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Abstract— This paper addresses the computation of a non-
asymptotic lower bound, given by the nonanticipative rate-
distortion function (NRDF), for the discrete-time zero-delay
variable-rate lossy compression of discrete Markov sources
under per-stage single-letter distortion constraints. We first
derive a new information structure for the NRDF and new
convexity results that allow reformulating the problem as
an unconstrained partially observable finite-horizon stochastic
dynamic program (DP) using Lagrange duality theorem subject
to a belief state that summarizes past information and evolves
in a continuous space. Rather than directly approximating
the DP, we derive implicit optimal conditions via the Karush-
Kuhn-Tucker (KKT) conditions and propose a novel alternating
minimization (AM) scheme to approximate both the control
policy and cost-to-go function through backward recursions
with provable convergence guarantees. We evaluate the control
policies and cost-to-go functions per-stage using an online
forward algorithm that executes for any finite horizon. Our
methodology yields a near-optimal approximation of the NRDF
as the belief state space becomes sufficiently large. Simulation
results using time-varying binary Markov sources validate the
effectiveness of our approach.

I. INTRODUCTION

The classical lossy source coding problem involves en-
coding long blocks of source symbols to asymptotically
achieve Shannon’s limit, minimizing the average bit rate
for a given distortion level [2]. However, such block-based
schemes introduce significant coding delays, making them
undesirable for delay-sensitive applications spanning from
networked control systems [3] to applications within the
emerging field of semantic communications [1].

A more appropriate lossy compression paradigm for delay-
sensitive applications is the zero-delay lossy source coding.
Unlike classical schemes, it generates compressed source
symbols by the encoder without delay and transmits over a
discrete noiseless channel to the decoder, which immediately
reconstructs the source symbols under a fidelity constraint.
The discrete noiseless channel may operate assuming either
fixed or variable rates.

Several key results are documented in the literature on
zero-delay lossy compression schemes. Early foundational
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works [4], [5] explored the structural properties of opti-
mal zero-delay codes for primarily fixed-rate systems using
stochastic control and DP [6], with later generalizations
in [7]–[9]. In [10], they developed structural theorems for
variable-rate coding with and without side information at
the decoder. Recently, [11] invoked reinforcement learning
via a quantized Q-learning to near-optimally approximate
the infinite-horizon fixed-rate zero-delay coding problem
for finite-alphabet stationary Markov sources. Another rel-
evant research direction, instead of designing directly zero-
delay lossy codes subject to variable-rate constraints, derives
information-theoretic upper and lower bounds building on
nonanticipatory ϵ−entropy1 introduced by [14]. This line
of research primarily studied bounding techniques on lin-
ear (perhaps controlled) Markov systems driven by addi-
tive Gaussian or non-Gaussian noise and the derivation of
information-theoretic closed-form solutions [12], [15]–[17].

Contributions: In this paper, we analyze a non-asymptotic
lower bound on the empirical rates of a discrete-time zero-
delay variable-rate lossy source coding system assuming
discrete and possibly time-varying Markov sources subject
to per-stage average single-letter distortion criterion. We first
derive a structural property of the NRDF specific to the
particular class of sources and fidelity constraint (see Lemma
1). We then derive new convexity properties results (see
Theorem 2, 3) that enable reformulating the problem as an
unconstrained partially observable finite-horizon stochastic
DP with an continuous information state space [6] (see
equations (13), (14)). Instead of solving the DP recursions
directly, we optimize with respect to (wrt) the control policy
(which corresponds to the minimizing distribution of the
NRDF) and thereby derive implicit closed-form backward
recursions. These are computed via a new dynamic AM
scheme (see Lemma 4) that approximates offline the control
policy and the cost-to-go function (a function of the rate)
using a discretized belief state space at each time stage (see
Algorithm 1). A forward (online) algorithm (see Algorithm
2) is then proposed to evaluate the resulting functional
quantities for any finite-time horizon. Our offline scheme has
provable convergence guarantees per-stage (see Theorems 5,
6) and approaches a near-optimal solution as the discretized
belief space (finite state-space) becomes sufficiently large.
We corroborate our theoretical results with numerical sim-
ulations on time-varying binary Markov sources with the
illustration of the stagewise rate.

1Also found in the literature as sequential rate-distortion-function (RDF)
[12] and nonanticipative RDF (NRDF) [13].



