
Machine Learning and Privacy Protection:
Attacks and Defenses

Dissertation
submitted to

Sorbonne Université
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Author:
Oualid Zari

To be defended on January 14th 2025, in front of a committee composed of:

Reviewers Dr. Frédéric Giroire – CNRS, Inria, and Université Côte d’Azur - France
Prof. Benjamin Nguyen – INSA-France

Examiners Prof. Josep Domingo-Ferrer – Universitat Rovira i Virgili - Spain
Prof. Antonio Faonio – EURECOM - France

Supervisor Prof. Melek Önen – EURECOM - France

Co-supervisor Dr. Ayşe Ünsal – EURECOM - France

Invited Dr. Javier Parra-Arnau – Universitat Politècnica de Catalunya - Spain

2

Apprentissage Automatique et Protection de la
Vie Privée : Attaques et Défenses

Thèse
soumise à

l’Université Sorbonne
en vue de l’obtention du diplôme de

Docteur en Philosophie

Auteur :
Oualid Zari

À défendre le 14 janvier 2025, devant un comité composé de :

Rapporteurs Dr. Frédéric Giroire – CNRS, Inria, et Université Côte d’Azur - France
Prof. Benjamin Nguyen – INSA-France

Examinateurs Prof. Josep Domingo-Ferrer – Universitat Rovira i Virgili - Espagne
Prof. Antonio Faonio – EURECOM - France

Directeur de thèse Prof. Melek Önen – EURECOM - France

Co-directeur de thèse Dr. Ayşe Ünsal – EURECOM - France

Invité Dr. Javier Parra-Arnau – Universitat Politècnica de Catalunya - Espagne

2

Contents

1 Introduction 5
1.1 Motivation . 5
1.2 Machine Learning Techniques and Privacy 7
1.3 Privacy Attacks in Machine Learning 8
1.4 Defenses Against Privacy Attacks in Machine Learning 9
1.5 Problem Statement and Objectives 10
1.6 Contributions and Outline . 12
1.7 List of Publications . 13

2 Background 15
2.1 Foundations of Machine Learning 16

2.1.1 Principal Component Analysis (PCA) 16
2.1.2 Graph Neural Networks (GNNs) 20

2.2 Federated Learning . 33
2.2.1 Introduction to Federated Learning 33
2.2.2 Types of Federated Learning 34
2.2.3 Vertical Federated Graph Learning (VFGL) 36

2.3 Differential Privacy . 38
2.3.1 Formal Definitions of Differential Privacy 40
2.3.2 Properties of Differential Privacy 42
2.3.3 Mechanisms for Achieving Differential Privacy 43
2.3.4 Differential Privacy for Graphs 45
2.3.5 Differential Privacy in Machine Learning 48

2.4 Challenges of Differential Privacy in Machine Learning 50
2.4.1 Privacy-Utility Trade-off 50
2.4.2 Parameter Selection (ε and δ) 50

3 Related Work 53
3.1 Privacy Attacks in Machine Learning 54
3.2 Membership Inference Attacks 55

3.2.1 Foundations and Evaluation of MIA 55

i

3.2.2 Defense Strategies for MIA 57
3.2.3 Differential Privacy and MIA 58

3.3 Link Inference Attacks . 61
3.3.1 Foundations and Evaluation of LIA 61
3.3.2 Link Inference Attacks in Federated Learning 63
3.3.3 Defense Strategies for Link Inference Attacks 64

4 Privacy Considerations in Principal Component Analysis 67
4.1 Introduction . 67
4.2 Membership Inference Attack against PCA 69

4.2.1 PCA Overfitting and Privacy Implications 69
4.2.2 Attack Methodology 71
4.2.3 Experimental Setup . 72
4.2.4 Results and Analysis 73

4.3 Differentially Private PCA . 74
4.3.1 DP-PCA Approaches 75
4.3.2 Experimental Evaluation 77

4.4 Conclusion . 82

5 Node Injection Link Stealing Attack 85
5.1 Introduction . 85
5.2 Attack Methodology . 87

5.2.1 Threat Model . 88
5.2.2 Adversary’s Goal and Knowledge 88
5.2.3 Node Injection Link Stealing Attack 88
5.2.4 Strategies for Generation of Malicious Node’s Features 89

5.3 Experimental Setup . 92
5.3.1 Datasets . 92
5.3.2 Models . 93
5.3.3 Evaluation Methodology 93

5.4 Results and Analysis . 94
5.4.1 Analysis of Malicious Feature Generation Strategies . . 95
5.4.2 Comparison with Baseline Attacks 96
5.4.3 Impact of GNN Depth 96
5.4.4 Discussion . 99

5.5 Defense Strategy . 100
5.5.1 One-Node-One-Edge-Level Differential Privacy 100
5.5.2 LapGraph Mechanism for One-Node-One-Edge-Level DP101
5.5.3 Evaluation of LapGraph Defense 102
5.5.4 Discussion . 104

5.6 Conclusion . 104

ii

6 Link Stealing Attacks in Vertical Federated Graph Learning
107

6.1 Introduction . 107
6.2 Attack Methodology . 109

6.2.1 VFL system . 109
6.2.2 Gradient-based LIA . 110
6.2.3 Label-based LIA . 112
6.2.4 Baseline LIA . 114

6.3 Analytical Results for Link Inference Attacks 116
6.3.1 Equivalence of Output-based and Label-based LIA . . 122
6.3.2 Performance of Gradient-based LIA 125

6.4 Experimental setup . 127
6.4.1 GNN Model architecture and learning setting 127
6.4.2 Datasets . 127
6.4.3 Evaluation Metrics . 128

6.5 Evaluation . 128
6.5.1 Performance of Link Inference Attacks 128
6.5.2 Ablation Studies . 132

6.6 Defense Strategies . 139
6.6.1 Lapgraph . 139
6.6.2 Label Perturbation . 141
6.6.3 Discussion . 143

6.7 Conclusion . 144

7 Conclusion and Future Work 147
7.1 Conclusion . 147
7.2 Future Work . 149

iii

iv

List of Figures

2.1 Olivetti faces dataset and PCA components 17

2.2 Representation of a graph G with its corresponding adjacency
matrix A and feature matrix X. Node colors indicate different
classes. Dashed lines show how graph edges correspond to
adjacency matrix entries. 22

2.3 Illustration of homophily in graphs. Left: Graph G with high
homophily, where nodes of the same color (representing the
same class) are more likely to be connected. Right: Graph
G′ with lower homophily, showing more connections between
nodes of different colors. 23

2.4 Illustration of one iteration of the message passing process
in GNNs, focusing on node F. (a) Initial Node Features: The
original graph structure with each node’s feature vector (x1, x2, x3).
(b) Message Reception: Node F receives messages (mD→F ,mG→F)
from its neighbors D and G. (c) Message Aggregation: F ag-
gregates the received messages, combining information from
its neighbors. (d) Node Update: F updates its features based
on the aggregated information and its previous state. This
process is repeated for multiple iterations, allowing nodes to
integrate information from their expanding neighborhood, en-
abling GNNs to learn both local and global graph structures.
The color intensity of nodes indicates their relevance in each
step, with F being the focus throughout the process. 26

v

2.5 Illustration of a 2-layer GNN computation, focusing on node
F. Left: The initial graph structure with node features. Right:
The computational graph over two layers. In Layer-1, nodes D
and G aggregate information from their neighbors (including
F). In Layer-2, F’s representation is computed from D and G’s
Layer-1 representations. Note that this simplified view does
not show F’s Layer-1 representation contributing to its Layer-2
representation, which would typically occur in standard GNN
operations. Each AGG+UPDATE box represents both the
aggregation of neighbor information and the update of the
node’s representation. This process allows F to capture infor-
mation from its 2-hop neighborhood, illustrating how GNNs
incorporate both local and increasingly global graph structure. 28

2.6 Comparison of transductive and inductive learning in GNNs.
(a) Transductive learning: the model is trained on all nodes,
including unlabeled ones. (b) Inductive learning: the model
learns transferable functions that can generalize to unseen
nodes not present during training. 29

2.7 Comparison of Horizontal and Vertical Federated Learning
(Inspired by [84]) . 34

2.8 Vertical Federated Graph Learning (VFGL) System Architecture 37
2.9 Illustration of edge-level differential privacy. The graphs G

and G′ are edge-level adjacent, differing only by the presence
or absence of a single edge (highlighted in red). 46

2.10 Illustration of node-level differential privacy. The graphs G
and G′ are node-level adjacent, differing by the presence or
absence of a single node and all its incident edges (highlighted
in red). 47

4.1 Histogram of reconstruction errors for training and test sam-
ples in the Olivetti faces dataset using 50 principal compo-
nents. The inset images show comparisons of original (left)
and reconstructed (right) face samples for both low and high
reconstruction errors. 70

4.2 Impact of the sample size N and the observed top-k compo-
nents on the attack’s performance. Shaded areas show 95%
confidence intervals for the mean. 74

4.3 The AUC of the attack when the AG algorithm (a) and the
Laplace vector query approach (b) are applied with various
values of ε. Shaded areas are the 95% confidence intervals for
the mean. 78

vi

4.4 Attack performance with Laplacian approaches when the ad-
versary intercepts all components (k = d). The infinity point
represents the non-private case. 79

4.5 The hashed area shows where naive composition introduces
less noise than advanced composition. 80

4.6 Trade-off posed by the four DP-PCA algorithms described in
Section 4.3.1, between the total privacy budget ε and data util-
ity. Utility is measured as the percentage of captured energy
w.r.t. SVD. 81

4.7 Trade-off posed by the four DP-PCA algorithms described in
Section 4.3.1, between attack performance and data utility.
We measure attack performance through AUC, and utility
through the percentage of captured energy w.r.t. SVD. 81

5.1 Adversary-Server Interaction: In the inference phase, the ad-
versary first queries the prediction scores P of the target nodes,
represented as VA. Next, the server sends the predictions P of
the GNN to the adversary. Then, the adversary sends a Con-
nect query to inject the malicious node vm, with features xm,
to the target node vt. Finally, after the injection, the adver-
sary queries again the prediction scores P ′ of the target nodes
VA. 90

5.2 Success rates of the NILS attack for different depths and ma-
licious features generation strategies for the Twitch-FR dataset. 98

5.3 F1 score of the NILS attack for different values of ε. 103

5.4 F1 score utility of the GCN for different values of ε. 103

6.1 Schematic representation of a VFL setting with two clients
and one server . 111

6.2 Analysis of sample losses and cosine similarity threshold . . . 124

6.3 Overlap of predictions between gradient-based and label-based
LIA in Photo dataset. 131

6.4 Evolution of the AUC for Gradient-based LIA (blue) and Intermediate-
representation LIA (red) Over Time. The horizontal dashed
lines indicate the maximum AUC achieved by the two attacks.
Attacks were conducted at each training epoch, across five
runs, with the mean and standard deviation of the AUCs re-
ported. 133

vii

6.5 Comparison of AUC between Gradient-based LIA (blue), In-
termediate Representations-based LIA (red), and Feature-based
LIA (orange) across different feature ratios of the adversary.
The maximum AUC achieved by both attacks during train-
ing is reported, alongside the mean and standard deviation of
these AUCs across five runs. 134

6.6 Distribution of the cosine similarities of gradients among linked
pairs and unlinked pairs during different training epochs. . . . 135

6.7 Performance analysis with varying number of parties. The
results show the AUC values across different datasets as the
number of parties changes from 2 to 5. 136

6.8 Lapgraph defense results. ε =∞ represents no defense; lower
ε values indicate stronger privacy protection. 140

6.9 Label perturbation defense. B = 0 represents no defense;
higher B values indicate stronger protection. 142

viii

List of Tables

2.1 Table of Key Notations . 22

4.1 Overview of the DP mechanisms aimed to protect PCA against
MIA. Here, ε denotes the total privacy budget and ε′ the frac-
tion thereof assigned to each coefficient of A. 77

5.1 F1 scores and standard deviations for different attack methods
and datasets. 95

5.2 Comparative performance of NILS and LinkTeller across three
datasets (TWITCH-FR, TWITCH-RU, and Flickr) under low,
unconstrained, and high constraint settings. The results are
presented in terms of precision and recall with corresponding
standard deviations. 97

5.3 Comparative performance of NILS with LinkTeller [138] and
link-stealing attacks in [54] across three datasets (Cora, Cite-
seer, and Pubmed). 98

5.4 Success rates of the attack for different depths in comparison
with LinkTeller [138]. We use the all-ones strategy for NILS. . 99

6.1 Table of Notations . 110
6.2 Adversary capabilities in different attack scenarios 116
6.3 Datasets statistics. 128
6.4 Accuracy of link inference attacks across datasets using GCN

architecture. Bold numbers indicate highest accuracy among
client-side attacks (first three columns). Participating clients
can only conduct these three attacks. 130

6.5 Accuracy of gradient-based link inference attack on different
GNN architectures . 137

6.6 Accuracy of gradient-based LIA on ResNet-like architectures
(Cora dataset) . 138

ix

x

Abstract

The increasing adoption of machine learning (ML) algorithms in privacy-
sensitive domains has revolutionized data analysis across numerous fields.
These algorithms, including Deep Neural Networks (DNN) as well as Princi-
pal Component Analysis (PCA) and Graph Neural Networks (GNNs), pro-
cess vast amounts of data to extract valuable insights. The integration of
these techniques into critical applications handling sensitive information,
from healthcare records to social network data, has led to significant advances
in data analysis and prediction capabilities. However, as these ML models
become more prevalent, they inadvertently expose vulnerabilities that can
compromise individual privacy through various attack vectors. This thesis
addresses the critical privacy challenges posed by modern ML systems, focus-
ing particularly on membership inference attacks (MIA) and link inference
attacks (LIA). We propose novel attack methodologies and corresponding de-
fensive measures that enhance our understanding of privacy vulnerabilities
while providing practical solutions for privacy preservation. We aim to design
these solutions while maintaining a careful balance between privacy protec-
tion and model utility, specifically for real-world ML applications. In our first
contribution, we present a novel MIA against PCA, where an adversary can
determine whether a specific data sample was used in computing the principal
components. We demonstrate that this attack achieves high success rates,
particularly when the number of samples used by PCA is relatively small. To
counter this vulnerability, we investigate different approaches to implement-
ing differential privacy mechanisms in PCA, analyzing their effectiveness in
protecting against MIAs while preserving data utility. We provide compre-
hensive empirical evidence showing the trade-offs between privacy guarantees
and model performance. Our second contribution is to introduce a new link
inference attack, namely, the Node Injection Link Stealing (NILS) attack
against GNNs that demonstrates how an adversary can exploit the dynamic
nature of GNNs by injecting malicious nodes to infer edge information. We
evaluate this attack based on a new differential privacy notion dedicated to
graph structures and further propose dedicated defense strategies. Finally,

1

our third contribution focuses on the distributed setting, i.e., Vertical Fed-
erated Graph Learning (VFGL) and we develop a gradient-based LIA which
reveals how gradient information in FL settings can leak graph structure de-
tails. Similarly to NILS, this attack is also evaluated across various datasets
and model architectures and dedicated defensive strategies based on differ-
ential privacy mechanisms are proposed.

2

Résumé1

L’adoption croissante d’algorithmes d’apprentissage automatique dans des
domaines sensibles à la protection de la vie privée a révolutionné l’analyse
des données dans de nombreux domaines. Ces algorithmes, notamment les
réseaux neuronaux profonds, l’analyse en composantes principales (PCA) et
les réseaux neuronaux graphiques (GNN), traitent de grandes quantités de
données pour en extraire des informations utilees et précieuses. L’intégration
de ces techniques dans des applications critiques traitant des informations
sensibles, comme des dossiers médicaux ou des données des réseaux sociaux,
a permis des avancées significatives dans l’analyse des données et les capacités
de prédiction. Cependant, à mesure que ces modèles de ML deviennent plus
répandus, ils exposent involontairement des vulnérabilités qui peuvent com-
promettre la vie privée des individus par le biais de divers vecteurs d’attaque.
Cette thèse aborde les défis critiques en matière de protection de la vie privée
posés par les systèmes modernes de ML, en se concentrant particulièrement
sur les attaques par inférence d’appartenance (MIA) et les attaques par in-
férence de lien (LIA). Nous proposons de nouvelles méthodologies d’attaque
et des mesures défensives correspondantes qui améliorent notre compréhen-
sion des vulnérabilités en matière de protection de la vie privée tout en four-
nissant des solutions pratiques pour la protection de la vie privée. Nous
visons à concevoir ces solutions tout en maintenant un équilibre prudent en-
tre la protection de la vie privée et l’utilité du modèle, en particulier pour les
applications de ML du monde réel. Dans notre première contribution, nous
présentons une nouvelle attaque MIA contre le PCA, où un adversaire peut
déterminer si un échantillon spécifique a été utilisé dans le calcul des com-
posantes principales. Nous démontrons que cette attaque atteint des taux de
réussite élevés, en particulier lorsque le nombre d’échantillons utilisés par le
PCA est relativement faible. Pour contrer cette vulnérabilité, nous étudions
différentes approches de mise en œuvre de mécanismes différentiels de protec-
tion de la vie privée (DP) dans le PCA, en analysant leur efficacité en matière
de protection contre les MIAs tout en préservant l’utilité des données. Nous

1This summary was translated with the help of deepl.com

3

deepl.com

fournissons des preuves empiriques complètes montrant les compromis entre
les garanties de confidentialité et la performance du modèle. Dans notre deux-
ième contribution, nous présentons une nouvelle attaque d’inférence de liens
(LIA), à savoir l’attaque Node Injection Link Stealing (NILS) contre les GNN,
qui démontre comment un adversaire peut exploiter la nature dynamique des
GNNs en injectant des nœuds malveillants pour déduire des informations sur
les arêtes. Nous évaluons cette attaque en fonction d’une nouvelle notion de
confidentialité différentielle dédiée aux structures de graphes et proposons
des stratégies de défense dédiées. Enfin, notre troisième contribution se con-
centre sur le cadre distribué, c’est-à-dire l’apprentissage vertical fédéré des
graphes (VFGL), et nous développons une attaque LIA basée sur le gradi-
ent qui révèle comment les informations sur le gradient dans le FL peuvent
laisser échapper des détails sur la structure des graphes. Comme pour NILS,
cette attaque est également évaluée sur différents ensembles de données et
architectures de modèles, et des stratégies défensives spécifiques basées sur
des mécanismes DP sont proposées.

4

Chapter 1

Introduction

1.1 Motivation

The advancements in machine learning have empowered its use in diverse
fields, transforming how data is analyzed, interpreted, and utilized. In sec-
tors like healthcare [80, 36, 91], finance [55, 37, 46, 16], and social networks
[47, 45, 102], machine learning models provide critical insights by process-
ing vast datasets. These models, however, are often trained on sensitive
information, raising significant concerns about data privacy [143]. Ideally,
machine learning should recognize and generalize patterns across a popula-
tion without compromising individual data privacy. However, in practice,
models trained on confidential data sometimes reveal sensitive details about
individuals within the training dataset [123], presenting privacy risks that go
beyond their intended purpose.

Privacy in machine learning encompasses multiple aspects of data protec-
tion and presents unique challenges that go beyond traditional data security
[99]. At the individual level, it involves protecting personal information, in-
cluding demographic data, behavioral patterns, and sensitive attributes that
could identify or characterize a person [2]. At the relationship level, it con-
cerns protecting connections and interactions between entities, particularly
in networked data structures [54]. An attacker’s goals in this context can
vary significantly: from identifying individuals in the training data, to in-
ferring sensitive attributes [146], to uncovering hidden relationships between
entities. These privacy requirements become increasingly complex as ma-
chine learning architectures evolve and capture more sophisticated patterns
in data.

The evolution of machine learning architectures has introduced new and
diverse privacy challenges [99]. While traditional neural networks primarily

5

faced risks related to individual data leakage, modern architectures present
more complex privacy concerns. For instance, Graph Neural Networks (GNNs)
[115] explicitly model relationships between entities, making both node fea-
tures and edge connections potential sources of privacy leakage [54]. Simi-
larly, federated learning systems, while designed to enhance privacy through
distributed training [87], may inadvertently leak information through model
updates and gradients [42]. Each of these architectures requires specific con-
sideration of what constitutes private information and how it might be com-
promised.

Privacy attacks in machine learning can be classified based on their objec-
tives and mechanisms. Membership Inference Attacks (MIA) [120] represent
a fundamental privacy threat, with significant real-world implications. These
attacks aim to determine if a particular individual’s data was used during
model training, which can have severe consequences in sensitive domains.
For instance, identifying that a clinical record was used to train a disease-
specific model could reveal an individual’s medical condition. Such privacy
breaches have drawn attention from regulatory bodies, with the National In-
stitute of Standards and Technology (NIST) [125] explicitly classifying suc-
cessful membership inference as a confidentiality violation. Furthermore,
these privacy risks have broader implications under regulations like the Gen-
eral Data Protection Regulation (GDPR) [1], potentially classifying machine
learning models as processors of personal information [129] and subjecting
them to strict privacy requirements. In graph-structured data, this privacy
concern extends to Link Inference Attacks (LIA) [54], which can be viewed
as a form of membership inference for relationships, attempting to uncover
connections between entities such as social network interactions or commu-
nication patterns. These attacks demonstrate how machine learning models,
while designed to capture general patterns, can inadvertently leak specific
information about their training data, posing risks for both individuals and
organizations deploying machine learning services.

The growing recognition of these privacy risks has prompted the develop-
ment of various protective measures [32, 99]. Traditional privacy-preserving
approaches like encryption protect data during storage and transmission but
fail to address inference attacks that operate on model outputs. Crypto-
graphic techniques such as Multiparty Computation (MPC) [92, 145] and
Homomorphic Encryption (HE) [43, 44] enable secure computation by allow-
ing operations on encrypted data. However, while these methods effectively
protect data during computation, they present significant limitations for de-
ployed machine learning services. Many real-world applications require mod-
els to provide clear, unencrypted predictions to end-users for transparency,
interpretability, and decision-making purposes [120, 94]. This fundamen-

6

tal requirement means that even with secure computation, the final model
outputs remain vulnerable to inference attacks. Additionally, these crypto-
graphic solutions introduce substantial computational overhead and require
complex key management systems, making them impractical for many de-
ployment scenarios [99]. In contrast, Differential Privacy (DP) [32, 30] offers
a mechanism to protect against inference attacks by introducing controlled
randomness into the learning process itself, potentially providing privacy
guarantees even when model predictions must be exposed. The challenge
lies in balancing this protection with model utility, as privacy guarantees
often come at the cost of reduced accuracy or performance [32, 146, 99].

The motivation for this thesis is therefore twofold: to deepen the under-
standing of privacy vulnerabilities in machine learning systems, examining
how and why attacks like MIA and LIA succeed, and to explore defense
mechanisms that strengthen these systems against privacy risks. This work
is particularly timely given the increasing regulatory requirements for data
protection [113] and the growing deployment of machine learning in privacy-
sensitive domains. Focusing on differential privacy as a defense strategy, this
work aims to bridge the gap between model utility and privacy, contributing
to the safe and ethical deployment of machine learning models in settings
where data privacy is paramount.

1.2 Machine Learning Techniques and Privacy

In this thesis, we explore the intersection of machine learning and privacy, fo-
cusing on specific techniques—namely Principal Component Analysis (PCA),
Graph Neural Networks (GNNs), and Federated Learning—that are widely
used in privacy-sensitive domains such as healthcare [80, 36, 91], finance
[55, 37, 46, 16], and social networks [47, 45, 102]. Understanding these core
methods is essential to framing the privacy risks and vulnerabilities addressed
in this work, as each technique presents unique challenges requiring careful
evaluation and mitigation.

Principal Component Analysis (PCA) [57, 101] is a foundational
unsupervised learning algorithm for dimensionality reduction, frequently ap-
plied in high-dimensional datasets to simplify analysis and improve efficiency.
By transforming data into a lower-dimensional space, PCA enables easier
handling of large datasets, retaining significant patterns, which is especially
valuable in fields like bioinformatics and image processing. However, when
applied to sensitive data, PCA’s projections—its principal components—may
retain individual-level information, creating privacy risks.

Graph Neural Networks (GNNs) [159, 140, 130] are a rapidly evolv-

7

ing class of models specifically designed to learn from graph-structured data,
where entities and their relationships are encoded as nodes and edges. GNNs
excel in applications such as social network analysis, recommendation sys-
tems, and fraud detection by capturing relational patterns within intercon-
nected data. However, the networked structure of graph data can inherently
contain sensitive information, particularly in social networks, where user re-
lationships are often confidential.

Federated Learning [87, 144] is an emerging paradigm addressing pri-
vacy concerns by training models across decentralized devices, thus avoiding
the need to centralize raw data. This approach is especially relevant in mo-
bile applications and collaborative studies, where user privacy is a priority.
However, even with data stored locally, federated learning systems can still
be vulnerable to privacy attacks, as model updates or gradients shared be-
tween devices and servers may leak sensitive information, such as individual
data contributions. This thesis examines privacy vulnerabilities in federated
learning, with a focus on vertical federated graph learning scenarios, where
inference attacks can target relationships between users or entities in graph-
based federated settings.

Together, these techniques highlight the substantial privacy risks that
arise when machine learning systems handle sensitive data. While enabling
powerful analytical and predictive capabilities, these methods also expose
vulnerabilities that adversaries can exploit to extract private information.
The goal of this thesis is to analyze these risks comprehensively and to explore
defenses, with a particular focus on Differential Privacy (DP) as a robust,
adaptable mechanism to limit information leakage while preserving model
utility [32, 30]. By understanding and mitigating these vulnerabilities, this
research aims to contribute to safer and more ethical deployment of machine
learning in privacy-sensitive contexts.

1.3 Privacy Attacks in Machine Learning

Privacy attacks in machine learning aim to exploit vulnerabilities in models
to extract information about specific data points, often exposing sensitive
details about individuals or relationships within the data. Among these,
Membership Inference Attacks (MIA) and Link Inference Attacks (LIA) rep-
resent two key types of privacy threats, each posing unique challenges that
this thesis will address.

Membership Inference Attacks (MIA) [120] are designed to de-
termine whether a particular data sample was part of a model’s training
dataset. These attacks exploit subtle differences in model behavior or con-

8

fidence scores between data points seen during training and those that were
not, using this information to infer the presence of specific samples in the
training set. MIA are particularly concerning in applications where training
data consists of private or sensitive information, such as in healthcare or fi-
nance, as they can inadvertently reveal individual-level information about the
dataset [120]. In this thesis, we investigate MIA against Principal Compo-
nent Analysis (PCA), a commonly used dimensionality reduction technique,
examining both the nature of this vulnerability and the effectiveness of dif-
ferential privacy as a defense.

Link Inference Attacks (LIA) [54] target graph-structured data, aim-
ing to infer the existence or absence of edges between nodes in a graph. These
edges often represent sensitive relationships, such as friendships in social net-
works or professional connections in organizational networks. LIA leverage
the structure and outputs of Graph Neural Networks (GNNs) to deduce con-
nections that may not be visible to a typical user, posing significant privacy
risks, especially in social and professional networking applications [54]. This
thesis examines LIA in the context of GNNs, exploring their mechanisms
and proposing defense strategies to protect relational privacy within graph-
structured data.

Together, MIA and LIA highlight the substantial privacy risks posed by
machine learning models that process sensitive data. These attacks not only
exploit model outputs and structures but also challenge the primary goal of
machine learning: to recognize general patterns without exposing individual-
level information. This thesis seeks to address these vulnerabilities by an-
alyzing the effectiveness of privacy-preserving methods, with a particular
emphasis on differential privacy, to safeguard against these types of privacy
attacks.

1.4 Defenses Against Privacy Attacks in Ma-
chine Learning

To address the privacy risks inherent in machine learning, several privacy-
preserving techniques have emerged. Some involve model regularization and
noise addition [116], which aim to reduce overfitting and prevent models
from memorizing specific data points. Techniques such as dropout [111],
weight regularization [120, 93], and gradient clipping have been shown to limit
a model’s susceptibility to privacy attacks. However, these methods offer
heuristic rather than formal guarantees and may still leave models vulnerable,
particularly when adversaries employ sophisticated inference techniques.

9

Differential Privacy (DP) [32, 30] has emerged as a particularly effective
and adaptable approach. Unlike other methods, DP provides formal pri-
vacy guarantees by introducing controlled noise into data or model outputs,
making it mathematically provable that individual data points have minimal
impact on the model’s results. This characteristic aligns well with the pri-
mary goal of machine learning: to generalize patterns across data without
revealing specific information about individual records.

In the context of this thesis, Differential Privacy is central due to its
robustness in protecting against both MIA and LIA. For MIA, DP’s noise
ensures that model outputs do not reveal whether specific data points were in-
cluded in the training set, thereby safeguarding individual privacy. For LIA,
DP can reduce sensitivity to particular relationships within graph-structured
data, helping to obscure connections in graph neural networks and preventing
adversaries from deducing private relationships.

By focusing on Differential Privacy as the core defense mechanism, this
thesis seeks to explore its potential to mitigate privacy vulnerabilities in
machine learning systems and demonstrate how DP can effectively bridge
the gap between privacy and model utility, supporting the safe deployment
of machine learning applications in sensitive fields.

1.5 Problem Statement and Objectives
The increasing deployment of machine learning models in privacy-sensitive
applications has underscored significant vulnerabilities related to data pri-
vacy. While machine learning aims to recognize general patterns across
data, models can inadvertently expose specific information about individuals
within the training set. This risk is particularly pronounced in applications
involving sensitive data, where the privacy of personal and relational infor-
mation is paramount. Consequently, this thesis focuses on understanding
and mitigating the privacy vulnerabilities associated with machine learn-
ing, particularly with respect to dimensionality reduction techniques, graph-
structured data, and federated learning.

The central problems addressed in this thesis are as follows:

• Privacy Risks in Dimensionality Reduction: Techniques such as
Principal Component Analysis (PCA) are widely used for dimension-
ality reduction and data simplification, especially in high-dimensional
datasets. However, PCA-transformed data can be susceptible to Mem-
bership Inference Attacks (MIA), where adversaries infer whether spe-
cific data points were part of the original training set. This poses a crit-
ical privacy risk, especially when PCA is applied to sensitive datasets.

10

The thesis seeks to investigate these vulnerabilities, exploring how MIA
operate in the context of PCA and assessing the extent to which dif-
ferential privacy can mitigate these risks.

• Privacy Challenges in Graph-Structured Data: Graph Neural
Networks (GNNs) have become a powerful tool for analyzing relational
data in applications like social network analysis and recommendation
systems. However, the unique structure of graph data introduces spe-
cific privacy risks, particularly through Link Inference Attacks (LIA),
which aim to reveal hidden connections between entities. This thesis
examines the mechanisms by which LIA exploit GNNs and evaluates
defense strategies, focusing on how differential privacy can safeguard
relational information within graph data.

• Privacy Vulnerabilities in Federated Learning: Federated learn-
ing enables decentralized model training across multiple devices, aiming
to preserve privacy by keeping raw data local. Yet, federated learning
systems remain vulnerable to privacy leaks through shared gradients
or model updates, potentially exposing individual contributions in col-
laborative settings. In this thesis, we investigate these vulnerabilities
within the context of vertical federated graph learning, where LIA can
target sensitive connections within distributed graph-structured data.
The research aims to assess the effectiveness of differential privacy in
mitigating these risks in federated learning environments.

Based on these challenges, the primary objectives of this thesis are:

• Objective 1: To construct a membership inference attacks in PCA
and evaluate the impact of differential privacy as a defense mechanism.

• Objective 2: To investigate link inference risks in graph neural net-
works, identifying key vulnerabilities and proposing differential privacy
mechanisms to protect sensitive relationships.

• Objective 3: To assess the privacy risks associated with federated
learning in graph-based settings, focusing on the potential for link in-
ference attacks and evaluating the feasibility of differential privacy as
a defense mechanism.

By addressing these objectives, this thesis aims to contribute to the field
of privacy-preserving machine learning by providing a comprehensive under-
standing of specific privacy attacks and defenses. Ultimately, this research
seeks to advance the safe deployment of machine learning models in applica-
tions where data privacy is essential.

11

1.6 Contributions and Outline

This thesis addresses critical privacy challenges in machine learning, focusing
on dimensionality reduction, graph-structured data, and federated learning.
Through an analysis of privacy risks and an exploration of defense mecha-
nisms, particularly differential privacy, this research contributes to advancing
the privacy-preserving deployment of machine learning models in sensitive
applications.

Chapter 2 lays the foundation for the thesis by providing a comprehen-
sive background on core machine learning techniques, privacy attacks, and
defense mechanisms. It introduces Principal Component Analysis (PCA)
for dimensionality reduction, Graph Neural Networks (GNNs) for handling
graph-structured data, and Differential Privacy (DP) as a promising ap-
proach for protecting individual data privacy. This chapter also covers a
variety of privacy attack types, offering essential context for the analyses
and solutions developed in subsequent chapters.

Following this, Chapter 3 presents a review of related work in privacy-
preserving machine learning, with a particular focus on membership infer-
ence attacks, link inference attacks, and privacy risks in federated learning
environments. This review identifies gaps in existing research, highlighting
specific areas where privacy vulnerabilities persist and where further investi-
gation is needed.

Building on this foundation, Chapter 4 explores the susceptibility of PCA
to membership inference attacks. This chapter details the attack method-
ology and provides an experimental evaluation, assessing the effectiveness
of differential privacy in mitigating membership inference risks within PCA-
transformed data. By analyzing the privacy-utility trade-offs in PCA, this
chapter provides insights into safeguarding dimensionality reduction tech-
niques.

In Chapter 5, the thesis introduces the Node Injection Link Stealing
(NILS) attack, a novel approach to link inference attacks that targets GNNs.
This chapter explains the design and implementation of NILS, compares its
effectiveness to existing link inference methods, and evaluates the poten-
tial of differential privacy-based defenses to protect relational privacy within
graph-based models.

Chapter 6 addresses privacy vulnerabilities in federated learning, specif-
ically within the context of vertical federated graph learning. Here, we de-
velop a gradient-based link inference attack that demonstrates how shared
gradients can leak sensitive connection information in distributed settings.
This chapter also examines defense mechanisms, including differential pri-
vacy, assessing their effectiveness in reducing the privacy risks associated

12

with collaborative learning.
Finally, Chapter 7 concludes the thesis with a summary of key contribu-

tions and a discussion of future research directions. It synthesizes the findings
and reflects on the implications of this work for the field of privacy-preserving
machine learning, identifying potential areas for further exploration and de-
velopment.

1.7 List of Publications
The research presented in this thesis has led to the following publications:

• Oualid Zari, Javier Parra-Arnau, Ayşe Ünsal, Thorsten Strufe, and
Melek Önen. "Membership Inference Attack Against Principal Com-
ponent Analysis," in Proceedings of the International Conference on
Privacy in Statistical Databases (PSD), 2022.

• Oualid Zari, Javier Parra-Arnau, Ayşe Ünsal, and Melek Önen. "Node
Injection Link Stealing Attack Against Graph Neural Networks," in
Proceedings of the International Conference on Privacy in Statistical
Databases (PSD), 2024.

• Oualid Zari, Chuan Xu, Javier Parra-Arnau, Ayşe Ünsal, and Melek
Önen. "Link Inference Attacks in Vertical Federated Graph Learning,"
in Proceedings of the Annual Computer Security Applications Confer-
ence (ACSAC), 2024.

13

14

Chapter 2

Background

The rapid advancement of machine learning has revolutionized numerous
fields, from social networks to healthcare, by enabling the analysis and in-
terpretation of vast amounts of data. However, this progress has also raised
significant privacy concerns, particularly when machine learning techniques
are applied to sensitive data. In this chapter, we thoroughly explore the ma-
chine learning methods, privacy attacks, and defense mechanisms that are
central to our research on privacy in machine learning.

We begin by introducing fundamental machine learning techniques rele-
vant to our work, focusing on Principal Component Analysis (PCA) [57, 101]
and Graph Neural Networks (GNNs) [159, 140, 130]. Additionally, we explore
Federated Learning, a distributed machine learning approach that aims to
train models on decentralized data while maintaining data isolation. PCA, a
widely used unsupervised learning method, serves as a crucial tool for dimen-
sionality reduction and data analysis. GNNs, on the other hand, represent
a powerful class of models designed to handle graph-structured data, which
are increasingly prevalent in modern applications.

Following this, we delve into the critical intersection of privacy and ma-
chine learning. We explore various types of privacy attacks that have emerged
in recent years, with a particular focus on Membership Inference Attacks
(MIA) and Link Inference Attacks (LIA). These attacks highlight the poten-
tial vulnerabilities in machine learning models and underscore the importance
of privacy-preserving techniques.

To address these privacy concerns, we then introduce key privacy-preserving
methodologies. We provide an in-depth discussion of Differential Privacy
(DP), a rigorous mathematical framework for quantifying and bounding pri-
vacy leakage.

By covering these topics, this chapter aims to provide a solid founda-
tion for understanding the complex interplay between machine learning tech-

15

niques and privacy considerations. This background will be essential for
understanding the novel contributions presented in the subsequent chapters
of this thesis, where we explore advanced privacy attacks and propose new
defense strategies in the context of PCA and GNNs.

