M

M∑
i

(S1,i − Ŝ1,i)
2 + · · ·

+ ωK · 1

M

M∑
i

(SK,i − ŜK,i)
2

}
,

(7)

where ωk represents the weight assigned to the loss for user
k. In order to ensure equitable system performance among
users, we implement a dynamic updating mechanism for ωk.
Specifically, the setting of ωk is determined by the proportion
of the corresponding user’s contribution to the total loss in the
previous iteration, which is given by

ω
(t+1)
k =

LMSE(α
(t)
k ,β

(t)
k ,γ

(t)
k ,θ

(t)
k )∑K

k LMSE(α
(t)
k ,β

(t)
k ,γ

(t)
k ,θ

(t)
k )

, (8)

where t denotes the index of the current training epoch.
Initially, all weights are set to 1/K.

D. Training Strategy

The goal of the aforementioned IRSC is to train an end-to-
end model for transmitting images, particularly by leveraging
CSI to enhance suitability for MIMO interference channels.
According to Fig. 2, the training algorithm for IRSC is outlined
in Algorithm 1. Initially, the NN parameters are initialized.
After extracting semantic information by the semantic encoder,
the obtained semantic information is encoded, transmitted, and



Algorithm 1: IRSC Training Algorithm.

Initialization: Initialize parameters, α(0)
k ,β

(0)
k ,γ

(0)
k ,θ

(0)
k ,

1: Input: A batch of images Sk, channel H, epochs T .
2: while t = 1 to T do
3: if CSI is only available at the receiver then
4: X̃k ← fβk

(fαk (Sk)).
5: else CSI is available at both transmitter and receiver then
6: X̃k ← fβk

(fαk (Sk),H).
7: end if
8: Power normalization.
9: Transmit Xk over MIMO interference channel.

10: Ŝk ← fθk (fγk (Yk,H)).
11: Compute loss Ltotal via (7).
12: Update parameters simultaneously via SGD.
13: t← t+ 1.
14: end while
15: Output: fαk (·), fβk (·), fγk (·), fθk (·).

decoded alongside the CSI. Subsequently, compute the loss
and iteratively update the parameters using stochastic gradient
descent (SGD). Training persists until meeting termination
criteria, such as reaching the maximum iteration count or
observing no further reduction in the loss.

Complexity analysis: The computational complexity of the
proposed IRSC depends on the neural network structure.
In the subsequent experiments, IRSC is implemented using
fully connected layers. The computational complexity of the
fully connected layer is determined by the matrix multipli-
cation operations. Assuming the input feature dimension is
Din, the output feature dimension is Dout, and the batch
size is M , the computational complexity of a single layer
is O(M × Din × Dout). Assuming there are L layers of
fully connected layer, the total computational complexity is

O
(

L∑
l=1

M ×D
(l)
in ×D

(l)
out

)
.

IV. EXPERIMENTS AND DISCUSSIONS

In this section, several experiments are provided to investi-
gate the performance of the proposed IRSC scheme.

A. Dataset and Parameter Setting

We utilize the MNIST [9] dataset and the Fashion-MNIST
[10] dataset for evaluation. If not specified otherwise, K is
set to 2, indicating consideration for a two-user system. Each
user’s transmitter and receiver are equipped with 2 antennas
respectively. The neural network structures of the transmitter
and receiver are listed in Table I. Throughout training process,
we employ the Adam optimizer with learning rate 0.001, betas
of 0.9 and 0.98, batch size of 128, and epoch of 200.

B. Evaluation Metric and Performance Baselines

We use Structural Similarity (SSIM) as the performance
metric [11], which measures the similarity of two images:

SSIM(s, ŝ) =
(2µsµŝ + C1)(2σsŝ + C2)

(µ2
s + µ2

ŝ + C1)(σ2
s + σ2

ŝ + C2)
, (9)

where µs and σs are the mean and the standard deviation
for image s; σsŝ is the covariance of s and ŝ; C1 and C2

TABLE I
NEURAL NETWORK STRUCTURE OF THE TRANSMITTER AND RECEIVER

Layer Output

Transmitter
Fully-connected Layer + ReLU

Reshape + Fully-connected Layer + ReLU
Fully-connected Layer

64

Receiver Fully-connected Layer + ReLU
Fully-connected Layer +Tanh 784

are constants to stabilize the division. The SSIM index ranges
from −1 to 1. A higher SSIM value suggests that the two
images being compared are more similar.

