
Chirp Parameter Selection for Affine Frequency
Division Multiplexing with MMSE Equalization
Zunqi Li, Graduate Student Member, IEEE, Chuanbin Zhang, Ge Song, Graduate Student Member, IEEE,

Xiaojie Fang, Member, IEEE, Xuejun Sha, Member, IEEE and Dirk Slock, Fellow, IEEE

Abstract—Affine Frequency Division Multiplexing (AFDM) is
a chirp-transform modulation technique that has shown reliable
performance in high-mobility scenarios, making it an attractive
option for next generation communication systems. Recent litera-
ture suggests that under chirp parameter adjustment, AFDM can
achieve optimal diversity performance in delay-doppler channels
with maximum likelihood (ML) detection. However, the perfor-
mance of AFDM with minimum mean square error equalization
(MMSE-Eq) has not been extensively investigated in the existing
literature. In this paper, we analyze the performance of AFDM
with MMSE-Eq, derive a lower bound for the theoretical bit error
rate (BER) of the AFDM system, and discuss the relationship
between chirp parameters and performance degradation. To opti-
mize BER performance, we propose two distinct chirp parameter
selection strategies for frequency selective and doubly selective
channels, respectively. These strategies offer the advantage of
avoiding extensive computations. Additionally, we propose a low-
complexity and high-performance iterative MMSE-Eq algorithm
based on time-domain channel matrix operations. The algo-
rithm resolves the issue encountered in existing low-complexity
methods, where different chirp parameter selections significantly
impact the complexity. Simulation results demonstrate the ef-
ficacy of our proposed parameter selection strategies and the
outstanding BER performance achieved by the iterative MMSE-
Eq algorithm.

Index Terms—Affine frequency division multiplexing, mini-
mum mean square error (MMSE), channel equalization, doubly
selective channel, frequency selective channel.

I. INTRODUCTION

NEXT generation of wireless communication system, 6G,
is expected to provide higher data rates and more reli-

able data transmission in many emerging high-speed mobil-
ity scenarios, such as Vehicle-to-Everything (V2X), railway
communications, drone communications, Industrial Internet
of Things (IIoT), as well as Space-Air-Ground-Underwater
(SAGU) networks [2]. Typically, high-speed mobility sce-
narios are always accompanied by multi-path effects and
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Doppler spread, which significantly degrades the performance
of traditional communication systems, such as Orthogonal
Frequency Division Multiplexing (OFDM) and Cyclic Prefix-
Single Carrier (CP-SC) systems [3]. Focusing on time domain
or frequency domain modulation schemes is not sufficient
in such challenging conditions. It is necessary to explore
new modulation schemes that show strong robustness in high
mobility scenarios.

A. Related Works

Chirp-multicarrier modulation schemes have recently gained
attention due to the energy spreading characteristics of chirp
subcarriers in the time-frequency plane. This spreading al-
lows for better resistance to interference and fading, making
these modulation schemes particularly effective in challenging
communication environments. One notable example is the
fractional Fourier transform multicarrier (FRFT-MC) system,
which was first proposed as a means of transferring infor-
mation in the fractional time-frequency domain to counter
the effects of doubly selective channels [4]. The imple-
mentation of FRFT-MC relies on the sampling-type discrete
fractional Fourier transform (DFRFT) [5], which is derived
from a sampled version of the continuous FRFT. The type
of DFRFT exhibits low computational complexity similar
to the fast Fourier transform (FFT). However, it lacks the
property of unitarity, meaning that the subcarriers in FRFT-
MC are unable to achieve perfect orthogonality, leading to
inevitable information loss during transmission. Inspired by
FRFT-MC, AFDM employs affine Fourier transform (AFT),
a more general formulation of chirp transform, to construct
a multicarrier modulation scheme [6]. More specifically, AFT
can be made compatible with FRFT, Fresnel transform (FnT),
and Fourier transform (FT) by adjusting the chirp parameters.
Through the application of the discretization scheme given
in [7], Discrete AFT (DAFT) can be fast implemented while
preserving unitarity. Furthermore, [6] introduced the chirp-
periodic cyclic prefix (CCP) and provided a strategy for select-
ing chirp parameters, significantly improving the reliability of
the AFDM system. In their work [8], the authors derived both
exact and approximate expressions for interference power in
AFDM systems. Building upon this research, [9] investigated
the impact of guard interval on system performance, which
demonstrated that AFDM is capable of effectively reducing
interference while maintaining high spectral efficiency.

Due to the fact that FnT can be regarded as a special
case of AFT, the investigation of Orthogonal Chirp Division



Multiplexing (OCDM) systems can also offer insights and
guidance for the advancement of AFDM systems.The digital
implementation of OCDM relies on the discrete FnT, which
produces an OCDM signal in the folded spectrum to maximize
the spectral efficiency [10]. Since each chirp spans the entire
signal band, unlike OFDM, it is hard to adjust the spectrum
of OCDM signals by deactivating the edge chirp subcarriers.
To flexibly design the spectrum of OCDM systems, a simple
method is proposed in [11]. [12] investigated the performance
of OCDM combined with different space-time codes and
demonstrated through simulations that OCDM exhibited supe-
rior performance compared to OFDM in MIMO transmission.

B. Comparison of AFDM, OTFS and OTSM

In addition to the chirp-multicarrier modulation schemes,
Orthogonal Time Frequency Space (OTFS) and Orthogo-
nal Time Sequence Modulation (OTSM) have also shown
promising performance in high-mobility scenarios by mapping
information in the delay-Doppler domain and delay-sequence
domain, respectively. Similar to AFDM, these two modulation
schemes are based on unitary transformations, ensuring or-
thogonal signal transmission. Another common feature among
these modulations is their ability to separate channel path
components based on the delay and Doppler spread, leading
to optimal maximum likelihood (ML) detection performance
[13], [14]. However, these schemes differ in four aspects:
digital implementation complexity, Peak-to-Average Power
Ratio (PAPR), pilot guard interval overhead, and parameter
flexibility.

• Digital Implementation Complexity: OTSM has lower im-
plementation complexity compared to OTFS and AFDM,
as it avoids the use of FFT [15], [16].

• PAPR: OTFS and OTSM, being 2-D modulation schemes,
avoid the superposition of all subcarriers, which reduces
peak power and results in a lower PAPR compared to the
chirp-multicarrier scheme AFDM [17].

• Pilot Guard Interval Overhead: The 2-D modulation
schemes, OTFS and OTSM, require more pilot guard
intervals to prevent interference between data and pilot,
which gives AFDM an advantage in spectral efficiency
due to its 1-D domain transmission [18].

• Parameter Flexibility: AFDM also benefits from the wide
range of adjustable parameters due to its dual chirp
parameter design, which OTFS and OTSM lack. This
provides AFDM with advantages in secure transmission
through parameter encryption [19] and superior sensing
capabilities [20].

C. Motivation and Contributions

To the best of our knowledge, the existing performance
analysis of AFDM has primarily focused on ML detection
and demonstrated the excellent performance of AFDM under
this detection. However, the intractable complexity of ML
detection makes it impractical for real-world applications and
the corresponding diversity analysis cannot be extended to the
linear equalizers. Therefore, we shift our focus to the more
commonly used MMSE equalization (MMSE-Eq). As shown

in [21], [22], under MMSE-Eq in frequency-selective channels,
each subchannel/subcarrier in CP-SC and OTFS can achieve
equal Signal-to-Interference-and-Noise Ratio (SINR), leading
to optimal transmission performance. Therefore, achieving
equal SINR transmission has become a critical criterion
for evaluating the performance of MMSE equalization. This
motivated our research on parameter selection for AFDM,
specifically exploring how to achieve equal SINR transmission
across chirp subcarriers.

The contributions in this article are summarized below.
• We present the AFDM system models with MMSE-Eq in

different domains, and demonstrate that their performance
is equivalent. We take time-domain MMSE-Eq as an
example and derive the theoretical lower bound of the
BER for the AFDM system. Furthermore, we discuss
how chirp parameters affect the performance degradation
compared to the theoretical BER lower bound.

