
A Study on the Evolution of Kernel Data Types Used in Memory Forensics
and Their Dependency on Compilation Options

Andrea Oliveri, Nikola Nemes, Branislav Andjelic, Davide Balzarotti

Abstract

Over the years, memory forensics has emerged as a powerful analysis technique for uncovering security breaches that
often evade detection. However, the differences in layouts used by the operating systems to organize data in memory
can undermine its effectiveness. To overcome this problem, forensics tools rely on specialized "maps", the profiles, that
describe the location and layout of kernel data types in volatile memory for each different OS. To avoid compromising
the entire forensics analysis, it is crucial to meticulously select the profile to use, which is also tailored to the specific
version of the OS.
In this work, for the first time, we conduct a longitudinal measurement study on kernel data types evolution across
multiple kernel releases and its impact on memory forensics profiles. We analyze 2,298 Linux, macOS, and Windows
Volatility 3 profiles from 2007 to 2024 to investigate patterns in data type changes across different OS releases, with
a particular focus on types relevant to forensic analysis. This allowed the identification of fields commonly affected by
modifications and, consequently, the Volatility plugins that are more vulnerable to these changes. In cases where an
exact profile is unavailable, we propose guidelines for deciding on the most appropriate alternative profile to modify and
use. Additionally, using a tool we developed, we analyze the source code of 77 Linux kernel versions to measure, for the
first time, how the evolution of compile-time options influences kernel data types. Our findings show that even options
unrelated to memory forensics can significantly alter data structure layouts and derived profiles, offering crucial insights
for forensic analysts in navigating kernel configuration changes.

1. Introduction

Memory forensics enables analysts to reconstruct a sys-
tem’s state by analyzing volatile data from a computer’s
memory (RAM), providing critical insights that other foren-
sic methods cannot achieve, including the list of running
processes, active network connections, opened files, en-
cryption keys, and traces of user activity that can reveal
the presence of malware, unauthorized access, or other se-
curity breaches.

Unlike traditional storage media analysis, like hard drives
and SSDs, memory forensics presents unique challenges
due to the diverse ways operating systems (OSs) organize
and store data in RAM. Each OS maintains system status
information using data structures like linked lists, trees,
and arrays, built with basic types such as C structs or
unions. However, these structures differ in how they orga-
nize the information, with fields located at different offsets
and linked in various ways. Forensic tools such as Volatil-
ity [25] and Rekall [4] address this challenge by leveraging
detailed models of kernel data types from widely used OSs
like Windows, Linux, and macOS. These models, known
as "profiles", serve as blueprints that describe the kernel
data types and their locations in memory, enabling the
post-mortem recovery of critical forensic information.

However, profiles are OS-specific and require regular
updates to reflect the structural changes introduced in new

OS versions. This challenge is exacerbated in open source
operating systems like Linux, where users can extensively
customize the kernel with various compile-time options. In
such cases, a generic profile is insufficient; analysts must
create and use a target-specific profile tailored to the ker-
nel’s specific configuration. It is important to note that
the correct profile for a specific kernel under analysis is
sometimes unavailable. This can occur either because the
profile cannot be obtained or, in the case of Linux, be-
cause the compile-time configuration options are unknown,
making it impossible to generate a specific profile for the
machine.

A possible solution strategy that an analyst can use
to overcome the problem is to derive information about
kernel data types for a specific kernel version from pro-
files she believes are compatible with the system in ques-
tion. However, this can lead to significant errors, as the
layout of data structures may differ drastically between
kernel versions. To better support this process, a quan-
tification of how the data types used in memory forensics
have evolved over time across major operating systems is
needed. Furthermore, the impact of Linux compile-time
options on the profiles used for forensic analysis, despite
being well-known by the forensics community, has never
been properly characterized or quantified. Finally, there
are currently no guidelines that can help analysts in se-
lecting a compatible profile that maximizes the amount of

Preprint submitted to DFRWS EU 2025 December 10, 2024

Listing 1: Example of the different data types used by kernels to represent a process.

task_struct (Linux)
struct task_struct {

#ifdef CONFIG_THREAD_INFO_IN_TASK
struct thread_info thread_info;

#endif
unsigned int __state ;
void ∗ s tack ;
struct refcount_t usage ;
unsigned int f l a g s ;
unsigned int ptrace ;
int on_cpu ;
. . .
struct list_head tasks;
. . .
struct mm_struct *mm;
. . .
struct list_head sibling;
. . .

}

proc and task (macOS)
struct proc {

LIST p_list;
struct proc ∗p_pptr ;
struct proc_ro ∗p_proc_ro ;
. . .

}

struct task {
struct lck_mtx_t lock ;
struct os_refcnt_t ref_count ;
bool a c t i v e ;
. . .
_vm_map *map;
. . .
queue_head_t threads;
. . .

}

_EPROCESS (Windows)
struct _EPROCESS {

struct _KPROCESS Pcb ;
struct _EX_PUSH_LOCK ProcessLock ;
void ∗UniqueProcessId ;
LIST_ENTRY ActiveProcessLinks;
struct _RUNDOWN_REF RundownProtect ;
unsigned long Flags2 ;
long Addre s sSpac e In i t i a l i z ed ;
union _LARGE_INTEGER CreateTime ;
unsigned long ProcessQuotaUsage [2] ;
unsigned long ProcessQuotaPeak [2] ;
unsigned long PeakVirtua lS ize ;
. . .
LIST_ENTRY ThreadListHead;
. . .
struct _RTL_AVL_TREE VadRoot;
. . .

}

forensic information retrieved from a target image.

Contribution – In this work, we perform, for the first
time, a longitudinal measurement study of how kernel data
structures evolved across different kernel releases and how
these changes affect the profiles used by memory foren-
sics tools. In a first set of experiments, we analyzed 2298
Volatility 3 profiles for different Linux, macOS, and Win-
dows kernel versions released from 2007 to 2024. We looked
at how the data types evolved across different kernel re-
leases, with particular attention to the types used in mem-
ory forensics. This measurement allowed us to identify
which Volatility plugins are the most vulnerable to changes
in the data structures layout and to which extent a profile
built for a wrong (but close) release of an OS can be used
to recover forensic information, proposing a set of guide-
lines for selecting the most appropriate profile when the
required one is unavailable.

Furthermore, for the first time in literature, we have
characterized and quantified the impact of compile-time
configuration changes in the Linux kernel. We have de-
veloped a tool to analyze the source code of 77 different
Linux kernel versions, allowing us to study how the evo-
lution of compile-time options in the source code affects
data structures. Our study highlights that the introduc-
tion of new options, even those not typically associated
with memory forensics, can significantly alter these data
structures and has permitted us to identify which kernel
options most affect forensic data types.

This theoretical study represents an initial step to-
wards enhancing researchers’ understanding of this phe-
nomenon and also aims to support the development of
future practical tools to address the issue of missing or
unavailable profiles.