To the best of our knowledge, this is the first work to
(i) reformulate the NRDF optimization for discrete Markov
sources and single-letter distortion as an unconstrained par-
tially observable stochastic DP with continuous state space,
and (ii) approximate the optimal policy via a dynamic
AM scheme that generalizes the Blahut-Arimoto algorithm
(BAA) [18] into offline training, followed by an online
computation.

Notation: N ≜ {1, 2, . . .}, N0 ≜ {0, 1, . . .}, and Nn
j ≜

{j, . . . , n}, j ≤ n, n ∈ N. We denote a sequence of
random variables (RVs) by Xt = {X0, X1, . . . , Xt}, t ∈
Nn

0 and their values by xt ∈ X t = {X0, . . . ,Xt}, where
Xt denotes the alphabet and hence X t the alphabet se-
quence. A truncated sequence of RVs is denoted by Xt

j =
{Xj , . . . , Xt}, j ∈ Nt

0, t ≥ j, and its realizations by
xt
j = {xj , . . . , xt} ∈ X t

j = {Xj , . . . ,Xt}, t ≥ j. The
distribution of a RV X on X is denoted by P (x), and
the conditional distribution of Y given X = x denoted by
P (y|x). Functional dependencies are indicated using square
brackets; e.g., P [Q](x) and P [y](x) express the functional
dependence of a distribution P (x) on another distribution
Q and on another realization y, respectively. Expectation
operator is denoted by E{·}, and by EP o{·} when taken
wrt a specific distribution P (·) = P o(·).

II. PROBLEM STATEMENT AND PRELIMINARIES

We consider the discrete-time zero-delay lossy source
coding system illustrated in Fig. 1, operating at any finite-
time horizon n ∈ N0.

Encoder Decodernoiseless channelnoiseless channel

variable rate

𝑋𝑡 𝑌𝑡  

𝑓𝑡  𝑔𝑡  

𝑀𝑡 ∈  0,1 𝑙𝑡

Fig. 1: A generic zero-delay lossy source coding system

Operation: At each time instant t ∈ Nn
1 , the

source is modeled as a Markov process (not necessarily
time-homogeneous) with transition probability distribution
Pt(xt|xt−1) and initial distribution P0(x0), which induce the
joint distribution of the sequence of RVs Xt, t ∈ Nn

0 . For
any Xt ∈ Xt, we assume that the cardinality of Xt is finite.
The encoder (E) ft encodes the information Xt generated
from the source based on the past information Xt−1 and
produces a variable-rate codeword Mt ∈ Mt ⊂ {0, 1}lt of
length lt and expected rate Rt = E|lt|. The decoder (D) gt
receives the past and current codewords M t to reproduce
Yt ∈ Yt, provided that Y t−1 is already reproduced. Again,
we assume that for any Yt ∈ Yt, the cardinality of Yt is
finite. Formally, the (E), (D) pair is specified by the sequence
of possibly stochastic mappings ft : Mt−1 × X t → Mt,
and gt : Mt → Yt, respectively. We note that at t = 0,
the encoder’s output is m0 = f0(x0) and the decoder’s
output y0 = g0(m0). This means that no prior information
is assumed at both the encoder and the decoder.

Fidelity constraint: The system in Fig. 1, is penalized
at each time instant by an additive fidelity {Dt ≥ 0 :
t ∈ Nn

0}. The constraint between the source process {Xt :

t ∈ Nn
0} and the reproduction process {Yt : t ∈ Nn

0} is
described by the per-stage average single-letter distortion,
i.e., E{ρt(Xt, Yt)} ≤ Dt, where ρt(xt, yt) is the single-
letter distortion function between the source information xt

and its reproduction yt at each t.
Performance: The system model in Fig. 1, subject to the

fidelity criterion described above, can be computed by the
following empirical rate optimization:

Ro
[0,n](D0, . . . , Dn) ≜ inf

{(ft, gt):
E{ρt(Xt,Yt)}≤Dt,

∀t∈Nn
0 }

1

n+ 1

n∑
t=0

Rt. (1)

Solving (1) requires considering all possible coding schemes,
making it extremely difficult to obtain a globally optimal
solution with tractable computational complexity. As a result,
it makes sense to pursue approximate solutions via bounds.

