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Abstract—Federated Learning (FL) stands as a privacy-
preserving machine learning paradigm that enables collaborative
training of a global model across multiple clients. However, the
practical implementation of FL models often confronts challenges
arising from data heterogeneity and limited communication
resources. To address the aforementioned issues simultaneously,
we develop a Sparsified Random Partial Update framework
for personalized Federated Learning (SRP-pFed), which builds
upon the foundation of dynamic partial model updates. Specif-
ically, we decouple the local model into personal and shared
parts to achieve personalization. For each client, the ratio of its
personal part associated with the local model, referred to as the
update rate, is regularly renewed over the training procedure
via a random walk process endowed with reinforced memory. In
each global iteration, clients are clustered into different groups
where the ones in the same group share a common update
rate. Benefiting from such design, SRP-pFed realizes model
personalization while substantially reducing communication costs
in the uplink transmissions. We conduct extensive experiments
on various training tasks with diverse heterogeneous data set-
tings. The results demonstrate that the SRP-pFed consistently
outperforms the state-of-the-art methods in test accuracy and
communication efficiency.

Index Terms—Personalized federated learning, sparsification,
client clustering, convergence rate.

I. INTRODUCTION

THE surge in edge devices, including smartphones and
Internet-of-Things (IoT) devices, each equipped with

abundant sensing, computation, and storage resources, results
in substantial daily data generation at the network edge. This
data can be harnessed for machine learning models, facilitating
various intelligent services, ranging from personal fitness
tracking [1], traffic monitoring [2], to smart home security [3].
Traditional machine learning approaches involve transferring
all the raw data to the cloud for model training, incurring high
communication costs and posing severe privacy risks.

In contrast, federated learning stands as an alternative
machine learning paradigm that allows multiple clients to
train a shared model collaboratively without divulging their
local private data. This contributes to the realization of trust-
worthy edge intelligent systems. Nevertheless, implementing
federated learning in practice presents pervasive challenges.
In particular, datasets possessed by different clients are, by
nature, heterogeneous, exhibiting highly non-independently
and identically distributed (non-IID) features. Besides, the
clients’ datasets vary vastly in the amount of data samples
[4]. Such discrepancies in the distribution and sizes of clients’
local datasets are commonly known as data heterogeneity,
imposing crucial challenges to the convergence and stability

performance of the FL training. On the other hand, although
the ever-increasing processing capabilities of end-user devices
promote the deployment of large Deep Neural Networks
(DNNs) at the edge entities, the hefty communication overhead
incurred by the frequent exchange of models between clients
and server hinders the scalability of FL systems.

In response, numerous methods have been proposed to
address these two critical issues [5]–[8]. Among them, per-
sonalized FL (PFL) is especially effective in coping with the
constraint of a single global model in conventional FL, which
has the setback of restricting the generalization capability
of the FL model into heterogeneous local data. In contrast
to the conventional FL training scheme, PFL seeks to train
personalized models for every (or a group of) client(s) with
similar preferences. This is achieved by applying different
learning paradigms in the FL setting.

Personalization techniques can be categorized into
similarity-based and architecture-based approaches [4].
The former achieves personalization by modeling client
relationships, while the latter provides a personalized model
architecture tailored to each client. Specifically, similarity-
based approaches for personalizing FL models involve
extracting a shared model based on similarities among
client relationships and training multiple local models, such
as multi-task learning [9], model interpolation [10], and
clustering-based hierarchical framework [11]. However, most
of these approaches still have to exchange the full model,
resulting in a large communication overhead.

To enhance communication efficiency with concurrent per-
sonalization, architecture-based PFL approaches have been
proposed, which decouple each client’s private weights from
the globally shared ones in the local model [4]. These private
weights are trained locally only on the devices and not shared
with the server. This weight decoupling method is often used
in conjunction with classical DNN pruning algorithms, e.g.,
structured pruning, where weights are grouped in different
fine-grained structural units, and each structural unit will be
assigned to the same part (private or shared). A pictorial exam-
ple is given in Figure 1 (a) & (b), where each layer is treated
as a structural unit. The authors of FedRep [12] separate the
deep layer into private parts to learn personalized task-specific
representations, while the shallow layers are shared with the
server to learn low-level generic features. On the contrary,
LG-Fed [13] shares the deep layers. Another approach is via
channel-wise decoupling. As demonstrated in Figure 1 (c)
and detailed by CD2-pFed [14], this method achieves model
personalization in both low-level and high-level representa-
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Fig. 1. A comparison of various partial model PFL approaches is illustrated.
In (a), (b), and (c), the shared and private components of the model are
manually divided, and all clients utilize the same update rate. In contrast, our
proposed method depicted in (d) assigns distinct update rates to individual
clients, with each client having a unique structural configuration.

tions, tackling the feature heterogeneity, distribution skew,
and concept shift. There are also methods combined with
unstructured pruning, for instance, the LotteryFL [15] and
FedDST [16], that evaluate whether each weight is shared with
the server separately. Nevertheless, in these schemes, the ratio
between the private and the shared part, namely the update
rate, is set empirically, and all clients adhere to a common
one. Notably, the update rate controls the number of private
weights for learning local representations, which affects the
aggregated model’s capability to learn good representations
on heterogeneous data. The amount of global information
required by the federated system varies in temporal and spatial
dimensions, encompassing different communication rounds
and distinct clients during the same communication rounds.
As such, the empirical fixed update rates may be ineffective
in finding the optimal personalization architectures, leading to
poor performance.

In light of these challenges, we propose SRP-pFed, a
Sparsified Random Partial Update framework for personalized
Federated Learning, devised based on dynamic partial model
update. As illustrated in Figure 1, different from previous per-
sonalization approaches that train the global model under con-
stant update rates, the proposed approach provides an adaptive
update rate allocation mechanism. Specifically, SRP-pFed
refines the update rate with reinforced memory over the
spatial and temporal dimensions along the model training
process: In the spatial dimension, the clients are clustered
into several groups, wherein each group shares a common
update rate based on the local model weights. Recognizing that
the weights change during the training process–hence, a one-
shot clustering is not precise enough–we introduce a dynamic
clustering-training loop in the time dimension. We sample
K update rates with the probability of being sampled set

according to the cluster results and local model performance in
the previous round. In each loop, the update rate is constructed
by a random walk process. Each client downloads these K
classes of global shared weights and updates the corresponding
elements of the local model while the rest of the element
values remain unchanged. The updated model with the lowest
loss of each client will participate in the subsequent partial
model update process, in which only the shared weight will
be uploaded to the server in this loop. The loop is executed
repeatedly during the training process. This design involves
uploading part of the model while downloading the complete
model during training, addressing the bottleneck caused by
asymmetric network speeds in the federated system. Specifi-
cally, the upload link (from client to server) is usually slower
than the download link (from server to client) [16], [17]. The
flow of SRP-pFed is given in Figure 2. Our contributions are
summarized as follows:

• We propose a Sparsified Random Partial Update frame-
work for PFL, achieving communication-efficient person-
alized federated training. The update rate of our scheme
is coarsely initialized and subsequently refined over the
spatial-temporal dimensions instead of empirically set as
a fixed constant. To further enhance model personaliza-
tion, we categorize clients iteratively according to the
model weights, and clients in the same group share a
common update rate.

• We provide a theoretical analysis of the SRP-pFed
model training framework, by developing a generic tem-
plate encompassing training schemes that can be com-
bined with other partial model update approaches–and
prove its convergence.

• We compare the performance of our approach to ex-
isting methods using five benchmark datasets: CIFAR-
10/100 [18], FEMNIST [19], ImageNet [20], and AG
News [21], with varying degrees of heterogeneity. The
results confirm that SRP-pFed consistently outperforms
state-of-the-art methods in both accuracy and communi-
cation efficiency.