2. Background

The set of data types that represent the system’s state
is specific for each OS, and data type properties such as
their sizes, fields’ positions, and the pointers that connect
them often change across the different releases of the same
OS. An example of this diversity and variability is repre-
sented by how Linux, macOS, and Windows store informa-

tion about running processes, as shown in Listing 1. All
three operating systems use C struct types to represent
process data, yet they employ different structure’ layouts.
Linux uses a huge C struct type called task_struct of
approximately 10 KiB, Windows adopts an approach sim-
ilar to Linux but uses a significantly smaller data type, the
_EPROCESS. Finally, macOS divides this information into
two distinct data types: proc and task1. It is also impor-
tant to note that in Windows and macOS, a process acts
as a container for threads, with each thread being repre-
sented by a distinct kernel data structure. In contrast, in
Linux, each thread is represented in the kernel in a way
that is indistinguishable from a process and using the same
data structure.

The task_struct contains multiple fields, including,
for example, a node of the doubly linked list of all the
processes running on the system (highlighted in green), a
pointer to a mm_struct type containing information about
the address space of the process (in red) and another dou-
bly linked list connecting to processes of the same group,
as Linux represents threads as processes with the same
task group ID (in blue). In contrast, threads in macOS
are treated as separate entities, represented by a distinct
data type maintained in a separate list. Furthermore, the
data types used to maintain the linked list of running pro-
cesses (in green) and information about the address space
(in red) are completely different from the Linux ones. The
same observation can be made for Microsoft Windows.

For Linux, another source of kernel data type vari-
ability derives from the possibility to recompile the ker-
nel enabling or disabling CONFIG_* compile-time options
that modify not only the kernel code but also the presence
and the layout of the data types used by the kernel. At
the source code level, these options are implemented as
#ifdef C precompiler macros that selectively insert fields
in the data structure types. An example of these options is
present in Listing 1: if the CONFIG_THREAD_INFO_IN_TASK
option (highlighted in brown) is enabled at compile time,

1This is a direct consequence of the fact that XNU, the ma-
cOS kernel, is a merge of two different kernels, the Mach kernel of
NeXTSTEP and the FreeBSD one, and thus still maintains part of
the data types and internal organization of both.

2

the structure thread_info is embedded in the task_struct
as a field. This results in the presence of an additional
field in the structure but also causes all subsequent fields
to be shifted by an offset equal to the size of the embed-
ded substructure. Hence, a profile compiled for a generic
kernel without the option enabled fails to provide the cor-
rect offsets required to analyze a memory dump where the
option was instead activated during compilation. An ex-
treme case is provided by the CONFIG_RANDSTRUCT option.
When enabled, it causes the compiler to randomly shuffle
the memory layout of specific kernel data structures dur-
ing compilation. This means that the offsets of the fields
within these structures will vary from one build to another,
forcing the analyst to create a specific profile not only for
the version and configuration of the kernel but also for the
specific build.

3. Method

In our research, we use two distinct methods to study
the evolution of kernel data structures in different OSs and
the impact of the reconfigurability of the Linux kernel: one
based on available Volatility 3 profiles and one based on
the analysis of the Linux kernel codebase.

3.1. Profile Based Analysis
Volatility 3 [25] uses a standardized JSON profile for-

mat that contains all the types whose definitions are avail-
able in debugging symbols of the kernel binary. This al-
lows the tool to access type information, not only for open
source OSs but also for closed ones for which only debug-
ging symbols are available, like macOS2 and Windows.

Our work takes advantage of this by creating a dataset
of different Volatility 3 JSON profiles for the three OSs.
This standardized format allows us to analyze the evolu-
tion of data structure over time and compare equivalent
types across different operating systems. In particular, we
collect statistics for each version of the three OSs by com-
paring the JSON profiles for consecutive versions.

3.2. Source Code Analysis
To quantify how the CONFIG_* compile-time options

modify the layout of Linux kernel data types, we need to
analyze the source code of the Linux kernel directly. How-
ever, existing static analysis techniques and tools assume
that the source code has already gone through the pre-
processor and, therefore, are unsuitable for studying the
impact of #ifdef CONFIG_* directives. To overcome this

2The source code of XNU, the macOS kernel, is open source[2].
However, Apple has not released the kernel configurations and the
complete buildchain for compilation. This means that builds ob-
tained using third-party compilation scripts produce kernel binaries
that may contain different structures’ layouts compared to the official
releases.

limitation, we have developed a custom technique to ex-
tract, parse, and compare data structure types across dif-
ferent versions of Linux. The process is composed of three
steps:

1) Data Structure Extraction – First, we extract the
source code of the data structure types for each Linux ker-
nel version. We use an index file of language objects gener-
ated by the Universal Ctags tool [10] to locate all the data
structure types within the kernel code. The tool generates
index files for data types and other language objects, such
as variables and functions, allowing editors and other util-
ities to locate their positions quickly. For each data type,
the tool extracts the structure definition, filters out com-
ments and unnecessary C macro, and accounts for inner
blocks of code. The resulting code snippets are stored in
a single JSON file for each kernel version, alongside the
name of the type and the paths of the source file from
which they were extracted.

2) Data Structure Parsing – After the extraction of the
raw data types, our tool parses them by using a syntac-
tic metalanguage, the Backus-Naur Form (BNF) [16, 12]
similar to the one used by compilers. A BNF language
specification consists of a set of derivation rules (which
can be recursive) that describe the structure of the target
language. When a BNF specification is applied to a sam-
ple of the language it describes, it generates an ordered
rooted tree that represents the syntactic structure of the
sample known as a parsing or derivation tree.

We use the open source Python parsing toolkit lark [22]
to generate parsing trees based on BNF specifications of C
structs and unions definitions that we have devoloped.
The parsing tree is then used to generate a structured
JSON representation of the data structure, which facili-
tates semantic comparisons by organizing the data as a
root tree object with associated fields and metadata. Each
field can be a primitive type (e.g., pointers, integers, floats)
or an embedded data structure (e.g., C struct or C union),
and includes attributes such as its name, size, type (e.g.,
int, char), and the #ifdef expressions it depends on.

3) Data Structure Comparison – Comparison is per-
formed between the JSON representations of consecutive
kernel versions, matching each data structure type in one
version with the corresponding structure in the next. If a
data structure is present in only one of the two versions,
it is classified as either newly added or deleted. For struc-
tures that appear in both versions, individual fields are
compared, considering factors such as field type (e.g., int,
array, pointer), field data type (e.g., int), the number of
elements in arrays, and the #ifdef conditions affecting
field presence.

In the rest of the paper, at the end of each section,
in which we analyze various aspects of the Volatility 3
profiles dataset and the impact of reconfigurability on the
Linux kernel, we include a Takeaways box. These boxes
summarize the key findings and provide guidelines to assist

3

Table 1: Profile-based OSs dataset.

OS Kernel versions

From/To Total
Total Changed/
Forensic Fields

Offset Shift Only

Linux

2.6.32-13
(Debian 6)
6.5.10-1

(Debian 12)

509 69.75% – 12.77%

macOS

10.6.3.10D573
(Snow Leopard)

14.3.23D60
(Sonoma)

195 63.64% – 15.90%

Windows

6.0.6000.16386
(Windows Vista)
10.0.22621.3235
(Windows 11)

1594 23.34% – 1.69%

forensic analysts in scenarios where the correct profile is
unavailable, helping them select an alternative profile that
can be manually adapted.