A well-known lower bound on (1), assuming a Markov
source and a per-stage average single-letter distortion, is the
NRDF [14] given as follows:

Rna
[0,n](D0, . . . , Dn) ≜ inf

Q[0,n]

(D0,...,Dn)

1

n+ 1
I(Xn → Y n) (2)

where the constraint set is expressed as

Q[0,n](D0, . . . , Dn) ≜ {Pt(yt|yt−1, xt) :

E{ρt(Xt, Yt)} ≤ Dt, ∀t ∈ Nn
0} (3)

and I(Xn → Y n) is a variant of directed information (DI)
[19] defined as follows

I(Xn → Y n)

≜
n∑

t=0

E
{
log

(
Pt(Yt|Y t−1, Xt)

Pt(Yt|Y t−1)

)}
=

n∑
t=0

I(Xt;Yt|Y t−1)

=
n∑

t=0

∫
X t

t−1×Yt

log

(
Pt(yt|yt−1, xt)

Pt(yt|yt−1)

)
Pt(xt|xt−1)

Pt(yt|yt−1, xt)Pt(xt−1|yt−1)Pt(y
t−1)

(a)
≡ I[0,n](

←−
P [0,n](x

n),
−→
P [0,n](y

n|xn)) (4)

where (a) denotes the functional dependence of
I(Xn → Y n) wrt

←−
P [0,n](x

n) ≜ ⊗n
t=0Pt(xt|xt−1)

and
−→
P [0,n](y

n|xn) ≜ ⊗n
t=0Pt(yt|yt−1, xt), respectively.

We state some noteworthy remarks related to (2).
Remark 1: (On the bound of (2)) (i) In accordance with

the system model in Fig. 1, (2) does not assume any prior
information at t = 0 available in the system model but only
P0(x0) and P0(y0) are fixed. This means that at t = 0,
I(X0;Y0|Y −1) ≡ I(X0;Y0). (ii) The bound of (2) has been
thoroughly studied for continuous sources, see e.g., [20] but
not adequately for discrete sources, with a notable exception
perhaps the work of [21] which alas does not provide general
methodologies for computation or tangible proofs to certain
analytical expressions. (iii) Although (2) under the constraint
set (3) makes sense to be a convex program, there is no
available proof in the literature. On the other hand, (2) forms
a convex program when I(Xn → Y n) is a convex function



wrt the product
−→
P [0,n] for a fixed

←−
P [0,n](x

n) and for a
constraint set defined as
−→
Q [0,n](D0, . . . , Dn) ≜ {

−→
P (yn|xn) ≜ ⊗n

t=0Pt(yt|yt−1, xt) :

E{ρt(Xt, Yt)} ≤ Dt, ∀t ∈ Nn
0} (5)

(see e.g., [22]). Hence, no proof of the convexity of (2)
exists wrt the constraint set (3). (iv) There is no generic
implicit or explicit solution of (2) under the constraint set of
(3). However, implicit closed-form recursions of the optimal
minimizer are reported (without a complete proof) in [20,
Theorem 4.1] assuming the constraint set in (5).

In this work, we provide a generic methodology to approx-
imate (2) assuming discrete Markov sources aiming primarily
to close the gaps mentioned in Remark 1, (iii), (iv).

III. MAIN RESULTS

In this section, we give our main results. To do it,
we restrict ourselves to finite alphabet spaces, e.g., with
cardinality |Xt| <∞, |Yt| <∞, ∀t, throughout the paper.

First, we give a new information structure that simplifies
the multi-letter variant of DI in (2).

Lemma 1: (Structural Property) For a given Markov
source {Pt(xt|xt−1) : t ∈ Nn

0} and a single letter distortion
function {ρt(xt, yt) : t ∈ Nn

0}, the characterization in (2)
can be simplified as follows2

Rna
[0,n](D0, . . . , Dn) ≜ min

Q̃[0,n](D0,...,Dn)

1

n+ 1
I(Xn → Y n),

(6)

where

Q̃[0,n](D0, . . . , Dn) ≜
{
Pt(yt|yt−1, xt) :

E{ρt(Xt, Yt)} ≤ Dt, ∀t ∈ Nn
0

}
(7)

I(Xn → Y n) ≜
n∑

t=0

I(Xt;Yt|Yt−1). (8)

The result in Lemma 1 is generic and holds for both discrete
and continuous alphabets. Indeed, such property is already
verified for joint Gaussian-Markov processes, e.g., [20], [23].