• We analyze the performance of the AFDM system with
MMSE-Eq in both frequency selective channels and
doubly selective channels, and provide corresponding
parameter selection strategies. Based on optimal param-
eter selection, we demonstrate that AFDM can ensure
equal SINR transmission for each subcarrier by adjusting
the chirp parameters, closely approaching optimal BER
performance under MMSE equalization.

• To enable AFDM systems to have flexibility in parameter
selection, we proposed a low-complexity iterative equal-
ization algorithm. It resolves complexity issues associ-
ated with fractional Doppler in multi-iteration scenarios,
allowing each iteration to remain low in complexity
without chirp parameter considerations. This algorithm
significantly boosts performance compared to existing
low complexity equalization algorithms for AFDM in
doubly selective channels.

D. Organization and Notation
The rest of the paper is organized as follows. Section II

reviews basic AFDM concepts, which lay the foundations for
the development of AFDM transmission and chirp selection
strategies in Section III and IV. Low complexity iterative
MMSE-Eq is presented in Section V. Simulations for the
proposed parameter selection strategies and low complexity
algorithm are presented in Section VI. Finally, conclusions
are shown in Section VII.

We let b represent scalar, b represent vector, and B represent
matrix. F, IN , and 0N denote the N × N discrete Fourier
transform matrix, the identity matrix, and the zero matrix,
respectively. (·)H represents the conjugate transpose, and (·)n
denotes the n-th power. diag(b) returns a diagonal matrix
where the diagonal elements are formed by the vector b. On
the other hand, Diag(B) returns a diagonal matrix where the
diagonal elements are the same as the matrix B. tr(B) returns
the trace of B. The notation [b]N means taking the modulo
operation of b with respect to N . The notation ⌊b⌋ means
taking the floor operation applied to the value of b. B(i,j)

represents the element in the (i + 1)-th row and (j + 1)-th
column of matrix B, and b(i) represent the (i+1)-th element
of vectors b.



Fig. 1. The time-frequency representation of AFDM and OFDM subcarriers.

(a)

(b)

Fig. 2. The modulation and demodulation processes of AFDM. (a) Modula-
tion. (b) Demodulation.

II. PRELIMINARIES

A. AFDM

AFDM is a chirp-based multicarrier communication system
[6], [13], where each subcarrier is spread across the time-
frequency plane. In contrast, traditional multicarrier systems
like OFDM allocate each subcarrier to a specific frequency
point. Due to this fundamental difference, AFDM demon-
strates superior resilience to interference and fading compared
to OFDM. The time-frequency representations of both systems
are shown in Fig. 1.

Fig. 2 illustrates the modulation and demodulation processes
of AFDM, as well as the signal mapping relationships. AFDM
modulation maps the signal {xn, n = 0, 1, . . . , N−1} from the
affine frequency domain to the time domain using the Inverse
Discrete Affine Fourier Transform (IDAFT), as shown below:

Sm =
1√
N

N−1∑
n=0

xnφn(m), m = 0, 1, . . . , N − 1, (1)

where φn(m) = ej2π(c1n
2+ 1

N mn+c2m
2) represents the chirp

orthogonal basis functions of IDAFT, and c1 and c2 represent
the two chirp parameters that determine IDAFT and DAFT.
The AFDM demodulation corresponds to the inverse transform
of (1), which will not be detailed here.

The expression in (1) can be written in matrix form as s =
AHx, where AH is the IDAFT matrix and A is the DAFT
matrix. The matrix A can be computed using the diagonal
matrices Λc1 and Λc2 , as well as the discrete Fourier matrix
F:

A = Λc2FΛc1 , (2)

where Λc = diag(e−j2πcn2

, n = 0, 1, . . . , N − 1), and F can
be efficiently computed using FFT. Compared to FFT, DAFT
requires 2N extra complex multiplication operations which
results in a slight increase in complexity.

The digital implementation of AFT in (2) uses the same
sampling rate configuration as OFDM, ensuring that AFDM
occupies the same bandwidth as OFDM [10], as illustrated in
Fig. 1. This characteristic ensures that the bandwidth remains
unaffected by the system’s chirp parameter settings.

B. CCP

Inspired by OFDM’s use of the cyclic prefix, AFDM
similarly introduces the CCP to mitigate multipath effects.
According to the chirp-periodicity [23], the CCP of AFDM
systems can be represented as follows:

sncp = sN+ncpe
−j2πc1(N

2+2Nncp), (3)

where, ncp = −Lcp,−Lcp + 1, · · · ,−1 and Lcp is the length
of the CCP, which should be no shorter than the maximum
delay tap of the multipath channel, denote as lp. When 2Nc1
is an integer and N is even, e−j2πc1(N

2+2Nncp) = 1, and
sncp

= sN+ncp
. In order to facilitate the subsequent analysis

utilizing the properties of circulant matrices and to narrow
down the parameter selection range, the chirp parameter c1
is assumed to be an integer divided by 2N in the following
discussion, making CCP equivalent to CP.

C. Channel

The channel response can be described using a delay-
Doppler channel representation,

h(τ, ν) =

Npath∑
i=1

hiδ(τ − τi)δ(ν − νi), (4)

where Npath is the number of paths, hi , τi, and νi are the
complex path gain, delay, and Doppler shift associated with
the i-th propagation path, respectively. Within the geometric
coherent time, the physical propagation paths can be regarded
as time-invariant [24], and it can be assumed that the delay
and Doppler properties of the paths in (4) remain constant.

The delay tap li and Doppler-shift tap fi for the i-th path can
be obtained based on the system bandwidth B and subcarrier
spacing ∆f as follows:

li = Bτi, fi = νi/∆f (5)

Assuming that the Doppler shift tap of each path follows the
Jakes spectrum, i.e., vi = fcv cos(θi)/c, where fc is the carrier
frequency, v is the terminal speed, c is the speed of light, and
θi is uniformly distributed in the range [−π, π]. Given fc = 6
GHz, v = 550 km/h, and ∆f = 15 kHz, the corresponding
Doppler shift tap, |fi| ≤ 0.2, remains relatively small. To
accommodate higher carrier frequencies, the specified sub-
carrier spacing in 5G NR is designed as a multiple of 15
kHz. Additionally, in wideband communications, the sampling
interval resolution is sufficiently small, allowing fractional
delay taps to be approximated as integer delay taps. Therefore,
in the following discussion, doubly selective channels refer to



Fig. 3. Baseband system block diagram of the AFDM modulation with MMSE-Eq.

underspread channels with integer delay taps and fractional
Doppler shift taps where |fi| < 0.5.

According to [13], [25], the time domain channel matrix
Ht can be written as:

Ht =

Npath∑
i=1

hi∆fiΠ
li , (6)

where ∆fi = diag(e−j 2π
N fin, n = 0, 1, . . . , N − 1), Npath

represents the number of propagation paths, and Π is the
cyclic shift matrix

Π =


0 · · · 0 1
1 0 · · · 0
...

. . .
. . .

...
0 · · · 1 0


N×N

. (7)

Additionally, simulations in [13] validate that, with the
assistance of embedded pilot signals, the ML channel estimator
for AFDM systems can accurately estimate hi, li, and fi,
enabling the precise reconstruction of Ht in (6). Therefore,
perfectly known Ht is assumed in the subsequent derivations.

III. AFDM TRANSMISSION WITH MMSE-EQ

A. System Model

We consider the baseband system of the AFDM modulation
with MMSE-Eq depicted in Fig. 3, which is based on the
assumption of perfect known channel state information and
synchronization. The constellation mapper maps the bit stream
to a symbol sequence x from the M -ary constellation alphabet
S = {α0, α1, . . . , αM−1}. Then, x is converted by the IDAFT
operation into the time domain as s = AHx, where AH is the
IDAFT matrix.