2.1 Foundations of Machine Learning

This section introduces two fundamental machine learning techniques that
are central to our research at the intersection of machine learning and pri-
vacy: Principal Component Analysis (PCA) and Graph Neural Networks
(GNNs). We provide a comprehensive overview of each technique, including
their mathematical foundations, implementations, and applications.

2.1.1 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is one of the most widely used un-
supervised machine learning algorithms for dimensionality reduction and
data analysis. Over the past decade, PCA has found application in a vast
and rapidly growing number of systems for analyzing and classifying often
privacy-sensitive data [158, 128, 122].

PCA is primarily employed for summarizing the information content in
databases by reducing the dimensionality of the data while preserving as
much variability as possible. The output of this statistical tool is a set
of principal components whose size is usually much smaller than the total
number of attributes of the underlying data. These principal components
are orthogonal vectors that capture the directions of maximum variance in
the data.

Example of PCA Application: Face Recognition

To illustrate the concept of PCA in a real-world scenario, we will examine
its application to face recognition using the Olivetti faces dataset [112]. This
dataset consists of 400 grayscale images of faces, each 64x64 pixels, featuring
40 distinct subjects with 10 images per subject. It has been widely used in
computer vision research to evaluate face recognition algorithms [128, 4]. Fig-
ure 2.1 provides an overview of the dataset and the results of applying PCA.
Figure 2.1a displays a random selection of 16 face images from the dataset,
illustrating the variety of faces, poses, and lighting conditions. Figure 2.1b
shows the mean face and the first three principal components (eigenfaces)
resulting from PCA [128]. The mean face represents the average of all faces

16

(a) Random selection of face images

Mean Principal Component 1

Principal Component 2 Principal Component 3

(b) Mean face and principal components

Figure 2.1: Olivetti faces dataset and PCA components

in the dataset. The principal components capture the main modes of varia-
tion in the data [71]. The first component often relates to the overall lighting
conditions, while subsequent components might capture variations in facial
features or expressions [121]. By projecting the original 4096-dimensional
face images (64x64 pixels) onto these principal components, we can repre-
sent each face as a vector of weights in a lower-dimensional space [128]. If we
use sufficient dimensions (but fewer than the original 4096), we can use this
lower-dimensional representation as input to various machine learning algo-
rithms, such as nearest-neighbor classifiers [20] or support vector machines
[19], to perform face recognition [13, 103]. This dimensionality reduction ap-
proach offered by PCA is often faster and more reliable than working directly
in pixel space for face recognition tasks [13, 157].

Mathematical Formulation of PCA

Given a set D = {xn ∈ Rd : n = 1 : N} of N raw data samples correspond-
ing to N individuals of dimension d, we denote the data matrix where each
column is a data sample by X = [x1, . . . , xN]. We assume that data X has
zero mean, which can be ensured by centering the data.

The goal of PCA is to find a linear transformation that maps the origi-
nal d-dimensional data to a lower k-dimensional space (where k < d) while
maximizing the variance of the projected data. Mathematically, this can be
formulated as an optimization problem:

17

max
W

tr(W TXXTW) (2.1)

subject to W TW = I (2.2)

where W ∈ Rd×k is the transformation matrix, and I is the k × k identity
matrix. The constraint ensures that the columns of W are orthonormal.

This optimization problem can be solved using the eigen-decomposition
of the covariance matrix A = 1

N
XXT . The solution W consists of the top k

eigenvectors of A, corresponding to the k largest eigenvalues. These eigen-
vectors are the principal components.

Formally, if we decompose A as A = V ΛV T , where V = [v1, ..., vd] are
the eigenvectors and Λ = diag(λ1, ..., λd) are the corresponding eigenvalues
(sorted in descending order), then W = [v1, ..., vk].

This formulation reduces the dimension because it projects the original
d-dimensional data onto a k-dimensional. subspace spanned by the top k
eigenvectors, which capture the directions of maximum variance in the data.

Reconstruction Error and PCA Optimization

While the primary goal of PCA is dimension reduction, it can also be formu-
lated as a minimization problem of the reconstruction error. This perspective
provides insights into how well PCA preserves information.

For a given data point xn, its reconstruction x̂n after PCA is:

x̂n = WW Txn (2.3)

The reconstruction error for this point is:

Ln = ∥xn − x̂n∥22 = ∥xn −WW Txn∥22 (2.4)

The average reconstruction error over all the data points is:

L =
1

N

N∑
n=1

Ln =
1

N

N∑
n=1

∥xn −WW Txn∥22 (2.5)

Minimizing this average reconstruction error is equivalent to the maxi-
mization problem in Equation 2.1. The matrix W that minimizes L is the
same as the one that maximizes the variance of the projected data.

18

Measuring the Utility of PCA

To evaluate the effectiveness of Principal Component Analysis (PCA) in di-
mensionality reduction, we measure utility based on the proportion of the
total variance (also known as energy) captured by the selected principal
components. Specifically, we are interested in how much of the original
data’s variance is retained when projecting onto a lower-dimensional sub-
space spanned by the top k principal components.

Given the zero-mean data matrix X ∈ Rd×N , the sample covariance ma-
trix is defined as:

A =
1

N
XXT (2.6)

Let V = [v1, v2, . . . , vd] be the matrix of eigenvectors of A, with corre-
sponding eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λd ≥ 0. The eigenvalues are sorted in
descending order to prioritize the components capturing the most variance.

We define the cumulative variance captured by the top k principal
components as:

Γk =
k∑
i=1

λi = tr(V T
k AVk) (2.7)

where Vk = [v1, v2, . . . , vk] ∈ Rd×k contains the top k eigenvectors.
The utility q of using these k principal components is then defined as the

fraction of the total variance they capture:

q =
Γk

tr(A)
=

∑k
i=1 λi∑d
i=1 λi

(2.8)

This measure q indicates the effectiveness of the dimensionality reduction:
a higher value of q means that more of the original data’s variance is retained
in the reduced-dimensional representation.

In practical applications, we often select the reduced dimension k such
that a predetermined threshold of the total variance is captured. For in-
stance, choosing k so that q ≥ 90% ensures that the lower-dimensional sub-
space retains at least 90% of the original data’s variance.

When comparing different PCA methods or algorithms, such as standard
PCA and alternative approaches, we can use this utility measure to assess
their performance. Let V̂k denote the principal components obtained from an
alternative PCA method, and let λ̂i be the corresponding eigenvalues. The
cumulative variance captured by the alternative method is:

19

Γ̂k =
k∑
i=1

λ̂i = tr(V̂ T
k AV̂k) (2.9)

The utility of the alternative method is then:

q̂ =
Γ̂k

tr(A)
=

∑k
i=1 λ̂i∑d
i=1 λi

(2.10)

By comparing q and q̂, we can quantify how well the alternative PCA
method preserves the data’s variance relative to the standard PCA. A higher
value of q̂ indicates that the method retains more of the original variance,
thus offering better utility in terms of information preservation.

This utility measurement is crucial for understanding the trade-offs in-
volved in dimensionality reduction. It provides a quantitative basis for se-
lecting the number of principal components and for comparing different PCA
methodologies based on how effectively they capture the essential structure
of the data.

2.1.2 Graph Neural Networks (GNNs)

Graph Neural Networks (GNNs) have emerged as a powerful class of machine
learning models specifically designed to handle graph-structured data. These
models have gained considerable attention in recent years due to their ability
to effectively learn and capture complex patterns in graph data, showing
remarkable performance across a wide range of tasks [115].

GNNs have found applications in numerous domains where data can be
represented as graphs. Some key applications include:

• Node Classification: Predicting labels or attributes of nodes in a
graph. For example, in social networks, this could involve predicting
user interests or demographics based on their connections and profile
information [131, 47].

• Link Prediction: Forecasting the likelihood of a link forming between
two nodes. This is particularly useful in recommender systems, where
the task might be to predict potential friendships or product recom-
mendations [155].

• Graph Classification: Assigning labels to entire graphs. This has
applications in areas such as molecule property prediction in chemistry,
where each molecule is represented as a graph [142, 135].

20

• Community Detection: Identifying clusters or communities within
a graph. This is valuable in social network analysis for understanding
group dynamics and in biology for protein complex detection [118].

• Graph Generation: Creating new graphs that share similar proper-
ties with a given set of graphs. This has applications in drug discovery,
where new molecular structures can be generated [59].

• Traffic Prediction: Modeling road networks as graphs to forecast
traffic patterns and congestion [141].

• Fraud Detection: Identifying fraudulent activities in financial trans-
action networks by analyzing patterns of connections and behaviors
[83].

While GNNs demonstrate versatility across these various tasks, this thesis
primarily focuses on their application to node classification. In node classi-
fication, the objective is to assign labels to individual nodes based on their
features and the overall graph structure. This task is particularly relevant in
many real-world scenarios, such as predicting user attributes in social net-
works or classifying protein functions in biological networks [133, 80].

The choice to concentrate on node classification provides a specific context
for our exploration of GNN architectures and their vulnerabilities. In the
following sections, we will explain how GNNs work through the lens of node
classification tasks, which will serve as a foundation for our later discussions
on privacy concerns and link stealing attacks in Chapters 5 and 6.

Graph Data Structures and Properties

To lay the groundwork for our discussion of GNNs and their vulnerabilities,
we first introduce the fundamental graph data structures and properties that
underpin these models.

Notations Table 2.1 summarizes the key notations used consistently through-
out this thesis.

Basic Definitions A graph G = (V,E) consists of a set of nodes V and a
set of edges E, as defined in Table 2.1. Nodes represent entities or objects
in the data, while edges represent relationships or interactions between the
nodes. For instance, in a social network graph, nodes might represent users,
and edges could indicate friendships or interactions between users.

21

Table 2.1: Table of Key Notations

Notation Description
G Graph
V Set of nodes in the graph
E Set of edges in the graph
A Adjacency matrix
X Feature matrix
n Number of nodes
d Number of features
Y Set of node labels

Figure 2.2: Representation of a graphG with its corresponding adjacency ma-
trix A and feature matrix X. Node colors indicate different classes. Dashed
lines show how graph edges correspond to adjacency matrix entries.

Figure 2.2 illustrates a simple graph along with its corresponding adja-
cency matrix and feature matrix. The adjacency matrix A ∈ Rn×n, where
n = |V | is the number of nodes in the graph, represents the structure of the
graph. In its simplest form, Aij = 1 if there exists an edge between nodes i
and j, and Aij = 0 otherwise. This binary representation can be extended to
weighted graphs, where Aij can take on real values representing the strength
or importance of the connection between nodes.

Nodes in a graph often have associated features or attributes, represented
by a feature matrix X ∈ Rn×d, where d is the dimensionality of the feature
space, as noted in Table 2.1. Each row in X corresponds to a node in the
graph and contains that node’s feature vector. In Figure 2.2, the feature
matrix contains hypothetical features x1, x2, and x3 for each node.

For supervised learning tasks such as node classification, a set of labels
Y is associated with some or all of the nodes in the graph. These labels
represent the target classes or categories that the model aims to predict for

22

unlabeled nodes. In our example, nodes are colored to represent different
classes: orange for class 1, blue for class 2, and red for class 3.

The combination of the graph structure (represented by the adjacency
matrix A) and node features (represented by the feature matrix X) forms
the foundational data structure for GNNs.

Graph Properties Two properties of graphs that significantly influence
the behavior and performance of GNNs are homophily and density. These
properties play a crucial role in how information propagates through the
graph and, consequently, how GNNs learn and make predictions.

Homophily Homophily refers to the tendency of similar nodes to connect
with each other [88]. In the context of node classification, homophily implies
that nodes with the same label are more likely to be connected than nodes
with different labels.

Figure 2.3: Illustration of homophily in graphs. Left: Graph G with high
homophily, where nodes of the same color (representing the same class) are
more likely to be connected. Right: Graph G′ with lower homophily, showing
more connections between nodes of different colors.

Figure 2.3 illustrates the concept of homophily in graphs. In the high
homophily graph G (left), nodes of the same color (representing the same
class) are more likely to be connected. In contrast, the lower homophily
graph G′ (right) shows more connections between nodes of different colors.

The degree of homophily in a graph can be quantified using various mea-
sures. One common approach is to calculate the edge homophily ratio:

h =
number of edges connecting same-class nodes

total number of edges
(2.11)

23

A high value of h indicates stronger homophily in the graph.
Homophily is particularly relevant for GNNs because these models often

rely on the assumption that connected nodes share similar characteristics or
labels. This property influences how GNNs aggregate and propagate infor-
mation across the graph during the learning process. In highly homophilous
graphs, GNNs can more effectively leverage neighborhood information to
make accurate predictions, potentially leading to better performance in node
classification tasks [161].

As we will show in Chapter 6, homophily has a high impact on the suc-
cess of link inference attacks. In graphs with strong homophily, attackers
can exploit the tendency of similar nodes to connect, making it easier to
infer the existence of edges between nodes with similar labels or features.
This relationship between homophily and attack vulnerability underscores
the importance of understanding and quantifying this property in the con-
text of graph privacy.

Density Graph density measures how many edges are present in a
graph compared to the maximum possible number of edges. For an undi-
rected graph, density is calculated as:

Density =
2|E|

n(n− 1)
(2.12)

where |E| is the number of edges and n is the number of nodes. The
density value ranges from 0 (a graph with no edges) to 1 (a complete graph
where every node is connected to every other node).

Graph density affects the performance of GNNs in several ways:

• Information Flow: In denser graphs, information can propagate more
easily between nodes, potentially leading to more effective learning in
GNNs [147].

• Overfitting: However, very high density can sometimes lead to over-
smoothing in GNNs, where node representations become too similar,
making it harder to distinguish between different classes [142].

• Computational Complexity: The density of a graph also affects
the computational requirements of GNNs, with denser graphs generally
requiring more computational resources [147].

In the context of link stealing attacks, graph density can influence the at-
tacker’s ability to infer edges. In sparse graphs, the presence of an edge might

24

reveal more information than in dense graphs, potentially making sparse
graphs more vulnerable to certain types of attacks.

Understanding these graph properties is crucial for analyzing the behavior
of GNNs in node classification tasks and for assessing their vulnerability to
link stealing attacks. In the following chapters, we will explore how these
properties interact with various GNN architectures and how they can be
exploited or protected against in the context of link privacy.

Core Principles of GNNs

GNNs have revolutionized the field of graph-based machine learning by effec-
tively capturing and leveraging the structural information inherent in graph
data. At the heart of GNNs lie two fundamental principles: the message
passing framework and the learning paradigms. These principles form the
foundation upon which various GNN architectures are built and enable these
models to effectively tackle a wide range of graph-based tasks.

Message Passing Framework The message passing framework is the cor-
nerstone of GNNs, enabling them to process and learn from graph-structured
data. This framework operates on the principle that each node in a graph can
be represented by iteratively aggregating information from its local neighbor-
hood. The process typically involves three main steps that are repeated for a
fixed number of iterations or until convergence: message reception, message
aggregation, and node update.

Figure 2.4 illustrates one iteration of the message passing process. In the
initial state, each node has its own feature vector (panel a). During each
iteration, the following steps occur:

1. Message Reception: A node receives messages from its neighboring
nodes (panel b).

2. Message Aggregation: The node combines these received messages
(panel c).

3. Node Update: The node updates its features using the aggregated
information and its previous state (panel d).

This process is repeated for multiple iterations, allowing information to
propagate through the graph and nodes to capture increasingly global con-
text.

Mathematically, we can formulate the message passing framework for
iteration k as follows:

25

Figure 2.4: Illustration of one iteration of the message passing process in
GNNs, focusing on node F. (a) Initial Node Features: The original graph
structure with each node’s feature vector (x1, x2, x3). (b) Message Recep-
tion: Node F receives messages (mD→F ,mG→F) from its neighbors D and
G. (c) Message Aggregation: F aggregates the received messages, combining
information from its neighbors. (d) Node Update: F updates its features
based on the aggregated information and its previous state. This process
is repeated for multiple iterations, allowing nodes to integrate information
from their expanding neighborhood, enabling GNNs to learn both local and
global graph structures. The color intensity of nodes indicates their relevance
in each step, with F being the focus throughout the process.

26

h(k+1)
v = UPDATE(k)

(
h(k)v ,AGGREGATE(k)

(
{m(k)

u→v : u ∈ N (v)}
))

(2.13)

where h(k)v is the feature vector of node v at iteration k, m(k)
u→v is the message

from node u to node v at iteration k, N (v) is the neighborhood of node v,
and AGGREGATE and UPDATE are learnable functions. The initial state
h
(0)
v is typically set to the input features of node v. After K iterations, the

final node representations h(K)
v can be used for downstream tasks such as

node classification or link prediction.
An alternative and insightful way to visualize the message passing mech-

anism in GNNs is through the lens of computational graphs. Computational
graphs provide a structured representation of how information flows and is
processed through the network over multiple iterations. This perspective is
particularly useful for understanding the expanding receptive field of each
node and how increasingly global information is incorporated into node rep-
resentations.

To illustrate this concept, let us consider a computational graph for a
depth-2 GNN, focusing on node F from our previous examples.

Figure 2.5 presents the computational graph for node F in a depth-2
GNN. This representation helps visualize how information flows through the
network over multiple iterations, explicitly showing the expanding receptive
field of node F. Let us break down this process in relation to our mathematical
formulation:

1. Initial State (Layer 0): We begin with the original features of each
node. For node F, this is represented as h(0)F .

2. First Iteration (Layer 1):

• F’s neighbors D and G aggregate information from their respective
neighborhoods, including F.

• This aggregation is represented by the AGG+UPDATE boxes in
Layer 1.

• Mathematically, for node D, this can be expressed using our gen-
eral equation:
h
(1)
D = UPDATE(0)(h

(0)
D ,AGGREGATE(0)({m(0)

u→D : u ∈ N (D)}))
• The same process occurs for node G.

3. Second Iteration (Layer 2):

27

Figure 2.5: Illustration of a 2-layer GNN computation, focusing on node F.
Left: The initial graph structure with node features. Right: The computa-
tional graph over two layers. In Layer-1, nodes D and G aggregate infor-
mation from their neighbors (including F). In Layer-2, F’s representation is
computed from D and G’s Layer-1 representations. Note that this simplified
view does not show F’s Layer-1 representation contributing to its Layer-2
representation, which would typically occur in standard GNN operations.
Each AGG+UPDATE box represents both the aggregation of neighbor in-
formation and the update of the node’s representation. This process allows F
to capture information from its 2-hop neighborhood, illustrating how GNNs
incorporate both local and increasingly global graph structure.

• F aggregates information from the updated representations of D
and G.

• This is represented by the single AGG+UPDATE box in Layer 2.

• Mathematically, this is expressed as:
h
(2)
F = UPDATE(1)(h

(1)
F ,AGGREGATE(1)({m(1)

D→F ,m
(1)
G→F}))

It is important to note that in standard GNN operations, F’s Layer-1
representation would typically contribute to its Layer-2 representation. This
self-dependency across layers, while not shown in the simplified figure, is
crucial for maintaining and updating a node’s own information throughout
the network’s depth.

This computational graph perspective illustrates how, after two itera-
tions, F’s final representation h

(2)
F has incorporated information from its 2-

hop neighborhood, including nodes A, B, C, and E. This expanding receptive

28

field is key to GNNs’ ability to capture both local and increasingly global
graph structures.

Understanding this iterative process and the expanding receptive field is
crucial for our analysis of privacy threats. The way information propagates
through the graph over multiple iterations plays a key role in how GNNs
learn and represent node features. In Chapter 5, we will explore how this
message passing mechanism can be exploited to infer the edges of the graph.

Learning Paradigms in GNNs GNNs support two main learning paradigms:
transductive learning and inductive learning. These paradigms differ in how
they handle unseen nodes and determine the scope of the learning process.
Understanding these paradigms is crucial for grasping how GNNs learn and
generalize, which in turn informs our analysis of their vulnerabilities to link
stealing attacks.

Figure 2.6: Comparison of transductive and inductive learning in GNNs. (a)
Transductive learning: the model is trained on all nodes, including unlabeled
ones. (b) Inductive learning: the model learns transferable functions that can
generalize to unseen nodes not present during training.

Figure 2.6 illustrates the difference between transductive and inductive
learning in GNNs. Transductive learning assumes that the entire graph struc-
ture is known during training, including unlabeled nodes. As shown in Fig-
ure 2.6(a), all nodes (A-G) are present in a single "Training and Inference
Graph". This approach allows the model to leverage information from all
nodes, even those without labels, during the learning process. However,
transductive models are limited to making predictions only on nodes that
were present during training. In contrast, inductive learning enables GNNs
to generalize to entirely new, unseen nodes or even new graphs. Figure
2.6(b) demonstrates this by showing separate "Training Graph" and "Infer-
ence Graph". The inference graph includes new nodes (G and C, shown

29

in grey) that were not present during training. This capability is achieved
by learning a set of aggregation functions that can be applied to any node,
regardless of whether it was present in the training data.

Recall from Section 2.1.2 that GNNs operate through a message passing
mechanism, where nodes iteratively aggregate information from their neigh-
bors. In both transductive and inductive settings, what the model actually
learns during training are the parameters of the neural networks that perform
this aggregation and update process.

For instance, in a two-layer GNN, the model learns:

• Parameters for the first layer’s aggregation function

• Parameters for the first layer’s update function

• Parameters for the second layer’s aggregation function

• Parameters for the second layer’s update function

These learned parameters correspond to the "AGG+UPDATE" boxes
shown in Figure 2.5. The key difference is how these learned functions are
applied:

In transductive learning, these functions are applied to a fixed set of
nodes, allowing the model to capture node-specific information. In inductive
learning, these functions are designed to be applicable to any node in any
graph, based solely on the node’s features and local neighborhood structure.

This inductive capability allows GNNs to generalize not just to new nodes
within the same graph, but to entirely new graphs. The learned aggrega-
tion and update functions can be applied to any graph structure, as long as
the node features are compatible with the input dimensions the model was
trained on.

The inductive nature of GNNs is particularly relevant to our research on
link stealing attacks, especially in the context of node injection attacks. As
we will explore in Chapter 5, attackers can exploit this by injecting new
nodes into the graph and observing how the GNN processes these addi-
tions. This ability to handle unseen nodes opens up new avenues for po-
tential privacy breaches, highlighting the importance of developing robust
privacy-preserving techniques for GNNs.

In the following, we will delve into specific GNN architectures, starting
with Graph Convolutional Networks. We will examine how these architec-
tures implement the message passing mechanism and how their design choices
affect their learning capabilities.

30

GNN Architectures

Having explored the core principles and learning paradigms of GNNs, we
now examine specific GNN architectures. These architectures implement the
message passing mechanism in various ways, each with its own strengths and
potential vulnerabilities. We focus on three prominent GNN architectures:
Graph Convolutional Networks (GCN), GraphSAGE, and Graph Attention
Networks (GAT).

Graph Convolutional Networks (GCN) GCNs [75] adapt the concept
of convolution to graph-structured data. The core idea is to generate node
embeddings by aggregating information from a node’s local neighborhood.
For a graph G = (V,E), the GCN layer for a node v is formulated as:

h(l+1)
v = σ(W (l)︸︷︷︸

Update

∑
u∈N (v)∪{v}

1√
deg(v)

√
deg(u)︸ ︷︷ ︸

Aggregation

h(l)u︸︷︷︸
Message

) (2.14)

where h(l)v is the feature vector of node v at layer l, N (v) is the set of
neighbors of node v, deg(v) is the degree of node v, W (l) is a learnable weight
matrix, and σ is a non-linear activation function.

The term 1√
deg(v)
√

deg(u)
acts as a symmetric normalization, ensuring that

the node degrees do not affect the scale of the feature representations. This
formulation allows GCNs to effectively capture local graph structure and
node features simultaneously [75].

GraphSAGE GraphSAGE [48] generalizes the notion of convolution to
graphs by learning a set of aggregator functions that can be applied to any
node’s local neighborhood. It generates node embeddings by sampling and
aggregating features from a node’s neighbors. The general form of a Graph-
SAGE layer for a node v is:

h(k)v = σ(W k︸︷︷︸
Update

·[h(k−1)
v︸ ︷︷ ︸

Self-message

,AGGk({ h(k−1)
u︸ ︷︷ ︸

Messages

,∀u ∈ N (v)})

︸ ︷︷ ︸
Aggregation

]) (2.15)

where h(k)v is the embedding of node v at layer k, N (v) is the neighborhood
of v, AGGk is an aggregator function, W k is a learnable weight matrix, σ is
a non-linear activation function, and [,] denotes concatenation.

31

The key innovation in GraphSAGE is the flexible aggregator function
AGGk, which can take on different forms depending on the chosen aggrega-
tion strategy [48]:

• Mean aggregator:

AGGmean =
1

|N (v)|
∑

u∈N (v)

h(k−1)
u (2.16)

This aggregator computes the element-wise mean of the feature vectors
of the neighboring nodes. It treats all neighbors equally, providing a
simple yet effective way to summarize the local neighborhood structure.
The mean aggregator is particularly useful when the importance of all
neighbors is assumed to be uniform.

• Max-pooling aggregator:

AGGmax = max({σ(Wpoolh
(k−1)
u + b), ∀u ∈ N (v)}) (2.17)

The max-pooling aggregator applies a learnable linear transformation
(Wpoolh

(k−1)
u + b) to each neighbor’s feature vector, followed by an

element-wise max operation. This allows the model to capture different
aspects of the neighborhood by learning to extract the most important
features. The max operation provides permutation invariance, ensuring
that the order of neighbors does not affect the result.

These aggregators allow GraphSAGE to adapt to different graph struc-
tures and learn more expressive neighborhood representations. The choice of
aggregator can significantly impact the model’s performance and its ability
to capture different types of structural information in the graph.

Graph Attention Networks (GAT) GAT [132] introduces an attention
mechanism to GNNs, allowing the model to assign different importance to
different neighbors when aggregating information. The update rule for a
GAT layer for node i is:

h
(l+1)
i = σ(

∑
j∈N (i)∪{i}

α
(l)
ij︸ ︷︷ ︸

Aggregation

W (l)︸︷︷︸
Update

h
(l)
j︸︷︷︸

Message

) (2.18)

where α(l)
ij are attention coefficients computed using a self-attention mech-

anism:

32

α
(l)
ij =

exp(LeakyReLU(aT [Wh
(l)
i ∥Wh

(l)
j]))∑

k∈N (i)∪{i} exp(LeakyReLU(a
T [Wh

(l)
i ∥Wh

(l)
k]))

(2.19)

The attention mechanism allows GAT to focus on the most relevant parts
of the input graph for the task at hand. This is particularly useful in het-
erogeneous graph settings where different neighbor relationships may have
varying levels of importance [132].

Each of these architectures represents a different approach to implement-
ing the message passing mechanism introduced in Section 2.1.2. They have
different strengths and are suited to various types of graph learning tasks.
Understanding these architectures and their properties is crucial for ana-
lyzing their potential vulnerabilities to link stealing attacks, which we will
explore in subsequent chapters.

2.2 Federated Learning

2.2.1 Introduction to Federated Learning

Federated Learning (FL) has emerged as an innovative machine learning
paradigm that enables the training of models on distributed datasets without
centralizing the data [87]. This approach addresses critical challenges of data
isolation and privacy preservation in various domains, including scenarios
involving graph-structured data [144].

FL offers several key advantages, as itemized below:

• Decentralized data storage: Raw data remains on local devices or
servers, preserving data locality and ownership.

• Collaborative model training: Multiple parties can contribute to
model improvement without directly sharing their data.

• Privacy preservation: Sensitive information is not explicitly ex-
changed between participants.

• Reduced communication overhead: Only model updates are trans-
mitted, significantly decreasing data transfer requirements.

These characteristics make FL an attractive solution for scenarios where
data cannot be centralized due to privacy concerns, regulatory restrictions, or

33

practical limitations. For instance, in healthcare, FL can enable collaborative
research across institutions without sharing patient data directly.

In the context of graph-structured data, FL opens up possibilities for
leveraging complex relational information across distributed networks while
maintaining data locality [153]. This approach allows for the analysis of
interconnected data, such as social networks or financial transaction graphs,
without compromising the privacy of individual nodes or edges.

The application of FL principles to graph learning presents unique oppor-
tunities and challenges. It enables the development of techniques that can
harness the power of collaborative learning while respecting the distinctive
characteristics of graph data [52]. However, as we will explore more in Chap-
ter 6, keeping data locally is not enough to mitigate against privacy attacks.
We will see in Chapter 6 that we can exploit the communicated messages
between the parties to construct a Link Inference Attack (LIA). Before dis-
cussing the privacy concerns of FL, we will first give an overview of how
FL works, especially the Vertical Federated Learning (VFL) type applied to
graph data, as it is the setting we worked with in our research [151].

2.2.2 Types of Federated Learning

FL can be categorized into several types based on how data is partitioned
among participants [144]. The two main types are:

• Horizontal Federated Learning (HFL)

• Vertical Federated Learning (VFL)

Figure 2.7: Comparison of Horizontal and Vertical Federated Learning (In-
spired by [84])

Figure 2.7 illustrates the key differences between HFL and VFL. This
visualization helps to clarify how data is distributed among parties in each
type of federated learning.

34

Horizontal Federated Learning (HFL)

HFL, also known as sample-based federated learning, is applicable when dif-
ferent participants have the same feature space but different sample sets
[87, 72]. As shown in the left part of Figure 2.7, in HFL:

• Participants share the same data structure but have different users or
samples.

• Each participant’s dataset can be considered as a horizontal partition
of the complete dataset.

• Common in scenarios where multiple organizations have similar types
of data for different users.

For example, two banks in different regions might have the same types of
customer data (e.g., age, income, credit score) but for different sets of cus-
tomers [144]. In the figure, we can see that Party A and Party B have the
same feature space but different sample spaces, representing different user
sets.

Vertical Federated Learning (VFL)

VFL, also referred to as feature-based federated learning, is used when par-
ticipants have the same sample ID space but different feature sets [52, 84].
The right part of Figure 2.7 depicts VFL, where:

• Different participants hold different attributes or features for the same
set of samples or users.

• The dataset can be viewed as being vertically partitioned across par-
ticipants.

• Particularly useful when different organizations have complementary
data about the same set of users.

An example of VFL could be a scenario where a bank and an e-commerce
company collaborate, each having different types of data (financial and shop-
ping behavior, respectively) about the same group of individuals [144]. In
the figure, we can observe that Party A and Party B share the same sam-
ple space but have different feature spaces, indicating they possess different
types of information about the same set of users.

VFL is particularly relevant to our research on federated graph learning,
as it allows for the integration of graph structural information with additional
node features that may be distributed across different parties [86, 14, 97].

35

In both HFL and VFL, as illustrated in the figure, the labels are typically
held by a separate entity, often referred to as the active party or the central
server. This party is responsible for aggregating the information from other
parties and performing the final model training or prediction.

In the subsequent sections, we will focus more on VFL, especially its
application to graph-structured data, as this forms the basis of our work on
link inference attacks in vertical federated graph learning [151].

2.2.3 Vertical Federated Graph Learning (VFGL)

Building upon the concept of VFL, our research focuses on Vertical Federated
Graph Learning (VFGL), which specifically deals with graph-structured data
in a federated setting [151]. VFGL extends the principles of VFL to scenarios
where one party owns a graph dataset, while another party holds additional
features for the same set of nodes [86, 14].

VFGL System Architecture

In our VFGL setting, we consider a two-party scenario involving:

• PG: Party owning the graph dataset DG = (G, XG)

• PA: Party holding a separate feature set XA

• PY : Active party owning the training labels Y

The parties share a user space of N samples, where the graph G contains
N nodes, each representing a user. PG and PA manage user features of
dimensions dG and dA respectively [97].

Figure 2.8 illustrates the VFGL system architecture in detail. This archi-
tecture demonstrates how different parties collaborate in the VFGL process
while maintaining data privacy. Let’s break down the components:

1. Party PG (Graph Owner): This party possesses both the graph
structure G and associated features FT . It uses a Graph Neural Network
(GNN) to process this data, capturing both the structural and feature infor-
mation of the graph.

2. Party PA (Additional Feature Owner): This party holds addi-
tional features FA for the same set of nodes. It employs a Deep Neural
Network (DNN) to process these features.

3. Party PY (Label Owner): This is the active party that owns the
training labels Y and coordinates the learning process. It uses a DNN to
aggregate information from other parties and produce the final output.

4. Data Flow:

36

Figure 2.8: Vertical Federated Graph Learning (VFGL) System Architecture

• Parties PG and PA process their respective data (graph and features)
through their neural networks.

• The resulting intermediate representations HA and HG are sent to PY .

• PY combines these representations in its DNN to produce an output
O.

• Gradients GA and GG are then computed and sent back to parties PA
and PG for model updates.

This architecture ensures that raw data (graph structure, features, and
labels) never leaves its respective owners, preserving data locality while en-
abling collaborative learning.

Note on Scalability: While we describe a two-party scenario for simplic-
ity, it is important to note that the VFGL framework can be extended to
include multiple parties owning different feature sets [84, 144]. In practice,
there could be several parties, each contributing unique features to the col-
laborative learning process. The architecture would then expand to accom-
modate these additional parties, with each new party following a structure
similar to Party PA in the current setup.

37

VFGL Training Process

The VFGL training process involves:

• PG employing a GNN to transform XG into intermediate representation
HG

• PA using a DNN to transform XA into intermediate representation HA

• PY aggregating these representations and training a Deep Neural Net-
work (DNN) for classification

• PY computing the loss function L and gradient derivation

• PY sending the gradients to PG and PA

• PG and PA updating their models

The gradients are computed according to:

∇θkL =
∂L
∂θk

=
∑
i

∂L
∂Hi,k

∂Hi,k

∂θk
(2.20)

where θk represents the model parameters, Hi,k is the latent representation
of the ith sample computed by party Pk, and ∂L

∂Hi,k
is the gradient of the loss

function L with respect to Hi,k for k ∈ {G,A}.
Algorithm 1 provides a detailed overview of this process.

2.3 Differential Privacy

Differential Privacy (DP) is a rigorous mathematical framework for quan-
tifying and limiting privacy loss in statistical databases. It was originally
introduced in [30] in the context of microdata, that is, databases containing
records at the level of individuals. The primary goal of DP is to enable the
release of aggregate information about a dataset while protecting the privacy
of individual records within that dataset.

At its core, DP provides a formal guarantee: the output of a differentially
private algorithm should not reveal the presence or absence of any specific
record in the database, up to a small factor controlled by a privacy parameter
ε. This parameter, often referred to as the privacy budget, allows for a
quantifiable trade-off between privacy and utility [32]. A lower value of ε
provides stronger privacy guarantees at the potential cost of reduced utility.

38

Algorithm 1 Two-Party Vertical Federated Graph Learning
Require: learning rates ηG and ηA
Ensure: Trained model parameters θG, θA, ψ
1: Parties PG, PA and PY initialize θG, θA, ψ.
2: for each training iteration t = 1, 2, . . . do
3: In parallel do the following:
4: Party PG:
5: Computes HG = GNN(XG, θG)
6: Sends HG to party PY
7: Party PA:
8: Computes HA = DNN(XA, θA)
9: Sends HA to party PY

10: End
11: Party PY computes the prediction output PY = DNN((XG, XA), ψ)
12: PY updates ψt+1 = ψt − ηG ∂L∂ψ
13: PY computes and sends the gradients GG = ∂L

∂HG
and GA = ∂L

∂HA
to

PG and PA, respectively.
14: In parallel do the following:
15: Party PG:
16: Computes ∇θGL with Equation 6.1
17: Updates θt+1

G = θtG − ηG∇θGL
18: Party PA:
19: Computes ∇θAL with Equation 6.1
20: Updates θt+1

A = θtA − ηA∇θAL
21: End
22: end for

39

Since its inception, DP has been adapted to various data structures and
machine learning contexts. Notably, in the realm of graph data, researchers
have proposed different notions of DP to protect edge and node privacy
[77, 50]. These adaptations highlight the flexibility of DP in addressing
privacy concerns across diverse data types and applications.

In this section, we will explore the fundamental concepts of DP, including
its formal definitions and key mechanisms such as the Laplace and Gaussian
mechanisms. We will then discuss important properties of DP, its applica-
tion in machine learning, and the specific challenges it faces in this domain.
Finally, we will examine DP in the context of graph data and its relationship
to privacy attacks, setting the stage for the novel contributions presented in
later chapters of this thesis.

2.3.1 Formal Definitions of Differential Privacy

To formalize the notion of differential privacy, we first need to define key
concepts that underpin its mathematical framework. These definitions pro-
vide the foundation for quantifying and reasoning about privacy guarantees
in data analysis.

Neighboring Databases

We begin with the concept of neighboring databases, which is crucial for
understanding the scope of privacy protection in DP:

Definition 1 (Neighboring databases [30, 32]). Let D be the class of
possible databases. Any two databases D,D′ ∈ D that differ in one
record are called neighbors. For two neighbor databases, the following
equality holds:

d(D,D′) = 1,

where d denotes the Hamming distance.

The significance of this definition lies in its role in quantifying the impact
of individual records. By focusing on databases that differ by just one record,
DP aims to ensure that the presence or absence of any single individual’s
data does not substantially affect the outcome of an analysis. This provides
a strong privacy guarantee: an individual’s participation in a dataset cannot
be inferred from the results of a differentially private computation [32].