4. Profile-based Analysis

We begin our study by looking at the kernel data struc-
tures of the three most used operating systems, tracking
their evolution between 2007 and 2024. In total, we an-
alyzed 1594 releases of Microsoft Windows, 195 of ma-
cOS, and 509 Debian precompiled kernels. The dataset
of Volatility 3 profiles was obtained by combining differ-
ent online repositories [25, 11] with profiles we generated
starting from debugging kernels (Linux) [3], kernel devel-
opment kits (macOS) [1] or PDB files (Windows) [15]. We
chose Debian kernels as representative compiled Linux ker-
nels, as Debian is a widely used distribution for both desk-
top and server environments, with easily accessible kernel
builds available online dating back to 2007. As shown in
Table 1, despite having analyzed all publicly released ma-
cOS kernel versions for which it is possible to generate a
profile, the dataset contains approximately 8 times fewer
macOS kernel versions than Windows. This happens be-
cause Apple releases kernel development kits needed for
profile generation only for some major and minor versions
of the kernel and a few patch releases. It is also impor-
tant to note that information about data types exported
in debug symbols of proprietary kernels can be incomplete
or represent only a subset of all the kernel data types due
to the security-by-obscurity approach frequently used in
proprietary code bases.

4.1. Evolution of Kernel Data Types
Figure 1 shows, for each release of the kernels, the total

number of data structure types (in blue) and the percent-
age of them that were modified from the previous release
(in green). These curves illustrate an interesting difference
in the use and management of data types across the three
operating systems. All three show a continuous increase in

the number of types over time, although at different rates
and with distinct patterns. For instance, recent releases of
the Linux kernels contain over five times more data types
than Windows and 12% more than macOS.

It is interesting to observe that macOS maintains a
relatively constant number of types throughout each ma-
jor release’s lifespan, experiencing significant spikes only
with the introduction of new OS releases and high ratios
of data types changing at them. From Table 1 we can also
note that approximately two-thirds of the kernel versions
exhibit at least a kernel data type subjected to change, a
ratio similar to what can be observed in Linux.

In contrast, Linux exhibits a more consistent growth
ratio in the number of types. This phenomenon can also
be observed in the percentage of modified data structures,
which do not appear to follow any specific pattern. We can
note, in particular, that Linux follows a similar trajectory
to macOS until the 4.x major release. Beyond this point,
the introduction and modifications of data types become
erratic, no longer tied to major releases, and more akin to
a rolling release development model.

On the other hand, Windows demonstrates remarkable
stability in its data types, with only 23% of kernel releases
affected by modifications to the data types’ fields. Addi-
tionally, it displays distinct behavior regarding changes in
data types: prior to the launch of Windows 10, most modi-
fications to data types occurred alongside the introduction
of a new major Windows release, similar to macOS. Af-
ter the introduction of Windows 10, kernel versions with
over 5% of modified data structures correspond instead
to different Windows 10 marketing "codenames" releases.
Interestingly, the introduction of Windows 11, despite be-
ing a major release, shows a similar percentage of new
and modified structures as a minor Windows 10 release.
This pattern is consistent with a shift to a rolling release
development model that started with the introduction of
Windows 10. Hence, from a forensic standpoint, Windows
10 and Windows 11 should be viewed as "umbrella names"
encompassing a series of distinct operating systems akin to
traditional major releases, each corresponding to various
minor releases of the same underlying kernel.

Takeaways: Linux, macOS, and Windows all exhibit
significant variability in kernel types, with Linux becom-
ing more erratic after version 4.x and macOS primar-
ily changing between major releases. Windows, which
showed high variability only during major releases be-
fore Windows 10, shifted to a rolling release model with
Windows 10 and 11, where each "codename" minor re-
lease displays variability comparable to major OS re-
leases.

4.2. Evolution of Memory Forensics Types
We now focus on the evolution of those data struc-

ture types used in memory forensics analysis. These ker-
nel data structures include fields that store forensically
relevant information or pointers to other structures that

4

2
.6

.x

3
.x

4
.x

5
.x

6
.x

2000

2500

3000

3500

4000

4500

5000

5500

N
u
m

b
e
r

o
f

d
a
ta

 t
y
p
e
s

Linux

1
0

.6
1

0
.7

1
0

.8
1

0
.9

1
0

.1
0

1
0

.1
1

1
0

.1
2

1
0

.1
3

1
0

.1
4

1
0

.1
5

1
1

1
2

1
3

1
4

2500

3000

3500

4000

4500

macOS

V
is

ta 7 8
8

.1 1
0

1
1

V
is

ta 7 8
8

.1 1
0

1
1

500

600

700

800

900

1000

1100

Windows

0

5

10

15

20

25

30

35

40

45

50

0

5

10

15

20

25

30

35

40

45

50

0

5

10

15

20

25

30

35

40

45

50

Pe
rc

e
n
ta

g
e
 o

f
d
a
ta

 t
y
p
e
s

ch
a
n
g
e
d

Figure 1: Blue dots: number of data types. Green crosses: percentage of data types with at least a change. Black dashed lines: major
revisions. Grey dashed lines: Windows 10 editions. Starting from 10.15, Apple changes major release numbering format.

Table 2: Percentage of the total number of changes in forensics fields divided by kind and change class for the entire lifetime of Linux, macOS
and Windows.

Linux macOS Windows

Field Kind Added Removed Changes Added Removed Changes Added Removed Changes
Prop. Offset Prop. Offset Prop. Offset

Data Field 4.27 4.41 - 30.10 1.20 1.50 0.30 35.74 0.72 2.15 - 11.47
Pointer 0.28 1.03 1.17 27.27 0.30 2.10 2.70 26.73 0.36 1.08 0.72 22.94
Embedded Struct 3.10 3.10 6.88 12.81 - - 3.00 18.02 0.36 0.36 13.98 30.47

Total 7.65 8.54 8.05 70.18 1.50 3.60 6.00 80.49 1.44 3.59 14.70 64.88

do. For instance, the task_struct type in Linux con-
tains the comm field, which stores the process name, and
the real_cred pointer, which points to a data structure
containing the process’s privilege information. This in-
formation is essential for exploring relevant structures or
extracting forensically relevant data using analysis tools
like Volatility, which specifically utilize these fields.

In our study, we manually reviewed the plugin set shipped
with Volatility 2 to identify data types used by the tool
to extract artifacts. We chose to focus on Volatility 2
plugins for the study rather than Volatility 3 plugins, as
the latter are significantly fewer and lack many features
available in the former. This limitation would reduce the
number of data structures analyzed, ultimately affecting
the study’s validity. We have identified 29 data structures
for Linux, 36 for macOS, and 44 for Windows, encompass-
ing 455 forensically relevant fields. These fields directly
contain data or serve as pointers linking the forensic data
types. The complete types and fields for each OS can be
found in the README file of our tool used for to perform
the analysis [18].