After removing the CCP at the receive end, the relationship
between the transmitted signal s and the received signal r can
be written as

r = Hts+ n, (8)

where n is complex-valued AWGN, with n ∼ CN (0, σ2
nIN ).

Then, MMSE-Eq in time domain is used to suppress the
noise and interference of the received signal r,

u = AGtr = AGtHtA
Hx+AGtn, (9)

where u denotes the estimated symbol sequence and Gt

denotes the equalization matrix in time domain,

Gt = HH
t (HtH

H
t + σ2

nIN )−1. (10)

MMSE-Eq matrices in frequency domain and affine fre-
quency domain, Gf and Gaf , can be obtained by replacing

Ht in (10) with the frequency domain channel Hf = FHtF
H

and the affine frequency domain channel Haf = AHtA
H.

The processes of above MMSE-Eq can be distinguished by
the colors in Fig. 3. The estimated symbol sequence based on
MMSE-Eq in frequency domain and affine frequency domain
can be expressed as follows,

uf = AFHGfFr,

uaf = GafAr. (11)

According to (9) and (11), we have the following proposi-
tion.

Proposition 1: In AFDM systems, the performance of
MMSE-Eq in different domains is the same, i.e., u = uf =
uaf .

Proof: Since both Hf and Haf can be represented by the
time domain channel matrix Ht , (11) can further be written
as

uf = AFHFHH
t F

H(FHtH
H
t F

H + σ2
nIN )−1Fr

= AHH
t (HtH

H
t + σ2

nIN )−1r = u,

uaf = AHH
t A

H(AHtH
H
t A

H + σ2
nIN )−1Ar

= AHH
t (HtH

H
t + σ2

nIN )−1r = u. (12)

According to (12), it is easy to see that u = uf = uaf . ■

Based on Proposition 1, we choose MMSE-Eq in time do-
main to represent MMSE-Eq in other domains in the following
content, for simplicity and clarity.

B. Derivation of the Lower Bound of BER

In the MMSE equalization receiver described above, the
received signal for the i-th chirp subcarrier of the AFDM
symbol is expressed as

u(i) = T(i,i)x(i)︸ ︷︷ ︸
Signal

+
∑
j ̸=i

T(i,j)x(j)︸ ︷︷ ︸
Interference

+n′
(i)︸︷︷︸

Noise

, i, j = 0, . . . , N − 1

(13)

where

T = AGtHtA
H,

n′ = AGtn. (14)

From (13), the SINR of the i-th subcarrier can be expressed
as

βi =
T2

(i,i)

Var(
∑

j ̸=i T(i,j)x(j) + n′
(i))

, (15)



where Var denotes the variance function.
When calculating SINR, it is common to utilize the Central

Limit Theorem (CLT) and approximate the weighted sum
of the interference as following a complex-valued normal
distribution. Here, we adopt a simpler approximation method
for calculating SINR (the detailed derivation can be found in
the Appendix C of [22]),

βi =
T(i,i)

1−T(i,i)
. (16)

In [22], the simplified relation in (16) is not used for further
analysis. In this paper, we utilize this simplified relationship to
investigate the performance of AFDM. Specifically, we focus
on the diagonal elements of the equivalent matrix T, which
distinguishes our analysis from previous works.

The theoretical BER of PSK or QAM mapping with Gray
coding can be approximated as a function of SINR, and the
general expression of BER for the AFDM systems, PAFDM ,
can be obtained by taking the average of the BER of each
subcarrier,

PAFDM =
1

N

N−1∑
i=0

aM erfc(
√
bMβi)

=
1

N

N−1∑
i=0

aM erfc(

√
bMT(i,i)

1−T(i,i)
), (17)

where aM and bM depend on the mapping type [26], and
erfc-function is defined as erfc(x) = 2√

π

∫∞
x

e−t2dt.

If ϕ(x) = erfc(
√

bMx
1−x ) is defined for 0 < x < 1, then we

have

d2ϕ

dx2
=

bM e
bMx

x−1
(
2 bM x− 5x+ 4x2 + 1

)
2x

√
π (x− 1)

4
√

bM x
1−x

. (18)

For QPSK mapping, where bM = 1
2 , it can be easily proven

that d2ϕ
dx2 > 0 for 0 < x < 1, implying that the function ϕ(x)

is convex over the entire SINR range.
For other high-order PSK/QAM, the regions where convex-

ity is maintained can be calculated based on bM , which are

0 < x ≤
5−

√
(2 bM − 1) (2 bM − 9)− 2bM

8

and
5 +

√
(2 bM − 1) (2 bM − 9)− 2bM

8
≤ x < 1. (19)

where the range 0 < x ≤ 5−
√

(2bM−1)(2bM−9)−2bM
8

corresponds to the extremely low SINR region, while
5+

√
(2bM−1)(2bM−9)−2bM

8 ≤ x < 1 corresponds to the high
SINR region. The high SINR region typically falls within
common SNR ranges, as demonstrated in [1], [10], ensuring
that convexity can be guaranteed across a wide range of
communication scenarios.

According to the convexity, we can use Jensen’s inequality
to obtain the lower bound of BER under MMSE-Eq,

PAFDM =
1

N

N−1∑
i=0

aM erfc(

√
bMT(i,i)

1−T(i,i)
)

≥ aM erfc(

√√√√√√√√
bM

N−1∑
i=0

T(i,i)/N

1−
N−1∑
i=0

T(i,i)/N

) ≜ PLB . (20)

From Jensen’s inequality, it is evident that the elements on
the diagonal of matrix T are equal when PAFDM −PLB = 0,
i.e.,

T∗
(i,i) =

N−1∑
i=0

T(i,i)/N =
tr(T)

N
, (21)

where T∗
(i,i) represents the ideal value of T(i,i) and PLB

can be represented as PLB = aM erfc(

√
bMT∗

(i,i)

1−T∗
(i,i)

). This

is essentially equivalent to the viewpoint presented in [22],
which states that the SINR in CP-SC is uniform across all
subchannels in frequency selective channels. As a result, the
theoretical BER of the CP-SC system can achieve PLB .

IV. CHIRP PARAMETER SELECTION

A. Problem formulation

With the aim of minimizing the BER, we can formulate the
problem of selecting chirp parameters as follows:

min
c1,c2∈R

PAFDM − PLB

subject to c1 =
k

2N
, (22)

where k represents any integer.

Proposition 2: Given a deterministic channel , i.e., the
channel response is perfectly known, PLB for AFDM systems
under MMSE-EQ does not change with the adjustment of chirp
parameters.

Proof: Based on the cyclic property of the trace [27], we
can obtain

tr(T) = tr(AGtHtA
H) = tr(AHAGtHt) = tr(GtHt).

(23)

It can be seen from (23) that the trace of the matrix
is independent of AH and A, so the adjustment of chirp
parameters does not change the trace of T, and PLB remains
unchanged. ■

Acording to Proposition 2, it can be considered that T∗
(i,i)

in equation (21) is independent of the chirp parameter, con-
sequently, PLB remains unchanged. Furthermore, PLB is
also independent of the unitary transform and only depends
on the channel. This conclusion can be extended to other
communication systems that rely on unitary transform matrix,
such as rectangular pulse OTFS and OFDM systems.



T(i,i) can be expressed as the result of making an alteration
to the ideal value T∗

(i,i),

T(i,i) = T∗
(i,i) +∆T(i,i), (24)

where the size of the alteration is represented by ∆T(i,i),
and ∆T(i,i) can be seen as the cause of the degradation in
transmission performance.

We rewrite (24) in matrix form

Diag(T) = Diag(AHeqA
H) =

tr(T)

N
IN +Λ∆T, (25)

where

Heq = GtHt = HH
t (HtH

H
t + σ2

nIN )−1Ht (26)

represents the equivalent channel matrix after MMSE-Eq, and
Λ∆T represents the diagonal matrix with ∆T(i,i) on its
diagonal.