II. RELATED WORK

Challenges of FL: Built upon the distributed system, the per-
formance of FL is constrained by challenges such as data het-
erogeneity and limited communication [22], [23]. To overcome
these hurdles, numerous methods have been proposed [24]:
diverse enhanced optimization techniques were explored at
the local and global side, such as dynamic regularizer [25],
client scheduling, adaptive optimization [26], [27], to address
the data heterogeneity; and techniques like pruning [28], as
well as the partial model update [29], are adopted to alleviate
the communication burdens [24]. Specifically, to explore the
performance of FL under realistic data [30], many efforts
have been made to realize robust FL training frameworks over
noisy, long-tailed, and multi-domain data [31]–[33]. Moreover,
techniques like masking [34], dynamic fraction [35], and
sparsification [16] have been investigated to improve commu-
nication efficiency performance [36].
Personalization in FL: In the presence of data heterogeneity,
many approaches have explored personalization methods in FL
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Fig. 2. Overview of SRP-pFed. The server initially samples the update rate set Pt (function SAMPLEUPDATERATE of Algorithm 2) and sends the global
model and Pt to each client. Subsequently, each local client runs the client clustering module (function CLIENTCLUSTERING of Algorithm 2) and conducts
the local update (function LOCALUPDATE of Algorithm 2). Finally, the updated local model’s shared portion is uploaded back to the server.

to deal with the limited generalization capability of a single
global model across diverse local clients [4]. In addition to
the aforementioned works, multiple PFL works have adopted
a multi-task learning framework. For example, Li et al. [37]
proposed a two-stage federated optimization framework Ditto
to realize robustness and fairness; the clustering is utilized
to learn cluster-level personal models [11], [38], [39]. In
addition to the aforementioned partial model personalization
approaches, diverse federated optimization techniques includ-
ing the Gaussian process [40], Moreau Envelopes [41], local-
global model mixture (i.e., mode interpolation) [10], meta
learning [42], and hypernetworks [43], have been explored
to enhance the model performance in the context of PFL.
Recently, model decoupling approaches have been explored
to enhance the personalization performance via model decou-
pling, in which the system would maintain a global generic
model and multiple personal models simultaneously [44]–[46].

Sparsification of DNN: Due to the highly over-parametrized
DNNs, training these models in a distributed manner requires
intensive computation and large communication overhead.
With computation capability having improved significantly
more than network bandwidth over the past years [47], com-
munication becomes the bottleneck of distributed learning,
particularly at the network edge. To mitigate the amount of

transmitted data and expedite training in distributed learn-
ing, the sparsification technique, namely pruning, is widely
employed. For example, Lottery ticket hypothesis [48], Fed-
DST [16], FedSMP [49] and PerFedMask [8] extract and
train sparse unstructured sub-networks from the target
full network; CD2-pFed [14] proposes a cyclic distillation-
guided structured channel decoupling framework; Fan et
al. [50] conduct mutual information-based layer-wise pruning.
SplitGP [51] adopts the concept of Split Learning, dividing
the entire model into client-side and server-side components
on a per-layer basis.

The above sparsification approaches reduce the communica-
tion overhead and personalize the global model in FL to some
extent. Nevertheless, these existing techniques usually preset
an update rate empirically and do not consider the changes in
the global informativeness demand of the local model during
the training process, which is fundamentally different from our
SRP-pFed.

III. PROPOSED METHOD

A. System Model

1) Personalized Federated Learning: Consider an FL sys-
tem comprised of a server and N clients, in which client i
possesses a loss function fi : Rd → R constructed from



its local dataset Di = {(xi ∈ Rd, yi ∈ R)}ni
i=1 with ni

data samples. Each participating entity in this system trains
a personalized model by exchanging its model parameters
with the server instead of sharing the raw dataset. The overall
objective can be formally written as

min
w1,w2,...,wN

f(w1,w2, . . . ,wN ) =
N∑
i=1

ni

n
fi(wi), (1)

where fi(wi) = E(xi,yi)∼Zi
[fi(wi;xi, yi)], (xi, yi) ∈ Di,Zi

is the data distribution of client i, wi indicates client i’s model
weights after local training, ni = |Di| denotes the number of
local data samples at client i, and n =

∑N
j=1 |Dj | is the total

number of training samples across the clients.
2) Partial Model Update: We adopt a partial model up-

date method that facilitates model personalization, addresses
data heterogeneity, and simultaneously reduces communica-
tion overhead. Specifically, every client separates a portion of
its local model to share with the server, while the remaining
parts are dedicated to personalization. More formally, based on
the local model wt

i (which is trained in the t-th communication
round), client i furnishes a mask vector mt

i ∈ {0, 1}d and
constructs the globally shared weights as:

wt
s,i = mt

i ⊙wt
i (2)

where ⊙ denotes the Hadamard product. We define the ratio
of the shared weights to the total model weights as the update
rate:

pt =
∥wt

s,i∥0
∥wt

i∥0
, (3)

where ∥wt
s,i∥0 and ∥wt

i∥0 denote the number of shared and
personal weights in communication round t, respectively.

In this study, we explore the configuration of the mask
mt

i, which is determined based on the magnitude of the
absolute values of the weights. Specifically, the weight mask
of the local model wt is constructed by setting the weights
with absolute values in the top 100 × (1 − pt)% to zero,
while the remaining weights are assigned value one. During
the model update phase, only the shared model weights are
communicated between the clients and the server. Notably,
as per the update rate sampling strategy delineated in Sec-
tion III-B, the critical threshold for determining the zero or one
mask in each round is dynamically adjusted. This approach
marks a significant departure from the static threshold methods
previously proposed [52].

Upon receiving model updates from the selected clients,
the server decomposes the model into separate elements and
performs aggregation element-wise.1 Every element is aver-
aged with a weight proportional to the local dataset sizes over
the (selected) whole. As such, the global model is updated as
follows:

wt
g =

∑
i∈St

ni∑
j∈St

nj
mt

i ⊙wt
i, (4)

where St is the set of clients selected for model training in
round t, ni represents the number of local data samples at

1We can consider different fine-grained model partition strategies (e.g.,
layer-wise, channel-wise, or element-wise) presented in our algorithm without
affecting its generality.

TABLE I
SUMMARY OF IMPORTANT NOTATIONS.

Notation Meaning (at communication round t)

N The total number of clients
n The total number of training samples across the system
ni The number of local data samples at client i
wt

g The global model parameter
wt

i The model parameter of client i
pti Model update rate of client i
mt

i Model mask of client i
St The set of selected clients
fi Local loss function of client i
P Pre-defined candidate set of update rates
Pt The set of selected update rates
Π Probability vector of being selected
B Total number of local data batches
zbi The bth local batch sample chosen from Di

client i, and wt
i = wt−1

i − η
∑B

b=1∇fi(w
t,b
i , zbi ), z

b
i ⊆ Di,

indicates the local model weights of client i.
The server then feeds the global model back to each client

for the next round of local training. Consequently, the local
model wt

i at client i is updated as:

wt
i ←−mt

i ⊙wt
g + (1−mt

i)⊙wt
i, (5)

where 1 ∈ Rd is an all-ones vector. For ease of expression, we
list the important notations in Table I, and t in each notation
denotes the index of the communication round without any
confusion.

3) Overview of SRP-pFed: As discussed in Section I, the
amount of global information needed by a client varies during
different training phases. Even within the same training phase,
the amount of required global information differs from client
to client due to data heterogeneity. This variability hinders the
conventional fixed update rate from discovering the optimal
personalized architecture. Hence, we introduce SRP-pFed,
a PFL framework that dynamically allocates update rates in
the spatio-temporal dimension. This framework comprises two
major modules:

• Update Rates Sampling: We adjust the update rates
in the temporal dimension according to a random walk
process [53], [54], renewing the proportion of personal
weights and global shared weights in each communica-
tion round. Additionally, the module logs the update rate
of each selected round and the system’s performance to
adjust the direction of the next update. This approach en-
hances system performance by increasing the likelihood
of selecting update rates that have proven effective in
previous rounds, a concept termed reinforced memory.
Depending on variations in the distribution of client data,
this module may sample one or more update rates.

• Client Clustering: Regarding the large variations among
clients (e.g., high degree of non-IID or massive client
scenarios), we consider sampling multiple update rates
per round to better align with each client’s requirements.
This module divides the clients into distinct groups,



Algorithm 1 An overview of SRP-pFed.
Input: Update rate candidates P , the number of cluster K
Output: Local model {w1,w2, . . . ,wN}

1: Initialize w1
g, {w1

1,w
1
2, . . . ,w

1
N}

2: for each round t from 1 to T do
3: Randomly select a subset of clients St
4: Update probability vector Π by Equation (7)
5: Pt ←− SAMPLEUPDATERATES(Π,P)
6: for each client i ∈ St in parallel do
7: wt

i,m
t
i ←− CLIENTCLUSTERING(wt

g,w
t
i,Pt)

8: wt+1
i ←− LOCALUPDATE(wt

i)
9: Send partial model mt

i ⊙wt+1
i to the server.

