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Abstract—This work presents MAESTRO, a collaborative
framework leveraging Large Language Models (LLMs) for au-
tomation of shared networks. MAESTRO enables conflict reso-
lution and collaboration among stakeholders in a shared intent-
based 6G network by abstracting diverse network infrastructures
into declarative intents across business, service, and network
planes. LLM-based agents negotiate resources, mediated by
MAESTRO to achieve consensus that aligns multi-party business
and network goals. Evaluation on a 5G Open RAN testbed reveals
that integrating LLMs with optimization tools and contextual
units builds autonomous agents with comparable accuracy to the
state-of-the-art algorithms while being flexible to spatio-temporal
business and network variability.

Index Terms—LLM, Multi-agent, Intent-based Networks, 6G

I. INTRODUCTION

AS 6G emerges, the demands on current networks grow
rapidly due to new applications and a surge in user

subscriptions. To meet these challenges, innovative solutions
such as multi-tenant approaches are explored. This allows
network operators and service providers to share resources,
enhancing operational efficiency. However, this shared envi-
ronment introduces complex fluctuations in both user demand
and network capacity. Managing these complexities requires
identifying key architectures and technologies toward 6G.

Intent-based networking (IBN) enables flexible and sim-
plified network operation with minimal external intervention
[1] using intents. Declarative intents describe only the de-
sired state without mentioning detailed actions to meet it.
Hence, system internal complexities are abstracted to high
level intents. Intents are reconciled by the network trying to
continuously match the current with the desired state.

Large Language Models (LLMs) are increasingly proposed
for creating truly autonomous networks [2]. LLMs excel in
text generation, factual information, and complex logical and
temporal reasoning. They are adept at interacting with external
tools like APIs. By leveraging their emergent reasoning, LLM-
based agents could be embedded throughout the intent-driven
6G architecture. This creates a collective intelligence system
for network service provisioning and resource sharing aligning
with the objectives of all stakeholders.

Nevertheless, LLMs encounter significant challenges, in-
cluding overhead, hallucination, and security threats. They
require improvement in mathematical inference, as well as
handling complex contexts. Many times LLMs generate con-
tent that reflects social biases or toxicity [3]. Taking these
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Fig. 1: MAESTRO Collaborative Business Plane.

points into account, this work introduces MAESTRO, a collabo-
rative framework for multi-tenant intent-based networks using
multiple LLM-based agents. The key contributions include:

• Propose a collaborative business plane for intent-based
6G network automation leveraging LLM-based agents.

• Design novel LLM-based agents for multi-agent negoti-
ations augmented with optimizers and contextual units.

• Provide a Proof-of-Concept (PoC) implementation of
MAESTRO framework within an Open RAN 5G testbed.

II. INTENT-BASED 6G ARCHITECTURE

Fig. 1 presents a novel IBN architecture enabling multi-
tenant network automation on a heterogeneous infrastructure.
Distributed cloud-native controllers, named operators, process
intents in their specific logical domain, such as management
and control. Each operator consumes resources on the south-
bound and exposes services on the northbound in the form of
intents. This way, a hierarchy of operators is built providing
intent services in various abstraction and logical levels. Intent
is defined as an expression of the desired state of a system used
to describe an intended network or service [4] without specific
actionable details. Thus, it relies on the network’s intelligence
to reconcile the current closer to the desired state. Intents are
reconciled by the operators in the various logical domains,
such as management, control and slicing (c.f. Fig. 1).

Intents are processed across business, service, and network
planes. In business plane, MNOs and verticals share resources,
each owning an isolated Business Operator (BO). The BOs
receive business intents from the organization, encompassing
target goals, SLAs, use cases, and cost plans. These BOs have



Fig. 2: Internal Design of an LLM-based Agent, built in MAESTRO and Business Operators for Collaborative Business Plane.

a built-in LLM-based agent shown in Fig. 2 that monitors
activity, negotiates service intents, and enforces them in the
service plane. MAESTRO is the central entity, aligning business
and network objectives, utilizing network APIs, and adapt-
ing to intent demands and network variability. Managed by
the network operator, MAESTRO receives service intents and
identifies conflicts or collaboration opportunities among the
BOs’ shared infra. It also employs an LLM-based agent with
the same structure (Fig. 2) to mediate negotiations between
BOs’ agents, ensuring fairness in decision-making. Once a
consensus is reached, the service intent is enforced in the
service plane. The slice operator then slices the network,
translating the service intent into one or more network intents.