4.2.1. Global Statistics
A total of 171,960 unique modifications to fields of ker-

nel types were identified in the profiles in our dataset be-
tween 2007 and 2024. Of these modifications, 2064 were to
forensic-relevant fields, comprising 1452 for Linux, 333 for
macOS, and 279 for Windows. We define a modification
as the insertion or deletion of a field, a change in its kind
(e.g., a data field becoming a pointer), a change in the field
type (e.g., for a data field from int to float or changing in
pointed type for pointers), a change in its total size (e.g.,
an increase in the size of an embedded array, struct, or

union), and a change in the offset of the field within the
parent structure. For atomic C types like int, pointers,
char, etc., we only consider a change in type if the new
(pointed) type has a different size than the previous one.
This is because typedefs are often used as syntactic sugar
to better describe types, but they do not introduce any se-
mantic difference from the original type they are derived
from. Furthermore, it is important to note that a change
in one field can create a cascade of changes in subsequent
fields, each of which is considered a distinct modification in
our approach. For example, suppose a new field is added
to a type. In that case, we record a modification for the
new field’s introduction and additional modifications for
each subsequent field whose offset changes due to the shift
caused by the introduction of the new field. Table 2 breaks
down these changes into categories based on what was up-
dated. We report the percentage of changes among foren-
sic fields specifically for three kinds: data fields, pointers,
and embedded structures. The other field kinds, such as
embedded arrays, unions, and bitfields, are not included
due to their marginal contribution. Changes are divided
into three categories: adding, removing and changing of a
field, the last one divided in changing of an internal prop-
erty (kind, type, or size), and changing in the field’s offset.
Finally, we provide a summary line with the totals for each
column for the three major field types. Combinations with
no occurrences are marked with a "-".

It can be observed that for all three operating systems,
most of the recorded changes pertain to the offset changes
of fields (in grey in the Total row). This occurs because,
as explained before, a change in the size of a field or its
addition/removal causes a shift in all subsequent fields.

Interestingly, while the primary contribution to this

5

type of change for Linux and macOS comes from data
fields kind, for Windows, it mainly comes from embedded
structures. Additionally, in Windows, a significant 14%
of the changes, compared to the 7% of Linux, are due to
embedded structures changing internal properties, partic-
ularly their size. For Linux, notable contributions (around
3%) stem from the changes in the type of embedded struc-
tures and the addition and removal of base kind fields.

We have also measured that in most cases in Linux
(93%), new fields are added within the structure itself
rather than at the end. Lower percentages are observed
in macOS (78%) and Windows (62%). This suggests that
adding a field to a forensics-related structure–whether or
not it is directly related to a forensic-relevant functionality–
will likely cause a shift in many other fields.

Takeaways: The majority of changes in structure types
stem from alterations in the offsets of fields, with em-
bedded structures (Windows) and pointers fields (Linux
and macOS) being the most affected.

4.2.2. Offsets Modification
Now, we focus only on field offset shifts because they

represent, as demonstrated in the previous section, the ma-
jority of changes in fields. As shown in Table 1, only 16%
of the macOS kernel version and less than 2% of the Win-
dows ones introduce changes in the offset of essential fields
in forensics data types. While this is undoubtedly positive,
it is crucial to examine how these alterations have been im-
plemented across the historical development of the three
operating systems. In order to respond to this question,
Figure 1 illustrates the proportion of data types with at
least one forensic-related field with a modified offset across
a range of kernel versions. The release of major kernels is
indicated by a blue cross, that of minor releases by a green
triangle, and that of patch releases by a red dot. From the
graph, it is evident that for macOS the majority of mod-
ifications occur during the transition between two major
releases (73%). Conversely, for Windows, most changes
take place during patch releases (51%) and major releases
(40.5%), while in Linux, they predominantly occur during
minor releases (69.3%).

Upon closer analysis of the plot, additional patterns
emerge that could be crucial in a real forensic analysis
when a profile is not available3. In that case, the analyst
needs two pieces of information that are included in the
unavailable profile: the location of kernel global variables
and the offsets of forensics-related fields in data types. We
will discuss the evolution of kernel global variables and
the ways an analyst can extract them if the correct pro-
file is unavailable in Section 4.2.5.Regarding the offsets of

3The problem of lack of profile in Linux is known to the foren-
sics community and discussed in literature [20, 9]. However, macOS
and Windows might also suffer from similar problems. For instance,
Apple does not release the Kernel Development Kit for all kernel
versions or does so with a significant delay, and sometimes the PDBs
released by Microsoft are corrupted.

Table 3: TOP5 forensics types per number of modifications.

Linux macOS Windows
Type Count Type Count Type Count

task_struct 398 proc 85 _EPROCESS 118
mm_struct 254 task 58 _CMHIVE 35
inet_sock 130 thread 58 _ETHREAD 35
vm_area_struct 55 inpcb 24 _HHIVE 11
sock 44 vnode 16 _OBJECT_TYPE 7

data structures, we can observe that for macOS, after sev-
eral major releases, which consistently alter the layout of
data types, other important changes happen only in mi-
nor ones. This pattern can be seen with macOS versions
10.8, 10.10, 11, 12, 13, and 14. This suggests that if the
correct kernel version profile is unavailable, a profile from
the major release or a subsequent minor release can likely
be used successfully, completely ignoring the patch ones.
For Windows 10 instead, starting from the fourth edition,
a potentially effective strategy, when the necessary profile
is not accessible, is to use offsets from a profile from the
same Windows edition but with the highest possible patch
version. Finally, in Linux, changes mainly occur at minor
releases only. Therefore, one possible strategy is to use
offsets taken from a profile from the nearest lower minor
release.

Takeaways: The three OSs exhibit distinct patterns in
how forensic-related data type changes occur, enabling
analysts to mitigate the absence of a profile. For macOS,
profiles from the nearest major release could be used,
while for Windows, the highest patch version of the same
edition can be effective, and for Linux, the nearest lower
minor release provides can be a reliable alternative.

4.2.3. Most Affected Fields
To conclude this part, we examine which structures

and fields are most affected by offset changes throughout
the evolution of the three operating systems. As shown in
Table 3, the structure most impacted across all three OSs
is the one containing process information. For Linux and
macOS, the next most affected structures are related to
memory and network information, while for Windows, it
is related to the Registry.

Table 4 highlights the specific fields with the most off-
set changes, once again revealing a clear predominance of
fields related to process information structures. Specif-
ically, in Linux, the field that changed the most is the
one containing the process name, followed by the pointer
to the process’s credentials and several other fields like
children, sibling, and parent, which are crucial for
reconstructing the process hierarchy. A similar pattern
is observed in macOS, where the most affected fields are
within the two structures containing process information.
In Windows, the top fields are those related to important
process flags (CrossThreadFlags), the process’s address
space (VadRoot), and thread names. Additionally, also
fields related to Registry keys are often impacted.

6

2
.6

.x

3
.x

4
.x

5
.x

6
.x

0

5

10

15

20

25

30

35

40

Pe
rc

e
n
ta

g
e
 o

f
fo

re
n
si

cs
 d

a
ta

 t
y
p
e
s

m
o
d
ifi

e
d

Linux

1
0

.6
1

0
.7

1
0

.8
1

0
.9

1
0

.1
0

1
0

.1
1

1
0

.1
2

1
0

.1
3

1
0

.1
4

1
0

.1
5

1
1

1
2

1
3

1
4

0

5

10

15

20

25

30

35

40
macOS

V
is

ta 7 8
8

.1 1
0

1
1

0

5

10

15

20

25

30

35

40
Windows

Figure 2: Percentage of forensics data types with at least a change in field’s offset per kernel version. Blue crosses: major releases. Green
triangle: minor releases. Red dots: patch releases.

Table 4: TOP10 forensics fields per number of modifications.