The next two results provide conditions to ensure new
convexity properties for (6). The first result demonstrates a
new convexity property of (8) for a given posterior distribu-
tion {Pt(xt−1|yt−1) ≡ P o

t (xt−1|yt−1) : t ∈ Nn
0}, wrt the

minimizing distributions {Pt(yt|yt−1, xt) : t ∈ Nn
0}.

Theorem 2: (Convexity of (8)) For a fixed source dis-
tribution {Pt(xt|xt−1) : t ∈ Nn

0}, and a given posterior
distribution {P o

t (xt−1|yt−1) : t ∈ Nn
0} obtained for a fixed

Yt−1 = yt−1, define the conditional mutual information
I(Xt;Yt|Yt−1 = yt−1) as follows

I(Xt;Yt|Yt−1 = yt−1) ≜
∑
xt−1

∈Xt−1

∑
xt∈Xt
yt∈Yt

log

(
Pt(yt|yt−1, xt)

Pt(yt|yt−1)

)
Pt(xt|xt−1)Pt(yt|yt−1, xt)P

o
t (xt−1|yt−1), ∀t ∈ Nn

0 . (9)

2For non-empty finite sets, we can replace infimum with minimum due
to the compactness of the constraint sets.

TABLE I: Elements of stochastic optimal control problem
Variables of DP Connection to (12)

belief Pt(xt−1|yt−1)
disturbance Pt(xt|xt−1)

control policy Pt(yt|yt−1, xt)

cost function log

(
Pt(yt|yt−1,xt)

Pt(yt|yt−1)

)
−st(ρt(xt,yt)

−Dt[yt−1,P (xt−1|yt−1)])

Then, (9) is a convex functional wrt {Pt(yt|yt−1, xt) : t ∈
Nn

0}. Moreover, the additive term

I(Xn → Y n) =
n∑

t=0

∑
yt−1

∈Yt−1

Pt(yt−1)I(Xt;Yt|Yt−1 = yt−1)

(10)

is also convex wrt {Pt(yt|yt−1, xt) : t ∈ Nn
0}.

The following result establishes the convexity of the
constraint set in (7) for a given {P o

t (xt−1|yt−1) : t ∈ Nn
0}.

Theorem 3: (Convexity of (7)) For a fixed source dis-
tribution {Pt(xt|xt−1) : t ∈ Nn

0}, and a given posterior
distribution {P o

t (xt−1|yt−1) : t ∈ Nn
0} obtained for a fixed

Yt−1 = yt−1, define the constraint set

Q̃[0,n](D0, D1[y0, P
o
1 ], . . . , Dn[yn−1, P

o
n ]) ≜{

Pt(yt|yt−1, xt), t ∈ Nn
0 : E

{
ρ0(X0, Y0)

}
≤ D0;

EP o
t

{
ρt(Xt, Yt)

∣∣∣Yt−1 = yt−1

}
≤ Dt[yt−1, P

o
t ], t ∈ Nn

1

}
,

(11)

where Dt[yt−1, P
o
t ] denotes the functional dependence of Dt

wrt the given {P o
t (xt−1|yt−1) : t ∈ Nn

0} obtained for a fixed
Yt−1 = yt−1. Then, (11) forms a convex set. If averaging
the constraints in (11) wrt yt−1 ∈ Yt−1 for each t ∈ Nn

1 , (7)
is also convex for a given {P o

t (xt−1|yt−1), t ∈ Nn
0}.

Using Theorems 2, 3, we can exploit Lagrange duality
theorem [24] with Lagrange multipliers {st ≤ 0, t ∈ Nn

0},
to cast (6) for a given {P o

t (xt−1|yt−1), t ∈ Nn
0} obtained

for a fixed Yt−1 = yt−1, into the following unconstrained
convex optimization problem:

Run
[0,n](D0, D1[y0, P

o
0 ], . . . , Dn[yn−1, P

o
n ]) = sup

{st≤0: t∈Nn
0 }

min
{Pt(yt|yt−1,xt): t∈Nn

0 }

n∑
t=0

EP o
t

{
log

(
Pt(Yt|Yt−1, Xt)

Pt(Yt|Yt−1)

)

− st
(
ρt(Xt, Yt)−Dt[yt−1, P

o
t ]
)∣∣∣∣∣Yt−1 = yt−1

}
. (12)

Note that if we average (12) wrt to Pt(yt−1) > 0, then, we
obtain (6) for a given {P o

t (xt−1|yt−1), t ∈ Nn
0}.