40

ε-Differential Privacy

Building on the concept of neighboring databases, we can now define ε-
differential privacy:

Definition 2 (ε-Differential privacy [30, 32]). A randomized mechanism
M satisfies ε-DP with ε ⩾ 0 if, for all pairs of neighboring databases
D,D′ ∈ D and for all measurable O ⊆ Range(M),

P{M(D) ∈ O} ⩽ eε P{M(D′) ∈ O}.

This definition formalizes the core principle of differential privacy. It
states that the probability of any output occurring should be at most eε
times more likely when using one database compared to its neighbor. The
parameter ε, known as the privacy budget, controls the strength of this pri-
vacy guarantee. Smaller values of ε provide stronger privacy protection but
potentially at the cost of reduced utility or accuracy in the analysis [32].

The significance of ε-DP lies in its ability to provide a formal, quantifiable
measure of privacy that is independent of an adversary’s background knowl-
edge or computational power. It offers a worst-case guarantee, ensuring that
even if an attacker knows all but one record in the database, they still cannot
confidently determine whether that record was used in the computation [30].

(ε, δ)-Differential Privacy

In practice, a relaxation of ε-DP is often used, known as (ε, δ)-DP:

Definition 3 ((ε, δ)-Differential privacy [30, 32]). A randomized mech-
anism M satisfies (ε, δ)-DP with ε, δ ⩾ 0 if, for all pairs of neighboring
databases D,D′ ∈ D and for all measurable O ⊆ Range(M),

P{M(D) ∈ O} ⩽ eε P{M(D′) ∈ O}+ δ.

This definition introduces an additional parameter δ, which allows for a
small probability of violating the ε-DP guarantee. The significance of (ε, δ)-
DP, also known as approximate differential privacy, is that it provides more
flexibility in achieving privacy guarantees, often allowing for more practical
implementations or improved utility in certain scenarios [32].

The δ parameter can be interpreted as the probability of a catastrophic
privacy failure. It is typically chosen to be very small (e.g., δ ≪ 1

n
where

n is the number of records in the database) to ensure that the chance of a

41

significant privacy breach remains negligible. This relaxation is particularly
useful for mechanisms like the Gaussian mechanism, which we will discuss in
subsequent sections [32].

These definitions form the mathematical backbone of differential pri-
vacy, providing a rigorous framework for analyzing and designing privacy-
preserving data analysis techniques. They allow us to reason precisely about
privacy guarantees and trade-offs between privacy and utility in various data
processing scenarios [30, 32].

2.3.2 Properties of Differential Privacy

Differential privacy possesses several important properties that make it a
powerful and flexible framework for privacy-preserving data analysis. These
properties allow for the composition of differentially private mechanisms and
provide guarantees about post-processing of their outputs.

Composition Theorems

Composition theorems are fundamental to the practical application of dif-
ferential privacy, as they allow us to reason about the privacy guarantees of
complex algorithms that may involve multiple differentially private compo-
nents.

Sequential Composition

Theorem 1 (Sequential Composition [33]). If each mechanism Mi in
a k-fold adaptive compositionM1, . . . ,Mk satisfies (εi, δi)-DP, then the
entire k-fold adaptive composition satisfies (

∑k
i=1 εi,

∑k
i=1 δi)-DP.

The significance of sequential composition lies in its ability to quantify
the cumulative privacy loss when multiple differentially private mechanisms
are applied sequentially to the same dataset. This theorem shows that the
privacy guarantees add up in the worst case, allowing us to budget privacy
loss across multiple computations.

Advanced Composition

While sequential composition provides a basic understanding of how privacy
guarantees compose, advanced composition offers a tighter bound on the
overall privacy loss, especially for large numbers of computations.

42

Theorem 2 (Advanced Composition [33]). If each mechanismMi in a k-
fold adaptive composition M1, . . . ,Mk satisfies (ε′, δ′)-DP for ε′, δ′ ⩾ 0,
then the entire k-fold adaptive composition satisfies (ε, kδ′ + δ)-DP for
δ ⩾ 0 and

ε =
√

2k ln(1/δ)ε′ + kε′(eε
′ − 1). (2.21)

The advanced composition theorem is particularly valuable when dealing
with large numbers of computations, as it provides a sub-linear growth in the
effective ε parameter. This allows for more queries or iterations in iterative
algorithms while maintaining strong privacy guarantees.

Post-processing Property

Another crucial property of differential privacy is its resilience to post-processing:

Theorem 3 (Post-processing [33]). LetM be an (ε, δ)-differentially pri-
vate mechanism and let f be an arbitrary function. Then f ◦ M is
(ε, δ)-differentially private.

The post-processing property ensures that any function of a differentially
private output remains differentially private. This is significant because it
allows for arbitrary data-independent transformations of the results of a dif-
ferentially private computation without compromising the privacy guarantee.
It means that once data has been processed in a differentially private man-
ner, analysts can perform any further computations on the results without
additional privacy concerns.

These properties collectively contribute to the power and flexibility of dif-
ferential privacy as a framework for privacy-preserving data analysis. Compo-
sition theorems allow for the design of complex algorithms with manageable
privacy loss, while the post-processing property ensures that the results of
differentially private computations can be freely used in subsequent analyses.
These characteristics make differential privacy well-suited for a wide range of
applications in data science and machine learning, where multiple operations
on sensitive data are often required [33].

2.3.3 Mechanisms for Achieving Differential Privacy

To implement differential privacy in practice, we need concrete mechanisms
that satisfy the DP definition. Two of the most fundamental and widely used
mechanisms are the Laplace mechanism and the Gaussian mechanism. Both

43

of these rely on the concept of global sensitivity.

Global Sensitivity

Before introducing the mechanisms, it is crucial to understand the concept
of global sensitivity:

Definition 4 (Lp-Global sensitivity [32]). The Lp-global sensitivity of
a query function f : D → Rd is defined as

∆p(f) = max
∀D,D′∈D

∥f(D)− f(D′)∥p,

where D,D′ are any two neighbor databases.

Global sensitivity quantifies the maximum change in the output of a func-
tion when applied to neighboring databases. This concept is fundamental to
calibrating the noise added in differentially private mechanisms.

Laplace Mechanism

The Laplace mechanism is one of the simplest and most commonly used
methods for achieving differential privacy:

Definition 5 (Laplace mechanism [32]). Given any function f : D →
Rd, the Laplace mechanism is defined as follows:

ML(D, f(·), ε) = f(D) + (Y1, . . . , Yd),

where Yi are i.i.d. random variables drawn from a Laplace distribution
with zero mean and scale ∆1(f)/ε.

Theorem 4 ([33]). The Laplace mechanism satisfies (ε, 0)-DP.

The Laplace mechanism achieves differential privacy by adding noise
drawn from a Laplace distribution to the output of the query function. The
scale of the noise is calibrated to the sensitivity of the function and the
desired privacy level ε.

44

Gaussian Mechanism

While the Laplace mechanism provides pure ε-DP, the Gaussian mechanism
is used to achieve (ε, δ)-DP:

Definition 6 (Gaussian mechanism [32]). Given any function f : D →
Rd, the Gaussian mechanism is defined as follows:

MG(D, f(·), ε) = f(D) + (Y1, . . . , Yd),

where Yi are i.i.d. random variables drawn from a Gaussian distribution
with zero mean and standard deviation ∆2(f)

√
2 log(1.25/δ)/ε.

Theorem 5 ([33]). For any ε, δ ∈ (0, 1), the Gaussian mechanism satis-
fies (ε, δ)-DP.

The Gaussian mechanism adds noise drawn from a Gaussian (normal) dis-
tribution. It provides more flexibility than the Laplace mechanism, allowing
for a trade-off between ε and δ in the privacy guarantee.

Both mechanisms illustrate the fundamental principle of differential pri-
vacy: achieving privacy by adding carefully calibrated noise to query results.
The choice between Laplace and Gaussian mechanisms often depends on the
specific requirements of the application, the desired privacy guarantees, and
the nature of the query function.

Note: The concept of global sensitivity is crucial in both mechanisms. It
determines the scale of noise added to achieve differential privacy. A higher
global sensitivity requires more noise to be added to maintain the same level
of privacy, potentially affecting the utility of the results. Therefore, designing
queries or algorithms with low sensitivity is often a key consideration in
practical applications of differential privacy.

2.3.4 Differential Privacy for Graphs

Applying differential privacy to graph data presents unique challenges due to
the interconnected nature of graphs. Unlike traditional tabular data, where
each record is independent, changes to a single node or edge in a graph can
have far-reaching effects on graph statistics and learned representations. In
the literature, we find two main approaches to adapt DP to graphs [77, 50],
each offering different privacy guarantees and suited to different types of
graph analyses.

45

Edge-level Differential Privacy

Edge-level DP focuses on protecting the privacy of individual connections in
a graph.

Definition 7 (Edge-level adjacent graphs [77]). G and G ′ are considered
edge-level adjacent graphs if one can be obtained from the other by re-
moving a single edge. In other words, G and G ′ differ by at most one
edge. Hence, their adjacency matrices differ by one element only.

Definition 8 ((ε, δ)-Edge-level differential privacy). A randomized
mechanismM satisfies (ε, δ)-edge-level DP with ε, δ ⩾ 0 if, for all pairs of
edge-level adjacent graphs G,G ′ and for all measurable O ⊆ Range(M),

P{M(G) ∈ O} ⩽ eε P{M(G ′) ∈ O}+ δ.

Edge-level DP is particularly useful when the privacy of individual re-
lationships is the primary concern, such as in social network analyses or
recommendation systems based on user interactions [106].

Figure 2.9: Illustration of edge-level differential privacy. The graphs G and
G′ are edge-level adjacent, differing only by the presence or absence of a
single edge (highlighted in red).

Node-level Differential Privacy

Node-level DP provides a stronger privacy guarantee by protecting the pres-
ence or absence of entire nodes and their associated edges.

46

Definition 9 (Node-level adjacent graphs [50]). G and G ′ are said to
be node-level adjacent graphs if one can be obtained from the other by
removing a single node and all of its incident edges.

Definition 10 ((ε, δ)-Node-level differential privacy). A randomized
mechanismM satisfies (ε, δ)-node-level DP with ε, δ ⩾ 0 if, for all pairs of
node-level adjacent graphs G,G ′ and for all measurable O ⊆ Range(M),
the following inequality holds:

P{M(G) ∈ O} ⩽ eε P{M(G ′) ∈ O}+ δ

Node-level DP is more suitable when the goal is to protect the participa-
tion of individuals in a network, rather than just their connections [15]. It
provides a stronger privacy guarantee compared to edge-level DP, as it pro-
tects not only the relationships but also the presence or absence of individuals
in the network.

Figure 2.10: Illustration of node-level differential privacy. The graphs G and
G′ are node-level adjacent, differing by the presence or absence of a single
node and all its incident edges (highlighted in red).

Applying DP to graphs presents unique challenges. The interconnected
nature of graph data means that changes to a single node or edge can have
far-reaching effects on graph statistics and learned representations. This
interconnectedness often results in high global sensitivity for many graph
algorithms, necessitating careful mechanism design to balance privacy and
utility. Moreover, the choice between edge-level and node-level DP depends
on the specific privacy requirements and the nature of the graph analysis

47

being performed [106, 15].
The application of differential privacy to graphs is particularly relevant

in the context of Graph Neural Networks (GNNs), where the goal is to learn
node or graph representations while preserving the privacy of the underlying
graph structure. The challenges of applying DP to GNNs include maintain-
ing the utility of learned representations while providing meaningful privacy
guarantees, a topic that will be explored further in subsequent sections.

2.3.5 Differential Privacy in Machine Learning

Building upon the concepts of differential privacy in graphs, we now explore
how DP is applied in the broader context of machine learning. The appli-
cation of DP to machine learning algorithms aims to protect the privacy
of individual data points in the training set while still allowing the model
to learn useful patterns. There are three main approaches to incorporating
DP into machine learning: input perturbation, objective perturbation, and
output perturbation [67, 11].

Input Perturbation

Input perturbation involves adding noise to the training data before it is used
in the learning algorithm.

Definition 11 (Input Perturbation). Let D be the original dataset and
f be a machine learning algorithm. Input perturbation creates a differ-
entially private dataset D′ by adding noise to D, and then applies f to
D′.

This approach has the advantage of being algorithm-agnostic, as the pri-
vacy mechanism is applied independently of the learning algorithm. How-
ever, it may require significant amounts of noise to achieve strong privacy
guarantees, potentially impacting the utility of the learned model [114].

Objective Perturbation

Objective perturbation modifies the objective function of the learning algo-
rithm to incorporate differential privacy.

48

Definition 12 (Objective Perturbation). Let L(θ;D) be the original loss
function for a model with parameters θ on dataset D. Objective pertur-
bation creates a new loss function L′(θ;D) = L(θ;D)+Z(θ), where Z(θ)
is a carefully calibrated noise term.

This approach often allows for tighter privacy analysis and can lead to
better utility compared to input perturbation for certain classes of learning
algorithms [11]. In the context of GNNs, objective perturbation could involve
adding noise to the loss function used for training the GNN, such as the cross-
entropy loss for node classification tasks.

Output Perturbation

Output perturbation involves training the model on the original data and
then adding noise to the resulting model parameters or predictions.

Definition 13 (Output Perturbation). Let f(D) be the output of a ma-
chine learning algorithm on dataset D. Output perturbation creates a
differentially private output f ′(D) = f(D) + Z, where Z is noise cali-
brated to the sensitivity of f .

This method can be computationally efficient, as it doesn’t modify the
training process. However, it may require careful analysis of the model’s sen-
sitivity to achieve meaningful privacy guarantees [139]. For a GNN, output
perturbation could involve adding noise to the final node embeddings or to
the weights of the trained GNN model.

These approaches to differential privacy in machine learning can be ap-
plied to various types of data, including graph data. The choice of method
often depends on the specific machine learning task, the desired privacy-
utility trade-off, and computational constraints. In the context of graph
learning and GNNs, these methods need to be carefully adapted to account
for the unique structure of graph data and the potential for privacy leakage
through the graph topology [154].

It is important to note that the application of these DP approaches to
graph data and GNNs presents additional challenges due to the intercon-
nected nature of graphs. For instance, perturbing a single node or edge
can have far-reaching effects on the learned representations of other nodes
in the graph. This interconnectedness necessitates careful consideration of
the privacy-utility trade-off and often requires the development of specialized
DP mechanisms for graph learning tasks. The complexity of graph structures

49

makes it particularly challenging to balance the preservation of useful graph
properties with the protection of individual privacy, a tension that contin-
ues to be an active area of research in the field of privacy-preserving graph
analysis and learning.

2.4 Challenges of Differential Privacy in Ma-
chine Learning

While differential privacy provides a rigorous framework for privacy-preserving
machine learning, its implementation comes with several challenges, particu-
larly in the context of complex models and graph-structured data. We focus
on three key challenges: the privacy-utility trade-off, parameter selection,
and the impact on model performance.

2.4.1 Privacy-Utility Trade-off

The fundamental challenge in applying differential privacy to machine learn-
ing is balancing the need for privacy with the utility of the model. This
privacy-utility trade-off refers to the inverse relationship between the strength
of privacy guarantees and the usefulness of the data or model for analytical
purposes. In the context of differentially private machine learning, stronger
privacy guarantees (i.e., lower ε values) typically result in more noise being
added to the data or model, which can degrade the model’s performance [11].

This trade-off is particularly pronounced in graph-based models, where
the interconnected nature of the data means that privacy-preserving noise
can have cascading effects on the learned representations [154]. For instance,
in the case of graph neural networks (GNNs), applying differential privacy
mechanisms can lead to significant changes in the graph structure or node
features, potentially altering important graph properties that the GNN aims
to learn. As noted in [138], the privacy-utility trade-off in graph learning
is more challenging due to the interdependence of data points in the graph
structure.

2.4.2 Parameter Selection (ε and δ)

Choosing appropriate values for the privacy parameters ε and δ is crucial in
differential privacy, but it remains a challenging task. The privacy budget
ε quantifies the privacy loss, with lower values providing stronger privacy
guarantees but typically at the cost of reduced utility. In (ε, δ)-differential

50

privacy, δ represents the probability of the privacy guarantee not holding and
is typically chosen to be very small.

The selection of these parameters involves careful consideration of the
specific application, the sensitivity of the data, and the desired level of privacy
protection [138].

A significant challenge in parameter selection is the interpretation of ε
values in real-world terms. While ε provides a mathematical bound on pri-
vacy loss, translating this into meaningful privacy guarantees for individuals
or specific attack scenarios is not straightforward. This difficulty in interpret-
ing ε has led to the development of empirical privacy measures. These mea-
sures involve evaluating the effectiveness of differential privacy mechanisms
against specific privacy attacks, such as membership inference or reconstruc-
tion attacks [64]. By conducting these empirical evaluations, researchers and
practitioners can gain a more concrete understanding of the privacy protec-
tion offered by a given ε value in the context of their specific data and use
case.

In conclusion, while differential privacy offers a principled approach to
privacy-preserving machine learning, its application, particularly in the con-
text of graph-structured data and GNNs, presents significant challenges. Ad-
dressing these challenges requires a deep understanding of both the theoreti-
cal foundations of differential privacy and the specific requirements of graph-
based machine learning tasks. Ongoing research in this area aims to develop
more sophisticated privacy-preserving mechanisms that can better navigate
the privacy-utility trade-off in complex, interconnected data structures.

51

52

Chapter 3

Related Work

The rapid integration of machine learning algorithms into privacy-sensitive
domains has intensified concerns about data confidentiality and individ-
ual privacy. As models increasingly process and analyze sensitive infor-
mation, understanding and mitigating potential privacy risks have become
paramount. This chapter offers a comprehensive review of privacy attacks in
machine learning, with a particular focus on membership inference attacks
and link inference attacks, which are central to the discussions in this thesis.

We begin in Section 3.1 by exploring the taxonomy of privacy attacks
in machine learning, categorizing their types and characteristics to set the
stage for our specific investigations. This classification not only illuminates
the landscape of privacy vulnerabilities but also contextualizes the threats
addressed in our work.

Following this foundational overview, we delve into membership inference
attacks in Section 3.2, tracing their evolution from initial applications in deep
neural networks to their expansion into other machine learning models, such
as PCA. We scrutinize defense strategies developed to counter these attacks,
with a special emphasis on differential privacy as a principled and robust
mechanism. This leads us to differentially private PCA, which underpins our
exploration of membership inference attacks against PCA in Chapter 4.

We conclude the chapter by examining link inference attacks in Sec-
tion 3.3, highlighting the unique privacy challenges posed by graph-structured
data and graph neural networks. We analyze existing link inference attack
methodologies and discuss their limitations, thereby setting the context for
our contributions detailed in Chapters 5 and 6. Our analysis includes a review
of defense mechanisms against link inference attacks, focusing on adapting
differential privacy techniques to graph settings.

53

3.1 Privacy Attacks in Machine Learning
Over the past decade, machine learning algorithms have found application in
a vast and rapidly growing number of systems for analyzing and classifying
usually privacy-sensitive data. As these machine learning techniques are
deployed in critical applications, they have also opened the door for potential
attackers, raising significant privacy concerns. The increasing popularity of
machine learning algorithms, including techniques such as PCA and GNNs,
has led to a surge in research on their vulnerabilities [120, 138, 54].

Privacy attacks in machine learning aim to exploit vulnerabilities in ma-
chine learning models to extract sensitive information about the training data
or the model itself. These attacks can be broadly categorized into four types:

• Membership Inference Attacks (MIA): MIA aim to determine
whether a particular data sample was part of the model’s training
dataset [120, 58, 17, 98, 150, 148].

• Attribute Inference Attacks: These attacks aim to infer sensitive
attributes of individuals in the training data that were not explicitly
included in the model’s output [146, 39, 89, 65, 26].

• Property Inference Attacks: These attacks seek to infer some global
properties of the training dataset that were not explicitly encoded in
the model [41, 160].

• Model Inversion Attacks: In these attacks, adversaries attempt to
reconstruct training data samples or extract sensitive features from the
model [38, 24, 95].

While these attacks pose significant threats to privacy in general machine
learning models, the rise of graph-structured data and GNNs has also in-
troduced new privacy challenges specific to this domain. Graph data has
become increasingly prevalent in today’s data-driven landscape, particularly
in applications involving social networks, biological systems, or recommenda-
tion engines [115]. However, these advantages in both efficiency and utility
unfortunately come with a high cost in terms of privacy, as the underlying
graph structure is usually considered sensitive information [9].

In the context of graph-structured data, additional privacy attacks have
emerged:

• Link Inference Attacks (LIA): LIA aim to discover relations among
graph nodes by identifying or inferring whether or not there exist edges
between them [54, 29, 138, 149, 151].

54

• Property Inference Attacks: These attacks aim to infer global prop-
erties of the target graph. Given the target graph embedding, the
attack goal is to infer basic properties such as the number of nodes,
the number of edges, or other structural characteristics of the graph
[156, 134].

• Subgraph Inference Attacks: In these attacks, adversaries try to
infer the existence of specific subgraph structures within the larger
graph [156].

Among these various types of attacks, this thesis focuses primarily on
two: MIA in the context of PCA, and LIA in the context of GNNs.

MIA are investigated specifically for PCA, extending the understanding
of these attacks to unsupervised dimensionality reduction techniques. We
study the impact of the attacks when the adversary has access to the principal
components, proposing novel approaches to protect against such attacks in
PCA scenarios.

LIA, on the other hand, are studied in the context of GNNs, where the
graph structure itself is a key component of the data and model.

By focusing on these two types of attacks across different machine learning
paradigms, our research aims to provide a comprehensive understanding of
privacy vulnerabilities in both traditional machine learning techniques but
non-investigated (PCA) and more recent graph-based approaches (GNNs).

3.2 Membership Inference Attacks

3.2.1 Foundations and Evaluation of MIA

Formal Description of MIA

MIA is formalized as a binary classification problem. Given a target model
f trained on a dataset Dtrain, and an input data point x, the adversary aims
to infer whether x is a member of Dtrain or not. Formally, the adversary’s
goal is to predict:

• 1, if x ∈ Dtrain (indicating membership).

• 0, if x /∈ Dtrain (indicating non-membership).

The attack exploits the differences in the target model’s behavior on train-
ing data versus non-training data, using model outputs such as predicted
labels and confidence scores to make inferences.

55

Evaluation Metrics

The effectiveness of a MIA is assessed using several metrics. True Positive
Rate (TPR) and False Positive Rate (FPR) are commonly used to measure
the attack’s ability to correctly identify members and the rate of incorrect
member identifications, respectively. Accuracy provides an overall measure
of the attack’s performance. Additionally, Area Under the Curve (AUC) is
particularly useful when the decision is threshold-based, and there is no prior
knowledge about the optimal selection of the threshold. AUC reflects the at-
tack’s performance across various decision thresholds, giving a comprehensive
evaluation of its effectiveness.

Attack Methodologies

MIA utilize various methodologies to infer membership. One common ap-
proach involves training shadow models [120] that mimic the behavior of
the target model. These shadow models are trained on data from an aux-
iliary dataset that replicates the distribution of the target model’s training
data. The outputs of the shadow models, such as confidence scores [150]
or predicted labels [17], are used to create an attack model that learns to
distinguish between members and non-members based on these outputs. In
scenarios where the adversary has black-box access [120, 94] to the target
model, they rely on observing the model’s responses to crafted queries. The
success of these attacks often depends on the degree of overfitting in the tar-
get model, as well as the adversary’s ability to simulate the target model’s
behavior effectively.

Literature Review

Since the introduction of MIA against deep neural network (DNN) models in
[120], this attack has been extensively studied on DNNs and other ML mod-
els. The cited work formalizes the attack as a binary classification problem
and trained neural network (NN) classifiers to distinguish between training
members and non-members. The authors demonstrate that the main factor
contributing to the success of membership inference attacks on DNN models
is overfitting. Subsequent works [111, 85, 124, 66, 146] further develop MIA
with different approaches against DNN of different architectures. The work
in [124] reveals that by using suitable metrics, metric-based attacks result in
similar attack performance when compared with NN-based attacks.

Besides DNN, membership inference attacks have also been investigated
against logistic regression models [127, 109], k-nearest neighbors [127, 126],
and decision tree models [127, 146]. Our work extends these studies to PCA.

56

As we shall elaborate later in Chapter 4, we propose, to this end, a novel
MIA against PCA. To the best of our knowledge, there was no previous work
trying to perform MIA on PCA.

Building upon our work on MIA against PCA, subsequent research has
explored more advanced attacks. A recent study [79, 78] leverages our attack
framework to develop a data reconstruction attack against PCA. This work
demonstrates how an adversary can escalate from membership inference to
reconstructing actual data points. This highlights the potential for more
severe privacy breaches stemming from our initial MIA approach.

3.2.2 Defense Strategies for MIA

As MIA have become a significant privacy concern in machine learning, var-
ious defense strategies have been proposed to mitigate their impact. These
strategies generally aim to reduce the model’s susceptibility to overfitting
or to obfuscate the model’s outputs, making it harder for an attacker to
distinguish between members and non-members of the training set.

Regularization

[116] is a fundamental approach in addressing model vulnerability to MIA.
This technique involves adding a penalty term to the loss function during
model training, which helps prevent overfitting, a key factor in model sus-
ceptibility to membership inference. L1 and L2 regularization are widely
used methods that have demonstrated effectiveness in reducing a model’s
vulnerability to such attacks [120, 93]. Additionally, dropout [68], another
form of regularization, has been shown to be particularly effective in miti-
gating MIA risks. By diminishing the model’s capacity to memorize training
data, these techniques obscure the patterns that MIA typically exploit to
infer membership [74].

Data deduplication

is another crucial strategy in defending against MIA. This process involves
removing duplicate or near-duplicate samples from the training data, which
helps reduce the model’s memorization of specific data points. Recent re-
search has indicated that models trained on deduplicated datasets exhibit
reduced vulnerability to the attack, underscoring the importance of unique
data points in training robust models [111, 27]. By ensuring that models
are not overly exposed to repetitive patterns, deduplication makes it more
challenging for attackers to identify members of the training set.

57

Data augmentation

techniques, such as rotation, flipping, or adding noise to images, can arti-
ficially expand the training dataset. While these methods can increase the
diversity of training data and help in generalizing the model’s predictions,
their effectiveness in the context of MIA defense is nuanced. Some forms of
augmentation may inadvertently increase a model’s vulnerability to the at-
tack by introducing predictable patterns unless carefully managed [120, 74].
Therefore, while data augmentation can be beneficial, it requires careful im-
plementation to ensure that it enhances rather than compromises privacy.

Output obfuscation

is yet another defense mechanism that focuses on modifying the model’s
output to make it less informative for attackers. Techniques such as round-
ing confidence scores or adding noise to the output have shown promise in
mitigating MIA [64]. More advanced methods like MemGuard, which uses
adversarial examples to obfuscate model outputs, have been demonstrated to
effectively reduce the clarity of inference about whether specific data points
were used in training [68]. However, it is important to note that while these
methods can be effective, they often come with trade-offs in terms of model
utility.

A more principled approach that has gained significant attention is the
use of DP mechanisms. DP provides a formal framework for quantifying and
limiting information leakage about individual training samples, making it
particularly well-suited for defending against membership inference attacks.
Unlike the aforementioned heuristic methods, DP offers provable privacy
guarantees, albeit at the cost of some reduction in model utility.

The following subsections will delve deeper into the relationship between
DP and MIA, exploring how DP can be effectively applied to protect against
MIA. We will also examine specific applications of DP in the context of
PCA. This exploration will provide insights into the practical implications of
using DP as a defense mechanism against membership inference attacks in
various machine learning contexts, and how it compares to the other defense
strategies discussed in this section.

3.2.3 Differential Privacy and MIA

Differential Privacy (DP) and MIA are intrinsically linked in the landscape
of privacy-preserving machine learning. At its core, DP aims to obfuscate
the presence or absence of individual samples in a dataset, which directly

58

counters the objective of the attack—to determine whether a particular data
point was used in training a model.

The fundamental promise of DP aligns with this goal: the output of a
differentially private algorithm should be approximately the same regardless
of the inclusion or exclusion of any individual’s data in the input dataset.
This property inherently limits the effectiveness of MIA by making it difficult
for an adversary to distinguish between models trained on datasets that differ
by only one record.

MIA serve as an empirical privacy measure, acting as an auditing tool to
assess the practical effectiveness of DP protections. By attempting to infer
membership, These attacks provide tangible evidence of a model’s resilience
against privacy breaches, complementing the theoretical guarantees offered
by DP. Conversely, DP serves as a principled defense mechanism against the
attack, providing a mathematical framework to quantify and limit informa-
tion leakage about individual training samples.

In theory, there is a line of research aiming at establishing theoretical
bounds on the success of membership inference attack in terms of DP pri-
vacy budgets. These works seek to quantify the relationship between the
strength of DP guarantees (characterized by the privacy parameter ε) and
the effectiveness of the attack. Notable contributions in this area include
the work of [146], [35], and [61]. These studies provide increasingly refined
bounds and insights into how DP parameters translate to protection against
MIA, bridging the gap between theoretical DP guarantees and practical pri-
vacy protection in machine learning systems.

It is important to note that while theoretical bounds provide valuable
insights, the practical application of DP against MIA often requires empiri-
cal evaluation. This is due to the differences in attack models and assump-
tions between DP (which considers worst-case scenarios) and practical attack
implementations (which may operate under more limited adversarial knowl-
edge). As highlighted in [64], these differences can lead to gaps between
theoretical guarantees and empirical performance, emphasizing the need for
comprehensive privacy assessment in real-world machine learning systems.

Differentially Private PCA

Differentially Private Principal Component Analysis (DP-PCA) has emerged
as a crucial area of research in privacy-preserving machine learning, partic-
ularly in the context of defending against privacy attacks such as MIA. The
goal of DP-PCA is to perform dimensionality reduction while providing rig-
orous privacy guarantees for the underlying data.

Several approaches to DP-PCA have been proposed in the literature. One

59

of the earliest works [34] introduces a method that adds Gaussian noise to the
covariance matrix before performing eigen-decomposition. This approach,
while simple, can significantly impact utility, especially for high-dimensional
data. An alternative method [12] adds noise to the output of the algorithm
rather than the input. This approach involves perturbing the top eigenvectors
of the covariance matrix, which can lead to better utility in some scenarios.

The evolution of DP-PCA methods has seen various approaches. [6] in-
troduces the SULQ framework which uses an input perturbation framework,
the parameters of the noise are refined by [31]. [49] proposes a noisy power
method that iteratively generates principal components while removing pre-
viously generated ones. [69] introduces a Wishart noise mechanism for covari-
ance matrices, preserving positive semi-definiteness. Recent work [117] in-
troduces two stochastic algorithms for differentially private PCA: DP-SPCA
and DP-VRPCA. These methods employ gradient perturbation at each it-
eration, departing from previous power method-based techniques. The algo-
rithms achieve tighter utility upper bounds with less noise, with DP-VRPCA
showing better utility for large-scale datasets.

These studies collectively represent the evolution of various noise addi-
tion approaches in DP-PCA, including input perturbation, objective pertur-
bation, and output perturbation methods, as explained in Section 2.3.5.

In the context of MIA, DP-PCA serves as a potential defense mechanism
by introducing controlled noise into the PCA process. This noise makes it
more difficult for an adversary to infer whether a particular data point was
used in computing the principal components. However, the effectiveness of
DP-PCA as a defense against MIAspecifically in the context of PCA had not
been thoroughly explored in the existing literature.

Chapter 4 includes an investigation of how these existing DP-PCA al-
gorithms can be leveraged to defend against MIA on PCA. In this chapter,
we empirically evaluate the effectiveness of some of the above-mentioned
methods, particularly [34], on mitigating our attack against PCA from an
empirical privacy perspective. We study their privacy-utility trade-off, pro-
viding insights into the practical implications of using DP-PCA as a defense
mechanism against the attack in the context of PCA.

60

3.3 Link Inference Attacks

3.3.1 Foundations and Evaluation of LIA

Formal Description of LIA

Link Inference Attacks (LIA) are formalized as a binary classification problem
on graph-structured data. Given a target graph G = (V,E) with nodes V
and edges E, and a target model f (such as a Graph Neural Network, GNN)
trained on G, the adversary aims to infer the presence or absence of an edge
between two nodes u, v ∈ V . Formally, the adversary’s goal is to predict:

• 1, if (u, v) ∈ E (indicating the presence of a link).

• 0, if (u, v) /∈ E (indicating the absence of a link).

The attack exploits correlations between the model’s outputs—such as
node embeddings or prediction scores—and the underlying graph structure.
By analyzing these outputs in response to various inputs, the adversary can
infer sensitive relationships or interactions represented by the edges in the
graph.

Evaluation Metrics

The effectiveness of a LIA is assessed using several metrics similar to those
used in MIA. True Positive Rate (TPR) measures the attack’s ability to cor-
rectly identify existing links, while False Positive Rate (FPR) indicates the
rate at which the attack incorrectly infers links that do not exist. Accuracy
provides an overall measure of the attack’s performance in distinguishing
between existing and non-existing links. Additionally, the Area Under the
Curve (AUC) metric is particularly useful for threshold-based decisions, of-
fering a comprehensive evaluation of the attack’s effectiveness across various
decision thresholds when the optimal threshold is unknown.

Attack Methodologies

LIA utilize various methodologies to infer link presence in graphs. A com-
mon approach involves analyzing the outputs of a target model, such as
node embeddings or prediction scores, to detect patterns indicative of link
existence. In cases where the adversary has black-box access to the target
model, they can query the model with carefully crafted inputs and observe
the outputs to infer links. Advanced attacks may involve manipulating node

61

features or injecting malicious nodes or edges to perturb the model’s behav-
ior, thereby revealing information about the graph’s structure. The success
of these attacks often hinges on the adversary’s ability to exploit the model’s
sensitivity to changes in the graph and effectively simulate or influence the
model’s behavior.

Literature Review

The susceptibility of graph-based models to link inference attacks is initially
demonstrated in [54], where correlations between node output predictions
and the underlying graph structure are identified, revealing channels for edge
information leakage. This work also examines how similarities in node fea-
tures can be exploited to infer graph connections.

Building on this foundation, research in [28] shows that it is possible to
reconstruct graph edges by analyzing predictions derived from node embed-
dings designed to capture graph topology. This study quantifies privacy leaks
in graph embeddings and highlights the risks associated with releasing such
embeddings.

More recently, the VertexSerum attack [25] introduces a graph poisoning
strategy that enhances link-stealing efficacy by amplifying link connectivity
leakage. This approach incorporates an attention mechanism within the link
detection network, significantly improving the accuracy of node adjacency
inference across various datasets and GNN architectures.

A notable advancement in this field is the LinkTeller attack [138], which
demonstrates that an adversary can infer graph links by probing node fea-
tures and analyzing their output predictions from a GNN, even without direct
access to the graph structure. This attack is significant because it highlights
the vulnerability of GNNs to inference attacks based solely on observable
outputs and inputs.

However, the LinkTeller attack has several limitations. Firstly, when ap-
plied to discrete data, the attack’s method of altering input features can
convert them into continuous real values, making such perturbations more
detectable and compromising the stealthiness of the attack in environments
where data integrity is monitored. Secondly, the effectiveness of the Link-
Teller attack diminishes when applied to deeper GNNs with more than three
layers. The increased complexity and abstraction in deeper networks make
it more challenging for the attack to extract meaningful link information.
Additionally, the attack’s performance can vary significantly across different
graph structures and node feature distributions, which may limit its appli-
cability in diverse real-world scenarios.

To overcome these limitations, a novel link inference attack named Node

62

Injection Link Stealing (NILS) is proposed in Chapter 5. NILS leverages the
dynamic behavior of GNNs by injecting malicious nodes in a manner simi-
lar to adversarial attacks. This strategy demonstrates superior performance
compared to existing attacks while providing a more systematic approach by
exploiting the message-passing mechanism inherent to GNN architectures.
By carefully designing the injected nodes and their connections, NILS effec-
tively uncovers hidden links in the target graph without significantly altering
the overall structure, thereby maintaining stealthiness and efficacy.

3.3.2 Link Inference Attacks in Federated Learning

In the realm of federated learning (FL), the primary objective is to mit-
igate privacy attacks on training data by keeping data localized to indi-
vidual nodes. However, the exchange of information such as gradients and
model outputs can still inadvertently leak sensitive information. Several
studies have highlighted privacy vulnerabilities in FL settings. For example,
one study demonstrates that gradients could reveal membership information
about the training data [94]. Similarly, another study introduces gradient
inversion attacks capable of reconstructing input data from gradients [162].
Moreover, research has shown that gradients might unintentionally disclose
attributes unrelated to the main machine learning task, such as demographic
information like gender or race [90].

Despite these findings, the specific privacy risks associated with the graph
structure in FL have received limited attention, except in the context of
Vertical Federated Learning (VFL) 2.2.2. In this setting, the first LIA is
presented in [104], indicating that edge information could be inferred from
intermediate representations and output predictions of the model. The study
proposes multiple attack strategies based on the adversary’s knowledge of the
target graph. However, it does not explore potential leakages arising from
gradients or the training labels of the data samples.