Linux macOS Windows
Type Field Count Type Field Count Type Field Count

task_struct comm 33 thread thread_id 18 _ETHREAD CrossThreadFlags 14
real_cred 33 threads 17 _EPROCESS VadRoot 14

mm_struct exe_file 28 task all_image_info_addr 15 ExitTime 13
task_struct children 27 all_image_info_size 15 _ETHREAD StartAddress 13

group_leader 27 bsd_info 14 _CMHIVE FileFullPath 9
parent 27 proc p_comm 12 FileUserName 9
pid 27 p_name 12 HiveRootPath 9
sibling 27 p_argc 11 _EPROCESS ActiveThreads 8
stack_canary 27 p_argslen 11 _ETHREAD ThreadName 8
tgid 27 p_fd 10 _HHIVE Storage 8

Takeaways: Structures that contain information about
processes are the most affected by offset changes in their
field in particular process relations, virtual address space
and flags. Unfortunately, these are also the most com-
monly used data structures in forensic analysis.

4.2.4. Volatility Plugins Affected
With the information now available, we can identify

which Volatility plugins are most likely to encounter prob-
lems in extracting forensic information due to incorrect
offsets in data types. As shown in Table 4 and discussed
in the previous section, the most affected fields across all
three operating systems are those containing data or point-
ers related to types used to represent processes. Plugins
such as pslist, pstree, psaux, ps_env, and threads,
which list the processes and threads present in the system
by traversing pointers that link these types—like children
and sibling in Linux and threads in macOS—become
entirely nonfunctional. Moreover, other plugins rely on
these to locate processes for further analysis. Consequently,
if one of these plugins breaks, the dependent plugins will
also fail.

Examples of plugins broken due to the dependency on
process listing plugins include those that dump the mem-
ory of a process, such as dump_map, elf, and procdump,
those that list and dump linked libraries, like librarylist
and librarydump, or those that locate a process by name,
such as the macOS plugins bash and calendar, which an-
alyze and extract information from the bash process and
the system calendar by using their names contained in the
p_comm field of the proc structure to identify them among

the other processes.
On Windows, problems can also arise with plugins that

list and dump the address space of processes, like vadinfo,
due to the usage of VadRoot field, which contains the root
of the tree representing a process’s address space and is
commonly subjected to offset changing [6, 26]. Another
series of plugins that can be significantly affected by in-
correct offsets are those related to extracting the Windows
Registry keys from memory like hivelist and dumpreg-
ister that rely on the FileFullPath field in _CMHIVE.
Furthermore, missing offset for the data field ExitTime
drastically reduces the possibility of the timeliner plug-
ins creating a correct timeline from the various artifacts in
memory.

Additionally, plugins that locate files and sockets opened
by a process, such as lsof, listraw and p_fs, may fail en-
tirely, for example, in macOS due to issues with the p_fd
field that points to the list of file descriptors opened.

The lack of correct offsets for specific pointers can some-
times be circumvented using plugins that carve types based
on specific memory signatures, like pool tags in Windows.
These plugins, such as psscan, allow at least the identi-
fication of those data types in memory. However, if the
offsets of other important fields, such as VadRoot, are not
known, the analyst is forced to locate them manually.

Takeaways: Incorrect offsets in data types can affect
essential Volatility plugins used for extracting process
information, cached files, and Registry data. However,
in some cases, especially with Windows, memory carving
techniques can serve as a workaround to identify data
types without relying on pointer offsets.

7

4.2.5. Kernel Global Variables
Profiles also contain the locations of kernel global vari-

ables that point to or store important data structures used
by Volatility to setup and start the analysis. These vari-
ables can change their location in different kernel versions
due to introducing or removing code and data parts in the
kernel binary. Generally, these variables are exported as
global symbols in ELF, Mach-O, or PE kernel files, allow-
ing them to be retrieved through static analysis tools if
a valid profile is unavailable. If direct extraction is not
feasible, an analyst might use symbol location information
from a profile that closely matches the one being analyzed.

To set up an analysis, the minimum set of required
symbols includes those used by Volatility to initialize the
virtual-to-physical address translation system and pointers
to the list of active processes and loaded kernel modules.
To determine if offsets from a partially matching profile
can be adapted, the graph in Appendix displays the maxi-
mum absolute shifts in the offsets of these three key kernel
variables between adjacent kernel versions for the three
OSs. The variables analyzed are detailed in the graph’s
caption.

Significant differences among the three OSs are evident:
these variables change location much more frequently in
Windows (44%) compared to Linux and macOS (14% and
21%, respectively), corroborating the findings in [5]. In
macOS, these changes usually coincide with new minor
releases (indicated by green triangles in the graph), while
in Linux and Windows, they are associated with patch
releases (red dots). Moreover, in 76% of Windows cases,
the maximum shift of these variables is smaller than the
physical page size (represented by the grey dashed line
in the graph), in particular starting from the last minor
release of Windows 10. In contrast, in Linux and macOS,
the shift is typically larger—averaging 1.2MiB for 94% of
Linux kernels and 748KiB for 87% of macOS versions.

Takeaways: If kernel variable offsets are missing in
Linux and macOS, it is advisable to use offsets from
the nearest patch version profile for Linux and the clos-
est minor release for macOS, due to the infrequent but
significant and unpredictable changes in these OSs. For
Windows, however, use the nearest patch release and
consider brute-forcing offsets within a ±4KiB range of
the original.

5. CONFIG_* Influence on Linux Kernel Profiles

In this Section, we examine how the CONFIG_* options
modify the layout of data structures in the Linux kernel.
Using the technique described in Section 3.2, we analyze
the source code of 77 different minor releases of the Linux
kernel source code, from version 2.6.32 up to 6.7, success-
fully parsing 96.6% of the extracted structures. The re-
maining 3.4% types are data structure types that contain
very complex C macro embedded in their definition that

2
.6

.x

3
.x

4
.x

5
.x

6
.x

9.00

9.25

9.50

9.75

10.00

10.25

10.50

10.75

11.00

11.25

Pe
rc

e
n
ta

g
e
 o

f
d
a
ta

 t
y
p
e
s

a
ff

e
ct

e
d
 b

y
 C

O
N

FI
G

_*
 o

p
ti

o
n
s

Figure 3: Percentage of Linux kernel data types affected by CONFIG_*
options. Green crosses and red dot: versions affected by cascade
effect. See Subsection 5.1 for more details.

2
.6

.x

3
.x

4
.x

5
.x

6
.x

300

350

400

450

500

550

600

To
ta

l
n
u
m

b
e
r

o
f

u
n
iq

u
e
 C

O
N

FI
G

_*
 o

p
ti

o
n
s

20

21

22

23

24

25

26

Pe
rc

e
n
ta

g
e
 o

f
C

O
N

FI
G

_*
o
p
ti

o
n
s

a
ff

e
ct

in
g
 f

o
re

n
si

cs
 t

y
p
e
s

Figure 4: Blue dots: total number of unique CONFIG_* options in
Linux kernel. Red crosses: percentage of CONFIG_* options affecting
forensics types. Dashed lines: linear fit to highlight the different
trends.

cannot be easily resolved without implementing a com-
plete C preprocessor and setting some CONFIG_* to a fixed
value. However, we emphasize that none of the analyzed
forensic types fall into this category.

5.1. Cascade Impact of CONFIG_* on Data Types
Figure 3 shows the percentage of kernel data types af-

fected by at least one CONFIG_* option across the different
kernel versions. It is interesting to observe that for certain
versions, represented with green crosses and a red dot,
there are sudden modifications in the number of affected
types that can be directly attributed to the introduction
or removal of a single configuration option.