Hence we can reformulate (12) using stochastic optimal
control arguments as an unconstrained partially observable
finite-time horizon stochastic DP with a continuous state
space [6]. The reformulation with its one-to-one correspon-
dence in (12) is illustrated in Table I. Let Rt(·) denote
the optimal expected cost or pay-off in (12) on the future
time horizon {t, t+1, . . . , n}. Then, for a given belief state
P o
t (xt−1|yt−1) obtained for a fixed Yt−1 = yt−1, it is



described as follows

Rt(Dt[yt−1, P
o
t ])

= min
{Pi(yi|yi−1,xi):
i∈{t,t+1,...,n}}

EP o
i

{
n∑

i=t

log

(
Pi(Yi|Yi−1, Xi)

Pi(Yi|Yi−1)

)

−
n∑

i=t

si

(
ρi(Xi, Yi)−Di[yi−1, P

o
i ]

)∣∣∣∣∣Yi−1 = yi−1

}
.

Applying the principle of optimality [6] yields the following
exact finite-time horizon stochastic DP recursions obtained
backward in time

Rn(Dn[yn−1, P
o
n ]) = min

Pn(yn|yn−1,xn)

∑
xn
n−1∈Xn

n−1,yn∈Yn{(
log

(
Pn(yn|yn−1, xn)

Pn(yn|yn−1)

)
− snρn(xn, yn)

)
Pn(xn|xn−1)

Pn(yn|yn−1, xn)P
o
n(xn−1|yn−1)

}
+ snDn[yn−1, P

o
n ],

(13)

Rt(Dt[yt−1, P
o
t ]) = min

Pt(yt|yt−1,xt)

∑
xt
t−1∈X t

t−1,yt∈Yt{(
log

(
Pt(yt|yt−1, xt)

Pt(yt|yt−1)

)
− stρt(xt, yt)

+Rt+1(Dt+1[yt, P
o
t+1])

)
Pt(yt|yt−1, xt)P

o
t (xt−1|yt−1)

Pt(xt|xt−1)

}
+ stDt[yt−1, P

o
t ], t = n− 1, . . . , 0. (14)

Note that the given belief state for fixed Yt−1 = yt−1 in (13),
(14) can be identified at each time stage t by the following
recursion

P o
t+1(xt|yt) =

Pt(xt, yt)

Pt(yt)

=

∑
yt−1∈Yt−1

xt−1∈Xt−1

Pt(yt|yt−1, xt)Pt(xt|xt−1)P
o
t (xt−1|yt−1)∑

yt−1∈Yt−1

xt
t−1∈X t

t−1

Pt(yt|yt−1, xt)Pt(xt|xt−1)P o
t (xt−1|yt−1)

which is Markov, conditional on Yt, P
o
t (xt−1|yt−1). More-

over, at t = 0, we adopt the assumptions of our system model
in Fig. 1 and assume that P0(y0|y−1, x0) = P0(y0|x0), and
P0(y0|y−1) = P0(y0), hence the initial time stage in (14)
can be modified accordingly. To compute (6) for a given
{P o

t (xt−1|yt−1) : t ∈ Nn
1}, we need to move forward in

time from R0 and obtain the clean value of the cost-to-go
functions at each time stage t averaging over yt−1 ∈ Yt−1

and exploring over all possible values of the belief state space
generated by {P o

t (xt−1|yt−1) : t ∈ Nn
1}.

The partially observable stochastic DP defined in (13),
(14) can be solved offline using approximation methods [25],
assuming that the belief state per-stage takes values in (0, 1).
Instead of following that direction, we exploit the convexity

of our problem and optimize wrt the control policy (test-
channel) via a more efficient policy approximation method.
We first discretize the given continuous belief state space into
a finite state space denoted by Bt, ∀t ∈ Nn

0 and then rely on
a dynamic AM scheme (it was used to compute the classical
RDF for discrete sources [18]) to generate an offline training
algorithm. The following lemma builds the dynamic AM.