Building upon this prior work, a new LIA within the VFL framework is
introduced in Chapter 6. This attack specifically investigates edge privacy
leakage through gradients, aiming to enhance the understanding of edge pri-
vacy vulnerabilities in federated learning environments. Furthermore, ana-
lytical insights into the performance of LIA based on the properties of graph
structures are provided, contributing to a more comprehensive understanding
of privacy risks in graph-based federated learning.

The evolution of these attacks underscores the need for robust defense
mechanisms to protect graph privacy. In the following subsection, various
strategies proposed to defend against LIA are explored, discussing how they
contribute to preserving the privacy of graph-structured data.

63

3.3.3 Defense Strategies for Link Inference Attacks

As link inference attacks pose significant privacy concerns in graph-based
machine learning, various defense strategies have been proposed to mitigate
their effectiveness. These strategies generally aim to protect sensitive link
information either by obfuscating the graph structure and model outputs or
by limiting the information available to potential attackers.

Random noise addition

is a fundamental approach to defending against link inference attacks. This
technique involves introducing perturbations to various components accessi-
ble to potential attackers. For example, adding noise to learned node em-
beddings can help mask relationships between nodes, while perturbing model
outputs can obscure inference patterns. However, these methods often face
a challenging trade-off between privacy protection and model utility, as ex-
cessive noise can significantly impact the model’s performance.

Output truncation

focuses on limiting the adversary’s access to model outputs and intermediate
representations. This approach includes restricting access to only predicted
labels instead of complete model outputs, or limiting the information shared
in intermediate representations [104]. While simpler to implement than other
defense techniques, output truncation provides limited protection, as demon-
strated in Chapter 6, where we show that even access to labels alone can
reveal graph structure.

A more principled approach that has gained significant attention is the use
of Differential Privacy for quantifying and limiting information leakage about
graph structure, making it particularly well-suited for defending against link
inference attacks. Unlike the aforementioned heuristic methods, DP offers
provable privacy guarantees, albeit at the cost of some reduction in model
utility.

The following subsection delves deeper into the application of differential
privacy as a defense mechanism against link inference attacks, exploring how
differential privacy can be effectively applied to protect graph privacy while
maintaining useful learning capabilities.

Differential Privacy and Link Inference Attacks

Differential Privacy (DP) is a robust framework designed to protect individ-
ual privacy in data analysis by ensuring that the inclusion or exclusion of

64

a single data point does not significantly affect the output of an algorithm.
In the context of graph data, DP serves as a powerful mechanism to mit-
igate privacy attacks such as LIA, where adversaries aim to infer sensitive
relationships between nodes (edges). Similar to how DP safeguards against
MIA —which attempt to determine whether specific nodes or data points are
present in a dataset—DP can be extended to graphs to prevent adversaries
from inferring connections between nodes.

In graph datasets, DP mechanisms have been developed to protect both
node and edge information. Node-level DP as discussed in Section 2.3.4
focuses on preserving the privacy of individual nodes, preventing attackers
from learning whether a specific node is part of the graph. Various DP
mechanisms have been designed to achieve this, particularly in settings where
membership inference attack poses a threat [8, 21]. These mechanisms ensure
that attackers cannot reliably infer the presence of a node, offering strong
protection against attacks that seek to expose sensitive information about
specific entities within social networks or other graph-based systems [136,
137, 18].

While node-level DP effectively protects individual nodes, it is insufficient
for safeguarding the relationships between nodes, which are often the target
in LIA. Edge-level DP 2.3.4 addresses this specific challenge by ensuring
that the presence or absence of a single edge between two nodes does not
significantly influence the output of a graph analysis algorithm. This is
particularly important in preventing LIA, where an adversary seeks to infer
connections between specific nodes [77].

Research on edge-level DP has led to methods for publishing graph statis-
tics under differential privacy guarantees, including subgraph count estima-
tion [73] and degree distribution release [51, 22]. Although these statistics
are useful for general graph analysis, they are often inadequate for training
GNNs, which require access to the raw graph structure for the message-
passing mechanism. Consequently, edge-level DP mechanisms have been ex-
tended to allow for perturbation of the graph structure while maintaining
sufficient utility for machine learning tasks [138, 15, 96].

A notable example of an edge-level DP mechanism in graph data is the
LapGraph algorithm [138]. LapGraph perturbs the adjacency matrix of a
graph to achieve differential privacy. The algorithm operates by adding care-
fully calibrated noise to the adjacency matrix, ensuring that the perturbed
graph preserves privacy while retaining structural properties necessary for
analysis. The LapGraph algorithm splits the privacy budget into two parts:
one for estimating the number of edges and another for perturbing the ad-
jacency matrix. This process protects both the edge count and the overall
structure of the graph under differential privacy, providing a solid defense

65

against LIA. It can be used as a preprocessing step before applying graph
learning models like GNNs.

Algorithm 2 LapGraph Algorithm
Require: Original adjacency matrix A, privacy parameters ε1, ε2
Ensure: Differentially private adjacency matrix A′

1: ∆1(A)← 1 ▷ L1-sensitivity of adjacency matrix
2: m← number of edges in A
3: m̃← m+ Lap(1/ε1) ▷ Estimate number of edges
4: N ← max(m̃, 0) ▷ Ensure non-negative edge count
5: Generate Laplace noise matrix L with scale ∆1(A)/ε2
6: Ã← A+ L ▷ Add noise to adjacency matrix
7: Sort elements of Ã in descending order
8: Set top N elements of sorted Ã to 1, and remaining elements to 0
9: A′ ← symmetrize(Ã) ▷ Ensure symmetry of adjacency matrix

10: return A′

When designing DP mechanisms, it is crucial to consider specific privacy
threats and the capabilities of adversaries. For instance, the NILS attack
discussed in Chapter 5 presents a scenario where an adversary can inject
nodes connected to a targeted node and subsequently discover sensitive edge
information, violating edge privacy. Traditional DP mechanisms may not
sufficiently address this type of attack, and applying general DP mechanisms
to protect against specific attacks can significantly reduce utility of the sys-
tem. Instead, DP can be tailored or adapted for specific attack scenarios, as
we explored in Chapter 5. In this context, the LapGraph mechanism could
be adapted to help achieve our tailored DP notion. By adjusting the sensi-
tivity in LapGraph, we can effectively protect against threats like NILS while
maintaining the utility necessary for graph-based learning tasks.

66

Chapter 4

Privacy Considerations in
Principal Component Analysis

4.1 Introduction

The rapid advancement and widespread adoption of machine learning (ML)
algorithms have revolutionized data analysis across numerous domains in re-
cent years. These algorithms have found applications in an ever-expanding
array of systems designed to analyze and classify data, much of which is often
privacy-sensitive [120, 111]. Among these ML techniques, Principal Compo-
nent Analysis (PCA) stands out as one of the most commonly employed
unsupervised learning algorithms. PCA’s popularity stems from its ability
to summarize the information content in large datasets by reducing their di-
mensionality while preserving as much variability as possible. The output of
this statistical tool is a set of principal components, typically much smaller
in number than the total attributes of the underlying data. This dimension-
ality reduction not only facilitates more efficient data processing and storage
but also aids in visualization and feature extraction for downstream tasks
[71]. However, the increasing ubiquity of ML algorithms, including PCA,
has opened new avenues for potential privacy breaches, particularly when
these techniques are deployed in critical applications handling sensitive data.
In this chapter, we introduce and focus on a novel type of privacy attack:
the Membership Inference Attack (MIA) against PCA. In our proposed at-
tack model, an adversary intercepts the principal components computed over
a dataset and attempts to infer whether a particular data sample was part
of this dataset or not. We develop a membership prediction method that
compares the reconstruction error - the distance between the original target
sample and its PCA projection - against a predetermined threshold. This

67

approach represents a significant extension of MIA concepts, previously ap-
plied to other machine learning models [120, 146], to the domain of PCA. The
implications of our proposed MIA against PCA can be severe, particularly
in contexts where the mere association of an individual with a dataset can
reveal sensitive information. For example, if an attacker can determine that
a person’s data was used in a PCA-based analysis of a particular medical
condition, this alone could compromise the individual’s privacy, regardless
of what specific information about them was used. This scenario extends
the privacy concerns previously identified in other domains, such as genomic
studies [56], to PCA-based data analysis, highlighting the need for robust
privacy protections in dimensionality reduction techniques. In this chapter,
we conduct a comprehensive study of the effectiveness of MIAs against PCA
and demonstrate that such attacks can achieve high performance, especially
when the number of samples used by PCA is relatively small. Furthermore, to
mitigate the risk posed by these attacks that exploit the leakage of principal
components, we investigate the use of differentially private mechanisms. We
evaluate how the privacy budget affects both the success rate of the attack
and the utility of the PCA under differential privacy (DP). Our investigation
makes several key contributions to the field of privacy-preserving machine
learning:

1. We present, to the best of our knowledge, the first study on the impact
of MIAs specifically targeting PCA, where the adversary has access to
the principal components.

2. We propose and evaluate the use of differentially-private PCA algo-
rithms as a countermeasure to MIAs, analyzing the impact of the pri-
vacy budget on both the utility of the PCA and the success rate of
MIAs.

3. We provide a comparative analysis of different approaches to imple-
menting differential privacy in PCA, including both vector and scalar
queries under the so-called naive and advanced composition approaches.

4. We present experimental results comparing these different approaches
under Gaussian and Laplace mechanisms for protecting PCA against
MIAs.

The rest of this chapter is organized as follows: Section 4.2 describes our
proposed membership inference attack against PCA, including the method-
ology and experimental results. Section 4.3 introduces differentially private
PCA algorithms and evaluates their effectiveness in mitigating MIAs. Fi-
nally, Section 4.4 concludes the chapter with a summary of our findings and

68

their implications for privacy-preserving data analysis. Through this inves-
tigation, we aim to shed light on the potential privacy risks associated with
PCA and provide insights into effective strategies for mitigating these risks
while maintaining the utility of this valuable data analysis tool.

4.2 Membership Inference Attack against PCA
Building upon the foundations of PCA discussed in Section 2.1.1, we now
delve deeper into the privacy implications of this widely used technique. As
introduced in Section 2.1.1, PCA is primarily used for dimensionality reduc-
tion while preserving as much variability as possible in the data. However,
this powerful technique can potentially lead to privacy vulnerabilities, par-
ticularly when applied to sensitive data.

In this section, we present a novel MIA targeting PCA. This attack aims
to determine whether a specific data sample was part of the dataset used to
compute the principal components, exploiting the concept of reconstruction
error 2.1.1. We begin by examining how PCA’s susceptibility to overfitting
can lead to privacy risks, illustrated using the Olivetti faces dataset example
from Section 2.1.1. Following this, we outline the threat model and attack
methodology, providing a detailed description of our experimental setup. Fi-
nally, we present and analyze the results of our experiments, demonstrating
the effectiveness of the attack under various conditions.

4.2.1 PCA Overfitting and Privacy Implications

Recall from Section 2.1.1 that the reconstruction error for a data point xn in
PCA is given by:

Ln = ∥xn − x̂n∥22 = ∥xn −WW Txn∥22 (4.1)

where x̂n = WW Txn is the reconstruction of xn after PCA, and W is the
matrix of principal components.

While minimizing reconstruction error is crucial for PCA’s effectiveness,
it also poses privacy risks if PCA overfits the data. Overfitting is a common
issue in many machine learning algorithms, including PCA, and it occurs
particularly when the data set has fewer samples relative to its dimensional-
ity. This can result in a model that captures specific data details, potentially
exposing sensitive information.

To illustrate this concept, let us revisit the Olivetti faces dataset intro-
duced in Section 2.1.1. Figure 4.1 shows the distribution of reconstruction
errors for both training and test samples in this dataset.

69

0.002 0.004 0.006 0.008
Reconstruction Error

0

5

10

15

20

25

30

35

40

45

Fr
eq

ue
nc

y
Training
Testing

Figure 4.1: Histogram of reconstruction errors for training and test samples
in the Olivetti faces dataset using 50 principal components. The inset images
show comparisons of original (left) and reconstructed (right) face samples for
both low and high reconstruction errors.

The histogram clearly demonstrates a significant difference between the
reconstruction errors of training samples (blue) and test samples (orange).
This visual representation supports the mathematical description of overfit-
ting, which can be expressed as:

1

|Dtrain|
∑

x∈Dtrain

∥x−WW Tx∥22 ≪
1

|Dtest|
∑

x∈Dtest

∥x−WW Tx∥22 (4.2)

where Dtrain and Dtest represent the training and test sets respectively.
This overfitting in PCA raises significant privacy concerns, particularly

the potential to identify whether a specific sample was part of the training
set used to compute the principal components. Such capability could have
severe privacy implications in various scenarios:

• In healthcare, identifying whether an individual’s data was part of a
PCA-analyzed study could reveal sensitive health information.

• In finance, determining if a particular transaction was in the PCA
training set could expose confidential financial information.

• In social network analysis, inferring if a user’s data was part of the
PCA could reveal private social connections or behaviors.

70

The core of this privacy issue lies in the distinguishability between train-
ing and non-training samples based on their reconstruction errors (Equation
4.2). If an attacker can accurately estimate these errors, they might in-
fer membership in the training set, compromising the privacy of individuals
whose data was used to compute the PCA.

In our Olivetti faces example, the clear separation between training and
test samples in Figure 4.1 illustrates this vulnerability. An attacker could
potentially use this difference in reconstruction errors to determine whether
a given face image was part of the original training set, thereby inferring an
individual’s participation in the face recognition system.

These scenarios underscore the importance of understanding and miti-
gating potential privacy risks when applying PCA to sensitive data. In the
following sections, we will explore a specific type of privacy attack known as
Membership Inference Attack (MIA) against PCA, and evaluate its effective-
ness under various conditions.

4.2.2 Attack Methodology

Our attack scenario assumes that a curator computes the principal compo-
nents Vk using a training dataset D and sends these components to a trusted
party. The adversary A intercepts some or all of these components by eaves-
dropping on the communication channel. The goal of A is to identify whether
a certain sample z is included in D, effectively discovering members of the
training dataset.

This attack is particularly relevant in distributed settings [3], where mul-
tiple parties compute principal components of their individual (and usually
smaller [63]) training datasets and send them to an aggregator. In such
cases, A could compromise individual privacy by intercepting the principal
components conveyed by each party.

To determine whether a sample z was used in computing the principal
components, A employs the following strategy:

1. Compute the reconstruction error L(z, Vk) of the target sample z based
on the intercepted first k eigenvectors, Vk = [v1, . . . , vk]. Use the for-
mula:

L(z) = ∥z − VkV T
k z∥22 (4.3)

2. Compare this error with a tunable decision threshold R.

3. If the reconstruction error is lower than the threshold, A predicts that
z is a member of the training dataset D. Otherwise, A predicts that z
is not a member of D.

71

The intuition behind this approach, as discussed earlier, is that samples
from the training dataset are more likely to incur lower reconstruction er-
rors compared to non-member samples. This is because PCA is designed to
minimize the reconstruction error for the data it was trained on, as shown in
Equation 2.5.

4.2.3 Experimental Setup

To evaluate the performance of our proposed attack, we conducted experi-
ments using a diverse set of datasets. In this section, we describe the datasets
used, the preprocessing steps applied, and the performance metrics employed
to assess the attack’s effectiveness.

Datasets

We selected four datasets for our experiments, representing different domains
and data types:

• UCI Adult [5]: This dataset contains 48,842 records with 14 at-
tributes, including both numerical (e.g., age, hours per week) and cate-
gorical (e.g., working class, education) features. We employed standard
one-hot encoding to convert categorical attributes into numerical rep-
resentations [62].

• Census [7]: This dataset comprises 1,080 records with 13 attributes of
business statistics.

• Labeled Faces in the Wild (LFW) [60]: This dataset includes
13,233 images of 5,749 human faces collected from the web. The images
have a resolution of 25 × 18 pixels. To balance the number of samples
for each individual, we selected only one picture per person in our
experiments.

• MNIST [81]: This dataset consists of 70,000 grayscale images of hand-
written digits, each 28 × 28 pixels in size. It is commonly used for image
classification tasks.

As a preprocessing step, we standardized all datasets to unit variance
before conducting our attack experiments.

72

Performance Metric

To evaluate the success of our attack, we employed the Area Under the
Receiver Operating Characteristic (ROC) curve (AUC) metric. The AUC
indicates the relationship between true positive and false-negative rates over
several decision thresholds R that the adversary can use to construct the
attack. An AUC of 0.5 suggests that the attack performs no better than
random guessing, while an AUC of 1.0 indicates perfect classification.

In all our experiments, we randomly selected equal-sized samples for both
members and non-members. To ensure the robustness of our results, we
reported the mean of the results over 10 trials.

4.2.4 Results and Analysis

We evaluated the success rate of our attack in terms of the number of prin-
cipal components intercepted by the adversary, denoted by k. Figure 4.2
illustrates the maximum AUC that the adversary can achieve by observing
the top-k principal components for various sample sizes N .

From our experimental results, we can draw several key observations:

1. Impact of k: The AUC increases with increasing k. This is intuitive,
as the attacker gains access to more information with a larger number
of principal components, enhancing their ability to distinguish between
members and non-members.

2. Impact of sample size: The AUC decreases as the sample size N in-
creases. This phenomenon can be attributed to the convergence of the
sample covariance matrix A to the true covariance matrix of the dataset
as N grows. This convergence makes the reconstruction errors of mem-
ber and non-member samples increasingly indistinguishable. This be-
havior is analogous to what has been observed with neural networks
when the training dataset is large [120].

3. Dataset-specific performance: For the MNIST and LFW datasets,
the AUC is consistently above 0.5 and reaches 0.9 when N = 1, 000. In
contrast, the Census and Adult datasets yield much lower AUC values.
This discrepancy can be primarily attributed to the smaller dimension d
of these datasets. It’s worth noting that MIAs against machine learning
models trained on the Adult dataset have typically been unsuccessful
in previous studies [120, 111].

These results demonstrate that our proposed MIA against PCA can be
highly effective, especially when the number of samples used by PCA is small

73

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Observed top-k components

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90
AU

C

Adult
N = 20
N = 50
N = 100
N = 200
N = 500
N = 1000
N = 2000

1 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

Observed top-k components

0.5

0.6

0.7

0.8

0.9

1.0

AU
C

LFW
N = 20
N = 50
N = 100
N = 500
N = 1000
N = 1680

1 2 3 4 5 6 7 8 9 10 11 12 13

Observed top-k components

0.50

0.55

0.60

0.65

0.70

0.75

AU
C

Census
N = 20
N = 50
N = 100
N = 200
N = 500

1 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

78
4

Observed top-k components

0.5

0.6

0.7

0.8

0.9

1.0

AU
C

MNIST
N = 500
N = 1000
N = 2000
N = 4000
N = 8000
N = 10000

Figure 4.2: Impact of the sample size N and the observed top-k components
on the attack’s performance. Shaded areas show 95% confidence intervals for
the mean.

and the dataset dimensionality is high. The attack’s performance degrades
as the sample size increases, which aligns with theoretical expectations and
previous findings in the field of privacy-preserving machine learning.

Our findings highlight the potential privacy risks associated with shar-
ing principal components, particularly in scenarios where the dataset size is
limited or the data dimensionality is high. This underscores the need for
privacy-preserving techniques when applying PCA in sensitive domains or
distributed settings.

In the next section, we will explore how differential privacy can be applied
to PCA to mitigate these privacy risks, and we will evaluate the trade-offs
between privacy protection and utility preservation.

4.3 Differentially Private PCA

To mitigate the privacy risks associated with PCA, as demonstrated by the
membership inference attack discussed in Section 4.2, we now turn our atten-

74

tion to differentially private PCA (DP-PCA) algorithms. These algorithms
aim to protect individual privacy while still providing useful insights from
the data.

In this section, we present and analyze four DP-PCA approaches: two
based on the Gaussian mechanism and two on the Laplace mechanism. We
evaluate their effectiveness in protecting against our MIA and assess the
trade-off between privacy and utility.

4.3.1 DP-PCA Approaches

As in the previous scenario where no privacy protection was implemented, the
first step for the data curator is to compute the principal components of the
covariance matrix A, which are to be shared with a trusted entity. However,
to protect individual privacy against an adversary who may intercept some or
all components of A, the curator now decides to add Laplace noise directly to
the coefficients qij of A. In the context of DP, this approach is called output
perturbation.

To protect the α .
= d(d + 1)/2 distinct coefficients of A (recall that A

is a symmetric matrix), we consider two strategies: (i) using a joint query
function that simultaneously queries all such coefficients, and (ii) querying
each coefficient separately. We shall refer to these procedures as vector and
scalar queries, respectively.

For i = 1, . . . , d, let attribute i take values in the interval [li, ui] after
standardization, and denote by Λi the absolute difference |li − ui|. Recall
[100] that ∆1(qij) = ΛiΛj/N , from which we can easily derive an upper
bound on ∆1(A) just by adding up the sensitivities of all distinct coefficients.
Accordingly, the scale of the Laplace noise injected to each coefficient yields
∆1(A)/ε in the vector case, and ∆1(qij)/εij in the scalar case, where ε is the
total privacy budget and εij the fraction thereof assigned to the coefficient
qij.

Using the standard sequential composition property, we can compute the
total privacy cost of the scalar strategy by adding up all εij for i ⩾ j. In
our experiments, in order to compare the two approaches for the same total
privacy budget, we shall assume εij = ε/α. Note that, in this case, the noise
scales will coincide only if

∑
i⩾j ΛiΛj = αΛ2.

We now present four DP-PCA approaches that aim to protect individ-
ual privacy when computing and sharing principal components. These ap-
proaches differ in their noise injection mechanisms and how they compose
multiple queries.

75

Laplace Mechanism-based Approaches

The Laplace mechanism adds noise drawn from a Laplace distribution to
achieve differential privacy as described in Section 2.3.3. We consider two
variations of this approach:

1. Laplace Vector Query This approach uses a joint query function
that simultaneously queries all distinct coefficients of the covariance matrix
A. The noise scale for each coefficient is:

noise scale =

∑
i⩾j ΛiΛj

Nε
,

where N is the number of samples, and ε is the total privacy budget.

2. Laplace Scalar Query with Naive Composition This approach
queries each coefficient of A separately. The noise scale for each coefficient
qij is:

noise scale =
αΛiΛj
Nε

,

where ε/α is the privacy budget allocated to each coefficient.

Gaussian Mechanism-based Approaches

The Gaussian mechanism adds noise drawn from a Gaussian distribution to
achieve differential privacy as described in Section 2.3.3.

3. Analyze Gauss (AG) Algorithm [34] This approach queries all
coefficients of A simultaneously and estimates ∆2(A) to be 1/N . The noise
scale for each coefficient is:

noise scale =

√
2 log(1.25/δ)

Nε
.

4. Laplace Scalar Query with Advanced Composition This ap-
proach uses the advanced composition theorem to achieve a tighter privacy
guarantee when composing multiple differentially private mechanisms. The
noise scale for each coefficient qij under this approach is:

noise scale =
ΛiΛj
Nε′

,

where ε′ satisfies the advanced composition theorem equation for k = α and
a given total privacy budget ε, δ.

76

Table 4.1 summarizes the four DP-PCA approaches and their respective
noise scales.

Approach Privacy notion Noise scale
Laplace scalar query with naive composition DP αΛiΛj/Nε

Laplace vector query DP
∑

i⩾j ΛiΛj/Nε

Laplace scalar query with advanced composition approx. DP ΛiΛj/Nε
′

Analyze Gauss (AG) Algorithm [34] approx. DP
√
2 log(1.25/δ)/Nε

Table 4.1: Overview of the DP mechanisms aimed to protect PCA against
MIA. Here, ε denotes the total privacy budget and ε′ the fraction thereof
assigned to each coefficient of A.

4.3.2 Experimental Evaluation

We now present an experimental evaluation of the four DP-PCA approaches,
focusing on their effectiveness in mitigating the proposed MIA and the trade-
off between privacy and utility.

Protection Against MIA

To evaluate the protection provided by the DP-PCA approaches against
membership inference attacks, we measure the Area Under the Curve (AUC)
of the attack for various privacy budgets ε. Figure 4.3 shows the results for
the AG algorithm and the Laplace vector query approach.

From Figure 4.3, we observe several key findings. The AG algorithm
demonstrates robust protection against membership inference attacks, with
AUC values consistently close to 0.5 (the random guess baseline) across all
tested ε values. This indicates that the AG algorithm effectively obscures
membership information, making it difficult for an attacker to distinguish
between members and non-members of the dataset.

In contrast, the Laplace vector query approach exhibits a different be-
havior. As the privacy budget ε increases, we see a corresponding increase
in AUC values. This trend suggests that the protection offered by this ap-
proach gradually diminishes as more privacy budget is allocated, eventually
approaching the performance of the non-private case for large ε values.

Interestingly, the effectiveness of these approaches varies across different
datasets. For the Adult and Census datasets, we find that the Laplace vector
query approach with ε = 102 provides comparable protection to the AG
algorithm with ε = 1. This equivalence in protection level occurs at different

77

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Observed top-k components

0.50

0.52

0.54

0.56

0.58

0.60

0.62

0.64
AU

C

Adult, N=100
non-private
 = 1
 = 0.7
 = 0.5
 = 0.1
 = 0.05
 = 0.01

1 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

Observed top-k components

0.50

0.55

0.60

0.65

0.70

0.75

0.80

AU
C

LFW, N=1680
non-private
 = 1
 = 0.7
 = 0.5
 = 0.1
 = 0.05
 = 0.01

(a) The AUC of the attack when the AG algorithm is applied with respect to k

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Observed top-k components

0.50

0.52

0.54

0.56

0.58

0.60

0.62

0.64

AU
C

Adult, N=100
non-private
 = 104

 = 103

 = 102

 = 101

 = 100

 = 10 1

1 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

Observed top-k components

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

AU
C

LFW, N=1680
non-private
 = 107

 = 106

 = 105

 = 104

 = 103

 = 102

 = 101

 = 100

 = 10 1

(b) The AUC of the attack when the Laplace vector query algorithm is applied
w.r.t. k.

Figure 4.3: The AUC of the attack when the AG algorithm (a) and the
Laplace vector query approach (b) are applied with various values of ε.
Shaded areas are the 95% confidence intervals for the mean.

privacy budgets for different datasets. For instance, in the case of the LFW
dataset, the Laplace vector query approach requires a much larger privacy
budget (ε = 104) to match the protection level of the AG algorithm with
ε = 1.

These results underscore the capability of both approaches to significantly
limit the success of membership inference attacks. However, they also high-
light the superior performance of the AG algorithm, which maintains strong
protection even at lower privacy budgets.

Comparison of Laplacian Approaches

Figure 4.4 compares the protection provided by the three Laplacian ap-
proaches (vector query, scalar query with naive composition, and scalar query

78

with advanced composition) for various levels of the total privacy budget.

10 1 100 101 102 103 104

Privacy Budget

0.50

0.52

0.54

0.56

0.58

0.60

0.62

0.64

M
ax

im
um

 A
UC

Adult, N=100
Vector query
Scalar query with NC
Scalar query with AC

10 1 100 101 102 103 104 105 106 107

Privacy Budget

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

M
ax

im
um

 A
UC

LFW, N=1680
Vector query
Scalar query with NC
Scalar query with AC

Figure 4.4: Attack performance with Laplacian approaches when the adver-
sary intercepts all components (k = d). The infinity point represents the
non-private case.

Analysis of Figure 4.4 reveals several important insights into the behavior
of the Laplacian approaches. First, we observe that the advanced composi-
tion approach consistently achieves better protection than the naive approach
in the low privacy regime (when ε is large). This superiority of the advanced
composition method becomes particularly pronounced as the privacy budget
increases.

The vector query and scalar query with naive composition approaches ex-
hibit remarkably similar protection levels. This similarity can be attributed
to their consumption of the same total privacy budget ε, resulting in compa-
rable noise injection and, consequently, similar levels of privacy protection.

A notable feature in these results is the intersection point between the
AUCs of the naive and advanced composition approaches. This intersection
point, we find, is highly dependent on the dimensionality of the dataset.
For datasets with lower dimensionality, such as Adult (d = 14, α = 105)
and Census (d = 13, α = 91), the intersection occurs at a privacy budget
of approximately ε ≈ 102. In contrast, for higher-dimensional datasets like
LFW (d = 450, α ≈ 105) and MNIST (d = 784, α ≈ 3×105), this intersection
point shifts significantly, occurring at a much higher privacy budget of ε ≈
105.

These differences can be explained by analyzing the noise scales of the
naive and advanced composition approaches, as illustrated in Figure 4.5.

79

10 2 100 102 104 106 108

Privacy budget

102

104

106

108

Census, =91
Adult, =105
LFW, 105

MNIST, 3 × 105

Figure 4.5: The hashed area shows where naive composition introduces less
noise than advanced composition.

Trade-off Between Privacy and Utility

To evaluate the trade-off between privacy and utility for the DP-PCA ap-
proaches, we measure utility as the percentage of captured energy of the
principal components produced by the DP-PCA algorithms, V̂k, with respect
to the principal components of non-private PCA (SVD), Vk:

q =
tr(V̂ T

k AV̂k)

tr(V T
k AVk)

,

where A is the sample covariance matrix. For all datasets, we select the
reduced dimension k such that Vk captures 90% of the energy.

Figures 4.6 and 4.7 show the utility of the DP-PCA algorithms as a
function of the privacy budget ε and the AUC, respectively.

Analysis of Figures 4.6 and 4.7 reveals several crucial insights into the
performance of the DP-PCA algorithms. The AG algorithm demonstrates
particularly good utility for the Adult and Census datasets. However, its
performance is notably lower for the other datasets examined. This dispar-
ity in performance across different datasets suggests that the effectiveness
of the AG algorithm may be sensitive to certain dataset characteristics, a
phenomenon that warrants further investigation.

In contrast, the Laplacian PCA solutions exhibit consistently lower util-
ity compared to the AG algorithm when the privacy budget is small (ε ≤ 1).
This observation underscores the challenges of maintaining high utility while
providing strong privacy guarantees, particularly in low-privacy-budget sce-
narios.

80

10 2 10 1 10010 1 100 101 102 103 104 105 106 107

Privacy budget

84

86

88

90

92

94

96

98

100

Pe
rc

en
t c

ap
tu

re
d

en
er

gy
 w

.r.
t S

VD

Adult, N=100, k=10

Laplacian vector query
Laplacian scalar query with NC
Laplacian scalar query with AC
AG

10 2 10 1 10010 1 100 101 102 103 104 105 106 107

Privacy budget

20

40

60

80

100

Pe
rc

en
t c

ap
tu

re
d

en
er

gy
 w

.r.
t S

VD

LFW, N=1680, k=53
Laplacian vector query
Laplacian scalar query with NC
Laplacian scalar query with AC
AG

Figure 4.6: Trade-off posed by the four DP-PCA algorithms described in
Section 4.3.1, between the total privacy budget ε and data utility. Utility is
measured as the percentage of captured energy w.r.t. SVD.

0.50 0.52 0.54 0.56 0.58 0.60 0.62 0.64
AUC

86

88

90

92

94

96

98

100

Pe
rc

en
t c

ap
tu

re
d

en
er

gy
 w

.r.
t S

VD

Adult, N=100, k=10

Laplacian vector query
Laplacian scalar query with NC
Laplacian scalar query with AC
AG

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85
AUC

20

40

60

80

100

Pe
rc

en
t c

ap
tu

re
d

en
er

gy
 w

.r.
t S

VD

LFW, N=1680, k=53

Laplacian vector query
Laplacian scalar query with NC
Laplacian scalar query with AC
AG

Figure 4.7: Trade-off posed by the four DP-PCA algorithms described in Sec-
tion 4.3.1, between attack performance and data utility. We measure attack
performance through AUC, and utility through the percentage of captured
energy w.r.t. SVD.

Comparing the vector and scalar query approaches with naive composi-
tion, we find that they generally show similar utility. However, exceptions to
this trend are observed in the MNIST and Census datasets, where the scalar
query with naive composition achieves notably better utility. This discrep-
ancy highlights the potential for dataset-specific optimizations in the choice
of DP-PCA algorithms.

The advanced composition approach emerges as a promising method, pro-
viding better utility than naive composition under specific conditions. Specif-
ically, this superiority is observed when the privacy budget ε and the number
of queries α fall within the region depicted in the blank area of Figure 4.5.
This finding suggests that the advanced composition approach may offer a
more favorable trade-off between privacy and utility in certain scenarios.

81

4.4 Conclusion

In this chapter, we have conducted a comprehensive investigation into the
privacy considerations surrounding Principal Component Analysis (PCA).
Our study has shed light on the potential vulnerabilities of PCA to privacy
attacks, specifically focusing on Membership Inference Attacks (MIAs). We
have also explored the effectiveness of differentially private PCA algorithms
as a defensive measure against such attacks.

Our main contributions in this chapter can be summarized as follows:

1. We implemented and evaluated the first membership inference attack
against PCA, where an adversary has access to some or all principal
components. This attack revealed significant privacy leakage in PCA,
especially when the number of samples used is small.

2. We demonstrated that MIAs can be deployed successfully against PCA
with high performance under certain conditions, highlighting the need
for robust privacy-preserving techniques in PCA applications.

3. We evaluated the protection offered by differentially private PCA al-
gorithms under various scenarios, including different protection algo-
rithms, privacy budgets, numbers of intercepted principal components,
and numbers of covariance coefficients.

4. We analyzed the trade-off between privacy protection and utility in
differentially private PCA, providing insights into the practical value
of privacy when these algorithms are employed.

Our findings indicate that the privacy risks associated with PCA are
non-trivial and deserve serious consideration. The success of our MIA, par-
ticularly when the sample size is small, underscores the importance of imple-
menting robust privacy-preserving techniques in PCA applications, especially
those dealing with sensitive data.

The evaluation of differentially private PCA algorithms revealed that they
can provide effective protection against MIAs, but at the cost of reduced util-
ity. We observed that the choice of protection algorithm, privacy budget, and
other parameters significantly influences both the level of privacy protection
and the utility of the resulting PCA output.

This work contributes to the broader field of privacy-preserving machine
learning by highlighting the privacy vulnerabilities in a fundamental tech-
nique like PCA and evaluating potential protective measures. Our results
may be particularly useful for practitioners and researchers working with

82

sensitive data, helping them assess the practical value of privacy budgets
when employing differentially private PCA algorithms in conjunction with
desired utility levels.

Looking ahead, this research opens up several avenues for future work.
One potentially fruitful direction would be to investigate whether there is a
correlation between the samples vulnerable to privacy attacks in PCA and
those in downstream tasks such as neural network classifiers. Such insights
could lead to more comprehensive privacy-preserving strategies that protect
data across multiple stages of machine learning pipelines.

83

84

Chapter 5

Node Injection Link Stealing
Attack

5.1 Introduction

The rapid advancement of machine learning technologies has revolutionized
data analysis across numerous domains. However, this progress has also given
rise to significant privacy concerns, particularly when dealing with sensitive
data. As explored in Chapter 4, even fundamental techniques like Principal
Component Analysis (PCA) can be vulnerable to privacy attacks such as
membership inference. Building upon these insights, this chapter delves into
the privacy challenges specific to Graph Neural Networks (GNNs), a more
complex and increasingly popular class of machine learning models.

Graph-structured data has become ubiquitous in today’s data-driven land-
scape, finding applications in diverse fields such as social networks, biological
systems, financial fraud detection, and recommendation engines. This data
structure is particularly powerful because it captures not just individual en-
tities (represented as nodes) but also the relationships between them (repre-
sented as edges). GNNs have emerged as state-of-the-art tools for analyzing
and learning from such data, offering remarkable performance in various tasks
including node classification, link prediction, and graph classification [140].

However, the very characteristics that make graph data so informative
also make it highly sensitive from a privacy perspective. In social networks,
for instance, the links between nodes typically represent shared interests,
beliefs, political views, or even sexual preferences among users. The Cam-
bridge Analytica scandal [9] starkly illustrated how this type of information
can be exploited, potentially causing serious damage to individual privacy
and even influencing democratic processes. Unlike in traditional machine

85

learning models where the privacy of individual data points is the primary
concern, in graph-based models, the privacy of the relationships between data
points becomes an additional critical consideration.

The privacy concerns surrounding graph-structured data and GNNs present
unique challenges compared to those we encountered with PCA in the pre-
vious chapter. While PCA primarily deals with feature data, GNNs must
protect both node features and the graph structure itself. This added com-
plexity necessitates novel approaches to both attack and defend privacy in
these models.

Motivated by these challenges, this chapter introduces a novel and pow-
erful privacy attack against GNNs, which we call the Node Injection Link
Stealing (NILS) attack. Our primary objective is to advance the under-
standing of edge privacy in GNNs by developing this attack and proposing
a tailored Differential Privacy notion to protect against it. The NILS attack
aims to infer the links among a set of target nodes in a graph, focusing on a
specific scenario of training the GNN model for node classification tasks.