Heq can be decomposed as a sum of multiple matrices, as
shown in the following formula:

Heq =

N−1∑
o=0

Io(Heq), (27)

where Io(Heq) = Πo ◦Heq , ◦ denotes the Hadamard prod-
uct, and Π is the cyclic shift matrix shown in (7).

Substituting (27) into (14), T can be divided into two parts,
TD and TOD,

T = AHeqA
H

= AI0(Heq)︸ ︷︷ ︸
Diagonal

AH +A

N−1∑
o=1

Io(Heq)︸ ︷︷ ︸
Off - Diagonal

AH

≜ TD +TOD. (28)

Proposition 3: Diag(TD) represents the diagonal matrix
with the ideal value T∗

(i,i) on its diagonal, i.e., Diag(TD) =
tr(T)
N IN .

Proof: Substituting (2) into (28), we can obtain

TD = Λc2FΛc1H0Λ
H
c1F

HΛH
c2 = Λc2FH0F

HΛH
c2 , (29)

where H0 = Diag(Heq).
Based on the property of Fourier diagonalization, it can be

deduced that the matrix FH0F
H is a circulant matrix. In a

circulant matrix, the diagonal elements are completely identi-
cal, which means that Diag(FH0F

H) = tr(T)
N IN . Then, we

can obtain Diag(TD) = Λc2Diag(FH0F
H)ΛH

c2 = tr(T)
N IN .

■

Acording to Proposition 3 and (25), we can deduce that
Diag(TOD) = Λ∆T, which means that the performance
degradation comes from Diag(TOD). In other words, when
Diag(TOD) = 0N , the BER achieves the lower bound, i.e.,
PAFDM = PLB .

TOD can be expressed as TOD =
N−1∑
o=1

To =

N−1∑
o=1

AIo(Heq)A
H, and the element in the (p + 1)-th row

and (q + 1)-th column of To is given by

To(p,q) =
1

N
ej

2π
N [Nc1o

2−qo+Nc2(q
2−p2)]Fo(p,q), (30)

where

Fo(p,q) =
N−1∑
n=0

ho,ne
−j 2π

N (p−q+2Nc1o)n, p, q = 0, 1, . . . , N − 1,

(31)

ho,n is the (n + 1)-th element in the diagonal of Do(Heq),
and Do(Heq) = Io(Heq)(Π

o)−1.
Substituting p = q into (30), the element in the (p + 1)-th

row and (p+ 1)-th column of To is given by

To(p,p) =
1

N
ej

2π
N (Nc1o

2−po)Fo(p,p), (32)

where Fo(p,p) =
N−1∑
n=0

ho,ne
−j 2π

N (2Nc1o)n. Specially, when

c1 = 0, the system is equivalent to OFDM, and Fo(p,p) =
N−1∑
n=0

ho,n; when c1 = 1
2N , the system is equivalent to OCDM,

and Fo(p,p) =
N−1∑
n=0

ho,ne
j 2π

N sn.

It can be observed from (32) that the values of the diagonal
elements To(p,p) are independent of c2 and are related to the
parameter c1.

Now, the problem of minimizing PAFDM−PLB over c1, c2,
subject to c1 = k

2N , is equivalent to

min
c1∈R

|TOD(p,p)|

subject to c1 =
k

2N
, (33)

where TOD(p,p) =
N−1∑
o=1

To(p,p) and k represents any integer.

B. Chirp Parameter Selection in Frequency Selective Chan-
nels

In the previous section, the introduction of CCP in AFDM
systems is given. For AFDM systems with CCP applied, the
time-domain channel matrix Ht is a circulant matrix under
frequency selective channels, which realizes the convolution
of the channel and the transmitted signal.

Due to the fact that the product of circulant matrices is still
a circulant matrix, and the inverse of an invertible circulant
matrix is a circulant matrix, it is easy to deduce that Heq is also
a circulant matrix in frequency selective channels. This implies
that ho,n = ho,0 for n, o ∈ ∆N , where ∆N = {1, 2, . . . , N −
1}, and we can obtain

Fo(p,q) =


N−1∑
n=0

ho,n = Nho,0, if [p− q + 2Nc1o]N = 0

N−1∑
n=0

ho,0e
−j 2π

N
(p−q+2Nc1o)n = 0, else

. (34)
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Fig. 4. The magnitudes of the elements in To=1 with different c1. (a) c1 = 0.
(b) c1 = 3

2N
.

It can be observed from (30) and (34) that each row in To

has only one non-zero element, and the relationship between
the row and column of this non-zero element satisfies [p−q+
2Nc1o]N = 0.

Here, we take an example of a frequency selective 3-path
channel, set N = 16, and chirp parameters c1 are selected
as 0 and 3

2N , respectively. Fig. 4 shows the magnitudes of
the elements in To=1. As can be seen from Fig. 4, the chirp
parameter c1 can affect the elements of To. More specifically,
when c1 = 0, the non-zero elements of To are on the diagonal;
when c1 = 3

2N , the positions of the non-zero elements move,
and at this time all diagonal elements in To are 0. This means
that under the given o, a reasonable parameter c1 can ensure
that the position of non-zero elements is not on the diagonal.

Substituting (34) into (32), TOD(p,p) can be expressed as

TOD(p,p) =
N−1∑
o=1

To(p,p)

=

0, if [2Nc1o]N ̸= 0,∀o ∈ ∆N

1
N

N−1∑
o=1

ej
2π
N (Nc1o

2−po)Fo(p,p), else
.

(35)

According to (33) and (35), when [2Nc1o]N ̸= 0,∀o ∈
∆N , BER reaches the lower bound, which demonstrates that
AFDM can achieve the same level of SINR transmission for
each subcarrier as CP-SC in a frequency selective channel.
We assume that the block length N is a power of 2, which
is a common assumption in block length settings. For o ∈
∆N , the product of odd numbers and o cannot be divisible
by N , i.e., [koddo]N ̸= 0, where kodd represents any odd
number. Therefore, in a frequency selective channel, choosing
the optimal value of c1 as

c∗1 =
kodd
2N

, (36)

is a good option to minimize the BER. Importantly, the deriva-
tion of this parameter selection strategy relies on the circulant
structure of the matrix rather than on deterministic channel
impulse responses. As a result, given that the length of the
transmission block, N , typically larger than maximum delay
spread of the transmission path lp, this parameter selection
strategy does not require dependence on channel information
and thus offers broad applicability.

Fig. 5. The energy distribution of Heq .

(a)

(b)

Fig. 6. The magnitudes of the elements in To=1 with different c1. (a) c1 = 0.
(b) c1 = 8

2N
.

C. Chirp Parameter Selection in Doubly Selective Channels

The parameter selection strategy for doubly selective chan-
nels is similar to that for frequency selective channels, which
involves analyzing the distribution of non-zero elements in
the To matrix and adjusting the parameter c1 to avoid non-
zero elements appearing on the diagonal. However, due to the
matrix inversion in Gt , it is difficult to directly write out the
exact expression for the sequence ho,n, n = 0, 1, . . . , N − 1,
making it challenging to analyze how Doppler shift affects
To. To address this challenge, a chirp parameter selection
strategy is proposed, which employs an approximate approach
to efficiently analyze To.

Since (HtH
H
t +σ2

nI) is a sparse Hermitian matrix, according
to [28], the inverse matrix elements will exhibit a rapidly
decay in magnitude with increasing distance from the non-
zero elements of the original matrix. From (26), the energy of
Heq is mainly concentrated in three parts, as shown in Fig. 5:
the banded matrix region, the lower triangular matrix region
with size D×D, and the upper triangular matrix region with
size D × D. The matrix elements in other regions can be
approximated as zero, and the matrix Heq can be regarded as
a quasi-band matrix with bandwidth of 2D + 1. Then, TOD



can be approximated as

TOD ≈ A

(
D∑

o=1

Ho +

N−1∑
o=N−D

Ho

)
AH

=
∑

o∈∆D

To, (37)

which allows us to focus solely on the distribution of non-zero
elements in To for o ∈ ∆D, where ∆D = {1, . . . , D,N −
D, . . . , N − 1}. In [29], similar approximation method has
been used. Referring to their bandwidth setting, we set D =
2lp.