10: end for
11: wt+1

g ←−
∑

i∈St

nim
t
i⊙wt+1

i∑
j∈St

nj

12: end for

where clients within the same group share an identical
update rate to minimize the loss function.

Training Process: This part elaborates on the training process
(Algorithm 1) of SRP-pFed and the subroutines (Algo-
rithm 2) of it. At the beginning of communication round t, the
server executes the sampling module (Line 3 of Algorithm 1)
and broadcasts the resulting update rate and global model
to each client. Next, the clustering module is executed on
the client side. In particular, each client combines local and
global models using the received update rate, generating
multiple fused models and the corresponding mask (Line 5
of Algorithm 1). Subsequently, the loss of these models on
the local data is computed separately, and the model with the
smallest loss is selected to execute the local updates (Line
8 of Algorithm 1). Finally, the server gathers the shared
components of the client model, filtered through (2), and
proceeds with aggregation. As the clients are unburdened from
uploading the full model, this process substantially reduces
the communication overhead. The above steps are executed
iteratively until convergence.

It is worth noting that our design, which involves uploading
part of the model but downloading the full model during
training, addresses the communication bottleneck caused by
the asymmetry in network connection speeds in federated
systems. Specifically, uplink (client-to-server) transmission
speeds are typically slower than downlink (server-to-client)
speeds [16], [17]. For instance, according to the latest 2024
speed test report, the global median uplink speed for mobile
connections is 11.33 Mbps, while the median downlink speed
is 52.87 Mbps [55]. In contrast, usual FL implementations
have symmetric model updates for both directions. There-
fore, reducing uplink communication costs while retaining
full downlink transmission is a natural strategy for achieving
high communication efficiency in resource-constrained edge
networks.

B. Update Rate Sampling with Reinforced Memory

In this study, we leverage a random walk model to de-
sign the update rate sampling mechanism. The random walk
process is a mathematical model that projects the movement

Algorithm 2 Subroutines for SRP-pFed.
function SAMPLEUPDATERATE(Π,P)

Require P = {p1, p2, . . . , pc} denotes a pre-defined
candidate set of update rates
Require Π = [π1, π2, . . . , πc] represents the normalized
probability of each candidate being selected

1: Calculate cumulative probabilities Fj =
∑j

x=1 πx

2: Generate K random numbers {U1, . . . , UK}, Uk ∈ (0, 1]
3: for U in {U1, . . . , UK} do
4: Identify the smallest index j such that Fj ≥ U
5: end for
6: Identify the K update rates corresponding to the smallest

indices and assemble Pt

7: return Pt

function CLIENTCLUSTERING(wt
g,w

t
i,Pt)

Require wt
g is latest global model

Require wt
i is latest local model of client i

Require Pt is the subset of selected update rates
1: Initialize lossmin =∞
2: for p in Pt do
3: Obtain m based on p, where ∥m∥1 = p× ∥wt

i∥0
4: w ←−m⊙wt

g + (1−m)⊙wt
i

5: if fi(w)<lossmin then
6: lossmin ←− fi(w), wmin ←− w,mmin ←−m
7: end if
8: end for
9: return wmin,mmin

function LOCALUPDATE(wt
i)

Require wt
i is latest local model of client i

1: wt,1
i ←− wt

i

2: for each local batch b from 1 to B do
3: wt,b+1

i ←− wt,b
i − η∇fi(wt,b

i , zbi )
4: end for
5: ∆t

i =
∑B

b=1∇fi(w
t,b
i , zbi )

6: wt+1
i ←− wt

i − η∆t
i

7: return wt+1
i

of an object or system from its current position based on
a certain probability in discrete time steps (e.g., moments
t = 0, 1, 2, . . . ). The movement at each step may follow a
random pattern and adhere to the laws of a specific proba-
bility distribution. Changes in the update rate in the temporal
dimension can be conceptualized as the process of altering the
object’s position. Intuitively, the variation in the update rate
should not be haphazard or irregular; instead, it should be a
process aimed at enhancing the model’s performance. Hence,
we incorporate a random walk with a reinforced memory
process to characterize the impact of past experiences or
states on the current decision after each step. This influence
is typically achieved by augmenting the states or decisions
associated with prior successes.

To construct a random walk with reinforced memory
process, first define the state space representation P =
{p1, p2, . . . , pc} where each px represents a potential update
rate, c is the total number of candidates of the update rate in the
system. At each communication round t, the probability dis-



tribution can be represented by a vector Π = [π1, π2, . . . , πc],
where πx is the probability of px being selected. The proba-
bility vector is updated based on the historical performance of
each state. In particular, let ht(x) be a time-evolving weight,
initialized by setting h1(·) = 1, that captures the historical
performance of state px up to round t: If px is selected, h(x)
undergoes a change based on the loss value of the round;
otherwise, h(x) remains constant. Formally, this process can
be expressed as follows:

ht+1(x) =

{
λht(x) + b(t), if px ∈ Pt,

λht(x), if px /∈ Pt,
(6)

where Pt ⊆ P denotes the set of update rates selected in
communication round t, b(t) = 1− 1

1+e
−

∑
i∈St

fi(wi
t)

denotes
the weight increment factor that is inversely proportional to
the loss in round t, and λ ∈ (0, 1) is a memory decay
exponent designed to adapt to the dynamic changes in the
system environment. Intuitively, update rates proven effective
in the preceding periods should be selected more frequently.
Therefore, h(x) is normalized to update the probability πx as
follows

πx =
ht(x)∑d
j=1 h

t(j)
. (7)

Next, update rates Pt are sampled from the candidate set P
according to the normalized probability Π.
Sampling Procedure: (line 3 of Algorithm 1) Initially, cal-
culate cumulative probabilities Fj =

∑j
x=1 πx, where Fj

denotes the sum of normalized probabilities for the first j
elements. Next, generate K < d (corresponding to the number
of client clustering centers) random numbers from a uniform
distribution between 0 and 1, denoted as U1, U2, . . . , UK . For
each generated random number Uk, identify the smallest index
j such that Fj ≥ Uk. The update rate pj is then chosen.
This ensures that the selected elements adhere to the original
normalized probability distribution. Ultimately, the chosen K
update rates constitute the set Pt = {p[1], . . . , p[K]} ⊆ P .

C. Client Clustering

A common clustering approach involves partitioning the
global model wt

g on the server side according to the sampled
update rates, resulting in K sparse models that are then
broadcasted to the clients [11]. However, this approach signif-
icantly amplifies the communication overhead. In this work,
we propose to perform clustering on the client side as shown
in Figure 3. The server side only needs to broadcast a global
model, and the update rate set Pt to the client side with little
additional communication overhead. The client integrates the
global and local models at various proportions based on the
received update rates according to Equation (5) and computes
the loss for each fused model. The model with the minimum
loss is chosen for the local update, and the corresponding mask
is retained, as shown below

(wt
i,m

t
i)←− argmin

w,m
{fi(w[1]), . . . , fi(w[K])}, (8)

where w[k] = m[k] ⊙ wt
g + (1 − m[k]) ⊙ wt

i denotes
the fused model. Subsequently, the mask mt

i is applied to
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Fig. 3. Client clustering module (function CLIENTCLUSTERING of Algo-
rithm 2). This module merges the global model and local model based on the
sampled update rates (Line 4 of CLIENTCLUSTERING), computes the loss for
each of the fused models, and outputs the model with the lowest loss along
with its corresponding mask (Line 6 of CLIENTCLUSTERING).

filter out (by Equation (2)) the shared component of the
locally updated model for transmission to the server. This
approach only requires uploading a portion of the model,
thereby mitigating communication overhead in comparison to
traditional federated learning. Client clustering might entail a
moderate increase in local computation due to the computation
of the loss for K models. However, this is an acceptable
trade-off when contrasted with the substantial reduction in
communication load.