In fact, a CONFIG_* option can affect a field of a struc-
ture that is then embedded in many others through a
chain of inclusions. In this case, all of them will be indi-
rectly modified. For instance, in versions 2.6.35 and 2.6.39
(depicted with green crosses), the introduction and sub-
sequent removal of the CONFIG_OF option in the struct
device introduced a chain dependency in 157 other kernel
types. A more striking example is the introduction and
immediate subsequent removal of the
CONFIG_LOCKDEP_CROSSRELEASE option [17] in version 4.14
(depicted in red in Figure 3). This option was introduced
in struct lockdep_map, a structure representing cross-
locking mutexes essential for the proper functioning of the
OS, but not containing any data relevant to forensic analy-
sis. However, because it is embedded in many other types,
it impacted a total of 1451 data types, including 12 foren-
sic data types such as task_struct, module, and inode.

8

Takeaways: The kernel contains many chains of nested
data structures. As a result, introducing even a single
new option in a peripheral non-forensics type can, in
some cases, trigger cascading changes in many others,
including those used in memory forensics.

5.2. Evolution of the Impact of CONFIG_* Options
Figure 3 shows a consistent decline in the percentage

of types affected by CONFIG_* options since the 4.x series.
This could suggest that, globally, types are becoming less
dependent on compile-time configurations, thus resulting
in a more predictable behavior. However, as depicted in
Figure 4 (blue dots), the total number of CONFIG_* op-
tions impacting data types continues to increase linearly,
expanding the potential combinations and resulting lay-
outs for various types. Additionally, examining the trend
of the percentage of the options influencing forensic types
(red crosses), it is possible to distinguish two contrast-
ing behaviors: prior to the 4.0 release, the percentage de-
creased, whereas from this release onwards, the number
steadily increases over time. Consequently, starting from
version 4.0, forensic types may experience a growing num-
ber of possible combinations for field offsets, resulting in
less predictable profile information.

Takeaways: Starting from release 4.0, the influence of
CONFIG_* options on forensics type increased despite an
overall reduction in the number of affected kernel data
types.

5.3. Influence of Particular Options
To better understand how options influence the layout

of forensic types, we counted how many fields of forensic
types each group of options influences (groups are defined
by the first branch of the Kconfig tree that defines each
option). Table 5 reports the top ten groups and the total
number of forensic fields they influence across all kernel
versions. The "Kernel Hacking" group, which includes op-
tions related to kernel development, testing, and tuning,
is the primary source of variability among the fields of
forensic structures, with an impact that is more than 6.2
times higher than that of the next group. While most of
these options are typically disabled in the kernels shipped
by major Linux distributions, they can be enabled in cus-
tomized embedded kernels. However, one of the most in-
fluential options in forensic structures, CONFIG_LOCKDEP,
is part of the "Kernel Hacking" group and is enabled in
kernels across major Linux distributions. This indicates
that while kernel hacking options are primarily intended
for kernel developers, they can also significantly enhance
diagnostic capabilities for end users. Other significant con-
tributors to the variability of forensic structures include
options related to CGroups, General Setup configurations
(such as initramfs support), Security settings, File Sys-
tems configurations (like CONFIG_FS_ENCRYPTION for disk
encryption) and Memory Management ones.

Table 5: TOP10 options affecting fields offset by subsystem.

CONFIG_* Option Group Affected Fields

Kernel Hacking 4095
CGroups 658
General Setup 647
Security 613
File Systems 575
Memory Management 555
Processor Features 423
Network 357
CPU Configuration 350
General Options 339

Table 6: TOP10 non-debugging options influencing fields offset.

CONFIG_* Option Group Affected Fields

CONFIG_SECURITY Security 344
CONFIG_NUMA CPU Features 170
CONFIG_COMPAT Binary Emulations 154
CONFIG_MEMCG Cgroups 153
CONFIG_TIMER_STATS Kernel Statistics 146
CONFIG_IPV6 Networking 133
CONFIG_NUMA_BALANCING Memory Management 126
CONFIG_FSNOTIFY File Systems 112
CONFIG_KEYS Security 102
CONFIG_LIVEPATCH CPU Features 86

To better understand the significance of individual non-
kernel hacking options, we have reported in Table 6 the top
ten that, individually, have the most significant impact on
forensic structure fields. It is possible to note that they
belong to a considerable variability of groups that control
different aspects of the kernel behavior. Of particular im-
portance are options such as CONFIG_SECURITY, which en-
ables support for APIs used by Linux security modules like
AppArmor and SELinux, CONFIG_NUMA which control the
support to NUMA nodes, CONFIG_COMPAT, which enables
the support for 32-bit binaries on 64-bit compiled ker-
nels, CONFIG_MEMCG, which enables Cgroup memory sup-
port and CONFIG_IPV6, which enables support for the IPv6
network stack. Of these, at least three, CONFIG_SECURITY,
CONFIG_MEMCG and CONFIG_IPV6, are generally enabled in
precompiled kernels shipped with main distributions for
desktop and server environments but are seldom activated
in IoT devices while one, CONFIG_NUMA is always disabled
due to the unsupports of this functionality by embedded
CPUs. For instance, this aspect must be considered when
contemplating using a profile derived from a kernel of a
major distribution to replace an IoT one.

Takeaways: Our analysis highlights the substantial im-
pact of "Kernel Hacking" group options on the layout
of forensic types. Additionally, some kernel options that
are typically enabled or disabled in precompiled ker-
nels can introduce, if modified, variability in custom-
recompiled kernels for specific uses (e.g. IoT), making
generic profiles completely unsuitable for these devices.

6. Related Works

The research community has extensively examined the
reliance of forensic tools on profiles, highlighting the chal-
lenge of creating universal profiles for Linux devices due
to the significant variability in kernel configurations. In

9

2022, three independent studies [20, 9, 21] by Pagani et
al., Franzen et al. and Qi et al. proposed solutions to
address the issue of missing profiles for Linux kernels with
unknown build configurations, using code analysis directly
to the kernel contained in the memory dump or using in-
ference based on data structure invariants.

A notable study addressing the problem of profile re-
construction in Windows was conducted by M. Cohen [5].
In this work, the author examines the variability of off-
sets in four fields within the _EPROCESS, _KPROCESS, and
_TOKEN kernel structures. Additionally, he explores the
feasibility of determining these offsets through static anal-
ysis of the kernel code and highlights the significant vari-
ability of kernel global variable offsets across different patch
versions.

Other researchers have explored methods that elimi-
nate the need for profiles. For example, Song et al. [23]
demonstrate how deep learning models can directly extract
forensic information from memory dumps. Instead, Dolan-
Gavitt et al. [7] use virtual machine introspection to ob-
serve OS runtime behavior and create signatures for iden-
tifying data structures in memory dumps, while Urbina
et al. [24] gather data structure information by taking
multiple memory snapshots of applications. Another ap-
proach leverages the kernel’s source code, including tech-
niques such as reconstructing data structures from mem-
ory dumps using source code signatures [14], determining
data type offsets through static analysis of earlier kernel
versions [8], or combining boolean constraints with proba-
bilistic inference to match data structures without relying
on profiles [13].

Recently, in Oliveri et al. [19] demonstrate the possibil-
ity of conducting forensic analysis even on completely un-
known operating systems, without accessing to its source
code or introspecting it but only leveraging the topological
properties of data structures contained in a single memory
dump completely removing the need for using profiles.