Observation 1: The matrix elements in To for o ∈ ∆D that
have large magnitudes are mostly concentrated within a finite
quasi-band region, where the relationship between their row
and column indices satisfies min([p− q+2Nc1o]N , N − [p−
q + 2Nc1o]N ) ≤ dv with dv serving as the threshold limit.
For more detailed information about this observation, please
refer to Appendix A.

We provide an example of a doubly selective channel, where
we set N = 32 and lp = 3, and chirp parameters c1 = 0 and
c1 = 8

2N . Fig. 6 shows the magnitudes of the elements in
To=1. Comparing Fig. 6 (a) with Fig. 4 (a), we can see that
after introducing Doppler shift, the matrix To=1 no longer
has only one non-zero element per row. The elements with
large magnitudes are mainly concentrated within a quasi-band
region, while the magnitudes in other regions are close to zero.
From Fig. 6 (b), it can be observed that when c1 = 8

2N , the
high-magnitude region has been shifted, thus avoiding these
elements being located on the diagonal.

Based on the approximation assumption that high-
magnitude elements are concentrated within a finite region,
we obtain the following equation:

To(p,q) ≈ 0,

if min([p− q + 2Nc1o]N , N − [p− q + 2Nc1o]N ) > dv.
(38)

We define do = min([2Nc1o]N , N − [2Nc1o]N ) as a metric
to describe the distance between high-magnitude region in To

and the diagonal. Based on the approximation in (37) and (38),
TOD(p,p) can be expressed as

TOD(p,p) =
D∑

o=1

To(p,p) +
N−1∑

o=N−D

To(p,p)

≈ 0, if do > dv,∀o ∈ ∆D. (39)

According to (33) and (39), if do > dv,∀o ∈ ∆D, we can
obtain Diag(T) ≈ tr(T)

N IN , and BER approachs the lower
bound. Due to the difficulty in obtaining a exact bound for
the finite region, it is hard to directly determine the value of
dv . Therefore, we aim to keep the region of high-magnitude
elements in To for o ∈ ∆D as far away from the diagonal as
possible. The parameter selection strategy can be expressed as
follows:

c∗1 = argmax
c1

(dmin). (40)

where dmin = min([do, o ∈ ∆D]) denotes the minimum
distance between high-energy regions and the diagonal.

For a given value of D, an exhaustively search for c1 is not
necessary. Instead, the following formula can be used to fast
calculate c∗1,

c∗1 =
⌊N/(D + 1)⌋

2N
. (41)

In this case, the corresponding value of dmin for c∗1 is
⌊N/(D + 1)⌋. Considering that the length of the transmission
block, N , typically exceeds lp significantly, and the Doppler
shift satisfies |fi| < 0.5, the parameter selection strategy
in (41) can ensure optimal transmission in the underspread
channels for AFDM systems.

V. LOW-COMPLEXITY ITERATIVE EQUALIZER FOR AFDM
In this section, we propose a low-complexity and high-

performance iterative LMMSE-Eq algorithm. This algorithm
relies on the parameter selection strategy presented earlier,
as the parameter selection strategy helps achieve excellent
initial performance for iterative equalization. Additionally, the
relationship Diag(T) ≈ tr(T)

N IN , obtained after optimizing
the parameters, contributes to achieving low complexity, as
will be discussed in the subsequent content.

A. Iterative LMMSE Equalizer

Iterative LMMSE-Eq (I-MMSE-Eq) is widely used in com-
munication systems [30], due to its remarkable ability to
mitigate interference. As a soft-input soft-output equalizer,
I-MMSE-Eq operates in two steps: 1) MMSE estimation
based on the prior information, and 2) update of extrinsic
information, which is then used to update the prior for the
next iteration. With each iteration, the algorithm provides
increasingly accurate information of the mean and covariance
for MMSE estimation, effectively enabling soft interference
cancellation.

In conventional I-MMSE-Eq, the inputs of each iteration
are the mean m =

[
E(x(0)), ...,E(x(N−1))

]T
and variance

η =
[
V(x(0)), ...,V(x(N−1))

]T
of the symbol sequence x. A-

prior information is needed to compute these input values, and
the formulas are given as follows,

E(x(n)) =
∑
αi∈S

αi · P (x(n) = αi),

V(x(n)) =

∑
αi⊂S

|αi|2 · P (x(n) = αi)

− |E(x(n))|2. (42)

The I-MMSE-Eq [30], [31] estimator Φx for the l-th itera-
tion can be expressed as:

(µ[ℓ],Σ[ℓ]) = Φx[y = Hx+ n],

x ∼ CN (m[ℓ], diag(η[ℓ])),n ∼ CN (0, σ2
nIN ),

(43)

where

µ[ℓ] = m[ℓ] + diag(η)HHΨ−1(y −Hm[ℓ]),

Σ[ℓ] = diag(η[ℓ])− diag(η[ℓ])HHΨ−1Hdiag(η[ℓ]), (44)



and Ψ = Hdiag(η[ℓ])HH + σ2
nIN .

Given (µ[ℓ],Σ[ℓ]), the calculation of extrinsic information
can be performed as follows,

m
[ℓ]
E(n) =

µ
[ℓ]
(n)η

[ℓ]
(n) −m

[ℓ]
(n)Σ

[ℓ]
(n,n)

η
[ℓ]
(n) −Σ

[ℓ]
(n,n)

,

η
[ℓ]
E(n) =

Σ
[ℓ]
(n,n)η

[ℓ]
(n)

η
[ℓ]
(n) −Σ

[ℓ]
(n,n)

. (45)

Then, the external information in (45) is fed back into (42)
as input for the next iteration. The updated probability is given
by

P (x(n) = αi) ∝ exp

−|m[ℓ]
E(n) − αi|2

η
[ℓ]
E(n)

 , (46)

and satisfies the normalization condition
∑

αi∈S P (x(n) =
αi) = 1.

Repeatedly perform (42)-(46) until the set termination con-
dition is met. In the final iteration, the algorithm utilizes µ
from (44) to make the demapping decision.

It is noteworthy that the matrix H varies across different
communication systems. For instance, in CP-SC systems, the
transform matrix is the identity matrix, and thus H = Ht .
However, if iterative formulas are applied in an AFDM system,
the scenario is different due to the introduction of AFT, and
the matrix H changes to H = HtA

H.

B. Low-Complexity Solutions

Equation (44) constitutes the primary source of computa-
tional complexity in iterative equalization. For analytical con-
venience, we decompose it into three parts: µ[l=1], µ[l>1], and
Σ[ℓ]. Next, we introduce a low-complexity algorithm, referred
to as Time-domain Iterative MMSE-Eq (T-MMSE-Eq). This
algorithm, based on the fast LU decomposition proposed in
[32] and variance approximation, ensures that both µ[l=1]

and µ[l>1] can be implemented with low complexity using
the time-domain channel matrix. Furthermore, leveraging the
earlier analysis regarding the approximate equality of Ti,i, we
facilitate fast computation of Σ[ℓ].

1) Solution for µ[l=1]: In the first iteration of I-MMSE-Eq
or in the conventional MMSE-Eq, no a-priori information is
available, therefore m[1] = 0N×1, diag(η[1]) = IN , and the
matrix A is eliminated during the calculation

Ψ = HtA
HAHH

t + σ2
nIN = HtH

H
t + σ2

nIN . (47)
In doubly selective channels, we can use fast LU factoriza-

tion [32] to compute the inverse of the quasi-band matrix Ψ.
This approach significantly reduces computational complexity
without performance loss.