Lemma 4: (Double minimization) For any t ∈ Nn
0 , let

st ≤ 0 and Dt > 0, then for a fixed Markov source
Pt(xt|xt−1), and a given belief state P o

t (xt−1|yt−1) ∈ Bt
obtained for a fixed Yt−1 = yt−1, (13), (14) can be expressed
as a double minimum as follows

Rt(Dt[yt−1, P
o
t ]) = min

Pt(yt|yt−1,xt)
min

Pt(yt|yt−1)

∑
xt
t−1∈X t

t−1,yt∈Yt{(
log

(
Pt(yt|yt−1, xt)

Pt(yt|yt−1)

)
− stρt(xt, yt)

+Rt+1(Dt+1[yt, P
o
t+1])

)
Pt(yt|yt−1, xt)P

o
t (xt−1|yt−1)

Pt(xt|xt−1)

}
+ stDt[yt−1, P

o
t ], t = n, n− 1, . . . , 0 (15)

where Rt+1(Dt+1[yt, P
o
t+1]) is the cost-to-go that is equal

to 0 when t = n, and Dt[yt−1, P
o
t ] is a functional of the

distortion level expressed as

Dt[yt−1, P
o
t ] =

∑
xt∈Xt
yt∈Yt

PMo
t (xt|yt−1)P

∗
t (yt|yt−1, xt)ρt(xt, yt)

(16)

with P ∗
t (yt|yt−1, xt) achieving the minimum and

PMo
t (xt|yt−1) =

∑
xt−1∈Xt−1

Pt(xt|xt−1)P
o
t (xt−1|yt−1).

Moreover, for a fixed Pt(yt|yt−1, xt), the right hand side
(RHS) of (15) is minimized by

Pt(yt|yt−1) =
∑

xt∈Xt

PMo
t (xt|yt−1)Pt(yt|yt−1, xt), (17)

whereas for fixed Pt(yt|yt−1), the RHS of (15) is minimized
by

Pt(yt|yt−1, xt) =
Pt(yt|yt−1)At[P

o
t+1]∑

yt∈Yt
Pt(yt|yt−1)At[P o

t+1]
(18)

where At[P
o
t+1] = estρt(xt,yt)−Rt+1(Dt+1[yt,P

o
t+1]).

From Lemma 4, substituting (18) into (16) yields:

Dst [yt−1,P
o
t ] =

∑
xt∈Xt,yt∈Yt

PMo
t (xt|yt−1)

P ∗
t (yt|yt−1)At[P

o
t+1]∑

yt∈Yt
P ∗
t (yt|yt−1)At[P o

t+1]
ρt(xt, yt). (19)

Lemma 4 provides a parametric model that establishes the
use of a new dynamic version of BAA [18], enabling an AM
scheme between Pt(yt|yt−1, xt) and Pt(yt|yt−1) at any t ∈
Nn

0 . We now describe the convergence of the offline training
algorithm that approximates the optimal control policy.

Theorem 5: (Offline training algorithm) For each t ∈
Nn

0 , consider a fixed source Pt(xt|xt−1), and a given



P o
t (xt−1|yt−1) obtained for a fixed Yt−1 = yt−1. More-

over, let st ≤ 0 and P
(0)
t (yt|yt−1) > 0 be the initial

output probability distribution, and let P
(k+1)
t (yt|yt−1) =

Pt[P
(k)
t (yt|yt−1)](yt|yt−1, xt) and P

(k+1)
t (yt|yt−1, xt) =

Pt[P
(k)
t (yt|yt−1)](yt|yt−1) be expressed as follows

P
(k+1)
t (yt|yt−1, xt) =

P
(k)
t (yt|yt−1)At[P

o
t+1]∑

yt∈Yt
P

(k)
t (yt|yt−1)At[P o

t+1]
,

(20)

P
(k+1)
t (yt|yt−1) = P

(k)
t (yt|yt−1)∑

xt∈Xt

PMo
t (xt|yt−1)At[P

o
t+1]∑

yt∈Yt
P

(k)
t (yt|yt−1)At[P o

t+1]
. (21)

Then as k →∞, we obtain for any t that

Dt[yt−1, P
o
t , P

(k)
t (yt|yt−1, xt)]→ Dst [yt−1, P

o
t ]