Previous works have explored various approaches to compromising pri-
vacy in GNNs. The Linkteller attack [138] demonstrated that by probing
the features of nodes and analyzing the output predictions generated by the
GNN, an attacker could successfully infer the links of the graph. Another
study in [54] investigates the correlation of nodes’ features to infer the links
between them. However, these approaches have limitations. Linkteller’s
strategy of altering input features can be easily detected, especially when
dealing with discrete data. The attack proposed in [54] requires access to a
shadow dataset and the ability to train shadow GNNs, which may not always
be feasible for an attacker.

Our proposed NILS attack takes a fundamentally different approach by
exploiting the dynamic nature of GNNs. Unlike previous attacks, NILS adds
a new node to the graph, connects it to the target node through a single edge,
and further queries the model with malicious input features generated follow-
ing different strategies. This approach allows the attacker to infer some of the
target node’s neighbors and hence steal a subset of the graph’s connections.

The NILS attack conceptually mimics real-world actions such as sending
a friend request on social media platforms, aiming to subsequently discern
and analyze connections. This exploitation is akin to assessing changes in
content recommendations or interactions that occur when a new connection
is established. By leveraging this dynamic aspect of GNNs, NILS presents
a more stealthy and potentially more effective attack vector compared to
previous approaches.

Our contributions in this chapter can be summarized as follows:

86

1. We propose the NILS attack for inferring private links in a graph struc-
ture by injecting a new node, linking it to a target node, and employing
various strategies to analyze the changes in the GNN’s output.

2. We provide a comprehensive evaluation of the proposed attack’s effec-
tiveness on various datasets, demonstrating its superior performance
compared to existing work such as LinkTeller [138] and link-stealing
[54].

3. We explore the application of Differential Privacy (DP) mechanisms as
a means to mitigate the effectiveness of our proposed attack, evaluat-
ing the trade-off between privacy preservation and model utility. To
this end, we introduce a new notion of privacy specifically tailored to
counter the NILS attack and evaluate defense strategies under this new
notion.

These contributions not only advance our understanding of privacy vul-
nerabilities in GNNs but also provide insights that can be applied to other
types of machine learning models dealing with relational data.

The rest of this chapter is organized as follows: Section 5.2 describes
the threat model and details the methodology of our NILS attack. Section
5.3 outlines the experimental setup, including the datasets and models used
in our evaluation. Section 5.4 presents the results of our experiments and
provides an in-depth analysis of the attack’s performance under various con-
ditions. Section 5.5 introduces and evaluates our proposed defense strategy
based on differential privacy. Finally, Section 5.6 concludes the chapter with
a summary of our findings and their implications for privacy in GNNs, as
well as discussing how these insights inform our subsequent investigations
into privacy in federated learning settings, which will be explored in the
following chapter.

Through this investigation, we aim to shed light on the potential privacy
risks associated with GNNs and provide insights into effective strategies for
mitigating these risks while maintaining the utility of these powerful learning
models. By doing so, we contribute to the overall goal of this thesis: to
comprehensively understand and address privacy challenges across various
machine learning paradigms.

5.2 Attack Methodology
In this section, we present the methodology of our proposed Node Injection
Link Stealing (NILS) attack. This attack exploits the dynamic nature of
GNNs to infer private edge information within the graph structure.

87

5.2.1 Threat Model

We consider a scenario where a server has trained a GNN model using a
specific dataset and offers access to this model through a black-box API.
This API allows users to interact with the pre-trained GNN model without
direct access to its internal components, such as the model architecture,
parameters, or graph structure.

Users can submit prediction queries using node IDs. If a new node needs
to be added to the graph, users can employ a connect query to attach the node
to the graph before querying its prediction based on its ID. The API processes
input data into output predictions, ensuring that the model’s underlying
computations remain hidden from the user.

5.2.2 Adversary’s Goal and Knowledge

We consider an adversary, A, who assumes the role of a GNN user. The
objective of A is to determine the neighbors of a specific target node, vt,
selected from a set of target nodes, VA, within the graph. This is done based
on the GNN’s predictions for the node set VA. In simpler terms, A aims to
identify the neighbors of the target node vt that are included in the target
set nodes VA.

The adversary A is able to obtain the predictions of the target nodes VA
by sending the server their corresponding IDs through the provided API. In
addition, A is able to use the connect query to connect a node vm to a target
node vt. In general, we assume that the adversary does not have access to
the features of the nodes in the graph, with the exception of certain attack
strategies described in Section 5.2.4.

5.2.3 Node Injection Link Stealing Attack

The NILS attack exploits the dynamic nature of the underlying GNN. The
adversary A can connect new nodes and further query the prediction scores
of a set of nodes VA in the graph. While adding this new node vm, A can
choose which existing node vt it actually connects to and hence try to discover
its neighbors. The NILS attack consists of the following steps:

1. A first queries the prediction scores of the target nodes VA and receives
the corresponding prediction matrix P of the target nodes VA.

2. A generates malicious features of a malicious node vm based on the
obtained prediction matrix P (see Section 5.2.4 for further details on
this step).

88

3. Next, A sends a connect query to inject the malicious node vm. The
query has the following parameters: the features xm of the new node,
and the ID of the target node vt the adversary wishes to connect vm
to.

4. The server adds this malicious node vm to the graph and links it to the
target node vt.

5. A queries back the server for new prediction matrix P ′ of the target
nodes VA and obtains it.

6. With access to P and P ′, A computes the L1 distance between P (v)
and P ′(v) of each node v in VA.

7. A significant change in the prediction scores of a node v indicates a
high probability of being a neighbor with vt. If the difference exceeds
a threshold R, the adversary infers that node v is a neighbor of vt.

The decision threshold R is determined through an extensive parameter
tuning process, aiming for an optimal trade-off between precision and recall in
identifying the true neighbors of the target node. This balance is represented
by the F1 score. We evaluate various candidate values of R, selecting the one
that yields the highest F1 score as the optimal threshold.

Figure 5.1 illustrates the NILS attack strategy, depicting the interaction
between the adversary and the server.

Algorithm 3 outlines the steps of the NILS attack.

5.2.4 Strategies for Generation of Malicious Node’s Fea-
tures

To evaluate how the injection of the malicious node vm influences the predic-
tions of the GNN, we study five strategies to generate the malicious node’s
features xm. These strategies are designed with varying degrees of sparsity
and stealthiness, enabling us to explore their effectiveness in altering the
model’s predictions. We define the proposed strategies as follows:

1. All-ones strategy: Generates a dense feature vector for the malicious
node, containing all ones:

xm = 1.

This strategy potentially causes significant changes in predictions but
may be less stealthy due to its dense feature vector.

89

Figure 5.1: Adversary-Server Interaction: In the inference phase, the adver-
sary first queries the prediction scores P of the target nodes, represented as
VA. Next, the server sends the predictions P of the GNN to the adversary.
Then, the adversary sends a Connect query to inject the malicious node vm,
with features xm, to the target node vt. Finally, after the injection, the ad-
versary queries again the prediction scores P ′ of the target nodes VA.

2. All-zeros strategy: Creates a sparse feature vector for the malicious
node, containing all zeros:

xm = 0.

This approach may subtly alter the output of the GNN, leading to
smaller changes in predictions, while offering increased stealthiness.

3. Identity strategy: Introduces a malicious node with a feature vector
identical to the target node’s feature vector:

xm = xt.

This strategy causes confusion in the model’s predictions for neighbor-
ing nodes and has variable stealthiness based on the similarity between
injected and target nodes. For this strategy, we assume that A knows
the features of the target node xt.

4. Max attributes strategy: This method creates a malicious node fea-
ture vector by computing the element-wise maximum of each attribute

90

Algorithm 3 Node Injection Link Stealing Attack
Require: set of nodes VA and target node vt
Ensure: the identified neighbors of vt by the adversary
1: P = GNN(VA, XVA) ▷ Step 1
2: Generate malicious features xm of node vm ▷ Step 2
3: Connect node vm to vt ▷ Step 3-4
4: P ′ = GNN(VA ∪ vm , XVA ∪ xm) ▷ Step 5
5: for each node v in VA do
6: D(v) = ∥P (v)− P ′(v)∥1 ▷ Step 6
7: if D(v) ≥ R then
8: v is a neighbor of vt
9: else

10: v is not a neighbor of vt
11: end if
12: end for

in the target nodes’ feature matrix. Specifically, it considers only nodes
from classes different from the target node’s class:

xm,k = max
i∈VA, with Ci ̸=Ct

Xi,k, for k = 1, . . . , d.

Here, Ci represents the class of node i, and Ct is the class of the target
node. This strategy potentially causes significant changes in predictions
but may be less stealthy due to exaggerated features. We assume in
this strategy that the adversary has access to the features of the set of
target nodes VA as well as to their predicted classes by the GNN.

5. Class representative strategy: This approach generates a malicious
node feature vector by selecting the feature vector of the node with the
highest confidence score for a specific class, different from the target
node’s class:

xm = xi∗ with i∗ = argmax
i∈VA,
Ci ̸=Ct

pi,j.

In this equation, xm is the malicious node feature vector, i∗ is the node
index with the highest confidence score for a specific class different from
the target node’s class, VA is the set of target nodes, Ci represents the
class of node i, and Ct is the class of the target node. This strategy
leverages the model’s predictions to alter the neighbors of the target
node predictions, potentially offering increased stealthiness.

91

Additionally, we introduce the LinkTeller Influence strategy as an al-
ternative to the original method in [138], incorporating their feature pertur-
bation strategy. This strategy entails perturbing the features of the target
node by adding a small real value α:

xm = xt + α.

We assess the performance of the Influence strategy in comparison to
other strategies, aiming to determine whether the attack performance gains
are attributable to node injection or the crafting of malicious features. It is
worth noting, however, that the Influence strategy may be easily detected if
the feature xt has a discrete nature, given that xm is real-valued.

5.3 Experimental Setup
This section outlines the experimental setup used to evaluate our proposed
NILS attack, including the datasets, models, and evaluation methodology.

5.3.1 Datasets

To evaluate the effectiveness of NILS in various contexts, we conducted ex-
periments on several datasets:

• Flickr [152]: Nodes represent images on the Flickr platform. Edges
connect nodes with shared properties (location, gallery, or comments).
Node features are word representations derived from the images.

• Twitch datasets [107]: We use TWITCH-FR and TWITCH-RU for
evaluation, and Twitch-ES for training GNNs in the inductive setting
[138]. These datasets represent user follow connections. The task is
binary classification of streamers’ language use, based on features like
preferred games, location, and streaming habits.

• Citation networks [76]: For the transductive setting, we use Cora,
Citeseer, and Pubmed. These datasets represent citation relationships
among publications. The task is to predict publication topics based on
textual features.

This diverse selection of datasets allows us to evaluate NILS in both
inductive and transductive settings across a range of application domains,
providing a comprehensive assessment of the attack’s effectiveness and gen-
eralizability.

92

5.3.2 Models

Our study follows the approach outlined in [138] for model training and hy-
perparameter selection. We trained Graph Convolutional Networks (GCNs)
using various configurations and hyperparameters. These configurations en-
compassed different normalization techniques applied to the adjacency ma-
trix, varying numbers of hidden layers (ranging from two to four), different
input and output units, and various dropout rates.

To identify the optimal set of hyperparameters, we employed a grid search
strategy. This involved systematically exploring combinations of hyperpa-
rameters and evaluating their performance on a validation set. The specific
search space for hyperparameters and the formulae for different normaliza-
tion techniques are detailed in [138, Appendix F].

After determining the best set of hyperparameters, we trained the GCN
models to minimize the cross-entropy loss for the intended tasks. By utilizing
the same training procedures and hyperparameter tuning strategies as in
LinkTeller [138], we aimed to provide a comprehensive understanding of the
attack performance across different layer configurations while maintaining
consistency with previous work.

5.3.3 Evaluation Methodology

Our evaluation methodology was designed to provide a thorough and fair as-
sessment of the NILS attack. In accordance with the methodology presented
in [138], we employed precision, recall, and the F1 score as our primary eval-
uation metrics. These metrics are particularly suitable for addressing the
imbalanced nature of our binary classification problem, where the minority
class (i.e., connected nodes) is of central interest.

For target node selection, we primarily chose a set of 500 target nodes
(|VA| = 500) using a uniform random sampling approach. Furthermore,
following the baseline study’s example [138], we explored scenarios where
target nodes exhibit either low or high degrees. This allowed us to assess
the attack’s performance across different node connectivity levels. A com-
prehensive discussion of the sampling strategy can be found in [138, Section
V.D.].

To ensure the reliability of our results, we conducted three runs using
different random seeds for each experiment, reporting the average results
along with the corresponding standard deviations. For the evaluation of de-
fense strategies, we increased the number of runs to five, again using different
random seeds for LapGraph, and reported the averaged results.

We compared the performance of NILS with two baseline approaches:

93

1. The LinkTeller attack [138]

2. The link-stealing attacks introduced in [54]

For these comparisons, we used identical experimental setups where ap-
plicable to ensure fair evaluation.

To understand the influence of GNN architecture on the attack’s success,
we evaluated NILS against GNNs with varying depths (two, three, and four
layers). This analysis provides insights into the relationship between model
complexity and vulnerability to our proposed attack.

Finally, we assessed the effectiveness of our proposed defense strategy
based on differential privacy. This evaluation involved applying the Lap-
Graph algorithm [138] to achieve desired DP guarantees under our newly
proposed one-node-one-edge-level DP notion. We measured both the at-
tack’s F1 score and the classification task’s F1 score for the GCN across
various privacy budgets ε.

To determine the optimal threshold R for inferring neighbors in our at-
tack, we conducted a parameter tuning process. We evaluated various can-
didate values of R, selecting the one that yielded the highest F1 score as the
optimal threshold. This process ensures that our attack achieves the best
possible balance between precision and recall in identifying true neighbors of
the target node.

This comprehensive experimental setup allows us to thoroughly evaluate
the effectiveness of our proposed NILS attack across various datasets, model
configurations, and attack scenarios. In the following section, we present the
results of these experiments and provide a detailed analysis of the attack’s
performance and its implications for privacy in GNNs.

5.4 Results and Analysis

This section presents the results of our experimental evaluation of the Node
Injection Link Stealing (NILS) attack and provides an in-depth analysis of
its performance under various conditions. We begin by examining the effec-
tiveness of different strategies for generating malicious node features, then
compare NILS to existing baseline attacks, and finally investigate the impact
of GNN depth on the attack’s success.

94

5.4.1 Analysis of Malicious Feature Generation Strate-
gies

We evaluated five different strategies for generating the features of the mali-
cious node vm, as described in Section 5.2.4. Table 5.1 presents the F1 scores
achieved by each strategy across three datasets: Twitch-FR, Twitch-RU, and
Flickr.

Method Twitch-FR Twitch-RU Flickr

Class Rep. 0.94± 0.01 0.83± 0.06 0.96± 0.06
Max Attr. 0.99± 0.00 0.98± 0.02 1.00 ± 0.00
All-ones 0.99 ± 0.00 0.97 ± 0.01 0.99± 0.02
All-zeros 0.58± 0.02 0.48± 0.01 0.71± 0.07
Identity 0.81± 0.02 0.69± 0.01 0.95± 0.07
Influence NILS 0.81± 0.02 0.70± 0.01 0.89± 0.10
Influence LinkTeller [138] 0.80± 0.02 0.74± 0.01 0.32± 0.13

Table 5.1: F1 scores and standard deviations for different attack methods
and datasets.

The results reveal that the All-ones, Max attributes, and Class repre-
sentative strategies are the most effective in causing significant changes in
the predictions of the target node’s neighbors. These strategies consistently
achieve high F1 scores across all datasets, with the Max attributes strategy
performing exceptionally well on the Flickr dataset, achieving a perfect F1

score of 1.00.
Conversely, the All-zeros and Identity strategies exhibit relatively lower

success rates. While these strategies offer certain benefits in terms of stealth-
iness, their impact on the graph structure and predictions is less pronounced,
highlighting a trade-off between attack effectiveness and stealthiness.

The Influence strategy, when implemented within our NILS framework,
shows a modest improvement over the LinkTeller baseline for the Twitch-FR
dataset. This suggests that the node injection property of our NILS attack is
effective in this context. However, for the Twitch-RU dataset, NILS under-
performs in comparison to the LinkTeller baseline when using the Influence
strategy.

The most significant improvement is observed in the Flickr dataset, where
the node injection property of NILS considerably increases the F1 score
from 0.32± 0.13 (LinkTeller) to 0.89± 0.10 (NILS with Influence strategy).
This outcome highlights the advantage of the NILS attack’s node injection

95

method, particularly when compared to the LinkTeller attack, which employs
the Influence strategy without node injection.

Overall, the Max attributes approach significantly enhances the F1 score
of the attack beyond the baseline established by LinkTeller [138]. Specifi-
cally, for the Twitch datasets, on average, our method improves the F1 score
by 23.75%. For the Flickr dataset, it records a remarkable improvement, in-
creasing the F1 score from 0.32 to 1.0, an increase of 212.5% over LinkTeller
[138].

These findings underscore the importance of considering both the effec-
tiveness and stealthiness of malicious feature generation strategies when de-
vising link inference attacks on GNNs. The choice of strategy can signifi-
cantly impact the attack’s success rate and its potential for detection.

5.4.2 Comparison with Baseline Attacks

We compared the performance of NILS with two baseline approaches: the
LinkTeller attack [138] and the link-stealing attacks introduced in [54]. Table
5.2 presents the results of this comparison for the Twitch and Flickr datasets,
while Table 5.3 shows the comparison for the citation network datasets.

The results in Table 5.2 demonstrate that NILS consistently outperforms
LinkTeller on both Twitch datasets (TWITCH-FR and TWITCH-RU). Fur-
thermore, NILS exhibits a substantial improvement over LinkTeller on the
Flickr dataset, achieving nearly double the precision and recall values. No-
tably, NILS demonstrates stable performance across varying node degrees,
with only a marginal decrease in effectiveness for high-degree target nodes.
This can be attributed to the smaller influence that each neighboring node
has on the aggregation of the GCN layer when the target node degree is high.

Table 5.3 compares NILS with LinkTeller and the link-stealing attacks
(LSA2-post and LSA2-attr) introduced in [54] on the citation network datasets.
These attacks are executed under the transductive setting, where training and
inference occur on the same graph. The results show that NILS outperforms
the LSA2-post and LSA2-attr attacks across all three datasets. However,
NILS’s performance is nearly equivalent to that of LinkTeller in this trans-
ductive setting. These results demonstrate that NILS maintains effectiveness
under the transductive setting, just as in the inductive setting, while consis-
tently outperforming other baseline attacks.

5.4.3 Impact of GNN Depth

We examined the impact of increasing the depth of GNN on the success
rate of the NILS attack for the Twitch-FR dataset. Figure 5.2 illustrates

96

D
at

as
et

M
et

ho
d

lo
w

un
co

ns
tr

ai
ne

d
hi

gh

pr
ec

is
io

n
re

ca
ll

pr
ec

is
io

n
re

ca
ll

pr
ec

is
io

n
re

ca
ll

T
W

IT
C

H
-F

R
N

IL
S

(O
ur

s)
1
00
.0
±

0
.0

10
0.
0
±

0
.0

99
.1
3
±

0
.8

99
.5
7
±

0
.3
5

99
.9
1
±

2
.6

10
0.
0
±

0
.0

Li
nk

T
el

le
r

9
2
.5
±

5
.4

92
.5
±

5
.4

84
.1
±

3
.7

78
.2
±

1
.9

83
.2
±

1
.4

80
.6
±

6
.7

T
W

IT
C

H
-R

U
N

IL
S

(O
ur

s)
1
00
.0
±

0
.0

10
0.
0
±

0
.0

96
.4
5
±

0
.4

98
.3
4
±

0
.7

99
.7
7
±

0
.1

99
.3
7
±

0
.1

Li
nk

T
el

le
r

7
8
.8
±

1
.9

92
.6
±

5
.5

71
.8
±

2
.2

78
.5
±

2
.4

89
.7
±

1
.7

65
.7
±

3
.9

F
lic

kr
N

IL
S

(O
ur

s)
1
00
.0
±

0
.0

10
0.
0
±

0
.0

99
.1
1
±

1
.7

95
.8
3
±

5
.0

93
.7
2
±

3
.1

78
.9
±

1
.9

Li
nk

T
el

le
r

5
1
.0
±

7
.0

53
.3
±

4
.7

33
.8
±

1
3
.3

32
.1
±

1
3
.3

18
.2
±

4
.5

18
.5
±

6
.1

Ta
bl

e
5.

2:
C

om
pa

ra
ti

ve
pe

rf
or

m
an

ce
of

N
IL

S
an

d
Li

nk
Te

lle
r

ac
ro

ss
th

re
e

da
ta

se
ts

(T
W

IT
C

H
-F

R
,
T

W
IT

C
H

-R
U

,
an

d
F
lic

kr
)

un
de

r
lo

w
,u

nc
on

st
ra

in
ed

,a
nd

hi
gh

co
ns

tr
ai

nt
se

tt
in

gs
.

T
he

re
su

lt
s

ar
e

pr
es

en
te

d
in

te
rm

s
of

pr
ec

is
io

n
an

d
re

ca
ll

w
it

h
co

rr
es

po
nd

in
g

st
an

da
rd

de
vi

at
io

ns
.

97

Method Cora Citeseer Pubmed
precision recall precision recall precision recall

NILS (Ours) 99.7±0.2 99.6±0.3 97.4±0.2 98.2±0.1 99.7±0.0 100.0±0.0

LinkTeller 99.5±0.1 99.5±0.1 99.7±0.0 99.7±0.0 99.7±0.0 99.7±0.0

LSA2-post 86.7±0.2 86.7±0.2 90.1±0.2 90.1±0.2 78.8±0.1 78.8±0.1

LSA2-attr 73.6±0.1 73.6±0.1 80.9±0.1 80.9±0.1 82.4±0.1 82.4±0.1

Table 5.3: Comparative performance of NILS with LinkTeller [138] and link-
stealing attacks in [54] across three datasets (Cora, Citeseer, and Pubmed).

the attack’s success rates for different GNN depths and malicious feature
generation strategies.

Class Rep. Max Attr. All-ones All-zeros Identity Influence
Methods

0.0

0.2

0.4

0.6

0.8

1.0

f1
 sc

or
e

Depth 2 Depth 3 Depth 4

Figure 5.2: Success rates of the NILS attack for different depths and malicious
features generation strategies for the Twitch-FR dataset.

Our findings indicate that as the depth of the GNN increases, the attack’s
success rate decreases. This can be attributed to the dilution of the injected
poisoning node’s influence within the target node’s neighborhood. As the
GNN depth increases, the model aggregates information from a larger neigh-
borhood, encompassing nodes that are k-hops away from the target node.
Consequently, the injected malicious node’s features become one among many
contributing factors in the aggregated information, leading to a dilution of
its influence. This reduction in the injected node’s impact on the aggregated
information diminishes the overall effectiveness of the attack, making it less
successful in altering the predictions of the target node’s neighbors.

98

Table 5.4 compares the performance of NILS and LinkTeller across dif-
ferent GCN depths for the Twitch-FR and Twitch-RU datasets.

Dataset Method Depth-2 Depth-3
precision recall precision recall

TWITCH-FR NILS (Ours) 99.13±0.8 99.57±0.35 85.06±1.2 81.56±1.2

LinkTeller 84.1±3.7 78.2±1.9 50.1±5.1 46.6±5.0

TWITCH-RU NILS (Ours) 96.45±0.4 98.34±0.7 78.78±3.8 76.35±9.3

LinkTeller 71.8±2.2 78.5±2.4 45.7±2.2 50.0±2.8

Table 5.4: Success rates of the attack for different depths in comparison with
LinkTeller [138]. We use the all-ones strategy for NILS.

The results in Table 5.4 demonstrate that NILS outperforms LinkTeller
across various GCN depths. For the Twitch-FR dataset, NILS shows higher
precision and recall values when the GCN depth is 3 (precision: 85.06 ±1.2,
recall: 81.56±1.2) compared to the LinkTeller method (precision: 50.01±5.1,
recall: 46.6 ±5.0). Notably, NILS consistently outperforms LinkTeller even
when comparing the attack performance of LinkTeller with a GCN depth of
2 and NILS with a GCN depth of 3. These results highlight the effectiveness
of our node injection strategy, as it consistently outperforms the LinkTeller
method across different depths of the GCN.

5.4.4 Discussion

The experimental results demonstrate the effectiveness of the NILS attack
across various datasets and settings. The attack’s success can be attributed
to several factors:

1. Exploitation of GNN dynamics: By injecting a new node and con-
necting it to the target node, NILS takes advantage of the dynamic
nature of GNNs. This approach allows for a more direct influence on
the target node’s neighborhood, leading to more significant changes in
prediction scores.

2. Effective feature generation strategies: The Max attributes and
All-ones strategies consistently perform well across different datasets.
These strategies create feature vectors that maximize the impact on the
GNN’s predictions, making it easier to distinguish between neighbors
and non-neighbors of the target node.

99

3. Robustness across node degrees: NILS demonstrates stable per-
formance across varying node degrees, with only a slight decrease in
effectiveness for high-degree target nodes. This robustness is a signifi-
cant advantage over previous attacks.

4. Performance in both inductive and transductive settings: The
attack maintains its effectiveness in both inductive (Twitch and Flickr
datasets) and transductive (citation network datasets) settings, show-
casing its versatility.

However, the attack’s performance does decrease as the depth of the
GNN increases. This limitation is due to the dilution of the injected node’s
influence in deeper networks, as information from a larger neighborhood is
aggregated. This observation suggests that deeper GNN architectures may
offer some inherent resistance to this type of attack, albeit at the potential
cost of increased computational complexity and the risk of over-smoothing.

The comparison with baseline attacks, particularly LinkTeller and the
link-stealing attacks in [54], highlights the superiority of NILS in most sce-
narios. The significant improvements in F1 scores, especially on the Flickr
dataset, demonstrate the power of the node injection approach combined
with carefully crafted malicious features.

These results have important implications for the privacy and security of
GNN-based systems. They underscore the need for robust defense mecha-
nisms that can protect against sophisticated attacks like NILS, which exploit
the dynamic nature of these models. In the next section, we will explore
potential defense strategies based on differential privacy, specifically tailored
to counter the NILS attack.

5.5 Defense Strategy
As demonstrated in the previous section, the NILS attack poses a significant
threat to the privacy of graph-structured data in GNNs. This section intro-
duces a defense strategy based on differential privacy (DP) to counter the
NILS attack. We first present a new DP notion tailored to our attack sce-
nario, then describe the LapGraph mechanism adapted to satisfy this notion,
and finally evaluate its effectiveness in mitigating the NILS attack.

5.5.1 One-Node-One-Edge-Level Differential Privacy

The NILS attack, as described in Section 5.2.3, involves adding a malicious
node to a graph and connecting it to a target node through a single edge. To

100

counter such an adversary, we introduce a new notion of differential privacy
specifically designed for this scenario.

Definition 14 (One-node-one-edge-level adjacent graphs). G and G ′ are
considered one-node-one-edge-level adjacent graphs if one can be obtained
from the other by adding a single node with one edge only.

Based on this definition of graph adjacency, we define one-node-one-edge-
level DP as follows:

Definition 15 ((ε, δ)-One-node-one-edge-level DP). A randomized
mechanism M satisfies (ε, δ)-one-node-one-edge-level DP with ε, δ ⩾ 0
if, for all pairs of one-node-one-edge-level adjacent graphs G,G ′ and for
all measurable O ⊆ Range(M), the following holds:

P{M(G) ∈ O} ⩽ eε P{M(G ′) ∈ O}+ δ

This definition ensures that the output of a mechanism satisfying one-
node-one-edge-level DP is similarly distributed for any pair of graphs that
differ by at most one node and one edge, up to a factor of eε and an additive
term δ.

5.5.2 LapGraph Mechanism for One-Node-One-Edge-
Level DP

To achieve one-node-one-edge-level DP, we adapt the LapGraph mechanism
introduced in [138]. The LapGraph mechanism consists of perturbing the
adjacency matrix using the Laplace mechanism and then binarizing it by
replacing the top-N largest values with 1 and the remaining values with 0,
where N is the estimated number of edges in the graph.

Let fA be the query function returning the adjacency matrix of a graph
G. For two one-node-one-edge neighboring graphs G,G′, their corresponding
matrices A,A′ have different dimensions: A ∈ Rn×n and A′ ∈ R(n+1)×(n+1),
or vice versa. To enable the computation of the sensitivity of fA, we append
one zero-row and one-zero column to the smaller matrix, resulting in Ā ∈
R(n+1)×(n+1).

The L1-global sensitivity of fA for one-node-one-edge neighboring graphs
is:

101

∆1(fA) = max
∀G,G′

1N1E-adjacent

∥Ā− A′∥1 = 1

This sensitivity is the same as in the original LapGraph mechanism in-
tended for edge-level DP. Consequently, the LapGraph mechanism can be
directly applied to achieve one-node-one-edge-level DP, providing stronger
protection for the same level of utility compared to edge-level DP.

The LapGraph mechanism for one-node-one-edge-level DP can be de-
scribed as follows:

1. Add Laplace noise to each element of the adjacency matrix:

Ãij = Aij + Lap(1/ε)

where Lap(1/ε) denotes a random variable drawn from the Laplace
distribution with scale 1/ε.

2. Estimate the number of edges N using the Laplace mechanism:

Ñ = N + Lap(1/ε)

3. Binarize the noisy adjacency matrix by setting the top Ñ elements to
1 and the rest to 0.

5.5.3 Evaluation of LapGraph Defense

We evaluated the effectiveness of the LapGraph mechanism in reducing the
success of the NILS attack while ensuring one-node-one-edge-level DP. We
also investigated the utility of GCN models trained with LapGraph protec-
tion.

Experimental Setup

We used the same training hyperparameters and normalization techniques
as in the non-private case. The training graph was initially protected with
LapGraph, and the mechanism was reapplied each time the graph changed
due to node injection by the adversary. We computed the F1 score for the
NILS attack and the classification task’s F1 score for the GCN across various
privacy budgets ε. Results were averaged over 5 runs with different random
seeds for LapGraph.

102

1 2 3 4 5 6 7 8 9 10

0.00

0.05

0.10

0.15

0.20

0.25

0.30

F
1

sc
or

e

Twitch­FR

1 2 3 4 5 6 7 8 9 10

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

F
1

sc
or

e

Twitch­RU

1 2 3 4 5 6 7 8 9 10

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

F
1

sc
or

e

Flickr

Figure 5.3: F1 score of the NILS attack for different values of ε.

1 2 3 4 5 6 7 8 9 10

0.28

0.30

0.32

0.34

0.36

0.38

F
1

sc
or

e

Twitch­FR

Vanilla GCN
LapGraph

1 2 3 4 5 6 7 8 9 10

0.25

0.26

0.27

0.28

0.29

0.30

0.31

F
1

sc
or

e

Twitch­RU

Vanilla GCN
LapGraph

1 2 3 4 5 6 7 8 9 10

0.42

0.44

0.46

0.48

0.50

F
1

sc
or

e

Flickr

Vanilla GCN
LapGraph

Figure 5.4: F1 score utility of the GCN for different values of ε.

Results and Analysis

Figure 5.3 presents the F1 score of the NILS attack for various ε values across
the Twitch-FR, Twitch-RU, and Flickr datasets.

The results show that applying LapGraph significantly reduces the effec-
tiveness of NILS. For small privacy budgets (ε < 1), the attack’s F1 score
approaches zero across all datasets. As ε increases, the attack’s effectiveness
gradually improves, but remains substantially lower than in the non-private
case.

This defense proves more robust compared to its application against the
LinkTeller attack [138], where LapGraph offered limited protection for large
ε values. The enhanced protection in our scenario can be attributed to the
application of LapGraph not only during training but also after each node
injection, making it more challenging for the adversary to distinguish between
the target node’s neighbors and non-neighbors.

To assess the privacy-utility trade-off of LapGraph, we evaluated the util-
ity of the GCNs for different privacy budgets. Figure 5.4 presents these
results.

As expected, the utility increases with larger ε values. For ε ≥ 7, the
utility approaches that of the non-private case. This suggests that careful
selection of ε can provide a balance between maintaining good utility and
offering protection against the NILS attack.

103

5.5.4 Discussion

The proposed LapGraph mechanism, adapted to satisfy one-node-one-edge-
level DP, demonstrates significant effectiveness in mitigating the NILS attack.
By applying noise to the adjacency matrix and reapplying the mechanism
after each node injection, the defense makes it challenging for the adversary
to infer the true structure of the graph.

However, this protection comes at the cost of reduced utility, especially
for smaller privacy budgets. The privacy-utility trade-off observed in our
experiments aligns with the fundamental challenge in differential privacy:
stronger privacy guarantees typically result in lower utility.

Compared to the DP-based defenses discussed for PCA in Chapter 4, the
LapGraph mechanism offers a more tailored approach for graph-structured
data. While both approaches add noise to protect privacy, LapGraph’s bi-
narization step helps maintain the graph structure, which is crucial for GNN
performance. This difference highlights how privacy-preserving mechanisms
must be carefully designed to match the specific characteristics of the data
and models they aim to protect.

The effectiveness of this defense strategy underscores the importance
of considering the specific attack model when designing privacy-preserving
mechanisms. By tailoring our DP notion to the NILS attack, we achieved
stronger protection compared to generic edge-level DP, without incurring
additional utility costs.

5.6 Conclusion

In this chapter, we have presented a powerful new NILS attack—a link-
stealing attack using node injection against GNNs. Our results have demon-
strated the superior performance of NILS compared to previous attacks, fur-
ther emphasizing the vulnerabilities of GNNs regarding edge information
leakage. We have also evaluated NILS against differentially private GNNs,
ensuring a one-node-one-edge-level DP notion specifically designed to pro-
tect against our proposed attack. The NILS attack significantly enhances
the F1 score of the attack beyond the current state-of-the-art benchmarks.
Specifically, for the Twitch dataset, our method improves the F1 score by
23.75%, and for the Flickr dataset, it records a remarkable improvement,
where the new performance is more than three times better than the state-
of-the-art. We also proposed and evaluated defense strategies based on dif-
ferentially private (DP) mechanisms relying on a newly defined DP notion.
Our LapGraph-based defense, on average, reduces the effectiveness of the

104

attack by approximately 71.9% while only incurring a minimal average util-
ity loss of about 3.2%. These findings underscore the ongoing challenges in
preserving privacy in graph-structured data and the need for robust defense
mechanisms against sophisticated attacks. As we continue to explore the
landscape of privacy in machine learning, the next chapter will build upon
these insights, extending our investigation to the realm of federated learning.
Next Chapter will examine link stealing attacks in the context of vertical
federated graph learning, exploring how the distributed nature of federated
learning introduces new privacy challenges in graph-based models.

105

106

Chapter 6

Link Stealing Attacks in Vertical
Federated Graph Learning

6.1 Introduction

The advent of graph data in artificial intelligence has marked a significant
milestone in enhancing the performance and accuracy of machine learning
models. This surge in graph data usage, while promising, has introduced
new challenges in terms of privacy and security. Recent studies have unveiled
vulnerabilities in Graph Neural Networks (GNN), particularly their suscep-
tibility to link inference attacks (LIA) [54]. These attacks aim to uncover
relationships among graph nodes by identifying or inferring the existence of
edges between them, potentially exposing sensitive information about the re-
lationships or interactions between parties represented by nodes in the graph.

In parallel with the rise of graph-based learning, federated learning has
emerged as a pivotal paradigm in collaborative machine learning. Introduced
in [87], federated learning enables multiple parties to collaboratively train
machine learning models while keeping their data on local premises, thereby
ensuring data privacy. The integration of graph data with federated learning
has given rise to federated graph learning, which can be implemented in two
settings: horizontal and vertical. In the horizontal setting, multiple parties
collaborate to train a global model using their local graph datasets that
share similar feature spaces but differ in samples. In contrast, the vertical
federated graph learning (VFGL) setting involves each collaborating party
holding different features of the same samples.

VFGL presents a unique scenario where one party may possess a graph
dataset, while another may have features about the samples without any
associated graph topology. In this setting, parties utilize their local datasets,

107

which may include graphs, to train local models that generate intermediate
or latent representations of their data. These representations are then sent
to a server, which combines them along with its own training labels to train
its model. This approach allows for leveraging both graph structures and
feature data without sharing raw data, thus preserving user privacy while
enhancing model effectiveness.

However, the VFGL architecture introduces potential vulnerabilities where
clients participating in the training of the model, but not holding the ac-
tual graph data, can become adversaries and infer information about the
edges/links in the graph from the available training information. This infor-
mation can range from the gradients shared among parties during each train-
ing epoch to the model output when queried. The nature of these attacks
varies based on the party that can perform them, namely any participating
client or the server itself.

While some attacks relying on the knowledge of classification output or
intermediate results have been proposed and evaluated [104], the potential
for link inference attacks based on gradients or training labels remains unex-
plored in the context of VFGL. This gap in knowledge presents a critical area
for investigation, given the central role of gradients in the training process
and the potential for label information to be embedded within them.

In this chapter, we address this gap by introducing and studying two
novel link inference attacks in the VFGL setting: a gradient-based LIA and
a label-based LIA. Our research aims to:

1. Construct and evaluate a new LIA that exploits the gradients informa-
tion during training.

2. Investigate the effectiveness of our proposed attacks using seven real-
world datasets, comparing their performance against existing forms of
LIA.