D. Adaptation in (Semi)-Asynchronous FL

This paper takes synchronous FL as an example to describe
the workflow of SRP-pFed, which, in fact, can be combined
with any PFL approaches to improve the performance of
FL systems. The advantage of synchronous FL lies in the
consistent updating model, where all clients’ updates are
aggregated simultaneously, ensuring the model is based on
the same global model, achieving more stable and accurate
convergence. However, it also leads to long waiting times
and high communication overhead, which becomes a critical
bottleneck in resource-limited environments. In contrast, asyn-
chronous FL [56] addresses the communication overhead issue
but results in some clients updating based on outdated global
models, slowing down convergence and affecting model accu-
racy. Semi-asynchronous FL [57], as a compromise, alleviates
the issues of long waiting times or slow convergence. It forces
synchronization of outdated local models while performing
global updates asynchronously. However, finding the optimal
balance between the two is challenging.

In certain scenarios, e.g., devices with varying computa-
tional resources, (semi-)asynchronous FL mechanisms may be
more advantageous. SRP-pFed, as a versatile plug-and-play
module, can also perfectly adapt to these scenarios. Specifi-
cally, under semi-asynchronous FL, the server aggregates only
the updates within a predefined time window and sends the
updated global model to each client. By incorporating the
SRP-pFed module, the system workflow is as follows: (1)
The server aggregates the model parameters collected within



the time window, samples the update rates, and returns the
update rates and global model to the clients. (2) Regardless of
whether the uploaded parameters are adopted, once a client
receives the global model and update rates, it sequentially
performs clustering and local updates. Asynchronous FL can
be viewed as semi-asynchronous FL with an infinitely small
time window and can also integrate the SRP-pFed module. It
can be seen that SRP-pFed has broad application scenarios
and practical significance. Due to space limitations, we mainly
report the performance of this method in synchronous FL
scenarios in Section V. We will report the adaptation results
in different systems in future work.

IV. CONVERGENCE ANALYSIS

This section presents a theoretical analysis of the conver-
gence performance of SRP-pFed.

In contrast to conventional FL problems, where learning
models wi, i ∈ [N ] are assumed to be identical for all clients,
the heterogeneous data setting results in distinctive learning
models across the clients. Following a similar approach as
[8], we decompose each learning model into a global repre-
sentation model and a client-specific model. Given that only
the global representations are exchanged with the server, the
personalized models are obtained by minimizing the objective
function, as Equation (1) shown. Evidently, the loss value of
the personalized solution for each client must be smaller than
the loss of using one global solution for each client, i.e.,
fi(mi ⊙ wg + (1 −mi) ⊙ wi) < fi(wg). As long as the
global model wg converges, the personalized model wi also
converges. Therefore, it is sufficient to consider the following
objective function

f(wg) =
N∑
i=1

ni

n
fi(wg). (9)

Upon the convergence of wg , every client i can obtain its
personalized solution wi by merging the global and local
models. Subsequently, we derive the convergence rate to
quantify the efficiency of the proposed training algorithm. To
facilitate the analysis, we make the following assumptions,
which are commonly used and are consistent with numerous
theoretical works in FL.

Assumption 1. The loss functions fi(w), i ∈ [N ] are L-
smooth, i.e., there exists a constant L > 0 such that
∥∇fi(w)−∇fi(v)∥ ≤ L∥w − v∥, ∀w,v ∈ Rd.

Assumption 2. The gradients of local loss are bounded by a
constant G, i.e., ∀w ∈ Rd, ∥∇fi(w)∥ ≤ G, i ∈ [N ].

Assumption 3. There exists a global bound on the variance of
the gradient estimate of each individual client, meaning that:
1
N

∑N
i=1 ∥∇fi(w)−∇f(w)∥2 ≤ σ2, i ∈ [N ].

Assumption 4. The gradient noise introduced by the client’s
local update is bounded, i.e., the unbiased stochastic gradient
of client i satisfies: Ez∼Zi [∥∇fi(w, z)−∇fi(w)∥2] ≤ ξ2i , i ∈
[N ], z ⊆ Di.

We first introduce the following lemma, serving as a step-
ping stone for the main result.

Lemma 1. The “drift” of the wt,b
i and wt

g for any b =
1, . . . , B, can be bounded as follows:

1

|St|
∑
i∈St

E[∥wt
g −wt,b

i ∥
2] ≤ 5Bη2(ξ2i + 6Bσ2) + 30B2η2G2.

(10)

Proof. According to lemma 3, 6, and 7 of [27], we have

E[∥wt
g −wt,b

i ∥
2]

= E[∥wt,b−1
i −wt

g − η∇fi(wt,b−1
i , zb−1

i )∥2]

≤ (1 +
1

2B − 1
)E[∥wt

g −wt,b−1
i ∥2]

+ E[∥η(fi(wt,b−1
i , zb−1

i )− fi(w
t,b−1
i ))∥2]

+ 6BE[∥η(fi(wt,b−1
i )−∇fi(wt

g))∥2]
+ 6BE[∥η(∇fi(wt

g)−∇f(wt
g))∥2] + 6BE[∥η∇f(wt

g)∥2]
(a)

≤ (1 +
1

2B − 1
+ 6Bη2L2)E[∥wt

g −wt,b−1
i ∥2] + η2ξ2i

+ 6BE[∥η(∇fi(wt
g)−∇f(wt

g))∥2] + 6Bη2E[∥∇f(wt
g)∥2],

(11)

where (a) follows by using Assumption 4. Averaging over
the selected clients, we obtain the following:

1

|St|
∑
i∈St

E[∥wt
g −wt,b

i ∥
2]

≤
(
1 +

1

2B − 1
+ 6Bη2L2

) 1

|St|
∑
i∈St

E
[
∥wt

g −wt,b−1
i ∥2

]
+ η2

∑
i∈St

ξ2i +
6B

|St|
∑
i∈St

E
[
∥η(∇fi(wt

g)−∇f(wt
g))∥2

]
+ 6Bη2

1

|St|
∑
i∈St

E[∥∇f(wt
g)∥2]

(a)

≤
(
1 +

1

2B − 1
+ 6Bη2L2

) 1

|St|
∑
i∈St

E
[
∥wt

g −wt,b−1
i ∥2

]
+ η2

( ∑
i∈St

ξ2i + 6Bσ2
)
+ 6Bη2E

[
∥∇f(wt

g)∥2
]

≤
(
1 +

1

B − 1

) 1

|St|
∑
i∈St

E
[
∥wt

g −wt,b−1
i ∥2

]
+ η2

( ∑
i∈St

ξ2i + 6Bσ2
)
+ 6Bη2E

[
∥∇f(wt

g)∥2
]
,

(12)

where, using Assumption 3, we obtain the inequality (a).
Unrolling the recursion, we obtain the following:

1

|St|
∑
i∈St

E∥wt
g −wt,b

i ∥
2

≤ 5Bη2
( ∑

i∈St

ξ2i + 6Bσ2
)
+ 30B2η2E

[
∥∇f(wt

g)∥2
]
.

(13)
Then, applying Assumption 2 leads to the conclusion of the
Lemma 1.

When the mask vectors are determined, we define the term
γt
i = maxl(k

t
i)l, where kt

i =
nt
im

t
i∑

j∈St
nj

. Note that in the partial

client participation scenario, we have 1
|St| ≤ γt

i ≤ 1, i ∈ St.



Armed with Lemma 1, we obtain the algorithm’s convergence
rate as follows.

Theorem 1. Given a pre-defined total number of commu-
nication rounds T , by setting η ≤ 1

L|St|2B , the SRP-pFed
algorithm converges as:

1

T

T∑
t=1

E[∥∇f(wt
g)∥2]

≤
2
(
f(w1

g)− f(wT+1
g )

)
ηBT

+ 2Φ
∑
i∈St

(
dwγt

i −
dw∑
l=1

(kt
i)l

)
+

5η3L2B2

2

( ∑
i∈St

ξ2i + 6Bσ2 + 6BG2
)
+ ηLNB

∑
i∈St

ξ2i ,

(14)
where Φ is a constant satisfying |maxl(∇f(wt

g) ⊙
∇fi(wt,b

i ))l| ≤ Φ, for all i ∈ St, b = 1, . . . , B.

Proof. Since the function fi is L-smooth, we have

E[f(wt+1
g )] ≤E[f(wt

g)] + E[⟨∇f(wt
g),w

t+1
g −wt

g⟩]

+
L

2
E[∥wt+1

g −wt
g∥2].