It[yt−1, P
o
t , P

(k)
t (yt|yt−1, xt)]→ Rt(Dst [yt−1, P

o
t ])

where (Dst [yt−1, P
o
t ], Rt(Dst [yt−1, P

o
t ])) denotes a point

on the cost-to-go curve parametrized by st given
P o
t (xt−1|yt−1) obtained for a fixed Yt−1 = yt−1 and

It[yt−1, P
o
t , P

(k)
t (yt|yt−1, xt)] =

∑
xt∈Xt,yt∈Yt

PMo
t (xt|yt−1)

P
(k)
t (yt|yt−1, xt)

(
log

(
P

(k)
t (yt|yt−1, xt)

P
(k)
t (yt|yt−1)

)
+Rt+1(Dt+1[yt, P

o
t+1])

)
, (22)

Dt[yt−1, P
o
t , P

(k)
t (yt|yt−1, xt)] =

∑
xt∈Xt,yt∈Yt

PMo
t (xt|yt−1)

P
(k)
t (yt|yt−1, xt)ρt(xt, yt). (23)

The implementation of Theorem 5 is illustrated in Algorithm
1. The following theorem supplements Algorithm 1 with a
stopping criterion after a finite number of steps.

Theorem 6: (Stopping criterion of Algorithm 1) For each
t ∈ Nn

0 , the point Dst [yt−1, P
o
t ] given by (19) admits the

following bounds

Rt(Dst [yt−1, P
o
t ]) ≤ stDst [yt−1, P

o
t ]−

∑
xt∈Xt

(
PMo
t (xt|yt−1)

log(
∑
yt∈Yt

Pt(yt|yt−1)At[P
o
t+1])

)
−
∑
yt∈Yt

Pt(yt|yt−1)ct[yt−1](yt) log ct[yt−1](yt), (24)

Rt(Dst [yt−1, P
o
t ]) ≥ stDst [yt−1, P

o
t ]−

∑
xt∈Xt

(
PMo
t (xt|yt−1)

log(
∑
yt∈Yt

Pt(yt|yt−1)At[P
o
t+1])

)
− max

yt∈Yt

log ct[yt−1](yt),

(25)

where ct[yt−1](yt) is expressed as a function of fixed yt−1

ct[yt−1](yt) =
∑

xt∈Xt

PMo
t (xt|yt−1)At[P

o
t+1]∑

yt∈Yt
Pt(yt|yt−1)At[P o

t+1]
.

Algorithm 1 Approximation of the Control Policy Backward
in Time (Offline Training)

Input: {Pt(xt|xt−1) : t ∈ Nn
0}, {st ≤ 0 : t ∈ Nn

0},
given belief state P o

t (xt−1|yt−1) ∈ Bt, ϵ > 0.
1: Initialize {P (0)

t (yt|yt−1) : t ∈ Nn
0}

2: for t = n : 1 do
3: k ← 0
4: while TLt [yt−1, P

o
t ]− TUt [yt−1, P

o
t ] > ϵ do

5: P
(k)
t (yt|yt−1, xt)← (20)

6: P
(k+1)
t (yt|yt−1)← (21)

7: Rt(Dt[yt−1, P
o
t ])← (22)

8: k ← k + 1
9: end while

10: end for
Output:
{P ∗

t [P
o
t ](yt|yt−1, xt) : t ∈ Nn

1}, {P ∗
t [P

o
t ](yt|yt−1) : t ∈

Nn
1}, {Rt(Dst [yt−1, P

o
t ]) : t ∈ Nn

1}.

Theorem 6, generates a stopping criterion for Algorithm 1 at
the k-th iteration by setting the estimation error ϵ per stage,
i.e., TLt

[yt−1, P
o
t ]− TUt

[yt−1, P
o
t ]| where

TUt [yt−1, P
o
t ] =

∑
yt∈Yt

Pt(yt|yt−1)ct[yt−1](yt) log ct[yt−1](yt)

TLt [yt−1, P
o
t ] = max

yt∈Yt

log ct[yt−1](yt).