3. Identify the underlying reasons for the success of our proposed Gradient-
based LIA, particularly its relation to node label information embedded
in the gradients.

4. Develop and analyze a new Label-based LIA to demonstrate its strong
connection to our primarily proposed Gradient-based LIA.

5. Provide a theoretical study on how the success of label-based LIA is
influenced by graph properties such as homophily, density, and class
diversity.

108

6. Evaluate defense mechanisms against our proposed attacks, includ-
ing edge-level perturbation and a novel label perturbation approach,
demonstrating their effectiveness in mitigating the attacks while main-
taining a balance between privacy and utility.

Our findings reveal that gradients in VFGL can indeed leak significant
link information, primarily due to the embedded label information within
the gradients. We demonstrate that our proposed attacks often outperform
other forms of LIA, including those based on model output predictions, which
typically assume a stronger adversary. Furthermore, we provide analytical
insights into why these attacks are effective and identify potential defenses,
highlighting the need for further research to improve the security of VFGL
systems against link information leakage.

The remainder of this chapter is organized as follows: Section 6.2 de-
tails our proposed link inference attacks and adversary models. Section 6.3
presents the analytical results for link inference attacks. Section 6.4 details
our experimental setup. In Section 6.5, we present our experimental results,
followed by a comprehensive discussion of our findings. Section 6.6 intro-
duces and evaluates defense mechanisms against the proposed attacks. Fi-
nally, Section 6.7 concludes the chapter with a summary of our contributions
and directions for future research.

6.2 Attack Methodology

This section presents a detailed description of the link inference attacks (LIA)
developed in this study. We first introduce the Vertical Federated Learning
(VFL) system that forms the basis of our attack scenarios, followed by the
description of our novel attacks: Gradient-based LIA and Label-based LIA,
and their comparison with existing baseline attacks.

6.2.1 VFL system

In this study, we investigate a two-party VFL setting involving parties PG
and PA, along with an active party PY . PG owns a graph dataset denoted
as DG = (G, XG), while PA holds a separate feature set denoted as XA. The
parties share a user space ofN samples, implying that the graph G containsN
nodes, each representing a user. Within this user space, PG and PA manage
user features of dimensions dG and dA respectively. They collaborate with
PY , the party owning the classification labels Y , to perform a supervised
learning task.

109

Table 6.1: Table of Notations

Notation Description
PG Party owning the graph dataset
PA Party holding the separate feature set
PY Party owning the training labels
G Target graph owned by PG
XG Features owned by party PG
HG Intermediate representation of XG
GG The gradients sent to party PG
XA Features owned by party PA
HA Intermediate representation of XA
P Output prediction computed by PY
GA The gradients sent to party PA
Y Training labels owned by party PY

Figure 6.1 illustrates the VFL setting with two clients and one server.
Specifically, PG employs a Graph Neural Network (GNN) to transform XG
into its intermediate representation HG, while PA uses a deep neural network
to transform XA into its intermediate representation HA. PY gathers these
intermediate representations and trains a Deep Neural Network (DNN) to
compute the output prediction P for classification.

The process of training involves computing the loss function L, deriving
the gradients with respect to the model parameters, and then updating these
parameters. The gradients are computed according to the following rule:

∇θkL =
∂L
∂θk

=
∑
i

∂L
∂Hi,k

∂Hi,k

∂θk
(6.1)

where θk represents the model parameters, Hi,k is the latent representa-
tion of the ith sample computed by party Pk, and ∂L

∂Hi,k
is the gradient of the

loss function L with respect to Hi,k for k ∈ {G,A}. The details of the VFL
training protocol are outlined in Algorithm 4.

In this VFL setting, PG is considered the victim party as it holds the graph
dataset, while PA and PY can potentially launch different Link Inference
Attacks (LIA). We now describe these attacks in detail.

6.2.2 Gradient-based LIA

The Gradient-based LIA leverages the gradients received by a participating
client during the VFGL training process. In this attack, the adversary ex-

110

Figure 6.1: Schematic representation of a VFL setting with two clients and
one server

ploits the gradients GA of node samples to infer links in the target graph G.
The attack proceeds as follows:

1. The adversary receives gradients GA from the server for the cut layer
of their model.

2. For each pair of samples (i, j), the adversary computes the cosine sim-
ilarity between their gradients:

S = Cosine similarity(G(i)
A , G

(j)
A) (6.2)

3. The similarity score is compared against a threshold value τ . If S > τ ,
the adversary infers a link between samples i and j in the reconstructed
graph Ĝ.

The choice of cosine similarity as the metric is motivated by its effec-
tiveness in measuring sample similarity from a neural network perspective
[10, Corollary 2] and its common usage in gradient-based FL attacks [42].
Empirically, cosine similarity outperforms other distance metrics such as Eu-
clidean and Chebyshev distances in our attack scenario, as it captures the
angle between vectors rather than magnitude differences.

Algorithm 5 provides a detailed description of the Gradient-based LIA.

111

Algorithm 4 Two-Party Vertical Federated Learning
Require: learning rates ηG and ηA
Ensure: Trained model parameters θG , θA, ψ
1: Parties PG , PA and PY initialize θG , θA, ψ.
2: for each training iteration t = 1, 2, . . . do
3: In parallel do the following:
4: Party PG :
5: Computes HG = GNN(XG , θG)
6: Sends HG to party PY
7: Party PA:
8: Computes HA = DNN(XA, θA)
9: Sends HA to party PY

10: End
11: Party PY computes the prediction output PY = DNN((XG , XA), ψ)
12: PY updates ψt+1 = ψt − ηG ∂L∂ψ
13: PY computes and sends the gradients GG = ∂L

∂HG
and GA = ∂L

∂HA
to PG and

PA, respectively.
14: In parallel do the following:
15: Party PG :
16: Computes ∇θGL with Equation 6.1
17: Updates θt+1

G = θtG − ηG∇θGL
18: Party PA:
19: Computes ∇θAL with Equation 6.1
20: Updates θt+1

A = θtA − ηA∇θAL
21: End
22: end for

Selecting an optimal threshold τ is challenging without prior knowledge
of the target graph’s structure. We propose several practical strategies for
threshold selection:

• If the adversary can estimate the graph’s density d, they could select
the top d% most similar node pairs as connected, using the least similar
among these as the threshold.

• Alternatively, the adversary might use a public partial graph or a sim-
ilar graph in the same domain to estimate an appropriate threshold.

6.2.3 Label-based LIA

The Label-based LIA exploits the training labels Y of the samples to infer
links in the target graph G. This attack assumes that nodes with the same

112

Algorithm 5 Gradient-based LIA
Require: Gradients GA and threshold τ
Ensure: Inferred graph Ĝ
1: Adversary A receives gradients GA from the server.
2: A initializes an empty graph Ĝ.
3: for each pair of samples (i, j) do
4: S ← Cosine similarity(G(i)

A , G
(j)
A).

5: if S > τ then
6: A infers a link between samples i and j in graph Ĝ.
7: end if
8: end for

labels are more likely to be connected. The attack proceeds as follows:

1. For each pair of samples (i, j), the adversary compares their labels Yi
and Yj.

2. If Yi = Yj, the adversary infers a link between samples i and j in the
reconstructed graph Ĝ.

Algorithm 6 provides a detailed description of the Label-based LIA.

Algorithm 6 Label-based LIA
Require: Labels Y
Ensure: Inferred graph Ĝ
1: A initializes an empty graph Ĝ.
2: for each pair of samples (i, j) do
3: if Yi == Yj then
4: A infers a link between samples i and j in graph Ĝ.
5: end if
6: end for

It is important to note that the Label-based LIA requires different knowl-
edge compared to the Gradient-based LIA, specifically access to training la-
bels. While this assumption might seem strong, it is not unrealistic in certain
scenarios. For instance, in our VFGL protocol, the server has access to the
labels to perform the final model training. The Label-based LIA was intro-
duced to provide deeper insights into the Gradient-based LIA’s effectiveness,
highlighting the complementary nature of the two methods in understanding
link inference attacks in VFGL.

113

6.2.4 Baseline LIA

To provide a comprehensive evaluation of our proposed attacks, we compare
them with several baseline LIA from existing literature. These baseline at-
tacks follow a similar principle to the Gradient-based LIA but utilize different
observations of samples. The baseline LIA we consider are:

• Intermediate Representation-based LIA: This attack uses the interme-
diate representations of samples, as studied in [104].

• Output-based LIA: This attack leverages the output predictions of the
model, also explored in [104].

• Feature-based LIA: This attack utilizes the features of samples, as in-
vestigated in [54].

The general procedure for these baseline attacks is as follows:

1. The adversary collects the relevant observations (O) of samples based
on the specific attack type.

2. For each pair of samples (i, j), the adversary computes the cosine sim-
ilarity between their observations:

S = Cosine similarity(Oi,Oj) (6.3)

3. The similarity score is compared against a threshold value τ . If S > τ ,
the adversary infers a link between samples i and j in the reconstructed
graph Ĝ.

Algorithm 7 provides a unified description of these baseline LIA.
These baseline attacks provide a comprehensive set of comparisons for

our proposed Gradient-based and Label-based LIA, allowing us to evaluate
the effectiveness of our attacks in the context of existing methods.

To evaluate the effectiveness of our attacks comprehensively, we primar-
ily use the Area Under the Curve (AUC) metric, following previous works
[149, 104, 110, 54]. This metric assesses performance across various thresh-
olds, providing a threshold-independent evaluation. For comparison with
the Label-based attack, which doesn’t rely on a threshold, we compute the
accuracy of our threshold-dependent attacks at the threshold yielding the
highest F1 score. This approach balances precision and recall, offering de-
tailed insights into each attack strategy’s effectiveness while accounting for
the practical challenges of threshold selection in real-world scenarios.

114

Algorithm 7 Baseline LIA
Require: Observations (O) of samples based on attack type (intermediate

representations, outputs, or features) and threshold τ
Ensure: Inferred graph Ĝ
1: Adversary A collects observations depending on the specific attack focus.
2: A initializes an empty graph Ĝ.
3: for each pair of samples (i, j) do
4: S ← Cosine similarity(Oi,Oj).
5: if S > τ then
6: A infers a link between samples i and j in graph Ĝ.
7: end if
8: end for

It’s worth noting that while the Gradient-based and Intermediate representation-
based LIA are initially designed for participating clients, the server also has
the necessary knowledge to perform these attacks. This is because the server
dispatches gradients to the clients and receives the intermediate representa-
tions of the nodes from them. On the other hand, the Label-based LIA and
Output-based LIA can only be executed by the server, as it has exclusive
access to the training labels and final model outputs.

In the context of our VFL setting, PG is considered the victim party as it
holds the graph dataset. Both PA and PY can potentially act as adversaries,
launching different types of LIA based on the information available to them.
The Gradient-based, Intermediate representation-based, and Feature-based
LIA can be executed by PA, while PY can perform all types of attacks,
including the Label-based and Output-based LIA.

The introduction of the Gradient-based LIA represents a significant con-
tribution of this work. While intermediate representations and prediction
outputs were already exploited in [104] and features in [54], the potential of
gradient information for link inference in the VFGL setting had not been
previously studied. Our work demonstrates that gradients can be a powerful
source of information for inferring graph structure, potentially outperforming
existing methods in certain scenarios.

The Label-based LIA, while simpler in nature, serves an important pur-
pose in our study. It provides a baseline for understanding the relationship
between node labels and graph structure, and helps to elucidate why the
Gradient-based LIA is effective. As we will show in the following sections,
the performance of the Gradient-based LIA is closely related to that of the
Label-based LIA, suggesting that the gradients carry significant label infor-
mation.

115

To provide a clear overview of the different attacks and the knowledge
required by the adversary to perform them, we present Table 6.2.

Table 6.2: Adversary capabilities in different attack scenarios

Party Features Labels Gradients Inter-Rep. Pred. Output
Client ✓ ✗ ✓ ✓ ✗

Server ✗ ✓ ✓ ✓ ✓

Table 6.2 summarizes the information available to different parties in the
VFL setting. The client (PA) has access to features, gradients, and interme-
diate representations, allowing it to perform Gradient-based, Intermediate
representation-based, and Feature-based LIA. The server (PY), on the other
hand, has access to labels, gradients, intermediate representations, and pre-
diction outputs, enabling it to perform all types of attacks including the
Label-based and Output-based LIA.

This table highlights the different attack vectors available to each party
and underscores the importance of considering multiple potential adversaries
when designing privacy-preserving VFL systems. It also illustrates why our
proposed Gradient-based LIA is particularly significant, as it can be exe-
cuted by both the client and the server, potentially exposing graph structure
information to multiple parties in the VFL setting.

In the next section, we will provide analytical results for these LIA, focus-
ing on the theoretical performance guarantees of the Label-based LIA and its
relationship with the Output-based LIA. We will also present a toy example
illustrating the connection between the Gradient-based LIA and the Label-
based LIA, providing insights into the effectiveness of our proposed attacks.
These analyses will help to deepen our understanding of the vulnerabilities in
VFGL systems and guide the development of more robust privacy-preserving
techniques.

6.3 Analytical Results for Link Inference At-
tacks

In this section, we provide theoretical guarantees for the performance of our
proposed Link Inference Attacks (LIA). We first analyze the Label-based
LIA, deriving its accuracy based on graph properties. Then, we demonstrate
a special case where the Output-based LIA achieves the same link inferences
as the Label-based LIA. Finally, we present a toy example illustrating the
close relationship between the Gradient-based LIA and the Label-based LIA.

116

Performance of Label-based LIA

The Label-based Link Inference Attack (LIA) operates on the principle of
inferring a link between two nodes when they share the same label. The
effectiveness of this attack is closely tied to the correlation between links
and node labels within the graph structure. To quantify this correlation
and analyze the attack’s performance, we introduce two key concepts: the
homophily ratio and class diversity.

Definition 16 (Homophily Ratio [161]). The homophily ratio of a graph
quantifies the likelihood that adjacent nodes in the graph share the same
label. Formally, the homophily ratio h can be expressed as:

h =
|{(v, w) : (v, w) ∈ E ∧ Yv = Yw}|

|E|
, (6.4)

where E denotes the set of edges in the graph, v and w represent nodes,
and Yv and Yw are their respective class labels.

While the homophily ratio is crucial for understanding the success of
inference on existing links, it does not fully capture the attack’s performance
on non-existing links. To address this, we introduce a class diversity metric:

Definition 17 (Graph Density). The density d of a graph G = (V,E) is
defined as the ratio of the number of edges in the graph to the number
of edges in a complete graph with the same number of vertices. For an
undirected graph, it is given by:

d =
2|E|

|V |(|V | − 1)
(6.5)

where |E| is the number of edges and |V | is the number of vertices in the
graph. The density ranges from 0 for a graph with no edges to 1 for a
complete graph.

117

Definition 18 (Class Diversity). The class diversity of a graph with C
distinct label classes is defined as:

1−
C∑
c=1

α2
c (6.6)

where αc represents the proportion of nodes with label c.

With these definitions in place, we can now state the theorem on the
accuracy of the Label-based LIA:

Theorem 6 (Accuracy of Label-based Link Inference Attack). For a
graph G with N nodes, exhibiting homophily ratio h, density d, and C
distinct label classes, let αc = Nc

N
represent the proportion of nodes with

label c. The accuracy Acc of the Label-based link inference attack can
be computed as:

Acc = 2hd− d+ N

N − 1
(1−

C∑
c=1

α2
c) (6.7)

When labels are uniformly distributed across nodes (αc = 1
C
), the accu-

racy of Label-based LIA reaches its maximum:

Acc ≤ 2hd− d+ N

N − 1
(1− 1

C
) (6.8)

This theorem provides significant insights into the performance of the
Label-based LIA. The accuracy of the attack is influenced by several graph
properties:

1. Homophily ratio (h): A higher homophily ratio indicates that con-
nected nodes are more likely to share the same label, which increases
the attack’s accuracy.

2. Graph density (d): The density of the graph affects the attack’s per-
formance, with denser graphs potentially being more vulnerable.

3. Class diversity: The term 1 −
∑C

c=1 α
2
c in the equation represents the

class diversity. This metric plays a crucial role in the attack’s perfor-
mance, especially for inferring non-existing links.

The class diversity metric reaches its maximum value of 1 − 1
C

when
the distribution of nodes across classes is uniform (αc = 1

C
for all c). This

118

indicates high class diversity. Conversely, when all nodes belong to a single
class, the metric reaches its minimum value of zero, indicating no diversity.

In balanced datasets where labels are uniformly distributed, a dataset
with a higher number of classes is considered more diverse. This is reflected
in the diversity metric 1 − 1

C
, which increases as the number of classes C

increases. This highlights the importance of considering both the distribution
of labels and the number of classes when assessing a graph’s vulnerability to
Label-based LIA.

The upper bound on accuracy is achieved when labels are uniformly dis-
tributed across nodes. This scenario represents the most favorable condition
for the attack, as it maximizes the class diversity term.

Proof. We begin by expressing the accuracy in terms of the confusion matrix
elements:

Acc =
TP + TN

TP + FP + TN + FN
=
TP + TN
N(N−1)

2

, (6.9)

where TP , TN , FP , and FN represent True Positives, True Negatives,
False Positives, and False Negatives, respectively. The denominator N(N−1)

2

represents the total number of possible node pairs in the graph.
These terms are defined as follows:

• True Positives (TP): The number of correctly predicted edges that
exist between nodes with the same label:

TP = |{(i, j) | eij = 1 ∧ yi = yj}| (6.10)

• True Negatives (TN): The number of correctly predicted non-edges
between nodes with different labels:

TN = |{(i, j) | eij = 0 ∧ yi ̸= yj}| (6.11)

• False Positives (FP): The number of incorrectly predicted edges for
pairs of nodes with the same label:

FP = |{(i, j) | eij = 0 ∧ yi = yj}| (6.12)

• False Negatives (FN): The number of incorrectly predicted non-
edges between nodes with different labels:

FN = |{(i, j) | eij = 1 ∧ yi ̸= yj}| (6.13)

119

Using the homophily ratio definition, we express TP as:

TP = h|E| (6.14)

For TN , we derive:

TN = |{(i, j) | eij = 0 ∧ yi ̸= yj}|
= |{(i, j) | eij = 0}| − |{(i, j) | eij = 0 ∧ yi = yj}|

=
N(N − 1)

2
− |E| − FP (6.15)

Here, |{(i, j) | eij = 0}| represents the number of non-edges, which is
equal to the total number of possible edges in the graph (N(N−1)

2
) minus the

number of existing edges (|E|).
Developing the term FP , we obtain:

FP = |{(i, j) | eij = 0 ∧ yi = yj}|
= |{(i, j) | yi = yj}| − |{(i, j) | eij = 1 ∧ yi = yj}|
= |{(i, j) | yi = yj}| − TP
= |{(i, j) | yi = yj}| − h|E| (6.16)

The first term counts combinations of node pairs with the same label,
expressed as:

|{(i, j) | yi = yj}| =
C∑
c=1

(
Nc

2

)
, (6.17)

where Nc is the number of nodes with label c, and C is the number of
labels. Defining αc = Nc

N
as the proportion of nodes with label c, and noting∑C

c=1 αc = 1, we derive:

FP =
C∑
c=1

αcN(αcN − 1)

2
− h|E|

=
N2

2

C∑
c=1

α2
c −

N

2
− h|E| (6.18)

Substituting the expression for FP into TN , we obtain:

120

TN =
N(N − 1)

2
− |E| − FP

=
N(N − 1)

2
− |E| −

(
N2

2

C∑
c=1

α2
c −

N

2
− h|E|

)
(6.19)

Substituting the expressions for TP and TN into the accuracy formula
and applying the graph density definition d = 2|E|

N(N−1)
, we deduce the accuracy

of the attack as follows:

Acc =
TP + TN
N(N−1)

2

=
h|E|+ N(N−1)

2
− |E| −

(
N2

2

∑C
c=1 α

2
c − N

2
− h|E|

)
N(N−1)

2

=
4h|E|

N(N − 1)
+ 1− 2|E|

N(N − 1)
− N

N − 1

C∑
c=1

α2
c +

1

N − 1

= 2h
|E|

N(N−1)
2

− |E|
N(N−1)

2

− N

N − 1

C∑
c=1

α2
c + 1 +

1

N − 1

= 2hd− d− N

N − 1

C∑
c=1

α2
c +

N

N − 1

= 2hd− d+ N

N − 1
(1−

C∑
c=1

α2
c) (6.20)

To establish the upper bound of accuracy, we apply the lower bound
1
C
≤
∑C

c=1 α
2
c , which is a direct application of the L1 − L2 norm inequality:

C

C∑
c=1

α2
c ≥

(
C∑
c=1

αc

)2

= 12 = 1

C∑
c=1

α2
c ≥

1

C
(6.21)

Finally, we prove that the upper bound on the accuracy Acc, using the
lower bound above, is:

121

Acc ≤ 2hd− d+ N

N − 1
(1− 1

C
) (6.22)

This upper bound is attained when αc = 1
C

for all c, corresponding to
a uniform distribution of labels across nodes. This concludes our proof,
demonstrating the derived upper bound for the accuracy of the attack.

This theorem and its proof provide a comprehensive understanding of the
factors influencing the accuracy of the Label-based LIA. It highlights the in-
terplay between graph structure (through homophily and density) and label
distribution (through class diversity) in determining the attack’s effective-
ness. This analysis can be valuable for assessing the vulnerability of different
types of graphs to such attacks and for developing appropriate defense strate-
gies.

6.3.1 Equivalence of Output-based and Label-based LIA

When a model is well-trained, its prediction output highly correlates with
the true label. Consequently, the performance of the Output-based LIA is
closely related to that of the Label-based LIA. In this section, we establish
a direct equivalence between these two attacks under specific conditions.

Theorem 7 (Equivalence of Output-based and Label-based LIA). For
a Graph Neural Network (GNN) trained with cross-entropy loss for a
binary classification task, if each training sample’s loss li satisfies li ≤
− log

(
3−

√
3

2

)
, then the Output-based LIA with threshold τ =

√
3
2

infers
the same graph as the Label-based LIA.

This theorem provides a precise condition under which the Output-based
LIA, which relies on model predictions, produces identical results to the
Label-based LIA, which uses true labels. The significance of this result lies
in its demonstration that, under certain circumstances, an attacker can infer
the same information from well-trained model outputs as they could from
the true labels, without requiring direct access to those labels.

Proof. Consider a binary classification task with classes c1 and c2. Let θ
represent the minimum probability assigned to the true label of a node. We
define:

• P 1
max = [1, 0]: the maximum posterior probability for class c1

• P 1
min = [θ, 1− θ]: the minimum θ posterior probability for class c1

122

• P 2
min = [1− θ, θ]: the minimum θ posterior probability for class c2

Our goal is to find θ such that the cosine similarity between P 1
max and

P 1
min (same class) is greater than the cosine similarity between P 1

min and
P 2
min (different classes). This condition ensures that the Output-based LIA

correctly distinguishes between same-class and different-class node pairs.
The cosine similarity between two vectorsA andB is given by Cos(A,B) =

A·B
∥A∥∥B∥ .

For the pair (P 1
max, P

1
min), the cosine similarity is:

Cos(P 1
max, P

1
min) =

1 · θ + 0 · (1− θ)√
12 + 02

√
θ2 + (1− θ)2

=
θ√

θ2 + (1− θ)2
(6.23)

For the pair (P 1
min, P

2
min), the cosine similarity is:

Cos(P 1
min, P

2
min) =

θ · (1− θ) + (1− θ) · θ√
θ2 + (1− θ)2

√
(1− θ)2 + θ2

=
2θ(1− θ)

θ2 + (1− θ)2
(6.24)

To find θ such that these similarity conditions are equal (representing the
boundary condition for our inequality), we equate the two cosine similarities:

θ√
θ2 + (1− θ)2

=
2θ(1− θ)

θ2 + (1− θ)2
(6.25)

Solving this equation yields θ = 0 and θ = 3
2
−

√
3
2

. The solution θ = 0 is
not practical as it does not represent a valid probability for class prediction.
Thus, we consider θ = 3

2
−

√
3
2

, which signifies the minimum probability that
must be assigned to the true class of a node to satisfy our condition.

For a model trained with cross-entropy loss, the loss of a sample is given
by li = − log(pt), where pt is the probability assigned to the true label of the
node. Therefore, our condition on θ translates to a condition on the sample
loss:

li ≤ − log

(
3

2
−
√
3

2

)
(6.26)

This result establishes a threshold for the probability assigned to the true
class, ensuring that inter-class prediction similarities are always greater than

123

intra-class prediction similarities. To achieve identical inference outcomes
between Output-based and Label-based LIA, we incorporate our solution θ
into one of the cosine similarity equations. This substitution yields a decision
threshold τ =

√
3
2

, ensuring both LIA methods infer equivalent graphs.

The significance of this theorem lies in its ability to precisely quantify
the conditions under which an Output-based LIA can achieve the same per-
formance as a Label-based LIA. This result has important implications for
privacy in graph neural networks, as it shows that even without direct ac-
cess to labels, an attacker can potentially infer the same information from
well-trained model outputs.

To validate this theoretical result, we conducted an empirical analysis
using the Cora dataset. We focused on a subgraph containing the two most
populous classes and trained a two-layer GCN with an input GCN layer of
16 hidden units, followed by a ReLU activation, dropout, and an output
GCN layer producing two units. The model was trained using the Adam
optimizer with a learning rate of 0.01 and weight decay of 5e-4, minimizing
the cross-entropy loss over 200 epochs.

0 2 4 6 8
Sample Loss

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

CDF of Samples Losses
Theoretical Threshold: log (3

2
3

2)

(a) CDF of sample losses

0.0 0.2 0.4 0.6 0.8 1.0
Cosine Similarity Threshold

50

60

70

80

90

100

M
at

ch
in

g
Pe

rc
en

ta
ge

 (%
)

All Samples
Samples Respecting Loss Condition
Theoretical Threshold: 3

2

(b) Sensitivity analysis of cosine sim-
ilarity threshold

Figure 6.2: Analysis of sample losses and cosine similarity threshold

Figure 6.2 presents the results of our empirical validation. In Figure
6.2a, we plot the cumulative distribution function (CDF) of the cross-entropy
sample losses, highlighting the theoretical condition − log

(
3−

√
3

2

)
. Figure

6.2b shows a sensitivity analysis of the cosine similarity threshold, plotting
the matching percentage of link predictions between the Output-based and
Label-based attacks for various thresholds.

124

The results demonstrate that when only samples respecting the loss con-
dition are considered, the matching percentage between Output-based and
Label-based attacks reaches 100% at the theoretical threshold τ =

√
3
2

. This
empirical evidence strongly supports our theoretical findings, confirming that
pairs of samples with cross-entropy loss below the theoretical threshold result
in identical link predictions for both attack methods.

6.3.2 Performance of Gradient-based LIA

While a participating client in a VFGL setting lacks direct access to the pre-
diction output P and the labels Y , the gradient GA implicitly encodes this
information. Previous research on centralized graph learning has demon-
strated that gradients can leak label information [40, 82]. In this section, we
analyze how the Gradient-based LIA leverages this information leakage and
show its close relationship to the Label-based LIA.

To illustrate this relationship, we present a simplified binary classifica-
tion example that demonstrates how the cosine similarity of gradients in
our Gradient-based LIA is heavily dependent on the labels rather than the
prediction output.

Example 1 (Binary Classification with Log Loss). Consider a binary clas-
sification task with log loss, where the DNN owned by Party PY consists of a
fully connected layer with weights A and bias b, followed by a sigmoid func-
tion σ. Let HA and HG be the intermediate representations of parties PA and
PG respectively, with H i denoting the i-th row of matrix H and Yi the label
of sample i.

For every sample i, the prediction output Ŷi is given by:

Ŷi = σ(A[H i
G H i

A] + b) (6.27)

The log loss L is defined as:

L =
N∑
i=1

Li = −
N∑
i=1

Yi log Ŷi + (1− Yi) log(1− Ŷi) (6.28)

The gradient of sample i with respect to H i
A is:

Gi
A =

∂L

∂H i
A
=

∂Li
∂H i

A
= (Ŷi − Yi)A′ (6.29)

where A′ are the weights in A that apply to H i
A.

125

From Equation 6.29, we can observe that since ∀i, 0 ≤ Ŷi ≤ 1, regardless
of the prediction outputs, if two samples i and j have different labels, the
cosine similarity of Gi

A and Gj
A is negative. Conversely, if the samples belong

to the same label class, the cosine similarity is positive.
This observation leads to the following theorem:

Theorem 8 (Gradient-based LIA Label Dependence). In a binary clas-
sification task with log loss, the Gradient-based LIA will infer no link
between two samples if and only if they have different labels, regardless
of their prediction outputs.

Proof. Consider two samples i and j. From Equation 6.29, we have:

Gi
A = (Ŷi − Yi)A′ (6.30)

Gj
A = (Ŷj − Yj)A′ (6.31)

The cosine similarity between these gradients is:

cos(Gi
A, G

j
A) =

(Ŷi − Yi)(Ŷj − Yj)
|(Ŷi − Yi)||(Ŷj − Yj)|

(6.32)

If Yi ̸= Yj, then one of (Ŷi − Yi) or (Ŷj − Yj) is always positive and the
other is always negative, resulting in a negative cosine similarity. Conversely,
if Yi = Yj, both terms have the same sign, resulting in a positive cosine
similarity.

The significance of this theorem lies in its demonstration that the Gradient-
based LIA is highly dependent on the true labels of the samples, rather than
the model’s predictions. This makes the performance of the Gradient-based
LIA closely aligned with that of the Label-based LIA, which directly uses the
true labels.

This result contrasts with other possible attacks for the participating
client, such as Baseline LIA with observations of intermediate representations
and features, whose performances are inherently related to the observation
dimension. The Gradient-based LIA, being less dependent on the gradient
dimension and the features dimension, offers a more robust attack strategy
in the VFGL setting.

These analytical findings will be further corroborated by experimental re-
sults in Section 6.5, where we demonstrate the strong correlation between the
performance of Gradient-based and Label-based LIA across various datasets
and model configurations.

126

6.4 Experimental setup

6.4.1 GNN Model architecture and learning setting

Our study follows the model architecture established in the baseline [104].
The server’s model, also called the top model, is designed as a DNN featuring
two fully connected layers activated by ReLU functions. To determine the
vulnerability of the target/victim party’s GNN’s architecture to the attack,
we utilize GCN, GraphSAGE, and GAT architectures. The GNNs’ hop count
are set to 2. The GNN implementations are derived from a publicly acces-
sible code1. Similarly, the model of the other client, who can be a potential
adversary, comprises a DNN with two fully connected layers employing ReLU
activation functions. The bottom models, i.e., the two FL clients’ models, are
set to encode input features into a 16-dimensional latent space as a standard
configuration, where the first layer maps first into half the input dimension.
Note that, by default, the adversary controls 50% of the features.

We follow the same training protocol in baseline [104], where the VFGL
models are trained over 300 epochs, by using a learning rate of 0.001 and by
setting the regularization parameters to 0.001. The loss function of choice is
cross-entropy, and model parameters are updated using the Adam optimizer.
All experiments are conducted under identical settings but with different
random seeds, repeated five times to calculate and report the average and
standard deviation values of the performance metrics.

6.4.2 Datasets

We utilize seven public datasets for our analysis as Cora [76], Citeseer [76],
Amazon Computers (Computer) [119], Amazon Photos (Photo) [119], and
Twitch-(FR, DE, and EN) [108] datasets. These are widely recognized as
benchmark datasets for evaluating the performance and privacy aspects of
GNNs [104, 149, 54, 138].

The Citeseer and Cora datasets are citation networks, where nodes and
edges respectively correspond to publications and citations among these pub-
lications. Node features consist of the declared keywords in the publications,
and class labels represent the research fields of the corresponding publica-
tions. The Amazon Computers and Amazon Photos datasets are parts of
the Amazon co-purchase graph, where nodes and edges respectively repre-
sent products and the actual two products are frequently bought together.
Node features are bag-of-words representations of the corresponding prod-
uct reviews, and class labels categorize the product types. The Twitch

1https://pytorch-geometric.readthedocs.io/

127

datasets are social network datasets that depict the followership connections
between users on the Twitch streaming platform. Node features include users’
preferred games, location, and streaming habits, while class labels indicate
whether a streamer uses explicit language.

Table 6.3: Datasets statistics.

Dataset Nodes Edges Features Classes Density(%)
Photo 7650 119081 745 8 0.41
Cora 2708 5278 1433 7 0.14
Computer 13752 245861 767 10 0.26
Citeseer 3327 4552 3703 6 0.08
Twitch-DE 9498 157887 128 2 0.35
Twitch-EN 7126 38887 128 2 0.15
Twitch-FR 6551 115941 128 2 0.54

6.4.3 Evaluation Metrics

AUC. The performance of the attack is evaluated by using the area un-
der the ROC curve (AUC). The AUC provides a comprehensive measure of
the attack’s performance across various decision thresholds, highlighting its
threshold-independent nature. An AUC value of 0.5 means that the attack
performance is equivalent to random guessing and hence the adversary has
no power, as opposed to the case where the AUC approaches 1, the attack
becomes successful in inferring graph links.
Accuracy. Accuracy is used to measure the performance of label-based
LIA, which uniquely does not require a decision threshold for link prediction
unlike the other attacks. For a comparative analysis of label-based LIA
against threshold-dependent attacks, accuracy is assessed at the threshold
with the highest F1 score. This approach ensures a balance between precision
and recall, providing a detailed insight into the effectiveness of each attack
strategy.

6.5 Evaluation

6.5.1 Performance of Link Inference Attacks

We first conduct all the attacks across all the datasets in the scenario where
Party PA owns 50% of the features, i.e., the size of XA is equivalent to
the size of XG. We also report the maximum accuracy achieved over the

128

training epochs for time-dependent attacks, including Gradient-based, Inter-
mediate Representation-based, and Output-based LIA. The accuracy of the
LIA are shown in Table 6.4. Note that participating clients can only conduct
Gradient-based, Intermediate-Representation-based and Features-based LIA
as mentioned in Section 6.2.

Label-based LIA

The performance of Label-based LIA is positively correlated with the ho-
mophily ratio h and the class diversity 1−

∑C
c=1 α

2
c , confirming the analytical

results in Section 6.3. Due to the low density of the datasets (Table 6.3),
the performance of the attack is primarily influenced by the class diversity
metric (the third term in Eq. 6.7). The variability in results observed across
the 5 trials stems from the random partitioning of nodes into training and
testing sets.

Prediction Output-based LIA

For the datasets Photo, Cora, Computer, and Citeseer, the output-based LIA
demonstrates similar performance compared to the Label-based LIA, with
differences within 2 percentage points (p.p.). This similarity is due to the
well-trained model yielding prediction outputs that strongly align with the
true labels. For Twitch datasets, the performance displays a weaker correla-
tion with the Label-based attack, likely due to the model being less pertinent,
as observed in [138, 149]. Moreover, the links within Twitch datasets are pri-
marily associated with features rather than labels, leading to the prediction
output surpassing the performance of the Label-based attack.

Gradient-based LIA

Comparison with Label-based LIA. Our experimental results confirm
that the observation from the simplified example in Section 6.3.2 remains
applicable in a more intricate DNN scenario when the dataset has a high
homophily ratio (>0.7) and class diversity (>0.7). The accuracy difference
between Gradient-based and Label-based attacks is within 1.7 p.p. for these
datasets.

To further investigate this observation, we examine the predictions of
both attacks, focusing on True Positives (TP) and False Positives (FP). We
conduct a comparative analysis on a subgraph of the Amazon-Photo dataset,
comprising 10,000 positive pairs (unlinked pairs) and 10,000 negative pairs
(linked pairs). The experiment (Figure 6.3) reveals a significant overlap
in link predictions between the two attacks, suggesting that the success of

129

Table
6.4:

A
ccuracy

oflink
inference

attacks
across

datasets
using

G
C

N
architecture.

B
old

num
bers

indicate
highest

accuracy
am

ong
client-side

attacks
(first

three
colum

ns).
P
articipating

clients
can

only
conduct

these
three

attacks.

D
atasets

A
ttack

M
ethods

h
C

lass
diversity

G
radients

Inter-R
eps

Features
Labels

P
rediction

output
P

hoto
0.83

0.84
82.12

±
1
.3

2
67.61

±
2.76

63.58
±

0.42
83.76

±
0.10

81.80
±

0.68

C
ora

0.81
0.82

81.71
±

0
.2

1
65.77

±
1.19

71.34
±

1.95
81.74

±
0.15

80.14
±

0.58

C
om

puter
0.78

0.79
78.23

±
1
.2

6
66.46

±
0.40

63.75
±

0.86
79.35

±
0.05

78.82
±

0.70

C
iteseer

0.74
0.82

82.76
±

0
.3

8
73.53

±
2.58

82.65
±

0.70
82.14

±
0.02

79.64
±

0.64

Tw
itch-D

E
0.64

0.48
58.76

±
0
.2

2
55.35

±
1.47

56.76
±

0.47
48.02

±
0.03

58.61
±

0.01

Tw
itch-E

N
0.60

0.50
53.28

±
0.25

54.63
±

0
.7

9
54.37

±
0.80

49.65
±

0.10
53.51

±
0.44

Tw
itch-F

R
0.55

0.47
50.89

±
0.66

50.16
±

1.09
56.04

±
0
.4

5
46.68

±
0.20

49.72
±

0.51

130

gradient-based LIA is not coincidental but rather indicative of its reliance on
label information for link prediction.