Fast LU factorization of Ψ is shown in Fig. 7 and the
submatrices of L and U can be calculated using the following
formula,

Ψ1 = L1U1,U2 = L−1
1 Ψ3,

L2 = Ψ2U
−1
1 ,L3U3 = Ψ4 − L2U2. (48)

Fig. 7. Fast LU factorization of Ψ.

With the application of substitution alogorithms in [32],
and the fast algorithm of DAFT, we can complete the fast
implementation of µ[1] in the following calculation order,

µ[1] = HHΨ−1y = AHH
t

(2)︷ ︸︸ ︷
U−1 L−1y︸ ︷︷ ︸

(1)︸ ︷︷ ︸
(3)

. (49)

2) Solution for µ[l>1]: In subsequent iterations, each vari-
ance in η is independently calculated and is no longer equal
to each other. The matrix A can no longer be eliminated
during the calculation of Ψ, which is now expressed as
Ψ = HtA

Hdiag(η[ℓ])AHH
t +σ2

nIN . This differs significantly
from Equation (48). Consequently, we can rewrite µ[ℓ>1] as
follows:

µ[ℓ>1] = m[ℓ] +HH
afΨ

−1
af A(y −Hm[ℓ]) (50)

where

Ψaf = Haf diag(η[ℓ])HH
af + σ2

nI, (51)

The complexity of factorizing Ψaf depends on the bandwith
β, which is defined in Fig. 7. Moreover, the value of β in
matrix Ψaf is determined by Haf . Considering the fractional
Doppler shift, Haf exhibits less sparsity compared to Ht and
changes with the variation of chirp parameters [13]. As a
consequence, the value of β in matrix Ψaf also changes with
the variation of chirp parameters, leading to higher complexity
in factorizing Ψaf .

In order to avoid factorizing Ψaf as done in [33], we
substitute η̄[ℓ]IN for diag(η[ℓ]), and calculate (44) using the
time-domain channel matrix,

µ[ℓ>1] = m[ℓ] + η̄[ℓ]AHH
t Ψt

−1(y −Hm[ℓ]) (52)

where

Ψt = η̄[ℓ]HtH
H
t + σ2

nIN , (53)

and η̄ represents the mean value of sequence η[ℓ]. The approx-
imation of diag(η[ℓ]) with η̄[ℓ]IN essentially treats the off-
diagonal elements of the covariance matrix as zeros during
the affine frequency domain to time domain transformation,
which effectively prevents bandwidth β spreading. Due to
the absence of off-diagonal elements, this approximation may
result in slight performance degradation [34]. Nevertheless,
considering the significant reduction in complexity, this ap-
proximation is acceptable.



3) Solution for Σ[ℓ]: To compute the extrinsic information
as shown in (45), only the diagonal elements of matrix Σ[ℓ]

are required, which can be obtained by calculating

Diag(Σ[ℓ]) = (η̄[ℓ]IN )− (η̄[ℓ]IN )Diag(HHΨ−1
t H)(η̄[ℓ]IN ).

(54)

It is worth noting that when computing (45), it is also
necessary to replace η

[ℓ]
(n) with η̄[ℓ].

Based on the performance analysis of AFDM pre-
sented in the previous section, it can be assumed that
Diag(T) ≈ tr(T)

N IN ≈ T(1,1)IN with a selected
c∗1, and this approximation can be further generalized to
Diag(HHΨ−1

t H) ≈ (HHΨ−1
t H)(1,1)IN . Therefore, we can

compute only (HHΨ−1
t H)(1,1) instead of all diagonal el-

ements. The calculation of (HHΨ−1
t H)(1,1) can follow a

similar order as in (49), which is shown below,

(HHΨ−1
t H)(1,1) = HH

(1,:)Ψ
−1
t H(:,1)

= (HtA
H
(:,1))

H

(2)︷ ︸︸ ︷
U−1 L−1(HtA

H
(:,1))︸ ︷︷ ︸

(1)

. (55)

C. Complexity Analysis

Our low-complexity solutions effectively simplify the com-
putational burden of (44). The primary complexities arise
from four parts, which are (48), (49), (53), and (55). The
comparison of complexity before and after using the low-
complexity solutions in Section V-B is presented in TABLE
I. From the table, it is evident that our low-complexity
solutions significantly reduce the complexity, making them
more suitable for transmissions with large block lengths N .
The complexity of the proposed algorithm for l iterations is
O(l[P 2

t + β2
t + log2(N)]N), where Pt denotes the number

of non-zero elements in each row of the matrix Ht and
βt = 2lp + 1 is the bandwidth of the Hermitian matrix Ψt .

The existing low-complexity MMSE algorithm (LC-
MMSE-Eq) for AFDM, as proposed in [33], performs low-
complexity operations in the affine frequency domain. How-
ever, these operations exhibit significant complexity variations
depending on changes in the chirp parameters, particularly
when fractional Doppler shifts are considered. Let βaf denote
the bandwidth of the Hermitian matrix Ψaf . The computa-
tional complexity of LC-MMSE-Eq is given by O(β2

afN),
where βaf = min(4Nc1lp+2kv +1, N)1, and kv is the mini-
mum threshold for path separation under fractional Doppler
shifts. With a large c1, such as the parameter choice in
(41), Ψaf lose their sparsity. As a result, βaf approaches
N and the complexity of the existing algorithm increases to
O(N3), which is significantly higher than that of the proposed
algorithm under large block length transmissions.

In Fig. 8, we provide an illustration of matrix sparsity in
the affine frequency domain and time domain. Specifically, Ψt

and Ψaf are compared under the same channel realization. For
this comparison, we consider a doubly selective channel with

1To simplify the analysis, we assume that c1 > 0 and kv is sufficiently
large to ensure equalization performance.

(a) (b) (c)

(d)

Fig. 8. An illustration of matrix sparsity in time domain and affine frequency
domain. (a) Ψt . (b) Ψaf , c1 = 2

2N
. (c) Ψaf , c1 = 5

2N
. (d) Comparison of

βt and βaf with different c1.

TABLE I
COMPARISON OF COMPLEXITIES.

Operation Proposed T-MMSE-Eq I-MMSE-Eq in (44)

µ[l]

(48) O(β2
tN)

O(N3)(49) O(βtN + log2(N)N)

(53) O(P 2
t N)

Σ[ℓ] (55) O(βtN + PtN) O(βtN2 + PtN2)

N = 32, lp = 3, and kv = 3. From Fig. 8 (a-c), we can
observe that the matrix Ψt exhibits greater sparsity and has
a smaller bandwidth compared to Ψaf under different values
of c1. Furthermore, Fig. 8 (d) illustrates that the β value in
Ψt depends only on the time-domain channel matrix and is
independent of AFT, while the βaf values in Ψaf increase as
the chirp parameter c1 increases (until the band expansion fills
the entire matrix, i.e., βaf = N ). Consequently, compared to
the low-complexity operations in the affine frequency domain,
the time-domain low-complexity operations do not require
considering the effects of fractional Doppler shifts and chirp
parameters on Ψaf , leading to a more efficient approach.

VI. SIMULATION RESULTS

In this section, we evaluate the BER performance of AFDM
with MMSE-Eq under various chirp parameters to verify
the effectiveness of the parameter selection. Additionally,
we present simulation results of the proposed T-MMSE-
Eq method. For the subsequent simulations, perfect channel
state information is assumed at the receiver, and the channel
model is based on (6). Specifically, it consists of uncorrelated
Rayleigh fading paths, each with a uniformly distributed angle.
The channel impulse responses follow two types of power
delay profile (PDP): the exponential decay model [35] and
the EVA channel model [36]. It is worth noting that in all
the subsequent comparisons, we assume that the transmission



QPSK, fc=9 GHz, N=64, SNR=16 dB, ∆f=15 kHz, Exponentially decaying PDP

(a)
QPSK, fc=9 GHz, N=64, SNR=16 dB, ∆f=15 kHz, v=360 km/h, Exponentially decaying PDP

(b)

Fig. 9. An illustration of parameter selection strategy effectiveness. (a) In
frequency selective channels. (b) In doubly selective channels.

blocks under different modulation schemes occupy the same
bandwidth and time duration.