7. Conclusions

In this work, we have presented the first comprehensive
study of the evolution of data structures within three of
the most widely used operating systems, focusing on those
crucial for memory forensics and, in the case of Linux,
their dependence on kernel compilation options. Our anal-
ysis not only confirms but quantifies, for the first time,
problems caused by changes in kernel data types and their
impact on profiles that the memory forensics community
faces daily.

We have demonstrated that most changes in forensic
structure types are caused by shifts in field offsets due to
the addition or removal of fields rather than by changes in
the type or reorganization of fields—particularly affecting
pointers. We have also quantified how even minor shifts in
peripheral non-forensic types can create a domino effect,
impacting many other structures, including those critical
to forensics analysis. Our study has measured how much

incorrect offsets in process-related data types can severely
compromise the functionality of crucial Volatility plugins,
impeding or even preventing the retrieval of forensic arti-
facts due to the interdependencies between these plugins.
Potential solutions to this problem come from using multi-
ple paths between kernel data structures, ensuring differ-
ent ways to reach critical types, and enabling the extrac-
tion of forensic information also if not all the offsets in a
profile are correct. Alternatively, especially for Windows,
memory carving techniques can be employed to "blindly"
identify forensic data types within a memory dump with-
out relying on pointer-based linkages.

Our study also confirms that Linux represents the most
significant challenge for analysts attempting to obtain valid
profiles for uncommon or custom-configured kernels due
to its unique compile-time reconfigurability and non-linear
development model. From kernel version 4.0 onwards, we
demonstrated that while the overall number of affected
kernel data types decreases, the influence of CONFIG_* op-
tions on forensic types increases. By analyzing the impact
of compile-time options on field offsets, we identified a set
of options that significantly alter forensic structure lay-
outs. These options are frequently enabled or disabled in
custom-configured kernels, making applying a generic pro-
file to such Linux kernels difficult.

Moreover, by revealing and measuring distinct patterns
of type modifications across Linux, macOS, and Windows,
this work has also enabled us to develop, for the first time,
strategies for selecting alternative profiles that are more
likely to produce accurate results when the exact profile
for a target system is unavailable. In conclusion, this work
aims to precisely assess the issue, establishing a theoretical
and practical foundation for tackling it. This will help the
future development of methods to address the challenges
posed by the absence of valid profiles, including modify-
ing existing profiles for compatibility, developing new tech-
niques for forensic evidence extraction without relying on
profiles or generating profiles dynamically from memory
dumps.

8. Code Availability

The profiles dataset and the tool used for the source code
analysis are available as an open source project [18].

9. Acknowledgment

This work benefited from a government grant managed by
the French National Research Agency with reference ANR-
22-PECY-0007 and by the Ministry of Science, Technolog-
ical Development and Innovation of Serbia (Contract No°
451-03-65/2024-03/200156) and the Faculty of Technical
Sciences, University of Novi Sad, through project “Scien-
tific and Artistic Research Work of Researchers in Teach-
ing and Associate Positions at the Faculty of Technical
Sciences, University of Novi Sad” (No° 01-3394/1).

10

Appendix

2
.6

.x

3
.x

4
.x

5
.x

6
.x

8
16
32
64

128
256
512
1KB
2KB
4KB
8KB

16KB
32KB
64KB
128K

256K

512K
1MB

2MB
4MB
8MB

M
a
x
 a

b
so

lu
te

 p
o
si

ti
o
n
 c

h
a
n
g
e
 i
n
 s

e
le

ct
e
d
 k

e
rn

e
l
sy

m
b
o
ls

Linux

1
0

.6
1

0
.7

1
0

.8
1

0
.9

1
0

.1
0

1
0

.1
1

1
0

.1
2

1
0

.1
3

1
0

.1
4

1
0

.1
5

1
1

1
2

1
3

1
4

8
16
32
64

128
256
512
1KB
2KB
4KB
8KB

16KB
32KB
64KB
128K

256K

512K
1MB

2MB
4MB
8MB

macOS

V
is

ta 7 8
8

.1 1
0

1
1

8
16
32
64

128
256
512
1KB
2KB
4KB
8KB

16KB
32KB
64KB
128K

256K

512K
1MB

2MB
4MB
8MB

Windows

Maximum absolute change in the position of selected symbols in the kernel between two subsequent releases. Blue crosses: major releases.
Green triangle: minor releases. Red dots: patch releases. Grey horizontal line: page size. Tracked variables: Linux:(init_level4_pgt,
init_task, modules), macOS:(IdlePML4, allproc, kmod), Windows:(-,PsActiveProcessHead, PsLoadedModuleList)

References

[1] Apple, 2024a. macOS Kernel Development Kits. URL: https:
//developer.apple.com/download.

[2] Apple, 2024b. XNU source code. URL: https://github.com/
apple-oss-distributions/xnu.

[3] Authors, V., 2024. Debian software repository. URL: https:
//archive.debian.org/.

[4] Cohen, M., 2014. Rekall memory forensics framework. DFIR
Prague URL: https://github.com/google/rekall.

[5] Cohen, M.I., 2015. Characterization of the windows kernel ver-
sion variability for accurate memory analysis. Digital Investi-
gation 12, S38–S49. URL: https://www.sciencedirect.com/
science/article/pii/S1742287615000109, doi:https://doi.
org/10.1016/j.diin.2015.01.009. dFRWS 2015 Europe.

[6] Dolan-Gavitt, B., 2007. The vad tree: A process-
eye view of physical memory. Digital Investigation
4, 62–64. URL: https://www.sciencedirect.com/
science/article/pii/S1742287607000503, doi:https:
//doi.org/10.1016/j.diin.2007.06.008.

[7] Dolan-Gavitt, B., Srivastava, A., Traynor, P., Giffin, J., 2009.
Robust signatures for kernel data structures, in: Proceedings of
the 16th ACM Conference on Computer and Communications
Security, Association for Computing Machinery, New York, NY,
USA. p. 566–577. URL: https://doi.org/10.1145/1653662.
1653730, doi:10.1145/1653662.1653730.

[8] Feng, Q., Prakash, A., Wang, M., Carmony, C., Yin, H., 2016.
Origen: Automatic extraction of offset-revealing instructions
for cross-version memory analysis, in: Proceedings of the 11th
ACM on Asia Conference on Computer and Communications
Security, Association for Computing Machinery, New York,
NY, USA. p. 11–22. URL: https://doi.org/10.1145/2897845.
2897850, doi:10.1145/2897845.2897850.

[9] Franzen, F., Holl, T., Andreas, M., Kirsch, J., Grossklags, J.,
2022. Katana: Robust, automated, binary-only forensic analysis
of linux memory snapshots, in: Proceedings of the 25th Interna-
tional Symposium on Research in Attacks, Intrusions and De-
fenses, Association for Computing Machinery, New York, NY,
USA. p. 214–231. URL: https://doi.org/10.1145/3545948.
3545980, doi:10.1145/3545948.3545980.

[10] Jelveh, R., 2014. Universal Ctags. URL: https://ctags.io/.
[11] JPCERTCC, 2024. Japanese CERTs coordination center Win-

dows Profile collection. URL: https://github.com/JPCERTCC/
Windows-Symbol-Tables.