Figure 6.3: Overlap of predictions between gradient-based and label-based
LIA in Photo dataset.

Comparison with Prediction Output-based LIA. For datasets with
lower homophily ratios and class diversity, our gradient-based LIA performs
similarly to the Prediction Output LIA (accuracy differences within 0.3 p.p.).
While not significantly improving accuracy, our attack offers greater practi-
cality as it adheres to strict VFL protocol without additional assumptions.

Comparison with Intermediate-representation and feature-based
LIA. The Gradient-based LIA outperforms the other two attacks in 5 out
of 7 datasets. Particularly for the Photo, Cora, and Computer datasets, the
attack performance is enhanced by at least 10 p.p. This improvement can be
attributed to the fact that the links in these datasets are more label-related
than feature-related. For the Citeseer dataset, the Feature-based LIA perfor-
mance is close to the Gradient-based LIA performance, given that Citeseer
exhibits a unique property where the links are both label-related and feature-
related. For the Twitch datasets, where the links are primarily associated
with features, the Gradient-based LIA still demonstrates comparable perfor-
mance.

Overall, the Gradient-based LIA demonstrates comparable results in both
label-related and feature-related scenarios, while Intermediate-representation,
Feature-based and Label-based attacks fail in one of these scenarios. It also
outperforms Prediction output LIA by 0.75 p.p. on average, even though
Prediction output LIA requires a stronger adversary. In real-world applica-
tions, where the adversary may lack prior knowledge regarding whether the
dataset is more label-related or feature-related, the Gradient-based attack
stands out as the optimal choice for the adversary.

131

6.5.2 Ablation Studies

Impact of Training Epochs on Gradient-based LIA Performance

We assess the impact of the training epochs on the performance of our
gradient-based LIA and compare it with the Intermediate representation-
based LIA baseline. Both attacks can be mounted on the client side by
party PA and are inherently time-dependent. Figure 6.4 illustrates how the
learning epochs affect the AUC of these two attack strategies.

Our gradient-based LIA outperforms in the initial epochs, though its effi-
ciency decreases as training progresses. This pattern likely emerges because
the gradients in the initial epochs are more informative, gradually becom-
ing less distinguishable as the model nears convergence. As the model ap-
proaches convergence, the gradients of all nodes start to concentrate around
zero, complicating the adversary’s task of differentiating between connected
and non-connected node pairs, as depicted in Figure 6.6.

On the other hand, the Intermediate representation-based LIA shows
modest performance in the first training epochs, with its performance reach-
ing its maximum after the early training epochs. This pattern is attributed
to the fact that, during the early epochs, the intermediate representations
do not capture the features of nodes due to the adversary’s model lack of op-
timization. Thus, the Intermediate representation-based LIA reaches peak
efficiency in the later stages of training. In contrast, our gradient-based LIA
achieves its highest performance in the training’s early epochs.

Impact of Feature Ratio Owned by the Adversary

We examine the impact of the proportion of features owned by the adversary
PA on the performance of our gradient-based LIA, intermediate representa-
tion LIA, and the feature-based LIA. We analyze the success of the attack
across varying ratios of adversary-owned features XA, which aids in compar-
ing the attacks and their dependence on the number of features the adversary
possesses.

As illustrated in Figure 6.5, we report the peak AUC over time achieved
by the attacks across a range of feature ownership ratios, adjusting from the
default condition where the adversary controls 50% of the features, ranging
from 10% to 90% of the entire set.

The gradient-based LIA outperforms the intermediate representation-
based and feature-based LIA when less than half of the features are owned by
the adversary, except for the Twitch-FR dataset. This is mainly due to the
low homophily and class diversity, while the features are more representative
of the links in the graph. However, the intermediate representation-based

132

0
10

0
20

0
30

0
Tr

ai
ni

ng
 e

po
ch

0.
5

0.
6

0.
7

0.
8

0.
9

AUC

Co
ra

0
10

0
20

0
30

0
Tr

ai
ni

ng
 e

po
ch

0.
5

0.
6

0.
7

0.
8

0.
9

Ci
te

se
er

0
10

0
20

0
30

0
Tr

ai
ni

ng
 e

po
ch

0.
5

0.
6

0.
7

0.
8

0.
9

Co
m

pu
te

r

0
10

0
20

0
30

0
Tr

ai
ni

ng
 e

po
ch

0.
5

0.
6

0.
7

0.
8

0.
9

Ph
ot

o

0
10

0
20

0
30

0
Tr

ai
ni

ng
 e

po
ch

0.
45

0

0.
47

5

0.
50

0

0.
52

5

0.
55

0
Tw

itc
h-

FR
Gr

ad
ie

nt
s

In
te

r-R
ep

s

F
ig

ur
e

6.
4:

E
vo

lu
ti

on
of

th
e

A
U

C
fo

r
G

ra
di

en
t-

ba
se

d
LI

A
(b

lu
e)

an
d

In
te

rm
ed

ia
te

-r
ep

re
se

nt
at

io
n

LI
A

(r
ed

)
O

ve
r

T
im

e.
T

he
ho

ri
zo

nt
al

da
sh

ed
lin

es
in

di
ca

te
th

e
m

ax
im

um
A

U
C

ac
hi

ev
ed

by
th

e
tw

o
at

ta
ck

s.
A

tt
ac

ks
w

er
e

co
nd

uc
te

d
at

ea
ch

tr
ai

ni
ng

ep
oc

h,
ac

ro
ss

fiv
e

ru
ns

,w
it

h
th

e
m

ea
n

an
d

st
an

da
rd

de
vi

at
io

n
of

th
e

A
U

C
s

re
po

rt
ed

.

133

10
20

30
40

50
60

70
80

90
Feature ratio (%

)

0.5

0.6

0.7

0.8

0.9

AUC

Cora

10
20

30
40

50
60

70
80

90
Feature ratio (%

)

0.5

0.6

0.7

0.8

0.9
Citeseer

10
20

30
40

50
60

70
80

90
Feature ratio (%

)

0.5

0.6

0.7

0.8

0.9
Com

puter

10
20

30
40

50
60

70
80

90
Feature ratio (%

)

0.5

0.6

0.7

0.8

0.9
Photo

10
20

30
40

50
60

70
80

90
Feature ratio (%

)

0.450

0.475

0.500

0.525

0.550

0.575

0.600
Twitch-FR

Gradients
Inter-Reps

Features

F
igure

6.5:
C

om
parison

ofA
U

C
betw

een
G

radient-based
LIA

(blue),Interm
ediate

R
epresentations-based

LIA
(red),

and
Feature-based

LIA
(orange)

across
different

feature
ratios

of
the

adversary.
T

he
m

axim
um

A
U

C
achieved

by
both

attacks
during

training
is

reported,alongside
the

m
ean

and
standard

deviation
ofthese

A
U

C
s

across
five

runs.

134

1 0 1
0

5

10

15

20
Epoch 1

1 0 1
0

5

10

15

20
Epoch 100

1 0 1
0

5

10

15

20
Epoch 200

1 0 1
0

5

10

15

20
Epoch 300

linked pairs unlinked pairs

Figure 6.6: Distribution of the cosine similarities of gradients among linked
pairs and unlinked pairs during different training epochs.

LIA performs better at higher feature ratios. This phenomenon is attributed
to the richness of intermediate representations when a larger number of fea-
tures is available, leveraging the correlation between features and the con-
nections within the target graph.

The intermediate representation-based LIA’s AUC increases proportion-
ally with the number of features the adversary controls. In contrast, the
gradient-based LIA’s AUC remains relatively unaffected by changes in the
number of adversary-owned features. This stability stems from the fact that
gradients rely not only on the adversary’s intermediate representations, which
are impacted by the features owned, but also on the labels of the training
nodes as discussed in section 6.3.2.

The same phenomenon of feature size dependence on the performance of
feature-based LIA is observed, except for the Photo and Computer datasets.
This may be attributed to the sparsity of the features compared to other
datasets. In the Photo and Computer datasets, the feature sparsity is rela-
tively higher than in the other datasets as indicated in [104], which means
that even 10% of the features is sufficient to reach the maximum performance
in inferring the links of these datasets.

Impact of the Number of Parties on the Performance of Gradient-
based LIA

We analyze the sensitivity of the number of parties on the performance of our
gradient-based attack in varying multi-party settings. We extend our VFGL

135

protocol by adding more participants, assuming these additional participants
are benign and contribute some features. We maintain one adversary and
one victim party.

We adopt the same multiparty protocol utilized in the baseline study.
Specifically, we fix the adversary’s feature ratio at 20%. The remaining fea-
tures are evenly distributed among the other benign participants, with each
having the same feature ratio as the adversary, while the target victim re-
tains the rest of the features. For instance, when there are four parties, the
adversary possesses the first 20% of features, the benign participants also
have 20% each, and the target victim participant holds the remaining 40%.
We vary the number of parties from 2 to 5 to ensure each participant has at
least 20% of the features.

2 3 4 5
Number of Parties

50

55

60

65

70

75

80

85

AU
C

(%
) Cora

Citeseer
Amazon Computer
Amazon Photo
Twitch-FR

Figure 6.7: Performance analysis with varying number of parties. The re-
sults show the AUC values across different datasets as the number of parties
changes from 2 to 5.

From Figure 6.7, we observe that the performance of our gradient-based
attack is independent of the number of parties. This is primarily because the
attack exploits the label information embedded in the gradients, regardless
of the number of clients participating in the VFGL setting. It is worth noting
that the label-based attack’s performance also remains constant across dif-
ferent numbers of clients. This consistency is due to the labels being owned
by the server in our VFL setting (Figure 6.1), ensuring that the label infor-
mation available to the server remains unchanged regardless of the number
of participating parties in the VFGL protocol.

136

Impact of GNN’s Architecture on the Performance of Gradient-
based LIA

We study the influence of the architecture of the attacked GNN on the ac-
curacy of our gradient-based LIA. For the architectures under examination,
we have included GAT and GraphSAGE, as they are some of the most well-
known architectures used in the literature.

GATs are distinguishable by their ability to assign varying levels of im-
portance to nodes in a neighborhood, using attention mechanisms. This ap-
proach allows GATs to focus on the most relevant parts of the graph structure
during the learning process. As observed in our results (see Table 6.5), GATs
generally exhibit higher values across various datasets, indicating a greater
susceptibility to LIA. This slight increased vulnerability may be attributed
to the attention mechanism in GATs that learns the attention coefficients of
the edges, which may results in a slight memorization of the edges of the
target graph.

In contrast, GraphSAGE utilizes a neighborhood sampling and aggrega-
tion approach to generate node embeddings. This method, as reflected in
the table, generally shows lower values compared to GAT, suggesting re-
duced susceptibility to LIA. The fixed-size neighborhood sampling employed
by GraphSAGE potentially obscures some links between nodes. By some-
times missing information about node links, GraphSAGE’s approach provides
a form of obfuscation against such attacks, making it slightly challenging for
attackers to accurately infer links.

The performance of GCNs, which falls between GAT and GraphSAGE in
our study, suggests a moderate level of susceptibility to LIA. It indicates that
while GCNs do learn node connections, they neither reveal as much detail
about the links in the graph as GATs nor obscure connections as Graph-
SAGE.

Table 6.5: Accuracy of gradient-based link inference attack on different GNN
architectures

Dataset GAT GCN GraphSAGE
Photo 84.27 ± 0.62 82.12 ± 1.32 82.34 ± 1.31

Cora 82.23 ± 0.97 81.71 ± 0.21 81.40 ± 0.65

Computer 79.38 ± 0.39 78.23 ± 1.26 78.06 ± 1.32

Citeseer 83.40 ± 1.15 82.76 ± 0.38 82.35 ± 0.15

137

Impact of Model Complexity on the Performance of Gradient-
based LIA

We investigate the influence of model complexity on the accuracy of our
gradient-based LIA by implementing ResNet-like architectures [53] for both
the adversary’s and server’s models. This study aims to understand how
increasing model complexity affects the attack’s effectiveness compared to
the simple 2-layer neural network baseline.

As observed in our results (see Table 6.6), the attack maintains high
accuracy across different levels of model complexity on the Cora dataset.
The baseline 2-layer neural network achieves an accuracy of 81.71% ± 0.21%.
Interestingly, as we increase the number of residual blocks, we notice only
a slight decrease in attack accuracy. With one residual block, the accuracy
remains nearly identical at 81.70% ± 0.21%, while with four residual blocks,
it decreases marginally to 81.26% ± 0.18%.

This trend suggests that our gradient-based LIA exhibits robustness against
increases in model complexity. The attack’s resilience can be attributed to
two key factors. First, even in more complex models, the gradients still carry
sufficient information about the underlying graph structure to enable effective
link inference. Second, and crucially, our attack leverages label information,
which remains present in the gradients regardless of model complexity. This
label information continues to provide valuable insights for link inference,
contributing to the attack’s consistent performance across different architec-
tural complexities.

Table 6.6: Accuracy of gradient-based LIA on ResNet-like architectures
(Cora dataset)

Number of Residual Blocks Accuracy (%)
Baseline 81.71 ± 0.21

1 81.70 ± 0.21

2 81.54 ± 0.19

3 81.47 ± 0.23

4 81.26 ± 0.18

138

6.6 Defense Strategies

To mitigate the vulnerabilities exposed by the link inference attacks, we
evaluate two types of defense mechanisms: edge perturbation and label per-
turbation. The edge perturbation aims to obscure the graph structure, while
the label perturbation addresses the core issue of label leakage. For edge per-
turbation, we employ Lapgraph [138], a differential privacy (DP) mechanism
that guarantees edge-level DP by adding noise to the graph structure. For
label perturbation, we develop a novel approach using quadratic optimization
to strategically obfuscate labels.

In our VFGL setting, the edge-level perturbation (Lapgraph) is imple-
mented by the client, which owns the graph structure, while the label per-
turbation is applied by the server, which possesses the labels. We analyze
how these distinct defenses impact each of the previously introduced attacks.

6.6.1 Lapgraph

Lapgraph [138] is a defense mechanism that applies differential privacy at the
edge level by perturbing the adjacency matrix of the graph. It adds Laplace
noise to the adjacency matrix, controlled by a privacy parameter ε, followed
by a binarization process. This effectively alters the graph structure by
potentially adding fake edges and removing real ones. In our implementation,
we vary ε from 1 to 10 to demonstrate the defense’s effectiveness across
different privacy levels.

Figure 6.8 shows the results of Lapgraph defense on the Computer, Photo,
Cora, and Citeseer datasets, along with a random guessing baseline for test
accuracy of the model. The results indicate that the Lapgraph defense does
not effectively mitigate the attacks’ effectiveness across all datasets, partic-
ularly for our introduced gradient-based attack. The gradient-based attack
remains highly resilient, showing minimal to no reduction in accuracy across
different ε values. This resilience can be attributed to the fact that the
gradient information, which is closely tied to the label information, remains
largely unaffected by the graph structure perturbation. For instance, on the
Cora dataset at ε = 6, the gradient-based attack accuracy is 82.24%, which
is even slightly higher than the baseline of 81.71% without any defense.

The prediction output attack follows a similar pattern to the gradient-
based attack, with only a marginal decrease in effectiveness across all datasets.
On Cora at ε = 6, its accuracy is 80.96%, compared to the baseline of 80.14%.
Interestingly, the intermediate representation attack exhibits an unexpected
inverse behavior across all datasets, showing increased performance as ε de-
creases. For Cora at ε = 6, its accuracy rises to 76.89% from the baseline

139

2 4 6 8 10
0

20

40

60

80

100
Computer

2 4 6 8 10
0

20

40

60

80

100
Photo

2 4 6 8 10
0

20

40

60

80

100
Cora

2 4 6 8 10
0

20

40

60

80

100
Citeseer

Ac
cu

ra
cy

 (%
)

Random Guessing
Gradients

Inter-Reps
Prediction Output

Test Accuracy

Figure 6.8: Lapgraph defense results. ε = ∞ represents no defense; lower ε
values indicate stronger privacy protection.

of 65.77%. We speculate that this counterintuitive result occurs because as
the graph edges become noisier, the server model pays more attention to the
adversary model than to the victim GNN model. This shift leads to the
adversary model becoming a stronger learner about the labels and features
of the nodes, hence making its intermediate representation a better signal
for the edges of the graph, thus increasing the attack’s accuracy. This phe-
nomenon aligns with observations in [104], where perturbation of the victim
party’s intermediate representations as a defense mechanism inadvertently re-
sulted in strengthening the intermediate representation-based attack of the
adversary model.

It is important to note that the label-based attack remains unaffected by
this defense. This is because Lapgraph only perturbs the graph structure
and does not alter the label information, which is the primary source of
information for this attack. The same goes for features-based attack, as
Lapgraph does not modify the node features.

While the defense shows minimal impact on the attacks’ effectiveness,
there is a significant decrease in test accuracy as ε decreases, indicating
a substantial utility loss across all datasets. On Cora at ε = 6, the test
accuracy drops to 59.66% from the baseline of 83.97%. This underscores the
limitation of edge perturbation as a defense mechanism against our proposed
attacks, which primarily exploit label information leakage rather than graph
structural properties.

140

6.6.2 Label Perturbation

Label perturbation is a defense mechanism that directly addresses the issue
of label leakage by strategically obfuscating a portion of the labels. This
approach operates with a budget B, representing the percentage of labels
to be changed. We implement this defense by formulating a quadratic op-
timization problem to find the optimal class proportions that minimize the
attack accuracy derived in our theorem 6, subject to the budget constraint.

The label perturbation defense is implemented in two steps: label pro-
portion optimization and label redistribution. Given the accuracy formula
for Label-based LIA (Equation 6.7), our experimental observations (Table
6.4) show that terms involving homophily ratio (h) and density (d) are neg-
ligible due to the low density of typical graphs in our scenarios. We can thus
approximate the accuracy as:

Acc ≈ N

N − 1
(1−

C∑
c=1

α2
c) (6.33)

To minimize this approximated accuracy and reduce the effectiveness of
the Label-based LIA, our objective becomes maximizing

∑C
c=1 α

2
c .

Algorithm 8 optimizes label proportions to maximize
∑C

c=1 α
2
c within the

given budget B using quadratic programming. It takes as input the initial
label proportions αinitc and the budget B, and outputs the optimized label
proportions α∗

c . The algorithm solves an optimization problem that maxi-
mizes

∑C
c=1 α

2
c subject to constraints ensuring the sum of proportions equals

1, the total change in proportions is within the budget, and all proportions
are non-negative.

Algorithm 8 Label Proportion Optimization
Require: Initial label proportions αinitc , budget B
Ensure: Optimized label proportions α∗

c

1: Solve the following optimization problem:
2: maxαc

∑C
c=1 α

2
c

3: subject to:
4:

∑C
c=1 αc = 1

5:
∑C

c=1max(0, αinitc − αc) ≤ B
6: αc ≥ 0, ∀c ∈ {1, . . . , C}
7: return α∗

c

Algorithm 9 then redistributes labels to match these optimized propor-
tions through iterative balancing between classes. It takes as input the cur-
rent labels y and the optimized proportions α∗, and outputs the obfuscated

141

labels y′. The algorithm first calculates the target number of nodes for each
class based on α∗, then determines which classes need more nodes (C+) and
which need fewer nodes (C−). It then iteratively flips labels from classes in
C− to classes in C+ until either the target class has enough nodes or the
source class has no more nodes to give.

Algorithm 9 Label Redistribution
Require: Current labels y, optimized proportions α∗

Ensure: Obfuscated labels y′

1: Calculate target number of nodes for each class based on α∗

2: Determine classes needing more nodes (C+) and fewer nodes (C−)
3: for each class ct ∈ C+ do
4: for each class cs ∈ C− do
5: Flip labels from cs to ct until:
6: - ct has enough nodes, or
7: - cs has no more nodes to give
8: end for
9: end for

10: return y′

Figure 6.9 shows the results of label perturbation defense on the Com-
puter, Photo, Cora, and Citeseer datasets, along with a random guessing
baseline for test accuracy of the model. From the results, we observe that
the label perturbation defense demonstrates significant effectiveness in miti-
gating various attacks across all datasets. As the budget increases from 0.05
to 0.90, we see a substantial decrease in the accuracy of all attacks, albeit at
different rates.

0 0.3 0.6 0.9
B

0

20

40

60

80

100
Computer

0 0.3 0.6 0.9
B

0

20

40

60

80

100
Photo

0 0.3 0.6 0.9
B

0

20

40

60

80

100
Cora

0 0.3 0.6 0.9
B

0

20

40

60

80

100
Citeseer

Ac
cu

ra
cy

 (%
)

Random Guessing
Gradients

Inter-Reps
Prediction Output

Label
Test Accuracy

Figure 6.9: Label perturbation defense. B = 0 represents no defense; higher
B values indicate stronger protection.

142

The label-based attack is the most affected across all datasets, with its ac-
curacy on Cora dropping from 79.14% at a 0.05 budget to near-zero (0.14%)
at a 0.90 budget, compared to the baseline of 81.74% without defense. This
dramatic reduction is expected as the defense directly targets the label in-
formation that this attack relies on.

The gradient-based attack also shows a significant decrease in accuracy
across all datasets. On Cora, it drops from 79.03% at a 0.05 budget to 58.93%
at a 0.90 budget, a substantial reduction from the baseline of 81.71%. This
substantial reduction reflects the strong correlation between gradient infor-
mation and labels. The prediction output attack and inter-representation at-
tack show more resilience to the label perturbation defense across all datasets.
On Cora, the prediction output attack’s accuracy decreases from 77.41% to
64.18%, while the inter-representation attack’s accuracy drops from 66.77%
to 51.90% as the budget increases from 0.05 to 0.90. These are still significant
reductions from their baselines of 80.14% and 65.77% respectively.

Comparing these results to Lapgraph at points where the utility (test ac-
curacy) is similar, we see that label perturbation tends to be more effective
across all datasets. For instance, on Cora at a budget of 0.30, label perturba-
tion achieves a test accuracy of 59.12%, which is comparable to Lapgraph’s
59.66% at ε = 6. At these points, the gradient-based attack accuracy is
63.14% for label perturbation, compared to 82.24% for Lapgraph. Similarly,
the inter-representation attack accuracy is 57.21% for label perturbation, but
76.89% for Lapgraph. The label perturbation defense does impact the sys-
tem’s utility across all datasets, with the test accuracy on Cora decreasing
from 73.87% at a 0.05 budget to 29.79% at a 0.90 budget, compared to the
baseline of 83.97%. However, this trade-off appears more favorable compared
to Lapgraph, especially at lower privacy levels where the utility loss is less
severe.

6.6.3 Discussion

Our analysis reveals that Lapgraph is largely ineffective against the intro-
duced attacks and reduces system utility. In contrast, label perturbation
demonstrates effectiveness against all attack types across all datasets exam-
ined, offering a more favorable privacy-utility trade-off at budget values <
0.3. However, label perturbation faces utility degradation when the budget
exceeds 0.3, presenting an area for further research.

The superior performance of label perturbation can be attributed to its
direct targeting of the primary source of information leakage in our attacks:
the labels. By strategically obfuscating a portion of the labels, it disrupts the
core mechanism that gradient-based and label-based attacks rely on. This

143

approach proves more effective than Lapgraph’s method of altering the graph
structure, which does not address the fundamental issue of label information
leakage.

However, the utility degradation at higher budget values highlights a key
challenge in defending against these attacks. As we increase the level of label
perturbation to enhance privacy, we inevitably impact the model’s ability
to learn from the data, resulting in decreased test accuracy. This trade-off
between privacy and utility is a central issue in privacy-preserving machine
learning and warrants further investigation.

Future work could focus on mitigating utility loss at higher budget values,
potentially by combining approaches or developing more refined label per-
turbation strategies. For instance, one could explore adaptive perturbation
methods that adjust the level of obfuscation based on the sensitivity of differ-
ent labels or nodes. Another avenue could be to investigate techniques that
preserve certain critical relationships in the data while perturbing others,
aiming to maintain utility while still providing strong privacy guarantees.

Overall, our results indicate that addressing label leakage through tar-
geted perturbation is more effective than altering graph structure in defend-
ing against our proposed attacks. This finding underscores the importance of
considering the specific mechanisms of information leakage when designing
defense strategies for privacy-preserving machine learning systems, particu-
larly in the context of GNNs in VFGL systems.

6.7 Conclusion

This study has introduced novel link inference attacks on VFL systems,
specifically focusing on gradient-based and label-based methods. Our re-
search has revealed that gradients in VFL can inadvertently disclose link
information, primarily due to the embedded label information within these
gradients. To explore this relationship further, we developed a label-based
link inference attack.

Our comprehensive evaluation has confirmed that both the gradient-based
and label-based attack methods perform similarly, lending support to our ini-
tial hypothesis. These findings indicate that these attacks surpass alternative
LIA that rely on model predictions and intermediate representations. This
superiority is particularly evident in scenarios where the adversary controls
a smaller proportion of the features, highlighting the robustness of our pro-
posed attacks.

The analytical framework we developed provides theoretical guarantees
for the performance of the label-based LIA, taking into account common

144

graph statistics such as density, homophily ratio, and class diversity. This
framework not only offers insights into the vulnerabilities of target graphs
against LIA but also serves as a valuable tool for estimating the potential
performance of gradient-based attacks.

Our research also explored the temporal aspects of these attacks, revealing
that the gradient-based LIA is most effective in the early stages of training.
This finding has important implications for the timing and implementation
of defensive measures in VFL systems.

To address the vulnerabilities exposed by our attacks, we proposed and
evaluated two defense mechanisms: edge perturbation using Lapgraph and
a novel label perturbation approach. Our analysis revealed that Lapgraph,
while effective in some scenarios, is largely ineffective against our introduced
attacks and significantly reduces system utility. In contrast, our proposed
label perturbation defense demonstrated effectiveness against all attack types
across all datasets examined, offering a more favorable privacy-utility trade-
off at lower privacy budgets.

These findings underscore the importance of addressing label leakage as
a fundamental issue in protecting graph privacy within VFL systems. Our
label perturbation approach, by directly targeting the source of information
leakage, provides a more effective defense strategy compared to methods that
focus solely on altering graph structure.

However, our research also highlights the ongoing challenges in this field.
While our label perturbation defense shows promise, it faces utility degra-
dation at higher privacy budgets, presenting an area for further research.
Future work could focus on mitigating this utility loss, potentially by com-
bining approaches or developing more refined label perturbation strategies.

In conclusion, this study contributes to the growing body of knowledge
on privacy in federated learning systems, particularly in the context of graph
data. By exposing new vulnerabilities and proposing effective countermea-
sures, we hope to inspire further research and development in this critical
area. As VFL systems continue to gain prominence in various domains, en-
suring robust privacy protections while maintaining utility will remain a key
challenge for researchers and practitioners alike.

145

146

Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, we study the privacy vulnerabilities in machine learning mod-
els, particularly focusing on dimensionality reduction techniques, graph-structured
data, and federated learning systems. We observed that existing machine
learning methods like Principal Component Analysis (PCA) and Graph Neu-
ral Networks (GNNs), as well as federated learning frameworks, suffer from
significant privacy risks when deployed in real-world applications. Specif-
ically, these methods are exposed to Membership Inference Attack (MIA)
and Link Inference Attack (LIA), which can compromise the privacy of indi-
vidual data points and relational information. Therefore, this thesis proposed
solutions that address the limitations of existing work by developing novel
privacy attacks to understand the vulnerabilities and by evaluating differen-
tial privacy mechanisms as potential defenses.

For dimensionality reduction techniques, we implemented and evaluated
the first membership inference attack against PCA. Our attack demonstrated
that PCA-transformed data could leak significant private information, espe-
cially when the number of samples is small. This revealed a critical vulner-
ability in PCA, as adversaries could infer whether specific data points were
part of the original training dataset. To address this limitation, we explored
differentially private PCA algorithms as a defense mechanism. Our evalua-
tion showed that while differential privacy can mitigate the privacy risks in
PCA, it often does so at the expense of reduced utility. We analyzed the
trade-off between privacy protection and utility, providing insights into the
practical application of differentially private PCA in sensitive contexts.

We further developed the Node Injection Link Stealing (NILS) attack as
a powerful new link inference attack against GNNs. NILS significantly en-

147

hances the effectiveness of link inference over existing methods, highlighting
the vulnerabilities of GNNs in preserving edge privacy. Our attack improved
the F1 score by 23.75% on the Twitch dataset and more than tripled the
performance on the Flickr dataset compared to state-of-the-art attacks. To
mitigate this vulnerability, we designed defense strategies based on differen-
tial privacy, introducing a LapGraph-based defense specifically tailored to
protect against node injection attacks. Our defense mechanism reduced the
effectiveness of the NILS attack by approximately 71.9% while incurring only
a minimal average utility loss of about 3.2%. This demonstrates that care-
fully designed differential privacy mechanisms can effectively enhance the
privacy of graph-structured data without significantly compromising model
performance.

Last but not least, we investigated privacy vulnerabilities in vertical fed-
erated graph learning (VFGL) systems. We introduced novel link inference
attacks, including gradient-based and label-based methods, showing that gra-
dients in VFGL can inadvertently disclose link information due to embedded
label information. Our attacks surpass alternative methods relying on model
predictions and intermediate representations, especially when the adversary
controls a smaller proportion of the features. To address these challenges, we
propose two defense mechanisms: edge perturbation using LapGraph, which
is a differential privacy solution, and a novel label perturbation approach
that relies on a heuristic method. Our analysis revealed that while Lap-
Graph had limited effectiveness against our attacks and significantly reduced
utility, the label perturbation defense was effective against all attack types
across all datasets. It offered a favorable privacy-utility trade-off at lower
privacy budgets, highlighting the importance of addressing label leakage in
protecting graph privacy within federated learning systems.

In summary, this thesis makes the following key contributions:

• Novel Privacy Vulnerabilities in Fundamental Techniques: By
demonstrating that PCA and GNNs are susceptible to MIA and LIA,
we highlighted critical privacy risks in widely used machine learning
methods, emphasizing the need for robust privacy-preserving strategies.

• Novel Privacy Attacks: We introduced the first MIA against PCA,
the NILS attack against GNNs, and new link inference attacks in VFGL
systems. These attacks provided deeper insights into how privacy can
be compromised in various machine learning contexts.

• Study of Differentially Private Mechanisms as a Defense Strate-
gies: We assessed the effectiveness of differential privacy in mitigating
the identified privacy risks. Our evaluations provided valuable insights

148

into the trade-offs between privacy protection and utility, guiding the
practical implementation of privacy-preserving techniques.

Through these contributions, we gain a deeper understanding of privacy
risks in machine learning and provide practical solutions to enhance data pri-
vacy in sensitive applications. Our findings highlight that privacy concerns
are pervasive, and as new data structures and learning methods emerge,
novel privacy attacks and defense mechanisms require continuous investi-
gation and definition. While differential privacy proves effective in many
scenarios, it remains insufficient for addressing all vulnerabilities, especially
those stemming from complex and evolving data structures. Therefore, ex-
ploring complementary techniques becomes essential for ensuring robust pri-
vacy protection. This work underscores the importance of ongoing research
in privacy-preserving machine learning to support the safe and secure de-
ployment of models handling sensitive information.

7.2 Future Work
While this thesis has explored privacy vulnerabilities in machine learning
models and proposed mitigation strategies, there are several avenues for fu-
ture research that could build upon our findings. Below, we elaborate on the
most concrete and promising directions.

1. Investigating Potential Correlations Between Vulnerable Sam-
ples in PCA and Downstream Tasks

In Chapter 4, we introduced a membership inference attack against
PCA and analyzed its effectiveness. A potential future direction is to
investigate whether there is a correlation between samples that are vul-
nerable to MIAs in PCA and those that are vulnerable in downstream
tasks, such as neural network classifiers trained on PCA-transformed
data. Understanding this relationship could lead to more comprehen-
sive privacy-preserving strategies that protect data throughout the ma-
chine learning pipeline. This research could involve conducting system-
atic studies to identify patterns or features that make certain samples
more susceptible to privacy attacks and developing methods to mitigate
these risks effectively.

2. Enhancing Differential Privacy Mechanisms for PCA

While our evaluation of differentially private PCA algorithms in Chap-
ter 4 shows that they can mitigate MIAs, the trade-off between privacy

149

and utility remains a challenge. Future research could focus on devel-
oping improved differential privacy mechanisms for PCA that offer a
better balance between privacy protection and data utility. This might
involve exploring alternative noise addition techniques, optimizing the
allocation of the privacy budget, or employing adaptive mechanisms
that adjust the level of noise based on data sensitivity. Additionally,
integrating models that are inherently robust to privacy attacks could
complement differential privacy methods to enhance overall protection.

3. Label Perturbation Defense with Fairness and Adaptive Strate-
gies in Federated Learning
In Chapter 6, we proposed a label perturbation defense mechanism
to mitigate link inference attacks in vertical federated graph learning
systems. To improve this defense, future work could focus on incorpo-
rating fairness objectives to ensure that perturbation does not dispro-
portionately affect certain classes, thus maintaining equitable model
performance across all groups. Additionally, implementing adaptive
perturbation strategies that adjust the level of label noise during train-
ing could enhance utility. For example, applying stronger perturbation
during the initial epochs—when attacks are most effective—and re-
ducing it in later epochs could help maintain privacy while improving
model convergence and overall performance.

4. Investigating the Impact of Advanced Feature Extractors on
Privacy in Graph Neural Networks
In our study of link inference attacks against GNNs in Chapter 5, we
considered scenarios with conventional node features such as word fre-
quency [76]. An important direction for future research is to explore
how different feature extraction methods, particularly advanced lan-
guage models (LMs) like BERT [23] or GPT [105], impact the privacy
of graph structures. In datasets where nodes represent textual informa-
tion, LMs are often used to generate rich node embeddings [70]. Exam-
ining whether these embeddings influence the susceptibility of GNNs to
link inference attacks could provide valuable insights into the relation-
ship between node features and privacy risks. Understanding how the
use of advanced feature extractors affects attack success rates would en-
able practitioners to make informed decisions when designing models,
potentially selecting or developing feature extraction techniques that
enhance privacy protection without compromising performance.

By pursuing these future research directions, we can deepen our under-
standing of privacy risks in machine learning and develop more effective

150

strategies to protect sensitive data. Addressing these challenges will build
upon the foundation laid by this thesis and contribute to the advancement
of privacy-preserving machine learning.

151

152

Bibliography

[1] Regulation (eu) 2016/679 of the european parliament and of the council
of 27 april 2016 on the protection of natural persons with regard to
the processing of personal data and on the free movement of such data
(general data protection regulation). OJ L 119, 4.5.2016, p. 1–88, 2016.
Accessed: date.

[2] Michael Backes, Pascal Berrang, Mathias Humbert, and Praveen
Manoharan. Membership privacy in microrna-based studies. In Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS ’16, page 319–330, New York, NY, USA,
2016. Association for Computing Machinery.

[3] Maria-Florina Balcan, Vandana Kanchanapally, Yingyu Liang, and
David Woodruff. Improved distributed principal component analysis.
In Proceedings of the 27th International Conference on Neural Informa-
tion Processing Systems - Volume 2, NIPS’14, page 3113–3121, Cam-
bridge, MA, USA, 2014. MIT Press.

[4] P.N. Belhumeur, J.P. Hespanha, and D.J. Kriegman. Eigenfaces vs.
fisherfaces: recognition using class specific linear projection. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 19(7):711–
720, 1997.

[5] C. Blake. Uci repository of machine learning databases.
http://www.ics.uci.edu/~mlearn/MLRepository.html, 1998.

[6] Avrim Blum, Cynthia Dwork, Frank McSherry, and Kobbi Nissim.
Practical privacy: the sulq framework. In Proceedings of the twenty-
fourth ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems, pages 128–138, 2005.

[7] R. Brand, J. Domingo-Ferrer, and J.M. Mateo-Sanz. Reference data
sets to test and compare sdc methods for protection of numerical mi-
crodata. Technical report.

153

[8] Solenn Brunet, Sébastien Canard, Sébastien Gambs, and Baptiste
Olivier. Novel differentially private mechanisms for graphs. IACR
Cryptol. ePrint Arch., page 745, 2016.

[9] Carole Cadwalladr and Emma Graham-Harrison. Revealed: 50 mil-
lion facebook profiles harvested for cambridge analytica in major data
breach. The Guardian, Mar 2018.

[10] Guillaume Charpiat, Nicolas Girard, Loris Felardos, and Yuliya Tara-
balka. Input similarity from the neural network perspective. In H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Sys-
tems, volume 32. Curran Associates, Inc., 2019.

[11] Kamalika Chaudhuri, Claire Monteleoni, and Anand D. Sarwate. Dif-
ferentially private empirical risk minimization. J. Mach. Learn. Res.,
12(null):1069–1109, July 2011.

[12] Kamalika Chaudhuri, Anand D Sarwate, and Kaushik Sinha. A near-
optimal algorithm for differentially-private principal components. Jour-
nal of Machine Learning Research, 14, 2013.