To validate the effectiveness of the parameter selection
strategy, we present simulations for AFDM with MMSE-
Eq in frequency selective channels (lp = 7) and doubly
selective channels (lp = 2), respectively, as shown in Fig.
9. In frequency-selective channels, our parameter selection
strategy avoids the potential performance degradation that may
occur when 2Nc1o ̸= kodd, as demonstrated in Fig. 9 (a).
For doubly selective channels, the parameter selection strategy
does not focus on the parity but aims to maximize the distance
dmin by adjusting c1. As shown in Fig. 9 (b), c∗1 corresponds
to the maximum dmin, effectively mitigating the significant
performance degradation that may occur at lower dmin values.
For instance, small dmin values at c1 = 0, 1

2N , 16
2N , 21

2N , 32
2N

can lead to noticeable increases in error rates. These results
indicate that AFDM with the optimized parameters provided
by (36) and (41) closely approaches optimal performance. It
is noteworthy that our parameter selection strategies operate
under the constraints of (35) and (39), offering a solution
that avoids complex computations based on very limited
channel prior information. This suggests that other parameter
configurations may also enable the AFDM system to achieve
excellent performance. With complete channel information,
the value of D could be determined more precisely, rather
than relying on the empirical value related to lp, allowing
for further optimization of the parameter selection strategy.
However, subsequent simulations have validated that AFDM
with our strategy approximates the lower bound exceptionally
well, indicating that further performance improvements would
be very limited.

In Fig. 10 (a), we demonstrate the performance of AFDM
with MMSE-Eq under different chirp parameters in frequency
selective channels. The performance of CP-SC, rectangular
pulse OTFS [25], OTSM [14] with MMSE-Eq and PLB in
(20) are also shown for comparison. AFDM with c1 = 0 is
equivalent to OFDM, in which case [2Nc1o]N = 0,∀o ∈ ∆N .
As a result, the system’s performance is severely degraded,
which can be observed from the worst performance shown in
Fig. 10 (a). If c1 = 128

2N , then [2Nc1o]N = 0 for all even values
of o, which means that the performance degradation cannot be

completely avoided under this parameter setting. AFDM with
c∗1 = 3

2N can achieve equally good performance as CP-SC,
OTFS, OSTM, and PLB , which proves that this parameter
selection strategy can ensure equal SINR for each subcarrier.
At SNR=18 dB, OFDM achieves a BER that is comparable
to the four mentioned modulation schemes operating at a
lower SNR of 10 dB. The observed performance gap of 8
dB demonstrates the significant BER improvement provided
by equal SINR transmission [22].

Fig. 10 (b) shows the performance of AFDM under doubly
selective channels with different choices of chirp parameters.
If c1 = 0 or c1 = 256

2N , it is evident that dmin = 0. This
means that the high energy region of To does not move
away from the diagonal, and thus AFDM performs poorly
under these parameter choices. AFDM with c1 = 1

2N is
equivalent to OCDM, where the minimum distance dmin = 1.
Although the performance degradation is less severe compared
to the previous cases, there is still a noticeable 1 dB gain
loss compared to the ideal performance at BER = 7 × 10−5.
The BER performance of AFDM with c∗1 is close to PLB , as
shown in the figure. According to (41), we choose c∗1 = 13

2N
and verify that this parameter selection strategy effectively
avoids performance degradation. The figure also illustrates the
performance of CP-SC, OTFS and OTSM in doubly selective
channels. The introduction of Doppler shift prevents CP-SC
from achieving equal SINR transmission, resulting in a certain
level of performance degradation. At BER = 1.5× 10−4, CP-
SC exhibits approximately a 2 dB performance gap compared
to AFDM with optimized parameters. On the other hand,
OTFS and OTSM demonstrate excellent performance with
MMSE-Eq, exhibiting the same BER performance as AFDM.
This affirms that OTFS and OTSM also possess the capability
for equal SINR transmission. However, given that AFDM
requires fewer pilot guard overheads and offers unique param-
eter flexibility, it emerges as a more competitive waveform in
certain communication scenarios compared to 2-D modulation
schemes.

Fig. 10 (c) and (d) illustrate the BER performance of the
AFDM communication system under 16QAM mapping. It can
be observed that the proposed parameter selection strategies
remain effective, allowing AFDM to achieve performance
comparable to OTFS, OTSM and PLB . A noteworthy observa-
tion is that AFDM with c∗1 exhibits slightly worse performance
compared to the OFDM in the low SNR region. This perfor-
mance gap arises due to the convexity constraint imposed by
high-order mapping in (19), which is more easily satisfied in
the high SNR region. In contrast, QPSK mapping satisfies the
convexity constraint across the entire SNR range. Therefore,
the AFDM system with c∗1 consistently demonstrates the best
performance under QPSK mapping.

Fig. 11 presents a comparison of the BER performance of
the AFDM under different speed settings. The choice of c1 =
1

2N can be considered as a parameter selection strategy for
frequency selective channels. It can be observed that in low-
speed mobile scenarios where the Doppler shift effect is small,
AFDM can achieve good performance even with parameter
selection designed for frequency selective channels. As the
moving speed increases, the performance gap between AFDM



QPSK, N=256, ∆f=15 kHz,
fc=9 GHz, Exponentially decaying PDP

(a)

QPSK, N=512, ∆f=15 kHz,
fc=9 GHz, v=540 km/h, EVA PDP

(b)

16QAM, N=256, ∆f=15 kHz,
fc=9 GHz, Exponentially decaying PDP

(c)

16QAM, N=512, ∆f=15 kHz,
fc=9 GHz, v=540 km/h, EVA PDP

(d)

Fig. 10. BER performance of AFDM with different chirp parameters. (a) QPSK in frequency selective channels. (b) QPSK in doubly selective channels. (c)
16QAM in frequency selective channels. (d) 16QAM in doubly selective channels.

QPSK, N=512, SNR=16dB,
∆f=15 kHz, fc=9 GHz, EVA PDP

Fig. 11. BER performance of AFDM with different speed settings.

QPSK, N=512, SNR=16dB,
∆f=15 kHz, fc=9 GHz, EVA PDP

Fig. 12. The magnitudes of T(i,i) in doubly selective channels.

with c1 = 1
2N and c∗1 becomes more noticeable, as the impact

of Doppler shift effect cannot be ignored. On the other hand,
the choice of c∗1 based on (41) takes into account the Doppler
effect and ensures that dmin is as large as possible. Therefore,
it achieves outstanding performance at different speeds.

As a supplement to Fig. 11, Fig. 12 depicts the magnitudes
of T(i,i) under different parameters. According to (21), when
T(i,i) = tr(T)

N , it can be considered that each subcarrier
experiences equal SINR transmission. The optimized c∗1 en-
sures that T(i,i) is approximately equal under different speeds.
Consequently, this implies an approximation of equal SINR
transmission. AFDM with c1 = 1

2N approaches equal SINR
transmission more closely in a simulated environment at a
speed setting of 100 km/h. However, at a speed of 600
km/h, the magnitudes of T(i,i) under c1 = 1

2N exhibit more
pronounced fluctuations.