Comments on Algorithms 1, 2: Algorithm 1 approximates
the control policy {P ∗

t [P
o
t ](yt|yt−1, xt) : t ∈ Nn

1}, the
output distribution {P ∗

t [P
o
t ](yt|yt−1) : t ∈ Nn

1}, and the
cost-to-go function {Rt(Dst [yt−1, P

o
t ]) : t ∈ Nn

1} as
functions of the fixed Yt−1 = yt−1, the quantized belief state
P o
t (xt−1|yt−1) ∈ Bt, and also the one-step lookahead belief

state P o
t+1(xt|yt) ∈ Bt+1. After computing these quantities

backward in time, the online Algorithm 2 operates forward in
time to evaluate the cost-to-go and identify the approximate
minimizers of (6). The initial source and output distributions
P0(x0) and P0(y0) at t = 0 are given, yielding the initial
control policy P0(y0|x0) and the corresponding posterior
P1(x0|y0), which initialize belief state P ∗

1 (x0|y0). At each
t, the best policy P ∗

t (yt|yt−1, xt) is determined by following
the best trajectory P ∗

t+1(xt|yt) such that

P ∗
t+1(xt|yt) = arg min

P o
t+1(xt|yt)∈Bt+1∑

yt−1∈Yt−1

Rt(Dst [yt−1, P
∗
t ])Pt(yt−1), ∀t = Nn−1

2 , (26)

and eventually the minimum in (6) is approximated. Clearly,
the larger the search space of the finite belief state, the better
the approximation. Ideally, a sufficiently large belief state
space can approximate near-optimally the minimum in (6).

IV. NUMERICAL EXAMPLES

This section provides numerical simulations to support our
theoretical findings that led to Algorithms 1, 2. We assume
binary alphabet spaces {Xt = Yt = {0, 1} : t ∈ Nn

0}, with
Hamming distortion metric given by

ρt(xt, yt) ≡ ρ(xt, yt) =

{
0, if xt = yt
1, if xt ̸= yt

, ∀t ∈ Nn
0 . (27)



Algorithm 2 Forward Computation of the Approximate
Control Policy (Online Computation)

Input: {Bt : t ∈ Nn
1} of given {P o

t (xt−1|yt−1) : t ∈ Nn
1},

outputs of Algorithm 1.
1: Initialize P0(x0), P0(y0), P ∗

1 (x0|y0) = P (x0|y0)
2: for t = 1 : n− 1 do
3: P ∗

t+1(xt|yt)← (26)
4: P ∗

t (yt|yt−1, xt)←
P ∗
t [P

∗
t (xt−1|yt−1), P

∗
t+1(xt|yt)](yt|yt−1, xt)

5: end for
6: P ∗

n(yn|yn−1, xn)← P ∗
n [P

∗
n(xn−1|yn−1)](yn|yt−1, xn)

Output:
{P ∗

t (xt−1|yt−1) : t ∈ Nn
0}, {P ∗

t (yt|yt−1, xt) : t ∈ Nn
0},

Rna
[0,n](D0, D1, . . . , Dn).

We consider a belief state P o
t (xt−1|yt−1) ∈ Bt, that consists

of a matrix comprising two “quantized” binary probability
distributions drawn from the continuous space. We denote
with Nt each quantization level per t, which leads to a
belief state space Bt with size |Bt| = N2

t , representing the
combinations of 2 out of Nt quantized binary distributions.

Example 1: (Time-varying binary symmetric Markov
source) The source distribution Pt(xt|xt−1) at each t ∈ Nn

1

is chosen such that for each t, we have

Pt(xt|xt−1) =

(
1− αt αt

αt 1− αt

)
, αt ∈ (0, 1). (28)

Moreover, we choose the quantization levels {Nt = N : t ∈
Nn

1} and the stagewise Lagrange multipliers {st = s : t ∈
Nn

0}. We demonstrate the results applying Algorithms 1, 2
in Fig. 2 for N = 20, s = −2, and n = 100, whereas Fig.
2b illustrates several time stages selected during backward
computation to verify the convergence of Algorithm 1.

V. CONCLUSION

We derived a non-asymptotic lower bound for a zero-delay
variable-rate lossy source coding system assuming discrete
Markov sources. We derived new structural and convexity
properties of NRDF that helped us cast the problem as an
unconstrained partially observable finite-horizon stochastic
DP and solved it approximately via a novel dynamic AM
scheme to compute the control policy and the cost-to-go
function through an offline training algorithm followed by an
online computation. Our theoretical results are supplemented
with simulation studies.
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