(15)

We first find an upper bound for ∥wt+1
g − wt

g∥2. Let kt
i =

nt
im

t
i∑

j∈St
nj

we have

E[∥wt+1
g −wt

g∥2]

(a)
=η2E[∥

∑
i∈St

kt
i ⊙

B∑
b=1

∇fi(wt,b
i , zb

i )∥2]

(b)
=η2 E[∥

∑
i∈St

B∑
b=1

kt
i ⊙ (∇fi(wt,b

i , zb
i )−∇fi(w

t,b
i ))∥2]︸ ︷︷ ︸

A1

+ η2 ∥
∑
i∈St

B∑
b=1

kt
i ⊙∇fi(w

t,b
i ))∥2︸ ︷︷ ︸

A2

,

(16)
where equality (a) results from line 8 and 11 of Algorithm 1.
Equality (b) is obtained via basic equality E∥z∥2 = E∥z −
Ez∥2 + ∥Ez∥2 for any random vector z. By using Assump-
tion 4, we can obtain an upper bound of A1 as follows:

A1 ≤ |St|B
∑
i∈St

B∑
b=1

E[∥kt
i ⊙∇fi(w

t,b
i , zb

i )− kt
i ⊙∇fi(w

t,b
i )∥2]

≤ |St|B
∑
i∈St

B∑
b=1

E[∥∇fi(wt,b
i , zb

i )−∇fi(w
t,b
i )∥2]

≤ |St|B2
∑
i∈St

ξ2i .

(17)

Also, we have A2 as follows:

A2 ≤ |St|B
∑
i∈St

B∑
b=1

∥kt
i ⊙∇fi(w

t,b
i ))∥2

≤ |St|B
∑
i∈St

B∑
b=1

∥∇fi(wt,b
i ))∥2.

(18)

Substituting A1 and A2 into Equation (16), we have

E[∥wt+1
g −wt

g∥2]

≤|St|B2η2
∑
i∈St

ξ2i + |St|Bη2
∑
i∈St

B∑
b=1

∥∇fi(wt,b
i )∥2.

(19)

Next, we obtain an upper bound for E[⟨∇f(wt
g),w

t+1
g −wt

g⟩]
as follows:

E[⟨∇f(wt
g),w

t+1
g −wt

g⟩]
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g),−η
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t
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t,b
i )⟩]

(c)

≤ηE[
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i∈St
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(−γt
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g),∇fi(w
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+ ηBΦ
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(dwγt
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≤ − η
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E[⟨∇f(wt
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+ ηBΦ
∑
i∈St

(dwγt
i −

dw∑
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(20)

where Φ = minl(∇f(wt
g)⊙∇fi(w

t,b
i ))l, γt

i = maxl(k
t
i)l, de-

note the minimum or maximum element in the vector, respec-
tively. Equality (c) holds by E[∇fi(wt,b

i , zb
i )] = ∇fi(w

t,b
i ).

Using Lemma 1 of [8] and 1
|St| ≤ γt

i ≤ 1, we obtain the
inequality (c) and (d), respectively. Now, our focus is on
determining an upper bound for the term to the right of the
inequality (d), we represent it as follows:
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(21)
By combining (15), (19) and (21), we have

E[f(wt+1
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Since η ≤ 1

L|St|2B , we have −η
2

∑B
b=1

∑
i∈St

( 1
|St| −

Lη|St|B)∥∇fi(wt,b
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Equation (22), we have
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By rearranging the terms, we obtain

E[∥∇f(wt
g)∥2] ≤

2

ηB
(E[f(wt

g)]− E[f(wt+1
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+
η3L2B2

2
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(dwγt
i −

dw∑
l=1

(kt
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(24)
Finally, multiply both sides by 1

T and sum over t = 1, . . . , T ,
we have the conclusion of Theorem 1

Remark 1. By employing the mask vectors in FL, the term∑
i∈St

(dwγt
i −

∑dw

l=1(k
t
i)l) appears on the right side. Since

this term does not scale with the number of communication
rounds T , it is considered a bias term, which remains a
residual in the convergence bound. The variability of this term
is contingent upon the configurations of the mask structure
and the heterogeneity in data among different devices. Given
SRP-pFed’s primary focus on investigating the allocation
of update rates, it demonstrates compatibility with a diverse
range of mask generation criteria. This variability can be
mitigated by adopting specifically tailored mask generation
criteria, such as PerFedMask [8].

V. EXPERIMENTS AND EVALUATION

A. Experimental Settings

1) Datasets and Models: We assess the performance of
our SRP-pFed across five benchmark datasets in computer
vision (CIFAR-10 [18], CIFAR-100 [18], FEMNIST [19], Im-
ageNet [20]), and natural language processing (AG News [21])
domains. Specifically, CIFAR-10 comprises 60,000 32×32
color images categorized into 10 classes; and CIFAR-100
has the same number of image samples as CIFAR-10 but
the categories increase to 100, posing a greater challenge
for the classification. ImageNet contains 1,200,000 224×224
images, divided into 1000 classes, intensifying the complexity
of training classification models. AG News collected 127,600
news texts and divided them into four categories. In contrast
to the above datasets, FEMNIST stands out as a dataset pur-
posefully crafted for federated tasks. It encompasses 805,263
samples distributed among 3,550 clients and features 62 la-
beling categories, eliminating the necessity for additional data
partitioning.

To enhance data heterogeneity at various levels, we adopt
a Dirichlet distribution-based data partitioning method, which
has gained prominence in recent literature [25], [58], [59].
Unlike the conventional pathological data distribution [22],
this approach provides flexibility in controlling label distri-
bution imbalance, bringing it closer to real-world scenarios.
Specifically, Dirichlet distribution-based data partitioning reg-
ulates the similarity of local data distribution and address class
imbalances through a pair of parameters, denoted as (α, ρ).
The smaller the values of α and ρ, the more heterogeneous
the partitioned data distributes. Due to its inherent design
given the distinct challenges presented by various datasets, we
conducted our trials utilizing the LeNet-5 architecture [60] for
CIFAR-10 and FEMNIST. For CIFAR-100, we opted for the
ResNet-34 architecture [61] to address the specific intricacies
associated with this dataset. In addition, for the large-scale
dataset ImageNet and the NLP Dataset AG News, we chose
EfficientNet-B0 [62] and TextFast [63], respectively.

2) Baselines: We compared the SRP-pFed with seven
state-of-the-art (SOTA) methods, i.e., FedAvg, LG-Fed, CD2-
pFed, Ditto [37], FedRep [12], PerFedMask [8], and Lot-
teryFL [15]. FedAvg is a classic FL method. In each commu-
nication round, clients download the global model from the
server and train the model with local data for several epochs
on the device. Then, the updated model will be uploaded
to the server for aggregation. Ditto learns local models that
global regularization encourages to be close together. Unlike



TABLE II
IMPLEMENTATION DETAILS.

Dataset
Learning Batch Local

Fraction Clients
rate Size epochs

CIFAR-10 0.01 64 5 0.1 1000/500/100
CIFAR-100 0.01 32 5 0.1 100
FEMNIST 0.01 512 5 0.1 3550
ImageNet 0.1 512 5 0.1 100
AG News 0.01 64 5 0.1 100

FedAvg and Ditto, which exchange full models, the other
methods pertain to either structured or unstructured partial
model updates.

• Structured methods: (i) LG-Fed aggregates only the
parameters of the high-dimensional space in the FL pro-
cess; (ii) CD2-pFed performs channel-wise assignments
for model personalization; (iii) FedRep and FedPerMask
learn a shared data representation across clients and
unique local head model parameters for each client.

• Unstructured methods: LotteryFL learns sparsified sub-
networks of the base model by applying the Lottery
Ticket Hypothesis, where only the sparsified subnetworks
will be communicated between the server and clients.
Implementation details of these methods and SRP-pFed
can be found in the supplementary materials.

3) Implementation Details: We conducted our trials using
PyTorch 1.7.0 in the Python 3.8.13 environment, leveraging
an NVIDIA GeForce RTX 3090 (24GB) GPU with CUDA
version 12.2. All results represent averages over three sim-
ulation runs for each setting. All additional hyperparameters
associated with the compared methods were standardized to
regular settings, as detailed in Table II. Unless stated oth-
erwise, the number of clients is consistent across all data
heterogeneity settings within the same dataset. Concretely,
on the CIFAR-100, ImageNet, and AG News, the number
of clients remains 100 for both IID and non-IID settings,
while on the FEMNIST dataset, the number of clients is 3550.
We account for both massive and moderate client scenarios
on the CIFAR-10 dataset, resulting in different numbers of
clients in settings with varying degrees of data heterogeneity.
Specifically, we set N = 500 and 100 (moderate) in the
(α, ρ) = (1, 1) and (α, ρ) = (0.1, 1) Dirichlet distribution
settings, respectively, and N = 1000 (massive) in the other
settings.