[13] Rama Chellappa, Charles L Wilson, and Saad Sirohey. Face recogni-
tion: A literature survey. ACM computing surveys (CSUR), 28(4):399–
458, 1996.

[14] Chaochao Chen, Jun Zhou, Longfei Zheng, Huiwen Wu, Lingjuan Lyu,
Jia Wu, Bingzhe Wu, Ziqi Liu, Li Wang, and Xiaolin Zheng. Vertically
federated graph neural network for privacy-preserving node classifica-
tion. arXiv preprint arXiv:2005.11903, 2020.

[15] Rui Chen, Benjamin C. M. Fung, Philip S. Yu, and Bipin C. Desai.
Correlated network data publication via differential privacy. VLDB J.,
23(4):653–676, 2014.

[16] Tianqi Chen, Markus Pelger, and Jason Zhu. Machine learning in asset
pricing. arXiv preprint arXiv:1904.00745, 2019.

[17] Christopher A Choquette-Choo, Florian Tramer, Nicholas Carlini, and
Nicolas Papernot. Label-only membership inference attacks. In In-
ternational conference on machine learning, pages 1964–1974. PMLR,
2021.

154

[18] Mauro Conti, Jiaxin Li, Stjepan Picek, and Jing Xu. Label-only mem-
bership inference attack against node-level graph neural networks. In
Proceedings of the 15th ACM Workshop on Artificial Intelligence and
Security, pages 1–12, 2022.

[19] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Chem.
Biol. Drug Des., 297:273–297, 01 2009.

[20] T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE
Transactions on Information Theory, 13(1):21–27, 1967.

[21] Ameya Daigavane, Gagan Madan, Aditya Sinha, Abhradeep Guha
Thakurta, Gaurav Aggarwal, and Prateek Jain. Node-level differen-
tially private graph neural networks. CoRR, abs/2111.15521, 2021.

[22] Wei-Yen Day, Ninghui Li, and Min Lyu. Publishing graph degree dis-
tribution with node differential privacy. In Fatma Özcan, Georgia
Koutrika, and Sam Madden, editors, Proceedings of the 2016 Inter-
national Conference on Management of Data, SIGMOD Conference
2016, San Francisco, CA, USA, June 26 - July 01, 2016, pages 123–
138. ACM, 2016.

[23] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language un-
derstanding, 2019.

[24] Sayanton V Dibbo. Sok: Model inversion attack landscape: Taxonomy,
challenges, and future roadmap. In 2023 IEEE 36th Computer Security
Foundations Symposium (CSF), pages 439–456. IEEE, 2023.

[25] Ruyi Ding, Shijin Duan, Xiaolin Xu, and Yunsi Fei. Vertexserum:
Poisoning graph neural networks for link inference. In Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV),
pages 4532–4541, October 2023.

[26] Ilias Driouich, Chuan Xu, Giovanni Neglia, Frederic Giroire, and Eoin
Thomas. A novel model-based attribute inference attack in federated
learning. In FL-NeurIPS’22-Federated Learning: Recent Advances and
New Challenges workshop in Conjunction with NeurIPS 2022, 2022.

[27] Michael Duan, Anshuman Suri, Niloofar Mireshghallah, Sewon Min,
Weijia Shi, Luke Zettlemoyer, Yulia Tsvetkov, Yejin Choi, David Evans,
and Hannaneh Hajishirzi. Do membership inference attacks work on
large language models? arXiv preprint arXiv:2402.07841, 2024.

155

[28] Vasisht Duddu, Antoine Boutet, and Virat Shejwalkar. Quantifying
privacy leakage in graph embedding. MobiQuitous 2020 - 17th EAI In-
ternational Conference on Mobile and Ubiquitous Systems: Computing,
Networking and Services, 2020.

[29] Vasisht Duddu, Antoine Boutet, and Virat Shejwalkar. Quantifying
privacy leakage in graph embedding. In MobiQuitous 2020 - 17th EAI
International Conference on Mobile and Ubiquitous Systems: Comput-
ing, Networking and Services, MobiQuitous ’20, page 76–85, New York,
NY, USA, 2021. Association for Computing Machinery.

[30] Cynthia Dwork. Differential privacy. In Michele Bugliesi, Bart
Preneel, Vladimiro Sassone, and Ingo Wegener, editors, Automata,
Languages and Programming, 33rd International Colloquium, ICALP
2006, Venice, Italy, July 10-14, 2006, Proceedings, Part II, volume 4052
of Lecture Notes in Computer Science, pages 1–12. Springer, 2006.

[31] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith.
Calibrating noise to sensitivity in private data analysis. In Shai Halevi
and Tal Rabin, editors, Theory of Cryptography, pages 265–284, Berlin,
Heidelberg, 2006. Springer Berlin Heidelberg.

[32] Cynthia Dwork and Aaron Roth. The algorithmic foundations of dif-
ferential privacy. Found. Trends Theor. Comput. Sci., 9(3-4):211–407,
2014.

[33] Cynthia Dwork and Aaron Roth. The algorithmic foundations of dif-
ferential privacy. 9(3–4):211–407, aug 2014.

[34] Cynthia Dwork, Kunal Talwar, Abhradeep Thakurta, and Li Zhang.
Analyze gauss: Optimal bounds for privacy-preserving principal com-
ponent analysis. In Proceedings of the Forty-Sixth Annual ACM Sym-
posium on Theory of Computing, STOC ’14, page 11–20, New York,
NY, USA, 2014. Association for Computing Machinery.

[35] Úlfar Erlingsson, Ilya Mironov, Ananth Raghunathan, and Shuang
Song. That which we call private. arXiv preprint arXiv:1908.03566,
2019.

[36] Andre Esteva, Alexandre Robicquet, Bharath Ramsundar, Volodymyr
Kuleshov, Mark DePristo, Katherine Chou, Claire Cui, Greg Corrado,
Sebastian Thrun, and Jeff Dean. A guide to deep learning in healthcare.
Nature medicine, 25(1):24–29, 2019.

156

[37] Thomas Fischer and Christopher Krauss. Deep learning with long
short-term memory networks for financial market predictions. Euro-
pean Journal of Operational Research, 270(2):654–669, 2018.

[38] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inver-
sion attacks that exploit confidence information and basic countermea-
sures. In Proceedings of the 22nd ACM SIGSAC conference on com-
puter and communications security, pages 1322–1333, 2015.

[39] Matthew Fredrikson, Eric Lantz, Somesh Jha, Simon Lin, David Page,
and Thomas Ristenpart. Privacy in pharmacogenetics: An {End-to-
End} case study of personalized warfarin dosing. In 23rd USENIX
security symposium (USENIX Security 14), pages 17–32, 2014.

[40] Chong Fu, Xuhong Zhang, Shouling Ji, Jinyin Chen, Jingzheng Wu,
Shanqing Guo, Junfeng Zhou, Alex X. Liu, and Ting Wang. Label in-
ference attacks against vertical federated learning. In USENIX Security
Symposium, 2022.

[41] Karan Ganju, Qi Wang, Wei Yang, Carl A Gunter, and Nikita Borisov.
Property inference attacks on fully connected neural networks using
permutation invariant representations. In Proceedings of the 2018 ACM
SIGSAC conference on computer and communications security, pages
619–633, 2018.

[42] Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael
Moeller. Inverting gradients - how easy is it to break privacy in feder-
ated learning? In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan,
and H. Lin, editors, Advances in Neural Information Processing Sys-
tems, volume 33, pages 16937–16947. Curran Associates, Inc., 2020.

[43] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis,
Stanford, CA, USA, 2009. AAI3382729.

[44] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter,
Michael Naehrig, and John Wernsing. Cryptonets: Applying neural
networks to encrypted data with high throughput and accuracy. In
Maria Florina Balcan and Kilian Q. Weinberger, editors, Proceedings of
The 33rd International Conference on Machine Learning, volume 48 of
Proceedings of Machine Learning Research, pages 201–210, New York,
New York, USA, 20–22 Jun 2016. PMLR.

[45] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning
for networks. In Proceedings of the 22nd ACM SIGKDD International

157

Conference on Knowledge Discovery and Data Mining, KDD ’16, pages
855–864, New York, NY, USA, 2016. ACM.

[46] Shihao Gu, Bryan Kelly, and Dacheng Xiu. Empirical asset pricing via
machine learning. arXiv preprint arXiv:1809.04788, 2018.

[47] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representa-
tion learning on large graphs. In I. Guyon, U. Von Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems, volume 30. Curran
Associates, Inc., 2017.

[48] William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive rep-
resentation learning on large graphs. In Neural Information Processing
Systems, 2017.

[49] Moritz Hardt and Aaron Roth. Beyond worst-case analysis in private
singular vector computation. In Proceedings of the forty-fifth annual
ACM symposium on Theory of computing, pages 331–340, 2013.

[50] Michael Hay, Chao Li, Gerome Miklau, and David Jensen. Accurate
estimation of the degree distribution of private networks. In 2009 Ninth
IEEE International Conference on Data Mining, pages 169–178. IEEE,
2009.

[51] Michael Hay, Chao Li, Gerome Miklau, and David D. Jensen. Accurate
estimation of the degree distribution of private networks. In Wei Wang,
Hillol Kargupta, Sanjay Ranka, Philip S. Yu, and Xindong Wu, editors,
ICDM 2009, The Ninth IEEE International Conference on Data Min-
ing, Miami, Florida, USA, 6-9 December 2009, pages 169–178. IEEE
Computer Society, 2009.

[52] Chaoyang He, Keshav Balasubramanian, Emir Ceyani, Carl Yang, Han
Xie, Lichao Sun, Lifang He, Liangwei Yang, Philip S Yu, Yu Rong,
et al. Fedgraphnn: A federated learning system and benchmark for
graph neural networks. arXiv preprint arXiv:2104.07145, 2021.

[53] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep resid-
ual learning for image recognition. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pages 770–778, 2016.

[54] Xinlei He, Jinyuan Jia, Michael Backes, Neil Zhenqiang Gong, and
Yang Zhang. Stealing links from graph neural networks. In USENIX
Security Symposium, pages 2669–2686, 2021.

158

[55] James B Heaton, Nicholas G Polson, and Jan Hendrik Witte. Deep
learning in finance. arXiv preprint arXiv:1602.06561, 2017.

[56] Nils Homer, Szabolcs Szelinger, Margot Redman, David Duggan, Waib-
hav Tembe, Jill Muehling, John V. Pearson, Dietrich A. Stephan, Stan-
ley F. Nelson, and David W. Craig. Resolving individuals contributing
trace amounts of dna to highly complex mixtures using high-density
snp genotyping microarrays. PLoS Genetics, 4, 2008.

[57] Harold Hotelling. Analysis of a complex of statistical variables into
principal components. Journal of Educational Psychology, 24:498–520,
1933.

[58] Hongsheng Hu, Zoran Salcic, Lichao Sun, Gillian Dobbie, Philip S Yu,
and Xuyun Zhang. Membership inference attacks on machine learning:
A survey. ACM Computing Surveys (CSUR), 54(11s):1–37, 2022.

[59] Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei Chang, and Yizhou
Sun. Gpt-gnn: Generative pre-training of graph neural networks. In
Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, KDD ’20, page 1857–1867, New
York, NY, USA, 2020. Association for Computing Machinery.

[60] Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller.
Labeled faces in the wild: A database for studying face recognition in
unconstrained environments. Technical Report 07-49, University of
Massachusetts, Amherst, October 2007.

[61] Thomas Humphries, Simon Oya, Lindsey Tulloch, Matthew Rafuse,
Ian Goldberg, Urs Hengartner, and Florian Kerschbaum. Investigating
membership inference attacks under data dependencies. In 2023 IEEE
36th Computer Security Foundations Symposium (CSF), pages 473–
488. IEEE, 2023.

[62] A. Hundepool, J. Domingo-Ferrer, L. Franconi, S. Giessing, E. S. Nord-
holt, K. Spicer, and P.-P. de Wolf. Statistical Disclosure Control. 2012.

[63] Hafiz Imtiaz and Anand D. Sarwate. Differentially private distributed
principal component analysis. In 2018 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 2206–
2210, 2018.

159

[64] Bargav Jayaraman and David Evans. Evaluating differentially private
machine learning in practice. In 28th USENIX Security Symposium
(USENIX Security 19), pages 1895–1912, 2019.

[65] Bargav Jayaraman and David Evans. Are attribute inference attacks
just imputation? In Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’22, page 1569–1582,
New York, NY, USA, 2022. Association for Computing Machinery.

[66] Bargav Jayaraman, Lingxiao Wang, David E. Evans, and Quanquan
Gu. Revisiting membership inference under realistic assumptions. Pro-
ceedings on Privacy Enhancing Technologies, 2021:348 – 368, 2021.

[67] Zhanglong Ji, Zachary C Lipton, and Charles Elkan. Differential
privacy and machine learning: a survey and review. arXiv preprint
arXiv:1412.7584, 2014.

[68] Jinyuan Jia, Ahmed Salem, Michael Backes, Yang Zhang, and
Neil Zhenqiang Gong. Memguard: Defending against black-box mem-
bership inference attacks via adversarial examples. In Proceedings of
the 2019 ACM SIGSAC conference on computer and communications
security, pages 259–274, 2019.

[69] Wuxuan Jiang, Cong Xie, and Zhihua Zhang. Wishart mechanism for
differentially private principal components analysis. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 30, 2016.

[70] Bowen Jin, Gang Liu, Chi Han, Meng Jiang, Heng Ji, and Jiawei Han.
Large language models on graphs: A comprehensive survey. IEEE
Transactions on Knowledge and Data Engineering, 2024.

[71] Ian T Jolliffe. Principal component analysis for special types of data.
Springer, 2002.

[72] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bel-
let, Mehdi Bennis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary
Charles, Graham Cormode, Rachel Cummings, et al. Advances and
open problems in federated learning. Foundations and trends® in ma-
chine learning, 14(1–2):1–210, 2021.

[73] Vishesh Karwa and Aleksandra B. Slavkovic. Differentially private
graphical degree sequences and synthetic graphs. In Josep Domingo-
Ferrer and Ilenia Tinnirello, editors, Privacy in Statistical Databases -
UNESCO Chair in Data Privacy, International Conference, PSD 2012,

160

Palermo, Italy, September 26-28, 2012. Proceedings, volume 7556 of
Lecture Notes in Computer Science, pages 273–285. Springer, 2012.

[74] Yigitcan Kaya and Tudor Dumitras. When does data augmentation
help with membership inference attacks? In Marina Meila and Tong
Zhang, editors, Proceedings of the 38th International Conference on
Machine Learning, volume 139 of Proceedings of Machine Learning Re-
search, pages 5345–5355. PMLR, 18–24 Jul 2021.

[75] Thomas Kipf and Max Welling. Semi-supervised classification with
graph convolutional networks. ArXiv, abs/1609.02907, 2016.

[76] Thomas N. Kipf and Max Welling. Semi-supervised classification with
graph convolutional networks. In 5th International Conference on
Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net, 2017.

[77] Gueorgi Kossinets and Duncan J Watts. Empirical analysis of an evolv-
ing social network. science, 311(5757):88–90, 2006.

[78] Saloni Kwatra, Anna Monreale, and Francesca Naretto. Balancing act:
navigating the privacy-utility spectrum in principal component anal-
ysis. In 21st International Conference on Security and Cryptography,
SECRYPT 2024, Dijon, 8 July 2024 to 10 July 2024, pages 850–857.
Science and Technology Publications, Lda, 2024.

[79] Saloni Kwatra and Vicenç Torra. Data reconstruction attack against
principal component analysis. In International Symposium on Security
and Privacy in Social Networks and Big Data, pages 79–92. Springer,
2023.

[80] Massimo La Rosa, Antonino Fiannaca, Laura La Paglia, and Alfonso
Urso. A graph neural network approach for the analysis of sirna-
target biological networks. International Journal of Molecular Sciences,
23(22), 2022.

[81] Yann LeCun and Corinna Cortes. MNIST handwritten digit database.
2010.

[82] Oscar Li, Jiankai Sun, Xin Yang, Weihao Gao, Hongyi Zhang, Junyuan
Xie, Virginia Smith, and Chong Wang. Label leakage and protection
in two-party split learning. ArXiv, abs/2102.08504, 2021.

161

[83] Yang Liu, Xiang Ao, Zidi Qin, Jianfeng Chi, Jinghua Feng, Hao Yang,
and Qing He. Pick and choose: a gnn-based imbalanced learning ap-
proach for fraud detection. In Proceedings of the web conference 2021,
pages 3168–3177, 2021.

[84] Yang Liu, Yan Kang, Tianyuan Zou, Yanhong Pu, Yuanqin He, Xi-
aozhou Ye, Ye Ouyang, Ya-Qin Zhang, and Qiang Yang. Vertical feder-
ated learning: Concepts, advances, and challenges. IEEE Transactions
on Knowledge and Data Engineering, 36(7):3615–3634, 2024.

[85] Yunhui Long, Vincent Bindschaedler, Lei Wang, Diyue Bu, Xiaofeng
Wang, Haixu Tang, Carl A. Gunter, and Kai Chen. Understanding
membership inferences on well-generalized learning models. ArXiv,
abs/1802.04889, 2018.

[86] Peihua Mai and Yan Pang. Vertical federated graph neural network for
recommender system. In International Conference on Machine Learn-
ing, pages 23516–23535. PMLR, 2023.

[87] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. Communication-Efficient Learning of Deep Net-
works from Decentralized Data. In Aarti Singh and Jerry Zhu, editors,
Proceedings of the 20th International Conference on Artificial Intelli-
gence and Statistics, volume 54 of Proceedings of Machine Learning
Research, pages 1273–1282. PMLR, 20–22 Apr 2017.

[88] Miller McPherson, Lynn Smith-Lovin, and James M Cook. Birds of
a feather: Homophily in social networks. Annual Review of Sociology,
27(1):415–444, 2001.

[89] Shagufta Mehnaz, Sayanton V Dibbo, Roberta De Viti, Ehsanul Kabir,
Björn B Brandenburg, Stefan Mangard, Ninghui Li, Elisa Bertino,
Michael Backes, Emiliano De Cristofaro, et al. Are your sensitive at-
tributes private? novel model inversion attribute inference attacks on
classification models. In 31st USENIX Security Symposium (USENIX
Security 22), pages 4579–4596, 2022.

[90] Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly
Shmatikov. Exploiting unintended feature leakage in collaborative
learning. 2019 IEEE Symposium on Security and Privacy (SP), pages
691–706, 2018.

162

[91] Riccardo Miotto, Fei Wang, Shuang Wang, Xiaoqian Jiang, and Joel T
Dudley. Deep learning for healthcare: review, opportunities and chal-
lenges. Briefings in Bioinformatics, 19(6):1236–1246, 05 2017.

[92] Payman Mohassel and Yupeng Zhang. Secureml: A system for scalable
privacy-preserving machine learning. In 2017 IEEE Symposium on
Security and Privacy (SP), pages 19–38, 2017.

[93] Milad Nasr, Reza Shokri, and Amir Houmansadr. Machine learning
with membership privacy using adversarial regularization. In Proceed-
ings of the 2018 ACM SIGSAC conference on computer and communi-
cations security, pages 634–646, 2018.

[94] Milad Nasr, Reza Shokri, and Amir Houmansadr. Comprehensive pri-
vacy analysis of deep learning: Passive and active white-box inference
attacks against centralized and federated learning. In 2019 IEEE sym-
posium on security and privacy (SP), pages 739–753. IEEE, 2019.

[95] Bao-Ngoc Nguyen, Keshigeyan Chandrasegaran, Milad Abdollahzadeh,
and Ngai-Man Man Cheung. Label-only model inversion attacks via
knowledge transfer. Advances in Neural Information Processing Sys-
tems, 36, 2024.

[96] Hiep H. Nguyen, Abdessamad Imine, and Michaël Rusinowitch. Dif-
ferentially private publication of social graphs at linear cost. In Jian
Pei, Fabrizio Silvestri, and Jie Tang, editors, Proceedings of the 2015
IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining, ASONAM 2015, Paris, France, August 25 - 28,
2015, pages 596–599. ACM, 2015.

[97] Xiang Ni, Xiaolong Xu, Lingjuan Lyu, Changhua Meng, and Weiqiang
Wang. A vertical federated learning framework for graph convolutional
network. arXiv preprint arXiv:2106.11593, 2021.

[98] Iyiola E Olatunji, Wolfgang Nejdl, and Megha Khosla. Membership
inference attack on graph neural networks. In 2021 Third IEEE In-
ternational Conference on Trust, Privacy and Security in Intelligent
Systems and Applications (TPS-ISA), pages 11–20. IEEE, 2021.

[99] Nicolas Papernot, Patrick McDaniel, Arunesh Sinha, and Michael P.
Wellman. Sok: Security and privacy in machine learning. In Proceedings
of the IEEE European Symposium on Security and Privacy (EuroS&P),
pages 399–414, 2018.

163

[100] Javier Parra-Arnau, Josep Domingo-Ferrer, and Jordi Soria-Comas.
Differentially private data publishing via cross-moment microaggrega-
tion. Information Fusion, 53:269–288, 2020.

[101] K. Pearson. On lines and planes of closest fit to systems of points in
space. Philosophical Magazine, 2(11):559–572, 1901.

[102] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online
learning of social representations. In Proceedings of the 20th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’14, pages 701–710, New York, NY, USA, 2014. ACM.

[103] P Jonathon Phillips, Hyeonjoon Moon, Syed A Rizvi, and Patrick J
Rauss. The feret evaluation methodology for face-recognition algo-
rithms. In Proceedings IEEE Conference on Computer Vision and Pat-
tern Recognition. CVPR 2000, volume 1, pages 137–143. IEEE, 2000.

[104] Pengyu Qiu, Xuhong Zhang, Shouling Ji, Tianyu Du, Yuwen Pu, Jun
Zhou, and Ting Wang. Your labels are selling you out: Relation leaks
in vertical federated learning. IEEE Transactions on Dependable and
Secure Computing, pages 1–16, 2022.

[105] Alec Radford and Karthik Narasimhan. Improving language under-
standing by generative pre-training. 2018.

[106] Sofya Raskhodnikova and Adam Smith. Efficient lipschitz extensions
for high-dimensional graph statistics and node private degree distribu-
tions. arXiv preprint arXiv:1504.07912, 2015.

[107] Benedek Rozemberczki and Rik Sarkar. Twitch gamers: a dataset for
evaluating proximity preserving and structural role-based node embed-
dings. arXiv preprint arXiv:2101.03091, 2021.

[108] Benedek Rozemberczki and Rik Sarkar. Twitch gamers: a dataset for
evaluating proximity preserving and structural role-based node embed-
dings. CoRR, abs/2101.03091, 2021.

[109] Alexandre Sablayrolles, Matthijs Douze, Cordelia Schmid, Yann Ol-
livier, and Hervé Jégou. White-box vs black-box: Bayes optimal strate-
gies for membership inference. In ICML, 2019.

[110] A. Salem, Yang Zhang, Mathias Humbert, Mario Fritz, and Michael
Backes. Ml-leaks: Model and data independent membership in-
ference attacks and defenses on machine learning models. ArXiv,
abs/1806.01246, 2018.

164

[111] Ahmed Salem, Yang Zhang, Mathias Humbert, Mario Fritz, and
Michael Backes. Ml-leaks: Model and data independent membership
inference attacks and defenses on machine learning models. CoRR,
abs/1806.01246, 2018.

[112] Ferdinando S Samaria and Andy C Harter. Parameterisation of a
stochastic model for human face identification. Proceedings of 1994
IEEE Workshop on Applications of Computer Vision, pages 138–142,
1994.

[113] Giovanni Sartor, Francesca Lagioia, et al. The impact of the general
data protection regulation (gdpr) on artificial intelligence. 2020.

[114] Anand D. Sarwate and Kamalika Chaudhuri. Signal processing and
machine learning with differential privacy: Algorithms and challenges
for continuous data. IEEE Signal Processing Magazine, 30(5):86–94,
2013.

[115] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner,
and Gabriele Monfardini. The graph neural network model. IEEE
Transactions on Neural Networks, 20(1):61–80, Jan 2009.

[116] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine
Learning - From Theory to Algorithms. Cambridge University Press,
2014.

[117] Fanhua Shang, Zhihui Zhang, Tao Xu, Yuanyuan Liu, and Hongying
Liu. Principal component analysis in the stochastic differential pri-
vacy model. In Uncertainty in Artificial Intelligence, pages 1110–1119.
PMLR, 2021.

[118] Oleksandr Shchur and Stephan Günnemann. Overlapping com-
munity detection with graph neural networks. arXiv preprint
arXiv:1909.12201, 2019.

[119] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and
Stephan Günnemann. Pitfalls of graph neural network evaluation.
ArXiv, abs/1811.05868, 2018.

[120] Reza Shokri, Marco Stronati, and Vitaly Shmatikov. Membership infer-
ence attacks against machine learning models. CoRR, abs/1610.05820,
2016.

165

[121] Lawrence Sirovich and Michael Kirby. Low-dimensional procedure for
the characterization of human faces. JOSA A, 4(3):519–524, 1987.

[122] Stephen M. Smith, Aapo Hyvärinen, Gaël Varoquaux, Karla L. Miller,
and Christian F. Beckmann. Group-pca for very large fmri datasets.
NeuroImage, 101:738–749, 2014.

[123] Liwei Song and Prateek Mittal. Systematic evaluation of privacy risks
of machine learning models. In 30th USENIX Security Symposium
(USENIX Security 21), pages 2615–2632, 2021.

[124] Liwei Song, R. Shokri, and Prateek Mittal. Membership inference at-
tacks against adversarially robust deep learning models. 2019 IEEE
Security and Privacy Workshops (SPW), pages 50–56, 2019.

[125] Elham Tabassi, Kevin J Burns, Michael Hadjimichael, Andres D
Molina-Markham, and Julian T Sexton. A taxonomy and terminol-
ogy of adversarial machine learning. NIST IR, 2019:1–29, 2019.

[126] Florian Tramèr, R. Shokri, Ayrton San Joaquin, Hoang M. Le,
Matthew Jagielski, Sanghyun Hong, and Nicholas Carlini. Truth serum:
Poisoning machine learning models to reveal their secrets. ArXiv,
abs/2204.00032, 2022.

[127] Stacey Truex, Ling Liu, Mehmet Emre Gursoy, Lei Yu, and Wenqi
Wei. Demystifying membership inference attacks in machine learning
as a service. IEEE Transactions on Services Computing, 14:2073–2089,
2021.

[128] Matthew A Turk and Alex P Pentland. Eigenfaces for recognition.
Journal of cognitive neuroscience, 3(1):71–86, 1991.

[129] Michael Veale, Reuben Binns, and Lilian Edwards. Algorithms that
remember: model inversion attacks and data protection law. Philo-
sophical Transactions of the Royal Society A: Mathematical, Physical
and Engineering Sciences, 376(2133):20180083, 2018.

[130] Petar Veličković. Everything is connected: Graph neural networks.
Current Opinion in Structural Biology, 79:102538, 2023.

[131] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana
Romero, Pietro Liò, and Yoshua Bengio. Graph attention networks.
In 6th International Conference on Learning Representations, ICLR
2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference
Track Proceedings. OpenReview.net, 2018.

166

[132] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana
Romero, Pietro Lio’, and Yoshua Bengio. Graph attention networks.
ArXiv, abs/1710.10903, 2017.

[133] Kefan Wang, Jing An, Mengchu Zhou, Zhe Shi, Xudong Shi, and
Qi Kang. Minority-weighted graph neural network for imbalanced node
classification in social networks of internet of people. IEEE Internet of
Things Journal, 10(1):330–340, 2022.

[134] Xiuling Wang and Wendy Hui Wang. Group property inference at-
tacks against graph neural networks. In Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Secu-
rity, pages 2871–2884, 2022.

[135] Zhaohui Wang, Qi Cao, Huawei Shen, Bingbing Xu, Muhan Zhang,
and Xueqi Cheng. Towards efficient and expressive gnns for graph
classification via subgraph-aware weisfeiler-lehman. In Bastian Rieck
and Razvan Pascanu, editors, Learning on Graphs Conference, LoG
2022, 9-12 December 2022, Virtual Event, volume 198 of Proceedings
of Machine Learning Research, page 17. PMLR, 2022.

[136] Bang Wu, Xiangwen Yang, Shirui Pan, and Xingliang Yuan. Adapting
membership inference attacks to GNN for graph classification: Ap-
proaches and implications. In James Bailey, Pauli Miettinen, Yun Sing
Koh, Dacheng Tao, and Xindong Wu, editors, IEEE International Con-
ference on Data Mining, ICDM 2021, Auckland, New Zealand, Decem-
ber 7-10, 2021, pages 1421–1426. IEEE, 2021.

[137] Bang Wu, Xiangwen Yang, Shirui Pan, and Xingliang Yuan. Adapt-
ing membership inference attacks to gnn for graph classification: ap-
proaches and implications. In 2021 IEEE International Conference on
Data Mining (ICDM), pages 1421–1426. IEEE, 2021.

[138] Fan Wu, Yunhui Long, Ce Zhang, and Bo Li. Linkteller: Recovering
private edges from graph neural networks via influence analysis. In
2022 IEEE Symposium on Security and Privacy (SP), pages 2005–2024.
IEEE, 2022.

[139] Xi Wu, Fengan Li, Arun Kumar, Kamalika Chaudhuri, Somesh Jha,
and Jeffrey Naughton. Bolt-on differential privacy for scalable stochas-
tic gradient descent-based analytics. In Proceedings of the 2017 ACM
International Conference on Management of Data, SIGMOD ’17, page

167

1307–1322, New York, NY, USA, 2017. Association for Computing Ma-
chinery.

[140] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi
Zhang, and S Yu Philip. A comprehensive survey on graph neural
networks. IEEE transactions on neural networks and learning systems,
32(1):4–24, 2020.

[141] Yi Xie, Yun Xiong, and Yangyong Zhu. Sast-gnn: a self-attention
based spatio-temporal graph neural network for traffic prediction. In
Database Systems for Advanced Applications: 25th International Con-
ference, DASFAA 2020, Jeju, South Korea, September 24–27, 2020,
Proceedings, Part I 25, pages 707–714. Springer, 2020.

[142] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How
powerful are graph neural networks? In 7th International Conference
on Learning Representations, ICLR 2019, New Orleans, LA, USA, May
6-9, 2019. OpenReview.net, 2019.

[143] Runhua Xu, Nathalie Baracaldo, and James Joshi. Privacy-preserving
machine learning: Methods, challenges and directions. arXiv preprint
arXiv:2108.04417, 2021.

[144] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated
machine learning: Concept and applications. ACM Transactions on
Intelligent Systems and Technology (TIST), 10(2):1–19, 2019.

[145] Andrew C. Yao. Protocols for secure computations. In 23rd Annual
Symposium on Foundations of Computer Science (sfcs 1982), pages
160–164, 1982.

[146] Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha.
Privacy risk in machine learning: Analyzing the connection to overfit-
ting. In 2018 IEEE 31st Computer Security Foundations Symposium
(CSF), pages 268–282, 2018.

[147] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L.
Hamilton, and Jure Leskovec. Graph convolutional neural networks
for web-scale recommender systems. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining, KDD ’18, page 974–983, New York, NY, USA, 2018. Associa-
tion for Computing Machinery.

168

[148] Oualid Zari, Javier Parra-Arnau, Ayşe Ünsal, Thorsten Strufe, and
Melek Önen. Membership inference attack against principal compo-
nent analysis. In International Conference on Privacy in Statistical
Databases, pages 269–282. Springer, 2022.

[149] Oualid Zari, Javier Parra-Arnau, Ayşe Ünsal, and Melek Önen. Node
injection link stealing attack. ArXiv, abs/2307.13548, 2023.

[150] Oualid Zari, Chuan Xu, and Giovanni Neglia. Efficient passive
membership inference attack in federated learning. arXiv preprint
arXiv:2111.00430, 2021.

[151] Oualid Zari, Chuan Xu, Javier Parra-Arnau, Ayse Unsal, and Melek
Onen. Link inference attacks in vertical federated graph learning. In
2024 Annual Computer Security Applications Conference (ACSAC),
Hawaii, USA, 2024. IEEE. To appear.

[152] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan,
and Viktor K. Prasanna. Graphsaint: Graph sampling based inductive
learning method. In 8th International Conference on Learning Rep-
resentations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net, 2020.

[153] Huanding Zhang, Tao Shen, Fei Wu, Mingyang Yin, Hongxia Yang, and
Chao Wu. Federated graph learning–a position paper. arXiv preprint
arXiv:2105.11099, 2021.

[154] Jun Zhang, Xiao Zheng, Ying Bi, Li Wang, Hao Zhang, Yiqun Chen,
Zhao Li, and Yang Zhang. Differentially private graph neural network
for link prediction. In Proceedings of the 2021 ACM SIGSAC Con-
ference on Computer and Communications Security, pages 1823–1837,
2021.

[155] Muhan Zhang and Yixin Chen. Link prediction based on graph neural
networks. Advances in neural information processing systems, 31, 2018.

[156] Zhikun Zhang, Min Chen, Michael Backes, Yun Shen, and Yang Zhang.
Inference attacks against graph neural networks. In 31st USENIX Se-
curity Symposium (USENIX Security 22), pages 4543–4560, 2022.

[157] Wenyi Zhao, Rama Chellappa, P Jonathon Phillips, and Azriel Rosen-
feld. Face recognition: A literature survey. ACM computing surveys
(CSUR), 35(4):399–458, 2003.

169

[158] Chengyu Zhou, Yuqi Su, Tangbin Xia, and Xiaolei Fang. Federated
multilinear principal component analysis with applications in prognos-
tics. arXiv preprint arXiv:2312.06050, 2023.

[159] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang,
Zhiyuan Liu, Lifeng Wang, Changcheng Li, and Maosong Sun. Graph
neural networks: A review of methods and applications. AI open, 1:57–
81, 2020.

[160] Junhao Zhou, Yufei Chen, Chao Shen, and Yang Zhang. Property
inference attacks against gans. arXiv preprint arXiv:2111.07608, 2021.

[161] Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu,
and Danai Koutra. Beyond homophily in graph neural networks:
Current limitations and effective designs. In Proceedings of the 34th
International Conference on Neural Information Processing Systems,
NIPS’20, Red Hook, NY, USA, 2020. Curran Associates Inc.

[162] Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients.
Advances in neural information processing systems, 32, 2019.

170

	Introduction
	Motivation
	Machine Learning Techniques and Privacy
	Privacy Attacks in Machine Learning
	Defenses Against Privacy Attacks in Machine Learning
	Problem Statement and Objectives
	Contributions and Outline
	List of Publications

	Background
	Foundations of Machine Learning
	Principal Component Analysis (PCA)
	Graph Neural Networks (GNNs)

	Federated Learning
	Introduction to Federated Learning
	Types of Federated Learning
	Vertical Federated Graph Learning (VFGL)

	Differential Privacy
	Formal Definitions of Differential Privacy
	Properties of Differential Privacy
	Mechanisms for Achieving Differential Privacy
	Differential Privacy for Graphs
	Differential Privacy in Machine Learning

	Challenges of Differential Privacy in Machine Learning
	Privacy-Utility Trade-off
	Parameter Selection (and)

	Related Work
	Privacy Attacks in Machine Learning
	Membership Inference Attacks
	Foundations and Evaluation of MIA
	Defense Strategies for MIA
	Differential Privacy and MIA

	Link Inference Attacks
	Foundations and Evaluation of LIA
	Link Inference Attacks in Federated Learning
	Defense Strategies for Link Inference Attacks

	Privacy Considerations in Principal Component Analysis
	Introduction
	Membership Inference Attack against PCA
	PCA Overfitting and Privacy Implications
	Attack Methodology
	Experimental Setup
	Results and Analysis

	Differentially Private PCA
	DP-PCA Approaches
	Experimental Evaluation

	Conclusion

	Node Injection Link Stealing Attack
	Introduction
	Attack Methodology
	Threat Model
	Adversary's Goal and Knowledge
	Node Injection Link Stealing Attack
	Strategies for Generation of Malicious Node's Features

	Experimental Setup
	Datasets
	Models
	Evaluation Methodology

	Results and Analysis
	Analysis of Malicious Feature Generation Strategies
	Comparison with Baseline Attacks
	Impact of GNN Depth
	Discussion

	Defense Strategy
	One-Node-One-Edge-Level Differential Privacy
	LapGraph Mechanism for One-Node-One-Edge-Level DP
	Evaluation of LapGraph Defense
	Discussion

	Conclusion

	Link Stealing Attacks in Vertical Federated Graph Learning
	Introduction
	Attack Methodology
	VFL system
	Gradient-based LIA
	Label-based LIA
	Baseline LIA

	Analytical Results for Link Inference Attacks
	Equivalence of Output-based and Label-based LIA
	Performance of Gradient-based LIA

	Experimental setup
	GNN Model architecture and learning setting
	Datasets
	Evaluation Metrics

	Evaluation
	Performance of Link Inference Attacks
	Ablation Studies

	Defense Strategies
	Lapgraph
	Label Perturbation
	Discussion

	Conclusion

	Conclusion and Future Work
	Conclusion
	Future Work