To fully verify the effectiveness of the proposed IRSC, we
consider the following baselines:

• Interference-Free scheme: The semantic information is
transmitted to the receiver without noise and interference,
which serves as the upper bound.

• Semi-Conventional scheme: Before semantic information
is transmitted by the transmitter k, it undergoes preprocessing
by the transmitting precoder. At the receiving end, the signal
received by the receiving antenna is first passed through a
receiving filter, and then fed into the JSC decoder and semantic
decoder for image recovery. The signal of receiver k after
filtering can be written as

Yk = UH
k HkkVkXk +

K∑
j=1,j ̸=k

UH
k HkjVjXj +UH

k Nk,

(10)
where Vk ∈ CNt×Nr and Uk ∈ CNr×Nt represent the
precoding matrix and the receiving filtering matrix of user
k, respectively. For the design of Vk and Uk, we adopt the
method proposed in [12].

• CSI-Free scheme: The NN structure of this scheme is
the same as that of IRSC, and also adopts (7) as the loss
function. The difference is that CSI is not integrated into the
transmitter and receiver. The purpose of this scheme is to
verify the validity of the method proposed in Section III-A.

C. Performance of IRSC

In this experiment, two users are assumed to have different
message sets for transmission, where user 1 aims to complete
the MNNIST image transmission, while user 2 aims to com-
plete the Fashion-MNNIST image transmission. Note that we
deliberately used randomly generated CSI during the training
and testing to simulate the diversity and unpredictability of
real-world channel conditions. Fig. 3 plots the performance of
IRSC and baselines over MIMO interference channels. We
can observe that, whether it is user 1 or user 2, both the
proposed IRSC CSIR (integrating CSI into receiver networks)
scheme and IRSC CSITR (integrating CSI into transmitter and
receiver networks) scheme outperform the CSI-Free scheme.
This indicates that IRSC can effectively mitigate the impact
of MIMO interference channels. In the high SNR regimes, the
Semi-Conventional scheme approaches the upper bound more
closely. However, this scheme requires the estimation of CSI
at the receiver and then feeding it back to the transmitter.
In contrast, IRSC CSIR does not require feedback CSI to
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Fig. 3. Performance comparison of IRSC with other baseline schemes on
the MNIST dataset and Fashion-MNIST dataset over MIMO interference
channels.
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Fig. 4. Comparison of reconstructed images produced by various schemes in
the low SNR regime: An Example at SNR = 0dB.

the transmitter, and we also observe that it exhibits enhanced
competitiveness in the low SNR regimes. To illustrate more
intuitively, the example reconstruction image with SNR = 0 dB
is shown in Fig. 4. Comparing IRSC CSIR with IRSC CSITR,
we find they are achieving almost the same performance,
implying that IRSC with CSI only at the receiver can handle
the interference well.

Next, we discuss the effect of different user numbers on the
performance of the proposed IRSC schemes. Assuming that
all users are aiming to complete MNIST image transmission,
we average the SSIM of all users as the performance of the
algorithm. The simulation results are shown in the Fig. 5. It
can be seen that in the case of fewer users, the proposed IRSC
schemes can deal with interference more effectively, and they
are easier to achieve good SSIM. As the number of users
increases, the interference problem becomes more complex,
so SSIM of the proposed IRSC schemes decreases. We also
note that IRSC CSITR performs almost the same as IRSC
CSIR. Since IRSC CSIR does not require CSI feedback to the
transmitter, it is preferred when handling interference.

V. CONCLUSION

In this paper, we evaluated the performance gains of seman-
tic communication systems in interference scenarios. Specif-
ically, we proposed an interference-robust semantic com-
munication scheme, named IRSC, over MIMO interference
channels. The IRSC scheme uses NNs for transceiver design
and integrates CSI. In particular, we have considered two
design options: IRSC CSIR, where CSI is input solely at
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Fig. 5. SSIM comparisons versus the number of users over MIMO interfer-
ence channels with test SNR of 0dB and 15dB.

the receiver end, and IRSC CSITR, where CSI is input at
both transmitter and receiver ends. We trained the transceivers
by establishing a composite loss function and implemented a
dynamic mechanism to enhance system fairness among users.
Experiments show that the proposed IRSC CSIR and IRSC
CSITR can effectively mitigate interference and significantly
outperform the baselines in the low SNR regime. Additionally,
the IRSC CSIR does not require CSI feedback.
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