Regarding implementing other approaches, we adhered to
the default settings to ensure fairness in the comparison under
the same system settings. For instance, in experiments involv-
ing the CIFAR-10 dataset, LG-Fed employs LeNet-5 as the
backbone, with the weights of the first two layers kept private,
while the weights of the last three layers are shared between
clients and the server. In contrast, FedRep exclusively shares
the weights of the last layer. For experiments on the CIFAR-
10/100 and FEMNIST datasets, LotteryFL removes 20% of the
L1-norm minimum parameters in each communication round
and halts pruning after a cumulative removal of 50% of the
parameters.

4) Evaluation Metrics: We use two primary metrics to
assess performance: (i) Test accuracy (%). We calculate the
weighted local test accuracies, with weights determined by
the respective dataset size ratios. (ii) Communication cost
(Gb). The cumulative communication cost is measured by
the total number of bytes transmitted through uplink (clients-
to-server) and downlink (server-to-clients) connections. This
metric serves as an indicator of communication efficiency
performance. In simpler terms, lower communication costs
correspond to higher communication efficiency.

B. Performance Comparison

1) Accuracy and Communication Efficiency: We first
compare the test accuracy under fixed communication rounds
and communication efficiency to reach a predetermined test
accuracy of our SRP-pFed alongside seven baseline methods.
In this context, we define the fixed communication rounds by
referencing the settings used in LotteryFL [15]. Additionally,
to ensure that most methods can be achieved (as some methods
may perform below FedAvg in certain settings) and to allow
direct comparison with results reported in other papers, we
set the predefined test accuracy to an integer approximating
FedAvg. To ensure a fair and equitable comparison, we have
endeavored to standardize all methods concerning the same
model and data configurations. However, it is worth noting
that some of the baselines lack comprehensive implementation
details, and modifying the network architecture in the official
implementation code may lead to significant performance vari-
ations. An instance is PerFedMask, where the model partition
details for parameter sharing of LeNet-5 were not articulated,
posing challenges in replicating comparable results on CIFAR-
10 and FEMNIST. Consequently, certain baselines were ex-
cluded when transitioning to different datasets, ensuring the
reliability of the obtained results.

The training performance of SRP-pFed and the respective
baselines is documented in Table III (for CIFAR-10/100) and
Table IV (for FEMNIST). For CIFAR-10/100, the comparison
encompasses IID conditions and three distinct levels of non-
IID settings, while for FEMNIST, performance evaluations are
conducted under both the officially provided IID and non-IID
settings. Within these tables, the highest performance for each
setting is denoted in bold, with the symbol “−” signifying
instances where the method fails to attain the designated target
accuracy.

The results in Table III show that SRP-pFed achieves the
highest test accuracy compared to other methods at different
levels of data heterogeneity and client size. Specifically, in
massive client scenarios (N = 1000), SRP-pFed, LotteryFL,
and FedRep exhibit the highest test accuracies, exceeding
90% in the IID CIFAR-10 configuration. However, upon
transitioning to the non-IID CIFAR-10 setup (with (α, ρ) =
(10, 0.7)), only SRP manages to maintain an accuracy above
80%, while the other two methods experience a significant
decline. In this particular scenario, we set the target accuracy
at 60%, representing the maximum achievable accuracy for all
approaches. Notably, SRP-pFed also demonstrates superior
communication efficiency.



TABLE III
TEST ACCURACY (%) UNDER FIXED COMMUNICATION ROUNDS R AND THE COMMUNICATION COST (GB) REQUIRED TO REACH A PREDETERMINED

ACCURACY ON IID AND NON-IID CIFAR-10/100. THE HIGHEST ACCURACY FOR EACH SETTING IS BOLDFACED.

Dataset Method
IID

Dirichlet distribution-based non-IID
(α, ρ) = (10, 0.7) (α, ρ) = (1, 1) (α, ρ) = (0.1, 1)

Acc (R=2000) Cost (60%) Acc (R = 2000) Cost (60%) Acc (R = 2000) Cost (45%) Acc (R = 2000) Cost (50%)

CIFAR-10

FedAvg 61.01±2.47 92.96 62.29±0.42 94.62 46.11±1.69 41.67 55.69±0.39 8.49
LG-Fed 66.96±2.47 7.62 65.65±0.42 7.86 48.82±0.22 4.44 56.97±0.89 0.90

CD2-pFed 70.01±0.09 3.69 68.40±0.23 21.69 51.54±0.25 6.42 60.23±0.31 0.43
Ditto 72.65±0.04 5.23 70.89±0.08 7.13 71.46±1.19 2.62 77.95±0.29 0.62

LotteryFL 90.64±0.03 3.41 77.67±0.02 6.15 73.76±0.01 1.75 80.09±0.04 0.06
FedRep 91.03±0.26 4.85 74.05±0.01 5.23 73.90±0.01 2.43 79.51±0.02 0.50

SRP-pFed 93.66±0.79 2.74 83.39±0.12 5.71 74.36±0.15 0.67 86.86±0.09 0.04
Acc (R = 500) Cost (50%) Acc (R = 500) Cost (50%) Acc (R = 500) Cost (50%) Acc (R = 500) Cost (50%)

CIFAR-100

FedAvg 51.03±0.89 683.03 49.27±0.39 − 53.08±0.89 1111.91 53.95±0.25 794.22
PerFedMask 52.91±0.11 321.12 50.99±0.09 201.31 51.06±0.07 113.24 40.45±0.03 −

LG-Fed 53.21±0.78 317.69 55.06±0.45 428.88 64.29±0.08 603.61 60.39±0.33 730.68
Ditto 57.92±0.18 158.84 53.41±0.31 1191.33 62.05±0.01 953.06 61.21±0.05 841.87

FedRep 51.25±0.34 285.92 55.58±0.25 142.96 60.67±0.13 262.09 63.32±0.19 333.57
LotteryFL 51.63±0.27 357.47 50.17±0.12 196.97 51.64±0.03 213.93 72.28±0.08 47.95
SRP-pFed 66.52±0.79 75.55 66.55±0.16 77.29 67.19±0.16 80.32 77.99±0.26 38.26

TABLE IV
TEST ACCURACY (%) UNDER FIXED COMMUNICATION ROUNDS R AND
COST (GB) TO REACH A PREDETERMINED ACCURACY ON FEMNIST.

Method
IID non-IID

Acc (R = 500) Cost (80%) Acc (R = 500) Cost (80%)
FedAvg 80.24±2.66 246.51 78.76±2.66 −
LG-Fed 82.46±0.34 158.76 80.02±1.59 274.46

Ditto 72.85±0.34 − 81.37±1.03 223.78
FedRep 80.43±0.83 150.28 85.30±1.04 54.45

LotteryFL 86.42±1.23 55.21 85.68±3.09 46.55
SRP-pFed 91.37±0.89 43.78 89.69±2.05 24.36

TABLE V
TEST ACCURACY (%) UNDER FIXED COMMUNICATION ROUNDS R AND
COST (GB) TO REACH A PREDETERMINED ACCURACY ON IMAGENET.

Method
IID non-IID

Acc (R = 100) Cost (40%) Acc (R = 100) Cost (35%)
FedAvg 39.50±0.67 51.63 34.54±0.86 63.54
LG-Fed 39.54±0.75 29.79 35.38±0.57 25.81

LotteryFL 41.89±0.65 23.82 37.39±0.78 20.85
SRP-pFed 43.52±0.54 14.39 40.15±0.69 13.40

In the case of a higher level of non-IID, we established mod-
erate client scenarios for convergence, specifically N = 500
for (α, ρ) = (1, 1) and N = 100 for (α, ρ) = (0.1, 1) across
all methods. In the (α, ρ) = (1, 1) non-IID setting, SRP-pFed
exhibits a slightly higher test accuracy compared to the current
optimal method, FedRep. However, the communication cost
required to achieve the target accuracy is less than one-third
of FedRep’s. In the (α, ρ) = (0.1, 1) non-IID setting, repre-
senting the highest level of non-IID, SRP-pFed maintains
both the highest test accuracy and communication efficiency.
These findings are consistent across Tables III, IV, V and VI,
reinforcing the superiority and robustness of SRP-pFed’s
performance across various scenarios.