In Fig. 13, we compare the BER performance of the LC-
MMSE-Eq [33], conventional MMSE-Eq, I-MMSE-Eq and
T-MMSE-Eq for AFDM systems. Additionally, OFDM, CP-
SC, OTFS, and OTSM, as the most prominent waveforms

QPSK, N=512, ∆f=15 kHz,
fc=9 GHz, v=540 km/h, EVA PDP

(a)

QPSK, N=512, ∆f=15 kHz,
fc=9 GHz, v=540 km/h, EVA PDP

(b)

Fig. 13. The BER performance of (a) AFDM under different equalizers and
(b) iterative equalizers under different modulation schemes.

today, are also included in the figure, with their respective
BER performance depicted for comparison. It’s worth noting
that zero-padding is not applied in this simulation to en-
sure a fair comparison of BER while maintaining the same
spectral efficiency. From Fig. 13 (a), it can be observed
that AFDM with 5 iterations of I-MMSE-Eq outperforms
the other algorithms, followed by our proposed T-MMSE-Eq,
with approximately a 0.5 dB performance gap in the high
SNR region. The performance difference between the two is
due to the loss of information in the variance matrix when
applying the low-complexity approximation. And LC-MMSE-
Eq, fundamentally a modification of MMSE-Eq, approximates
small elements induced by fractional Doppler shift in the affine



N=512, v=540 km/h, ∆f=15 kHz,
fc=9 GHz, EVA PDP

Fig. 14. Convergence behaviour of iterative equalizers for AFDM.

frequency channel matrix to zero. Therefore, LC-MMSE-Eq
provides worse resilience to significant fractional Doppler
shifts than conventional MMSE-Eq. In summary, the proposed
algorithm significantly reduces the complexity of I-MMSE-Eq
with only a slight performance loss. Compared to the existing
LC-MMSE, it offers both lower complexity and superior
performance.

According to the simulation results in Fig. 10 (b), it can
be seen that both OTSM and OTFS have the potential to
achieve equal-SINR transmission. Since the proposed low-
complexity algorithm is based on the equal-SINR transmission
property, it can also be applied to OTSM and OTFS. In Fig.
13 (b), AFDM, OTSM and OTFS achieve very similar perfor-
mance under both T-MMSE-Eq and I-MMSE-Eq. However,
OFDM and CP-SC fail to provide strong initial performance,
which limits the improvement of their iterative performance.
Compared to the other three waveforms, OFDM shows a
performance gap of over 10 dB at BER = 2 × 10−3, while
CP-SC has a gap of around 1 dB at BER = 3× 10−4.

Fig. 14 illustrates the convergence of the iterative MMSE-
Eq algorithms. It can be observed that, under different con-
stellation mappings, the algorithm exhibits good convergence.
Specifically, there is a significant improvement in BER with
a small number of iterations. As the number of iterations
increases (l ≥ 5), the performance improvement becomes
marginal. To further improve BER performance or reduce
the number of iterations required for convergence, additional
measures such as channel coding are required. The extent of
enhancement depends on the chosen channel coding scheme,
which can be adjusted to balance performance gains with com-
putational efficiency. In the low SNR region, due to the inabil-
ity to exchange reliable external information, the performance
of T-MMSE-Eq and I-MMSE-Eq is quite close. However, at
high SNR region, a notable performance difference emerges
between the two algorithms. I-MMSE-Eq achieves excellent
performance with fewer iterations. However, considering the
significantly reduced complexity, the proposed algorithm is
more suitable for practical applications.

VII. CONCLUSION

In this paper, we investigate the impact of different param-
eters on the performance of the AFDM system. We propose
two parameter selection strategies specifically designed for

Fig. 15. The magnitudes of the elements in To=1(128,:) with c1 = 0 obtained
by approximated method and exact method.

Fig. 16. The magnitudes of the elements in To=1(128,:) with c1 = 0 for
high speed settings.

frequency selective and doubly selective channels, respec-
tively. For frequency selective channels, the parameters can
be selected independently of the channel. While dealing with
doubly selective channels, the strategy necessitates knowl-
edge of the maximum path delay in the channel. These
parameter selection strategies eliminate the need for complex
matrix operations and exhaustive search, making them more
practical for applications. Additionally, we introduce a T-
MMSE-Eq algorithm that utilizes the time-domain channel
matrix, thus eliminating the need to account for variations in
chirp parameters. This algorithm achieves high performance
through multiple iterations of MMSE estimation, while still
maintaining low computational complexity. In conclusion, all
of the aforementioned approaches effectively enhance the
implementation of AFDM with MMSE-Eq and demonstrate
outstanding performance. In future work, it is worth consid-
ering the research of jointly applying MMSE-Eq and channel
coding in AFDM systems for Turbo equalization.

APPENDIX A
EXTENSIONS OF OBSERVATION 1

We rewrite the time-varying channel in (6) as

Ht =

P∑
i=1

hiΠ
li [IN + (∆fi − IN )]

=

P∑
i=1

hiΠ
li +

P∑
i=1

hiΠ
li(∆fi − IN ) ≜ H

′
t +∆Ht . (56)



Assuming that |fi| is a sufficiently small nonzero value,
∆Ht is close to 0N . The matrix inversion in Gt can be
approximated using the matrix perturbation formula:

(HtH
H
t + σ2

nI)
−1 = (B+∆B)−1 ≈ (B−1 −B−1∆BB−1),

(57)

where

B = H
′

tH
′H
t + σ2

nI,

∆B = H
′

t∆HH
t +∆HtH

′H
t +∆Ht∆HH

t , (58)

and ∆B can be viewed as a matrix perturbation of the circulant
channel matrix B. It is worth noting that the above formulas
take into account the scenarios where multiple paths with
different Doppler shifts share the same delay tap.

Equation (30) implies that the magnitude matrix of To with
c1 ≠ 0 is equivalent to the magnitude matrix of To with
c1 = 0 after undergoing a circular shift. Therefore, in order to
simplify the analysis, we only analyze the case where c1 = 0,
and the analysis can be generalized to the case where c1 ≠ 0
using circular shift operations.

Using the function Io(·) in (27), we give the expression
of To with c1 = 0, which is shown in (59). As B−1 is a
circulant matrix, FIo1(B

−1)FH is a diagonal matrix. Given
that |fi| is sufficiently small, the magnitude of the elements
in FIo2(Ht)F

H and FIo3(H
H
t )F

H fast decrease as the row-
column relationship satisfies min(|p−q|, N−|p−q|) increases.
In other words, the two matrices can be approximated as quasi-
band matrices with narrow bandwidth, as also observed in
[13]. Therefore, as the product of the aforementioned three
matrices, P1 can be approximated as a quasi-band matrix,
similar to the matrix product shown in Fig. 5. The analysis
for P1 can be extended to P2, which can be decomposed
into the product of several diagonal matrices and quasi-band
matrices with narrow bandwidth. Due to space limitations, we
do not analyze P2 in detail. Considering that the sum of quasi-
band matrices is still a quasi-band matrix, we can assume that
the high magnitude elements in To with c1 = 0 for o ∈ ∆D

are mainly concentrated within a finite region, where the row-
column relationship should satisfy the condition that min(|p−
q|, N − |p− q|) is smaller than a certain threshold, as shown
in Observation 1.

We consider a system with N = 256, N/B = 1/15 kHz,
SNR = 10 dB. This system is analyzed at two different
maximum Doppler-shifts, fmax = 3.7×10−3 and 7.4×10−3,
corresponding to the movement speeds of 10 km/h, and
20 km/h, respectively. The magnitudes of the elements in
To=1(128,:) using the perturbation approximation given in
(59) and the exact values are shown in Fig. 15. The figure
demonstrates that the perturbation approximation is close to

the exact values, and also validates the effect of introducing
small-scale Doppler shift to a static channel on the region
containing high-magnitude elements.

According to (5), as the moving speed increases, fi in-
creases and the approximate analysis method may no longer
be reliable. For high-speed moving scenarios, we provide
statistical observations of 10,000 channel realizations. The
mean magnitudes of To=1(128,:) with different moving speeds
are displayed in Fig. 16. The moving speeds are set to be 250
km/h, 350 km/h, 450 km/h, and 550 km/h, respectively. From
the figure, we can observe that in scenarios with high moving
speeds, the region of high-magnitude elements still follows
Observation 1. This provides a basis for our chirp selection
strategy in doubly selective channels.
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