[12] Knuth, D.E., 1964. backus normal form vs. backus naur form.
Commun. ACM 7, 735–736. URL: https://doi.org/10.1145/
355588.365140, doi:10.1145/355588.365140.

[13] Lin, Z., Rhee, J., Wu, C., Zhang, X., Xu, D., 2012. Dimsum:
Discovering semantic data of interest from un-mappable mem-
ory with confidence, in: Proc. NDSS. URL: https://www.cs.
purdue.edu/homes/xyzhang/Comp/ndss12.pdf.

[14] Lin, Z., Rhee, J., Zhang, X., Xu, D., Jiang, X., 2011. Sig-
graph: Brute force scanning of kernel data structure instances
using graph-based signatures., in: Ndss. URL: https://www.
ndss-symposium.org/wp-content/uploads/2017/09/lin.pdf.

[15] Maltsev, M., 2024. Winbindex - the Windows Binaries Index.
URL: https://winbindex.m417z.com/.

[16] McCracken, D.D., Reilly, E.D., 2003. Backus-naur form (bnf),
in: Encyclopedia of Computer Science, pp. 129–131.

[17] Molnar, I., 2017. Patch to remove
CONFIG_LOCKDEP_CROSSRELEASE from Linux kernel. URL:
https://www.mail-archive.com/linux-kernel@vger.kernel.
org/msg1562036.html.

[18] Oliveri, A., 2025. Code and artifacts. URL: https://github.
com/eurecom-s3/structdiffing.

[19] Oliveri, A., Dell’Amico, M., Balzarotti, D., 2023. An os-
agnostic approach to memory forensics, in: NDSS 2023,
Network and Distributed System Security Symposium, 27
February-3 March 2023, San Diego, CA, USA, Internet So-
ciety. URL: https://www.ndss-symposium.org/wp-content/
uploads/2023/02/ndss2023_s398_paper.pdf.

[20] Pagani, F., Balzarotti, D., 2021. Autoprofile: Towards auto-
mated profile generation for memory analysis. ACM Transac-
tions on Privacy and Security 25, 1–26. URL: https://dl.acm.
org/doi/pdf/10.1145/3485471.

[21] Qi, Z., Qu, Y., Yin, H., 2022. LogicMEM: Automatic profile
generation for binary-only memory forensics via logic inference,
in: Proceedings 2022 Network and Distributed System Secu-
rity Symposium, Internet Society. URL: https://doi.org/10.
14722/ndss.2022.24324, doi:10.14722/ndss.2022.24324.

[22] Shinan, E., 2017. Lark. URL: https://github.com/
lark-parser/lark.

[23] Song, W., Yin, H., Liu, C., Song, D., 2018. Deepmem: Learn-
ing graph neural network models for fast and robust memory
forensic analysis, in: Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, As-
sociation for Computing Machinery, New York, NY, USA. p.
606–618. URL: https://doi.org/10.1145/3243734.3243813,
doi:10.1145/3243734.3243813.

[24] Urbina, D., Gu, Y., Caballero, J., Lin, Z., 2014. Sig-
path: A memory graph based approach for program data
introspection and modification, in: European Symposium
on Research in Computer Security, Springer. pp. 237–
256. URL: https://link.springer.com/content/pdf/10.
1007/978-3-319-11212-1.pdf.

[25] Walker, A., 2017. Volatility framework: Volatile mem-
ory artifact extraction utility framework. URL: https://
volatilityfoundation.org/.

[26] Yosifovich, P., Russinovich, M.E., Solomon, D.A., Ionescu, A.,
2023. Windows Internals, Part 1. 7 ed., Microsoft Press, Red-
mond, WA.

11

https://developer.apple.com/download
https://developer.apple.com/download
https://github.com/apple-oss-distributions/xnu
https://github.com/apple-oss-distributions/xnu
https://archive.debian.org/
https://archive.debian.org/
https://github.com/google/rekall
https://www.sciencedirect.com/science/article/pii/S1742287615000109
https://www.sciencedirect.com/science/article/pii/S1742287615000109
http://dx.doi.org/https://doi.org/10.1016/j.diin.2015.01.009
http://dx.doi.org/https://doi.org/10.1016/j.diin.2015.01.009
https://www.sciencedirect.com/science/article/pii/S1742287607000503
https://www.sciencedirect.com/science/article/pii/S1742287607000503
http://dx.doi.org/https://doi.org/10.1016/j.diin.2007.06.008
http://dx.doi.org/https://doi.org/10.1016/j.diin.2007.06.008
https://doi.org/10.1145/1653662.1653730
https://doi.org/10.1145/1653662.1653730
http://dx.doi.org/10.1145/1653662.1653730
https://doi.org/10.1145/2897845.2897850
https://doi.org/10.1145/2897845.2897850
http://dx.doi.org/10.1145/2897845.2897850
https://doi.org/10.1145/3545948.3545980
https://doi.org/10.1145/3545948.3545980
http://dx.doi.org/10.1145/3545948.3545980
https://ctags.io/
https://github.com/JPCERTCC/Windows-Symbol-Tables
https://github.com/JPCERTCC/Windows-Symbol-Tables
https://doi.org/10.1145/355588.365140
https://doi.org/10.1145/355588.365140
http://dx.doi.org/10.1145/355588.365140
https://www.cs.purdue.edu/homes/xyzhang/Comp/ndss12.pdf
https://www.cs.purdue.edu/homes/xyzhang/Comp/ndss12.pdf
https://www.ndss-symposium.org/wp-content/uploads/2017/09/lin.pdf
https://www.ndss-symposium.org/wp-content/uploads/2017/09/lin.pdf
https://winbindex.m417z.com/
https://www.mail-archive.com/linux-kernel@vger.kernel.org/msg1562036.html
https://www.mail-archive.com/linux-kernel@vger.kernel.org/msg1562036.html
https://github.com/eurecom-s3/structdiffing
https://github.com/eurecom-s3/structdiffing
https://www.ndss-symposium.org/wp-content/uploads/2023/02/ndss2023_s398_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2023/02/ndss2023_s398_paper.pdf
https://dl.acm.org/doi/pdf/10.1145/3485471
https://dl.acm.org/doi/pdf/10.1145/3485471
https://doi.org/10.14722/ndss.2022.24324
https://doi.org/10.14722/ndss.2022.24324
http://dx.doi.org/10.14722/ndss.2022.24324
https://github.com/lark-parser/lark
https://github.com/lark-parser/lark
https://doi.org/10.1145/3243734.3243813
http://dx.doi.org/10.1145/3243734.3243813
https://link.springer.com/content/pdf/10.1007/978-3-319-11212-1.pdf
https://link.springer.com/content/pdf/10.1007/978-3-319-11212-1.pdf
https://volatilityfoundation.org/
https://volatilityfoundation.org/

	Introduction
	Background
	Method
	Profile Based Analysis
	Source Code Analysis

	Profile-based Analysis
	Evolution of Kernel Data Types
	Evolution of Memory Forensics Types
	Global Statistics
	Offsets Modification
	Most Affected Fields
	Volatility Plugins Affected
	Kernel Global Variables

	CONFIG_* Influence on Linux Kernel Profiles
	Cascade Impact of CONFIG_* on Data Types
	Evolution of the Impact of CONFIG_* Options
	Influence of Particular Options

	Related Works
	Conclusions
	Code Availability
	Acknowledgment