TABLE VI
TEST ACCURACY (%) UNDER FIXED COMMUNICATION ROUNDS R AND
COST (GB) TO REACH A PREDETERMINED ACCURACY ON AG NEWS.

Method
IID non-IID

Acc (R = 2000) Cost (85%) Acc (R = 2000) Cost (80%)
FedAvg 85.34±0.92 1195.23 77.48±1.45 1219.03
LG-Fed 86.14±0.63 976.69 81.24±1.75 855.13

Ditto 91.75±0.75 610.43 89.54±1.03 488.34
FedRep 91.02±0.23 549.39 89.55±0.54 415.09

LotteryFL 93.87±1.10 457.82 92.54±1.25 228.91
SRP-pFed 95.44±0.99 274.69 94.54±1.45 122.09

2) Convergence Performance: We further examine the
convergence rate (illustrated by the test accuracy versus com-
munication rounds) of SRP-pFed against the best-performing
full model update method (Ditto), structured (FedRep), and
unstructured (LotteryFL) partial model update methods. Fig-
ure 4, 5, and 6 display the comparison results over three
datasets. These results validate that SRP-pFed significantly
improves the convergence speed, whereby compared to the
other methods, it attains the highest test accuracy in most
settings. Even though, in some cases, Ditto, LotteryFL, and
FedRep can achieve test accuracies comparable to SRP-pFed,
they converge significantly slower than SRP-pFed. Specifi-
cally, all methods achieve a test accuracy exceeding 70%
in the non-IID CIFAR-10 (10, 0.7) setting (as shown in
Table III). However, LotteryFL requires 984 rounds to reach
a 70% test accuracy, whereas SRP-pFed accomplishes the
same test accuracy in just 479 rounds, marking a nearly
50% reduction in communication rounds as Figure 4 shows.
Not to mention that Ditto and FedRep fail to reach this test
accuracy within 1000 rounds. Additionally, as illustrated in
Figure 6, the initial convergence rate of FedRep was faster than
SRP-pFed, potentially due to sharing the shallow weights
responsible for low-level features, which is more conducive



to the performance improvement of initial models in the early
stages. Nevertheless, SRP-pFed soon surpasses FedRep after
300 rounds and finally achieves about +2% accuracy than it.

3) Discussion: Extensive experiments involving diverse
non-IID configurations across three datasets substantiate that
our proposed SRP-pFed consistently attains state-of-the-
art results while incurring the lowest communication cost.
Notably, in scenarios characterized by the highest degree of
data heterogeneity, SRP-pFed exhibits the most substantial
improvement in test accuracy. Regarding algorithmic design,
our framework distinguishes itself from other methodologies
by incorporating an adaptive update rate allocation mechanism
in both spatial (utilizing a client clustering module) and tempo-
ral (employing sampling with the reinforced memory module)
dimensions. The client clustering module ensures that clients
receive update rates tailored to their characteristics, a crucial
aspect in scenarios characterized by high data heterogeneity.
The sampling with the reinforced memory module guarantees
that clients are consistently assigned appropriate update rates
even as the local model undergoes continuous updates. It is
reasonable to postulate that the observed performance im-
provement primarily emanates from these aspects. To further
investigate the contributions of the aforementioned primary
modules and substantiate their necessity, ablation study have
been conducted, as elaborated in Section V-C.

C. Ablation Study

TABLE VII
ABLATION STUDY TO EVALUATE THE EFFECTIVENESS OF EACH

COMPONENT ON NON-IID CIFAR-10 (10, 0.7).

RD RM CL Acc Cost (60%) Round (60%)

65.92±0.31 23.85 1340
✓ 68.72±0.45 21.54 1028

✓ 72.13±0.32 10.45 655
✓ 72.93±0.21 8.34 571

✓ ✓ 73.05±0.30 7.84 365
✓ ✓ 73.81±0.43 5.94 286

The SRP-pFed is composed of two basic components to
realize the partial model update: (1) Update rate sampling with
reinforced memory (RM) and (2) Client clustering (CL). To
verify the necessity of reinforced memory during sampling, we
introduce the comparison component (3) Sample update rates
randomly with the same probability (RD) without dynamic
adjustment based on historical information.

We compare the performance of different combinations of
the above modules to evaluate the effectiveness of each module
concerning the best test accuracy over 500 communication
rounds, the required communication cost (Gb) as well as
the required communication round to reach the target test
accuracy. Note that in scenarios where the RD and RM
modules are omitted (first two lines in Table VII), we rely on
empirically predefined rules presented in [14] to artificially
set the update rate. As illustrated in Table VII, both of our
proposed modules contribute to performance improvement.
The test accuracy of models incorporating the RM module

consistently surpasses those with the RD module, and this
improvement is achieved with reduced communication cost.
A similar trend is observed with the CL module, where, un-
der identical conditions, superior performance is consistently
achieved when employing the module compared to its absence.
Notably, the configuration incorporating both RM and CL
(i.e., our proposed SRP-pFed) attains the highest level of
performance.

D. Hyperparameters Setting

In this part, we explore the effects of various hyperparame-
ters involved in the experiments. Notably, due to the stochastic
nature of operations involved in the model training process,
such as model initialization [64], dropout [65], and stochastic
gradient descent [66], performance may fluctuate within a
certain range. To minimize the impact of randomness, the
results presented in this chapter will be averaged over three
trials

1) Effects of the Number of Update Rate Candidates: As
the optimal update rate for each client remains uncertain within
any specific interval, we refrain from imposing restrictions
on the candidate update rate, considering it to be uniformly
distributed in the range (0, 1]. For the number of candidate
update rates, c, we evaluate the system performance of various
settings, with c taking values of 5, 10, 15, and 20 (with
K = 2). The results, illustrated in Figure 7(a), reveal that
SRP-pFed is insensitive to changes in c under the IID
setting. Conversely, in the three non-IID settings, a notable
improvement in test accuracy is observed when c increases
from 5 to 10. A larger value of c corresponds to a finer update
rate setting. The observed phenomenon indicates that a more
refined update rate setting has a positive influence on model
performance, especially in non-IID settings. This observation
aligns with the explanation for SRP-pFed’s ability to main-
tain high model performance even in non-IID scenarios, as
discussed in Section V-B. However, as c further increases to 15
and 20, test accuracy has no significant change. This suggests
that the update rate refinement achieved with c = 10 fully
meets the model’s requirements for the update rate, and there
is no necessity to further augment the number of candidate
update rates. Consequently, we choose c = 10 in this study.

2) Effects of the K Value: The variable K denotes
the number of clustering centers. A larger K corresponds
to a more refined classification of clients and potentially
better model performance. Inevitably, this introduces addi-
tional computational overhead. Specifically, SRP-pFed re-
quires performing K forward propagation inferences on the
local test set, resulting in additional computations quantified
as FLOPsforward × K × ntest. The inherent computation of
local training comprises the sum of forward propagation
and backpropagation operations, multiplied by the number of
training samples and epochs, expressed as (FLOPsforward +
FLOPsbackward)× Epochs× ntrain. Backpropagation, which not
only calculates the loss but also derives the weight gradients,
incurs more significant computational overhead than forward
propagation, i.e., FLOPsforward < FLOPsbackward. Furthermore,
in the setting of this paper, Epochs = 5 , ntest

ntrain
≤ 1

5 . From
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Fig. 4. Test accuracy vs. communication rounds on IID and three non-IID CIFAR-10.
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Fig. 5. Test accuracy vs. communication rounds on IID and three non-IID CIFAR-100.
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Fig. 6. Test accuracy vs. communication rounds on IID and non-IID
FEMNIST.

these, it can be approximated that the percentage increase in
computation due to SRP-pFed is

FLOPsforward ×K × ntest

(FLOPsforward + FLOPsbackward)× Epochs× ntrain
≤ K

50
.

Consequently, it can be observed that 4% increase in compu-
tation overhead for each additional clustering center.

To balance model performance and local computation, we
conducted trials with a small number of training rounds across
different settings on CIFAR-10, exploring various values of
K. The outcomes, summarized in Figure 7(b), present a
growing trend in test accuracy when SRP-pFed adopts more
clusters, and the higher the degree of non-IID, the more
significant the gain is. While the higher the performance of
K the better, the performance gain from the same additional
computational overhead varies. The performance increase was
most pronounced when K is less than 3 or greater than 8.
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Fig. 7. (a) Sensitivity analysis of the number of update rate candidates c
on CIFAR-10, where communication rounds equal to 350. (b) The effect of
the number of cluster centers K on CIFAR-10, where communication rounds
equal to 200.

When 3 ≤ K ≤ 8, due to the randomness and insignificant
gain, performance shows a fluctuating and slowing upward
trend. The reason for this phenomenon is that when the value
of K is smaller than the actual number of client clusters (which
is unknown), each additional group brings SRP-pFed’s clus-
tering closer to the true situation. However, when K exceeds
the actual number of clusters, sufficient clustering granularity
has already been achieved, and further increasing the number
of groups provides only minimal performance gains unless the
granularity reaches a certain threshold. In Appendix C, we
present a toy example to explain this. In real-world scenarios,
due to variations in data distribution, the clustering degree
of clients also varies. Determining the optimal value of K
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Fig. 8. Visualization of clustering results during training with different K on
CIFAR-10 (1, 1).

remains a challenge, and we will explore it in future work.
To explore the cause of the gain slowdown for 3 ≤ K ≤ 8,

we visualize the clustering during training every 100 com-
munication rounds, as depicted in Figure 8. Initially, at the
onset of training (Round = 0), all clients share the same
initialization weight, hence the clients are clustered together
and not assigned to distinct clustering centers. As the model
training progresses, clients are classified into different clusters,
reflecting their data heterogeneity. When K is set to 2, clients
are more evenly distributed between Clusters 0 and 1. As K
increases, clients are more precisely divided to achieve higher
accuracy. However, Figure 8 also reveals that some clusters
contain very few clients, providing limited performance gains
but incurring additional local computation costs. For instance,
with K = 6 at communication round 500, more than 80% of
clients are classified into Clusters 0 and 3, while the remaining
(less than 20%) are scattered across the other three clusters.
Roughly categorizing this smaller portion into Clusters 0 and
3 has a negligible impact on performance, reducing computa-
tional overhead, as illustrated in Figure 7. A similar situation
exists for K = 4 and K = 8. Therefore, considering the
trade-off between performance and computational effort, we
choose K = 2, which yields significant performance gains
with minimal additional computation overhead (4%).

E. Limitation and Future Work

This part reports the convergence results of SRP-pFed and
demonstrates superior performance over existing baselines in
synchronous federated learning scenario. However, its adapt-
ability in certain specific scenarios (such as dynamic user

numbers and asynchronous FL mechanisms) has yet to be
confirmed. In Section III, we briefly discussed SRP-pFed’s
adaptability in (semi-)asynchronous FL mechanisms. We also
provided preliminary results of SRP-pFed under the dynamic
client number setting in the Appendix B. In future work, we
will further validate the generality and effectiveness of the
proposed method in various scenarios through both theoretical
analysis and experiments.

VI. CONCLUSION

We proposed SRP-pFed, a PFL framework capable of
personalizing FL models while concurrently reducing com-
munication costs. Under the SRP-pFed, each client divides
its local model into the personal and shared parts, where only
the shared part is exchanged with the server. The size of the
personal part in a local model is determined by the update
rate, which is coarsely initialized and subsequently refined
over time. Our experimental results amply demonstrated the
effectiveness of the SRP-pFed under different data hetero-
geneity settings, in both massive and moderate client scenarios.
Moreover, the developed framework can be extended to other
architecture-based PFL approaches.

The current experiment assesses the SRP-pFed with a
fixed number of clients. However, client participation may
not be consistent during training in practical applications.
Exploring the feasibility of the proposed system performance
under conditions where the number of clients changes dynam-
ically [45], [67], [68] would be insightful. We will explore this
aspect in our future work.
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[42] Y. Jiang, J. Konečnỳ, K. Rush, and S. Kannan, “Improving feder-
ated learning personalization via model agnostic meta learning,” arXiv
preprint arXiv:1909.12488, 2019.

[43] A. Shamsian, A. Navon, E. Fetaya, and G. Chechik, “Personalized
federated learning using hypernetworks,” in Int. Conf. Mach. Learn.
(ICML). PMLR, 2021, pp. 9489–9502.

[44] H.-Y. Chen and W.-L. Chao, “On bridging generic and personalized
federated learning for image classification,” in Proc. Int. Conf. Learn.
Represent. (ICLR), 2021.

[45] Z. Chen, H. Yang, T. Quek, and K. F. E. Chong, “Spectral co-distillation
for personalized federated learning,” Adv. Neural Inf. Process. Syst.,
vol. 36, pp. 8757–8773, 2023.

[46] Z. Xiao, Z. Chen, L. Liu, Y. Feng, J. Wu, W. Liu, J. T. Zhou, H. H.
Yang, and Z. Liu, “Fedloge: Joint local and generic federated learning
under long-tailed data,” in Proc. Int. Conf. Learn. Represent. (ICLR),
2024.

[47] L. Luo, J. Nelson, L. Ceze, A. Phanishayee, and A. Krishnamurthy,
“Parameter hub: a rack-scale parameter server for distributed deep neural
network training,” in Proc. ACM Symp. Cloud Comput., 2018, pp. 41–54.

[48] A. Morcos, H. Yu, M. Paganini, and Y. Tian, “One ticket to win them all:
generalizing lottery ticket initializations across datasets and optimizers,”
Adv. Neural Inf. Process. Syst., vol. 32, 2019.

[49] R. Hu, Y. Guo, and Y. Gong, “Federated learning with sparsified model
perturbation: Improving accuracy under client-level differential privacy,”
IEEE Trans. Mobile Comput., vol. 23, pp. 8242–8255, 2023.

[50] C. Fan, J. Li, T. Zhang, X. Ao, F. Wu, Y. Meng, and X. Sun, “Layer-
wise model pruning based on mutual information,” in Proc. Conf. Empir.
Methods Nat. Lang. Process., 2021, pp. 3079–3090.

[51] D.-J. Han, D.-Y. Kim, M. Choi, D. Nickel, J. Moon, M. Chiang, and
C. G. Brinton, “Federated split learning with joint personalization-
generalization for inference-stage optimization in wireless edge net-
works,” IEEE Trans. Mobile Comput., vol. 23, pp. 7048–7065, 2023.

[52] A. Aji and K. Heafield, “Sparse communication for distributed gradient
descent,” in Proc. Conf. Empir. Methods Nat. Lang. Process., 2017, pp.
440–445.

[53] Z.-J. Tan, X.-W. Zou, S.-Y. Huang, W. Zhang, and Z.-Z. Jin, “Random
walk with memory enhancement and decay,” Phys. Rev. E, vol. 65, no. 4,
p. 041101, 2002.

[54] E. Baur, “On a class of random walks with reinforced memory,” J. Stat.
Phys., vol. 181, no. 3, pp. 772–802, 2020.

[55] Speedtest, “Internet speed around the world – speedtest global
index speeds,” 2024. [Online]. Available: https://www.speedtest.net/
global-index.

[56] Z. Wang, Z. Zhang, Y. Tian, Q. Yang, H. Shan, W. Wang, and T. Q.
Quek, “Asynchronous federated learning over wireless communication
networks,” IEEE Trans. Wireless Commun., vol. 21, no. 9, pp. 6961–
6978, 2022.

[57] Q. Ma, Y. Xu, H. Xu, Z. Jiang, L. Huang, and H. Huang, “Fedsa: A
semi-asynchronous federated learning mechanism in heterogeneous edge
computing,” IEEE J. Sel. Areas Commun., vol. 39, no. 12, pp. 3654–
3672, 2021.



[58] Y. Wu, S. Zhang, W. Yu, Y. Liu, Q. Gu, D. Zhou, H. Chen, and
W. Cheng, “Personalized federated learning under mixture of distribu-
tions,” in Int. Conf. Mach. Learn. (ICML). PMLR, 2023, pp. 37 860–
37 879.

[59] O. Marfoq, G. Neglia, A. Bellet, L. Kameni, and R. Vidal, “Federated
multi-task learning under a mixture of distributions,” Adv. Neural Inf.
Process. Syst., vol. 34, pp. 15 434–15 447, 2021.

[60] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[61] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
2016, pp. 770–778.

[62] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convo-
lutional neural networks,” in Int. Conf. Mach. Learn. (ICML). PMLR,
2019, pp. 6105–6114.
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