Service intents include KPIs, analytics, and management
of energy, cost, Quality of Service (QoS), and Service-level
Agreement (SLA) operations. The network plane features a
heterogeneous infra with multiple vendors, and radios (multi-
x), built upon Open RAN designs. Logical operators abstract
this complexity into IBN managed by corresponding sub-
systems, such as management and control. More details on
abstracting multi-x infras are discussed in our prior work [5].

As a workflow example, in Fig. 4 discussed later, on a
shared base station, one BO runs an application requesting a
high-throughput service intent of 100 Mbps for premium users,
while another BO demands a low-cost service intent of 20
Mbps for basic users. MAESTRO identifies the conflict, triggers
and mediates negotiations between the BOs using LLM-based
agents. They reach a consensus of 50 Mbps throughput SLA,
balancing cost and quality. The slice operator then translates
this service intent into a network intent, working with the
control subsystem to allocate the necessary PRBs (Physical
Resource Blocks) in the RAN to meet the specified throughput.

III. LLM-BASED AGENTS

LLM agents, as AI agents, perceive the environment, make
decisions, and act to optimize their utility function in an intent-
driven way. As autonomous entities, they learn and adapt to
spatio-temporal changes, determining the optimal policy for
each situation. LLMs’ decision-making accuracy is substan-
tially improved by integration with external tools, such as
optimization techniques and contextual units. Fig. 2 illustrates

the proposed LLM-based agents used for negotiations between
BOs and MAESTRO. Each agent is equipped with an LLM
responsible for the central reasoning enhanced with additional
units like arbitral, regulatory, observability, and optimization.
These additions enable dynamic negotiations on topics of
interest grounding them to the current state by providing
information on network regulations, monitoring, security, and
optimization data. The negotiation process is an ongoing,
adaptive reconciliation of multiple rounds that responds to both
spatio-temporal business and network variability.

Fig. 2 shows the decision making pipeline of a single
LLM-based agent that can be used either by the BOs as
a negotiator or by MAESTRO as a mediator depending on
the inputs and functionality of the units. The negotiation is
on a topic of interest spotted by MAESTRO based on the
conflicts and collaboration opportunities. The agents negotiate
on the service intent. Without loss of generality, for our
experiments, we define the service intent using a standardized
structure, consisting of two parts: (a) the proposed value
and (b) the decision reasoning in natural text. The proposed
value, such as throughput in Mbps during SLA negotiations,
is supported by detailed reasoning considering individual and
collective objectives. As shown in Fig. 1, the communication
between BOs and MAESTRO is parallelized. Multiple BOs’
LLM agents sent their intents and MAESTRO’s agent process
them in parallel sending back a feedback for the next round
with a summary of all demands with directions to consensus
considering the collective objectives. Overall, as depicted in
Fig. 2 each agent employs seven essential units:

1) Extraction: At every negotiation round, the agent re-
ceives the service intent (e.g. JSON) by other agents and
extracts the proposed value and decision reasoning.

2) Arbitral: The reasoning part, written in natural language
by other LLM agents, is fed to the arbitral unit, which uses a
specialized LLM to mitigate malicious activities. If the reason-
ing is classified as malicious, the arbitral unit can implement
incentive mechanisms, such as warnings or penalties, to restore
trust and ensure fair behavior among agents.

3) Regulatory: The regulatory unit provides relevant con-
straints for the negotiation, drawing from an up-to-date
database of documents from standardization bodies and local



regulators. Specialized LLMs with Retrieval-Augmented Gen-
eration (RAG) can dynamically facilitate this process, offering
tailored rules and guidelines for specific negotiating topics,
like maximum allowed bandwidth (BW) for a frequency band.

4) Observability: The observability unit keeps negotiating
topics grounded on current demands and network conditions.
Using cloud-native monitoring and specialized LLMs, it pro-
vides real-time analytics on business intents and resource
availability. Negotiations adapt or halt if the topic is no longer
valid due to resource shortages or shifts in business intents.

5) Optimizer: All outputs from the various components are
fed into the optimizer unit, which runs business optimization
algorithms and provides decision proposals to the central
LLM. The optimizers support the LLM by handling complex
mathematical computations, guiding its reasoning, and pre-
venting hallucinations. Rather than replacing LLM’s decision-
making, the optimizers complement it, offering guidance that
ranges from soft suggestions to firm directives. This flexible
approach allows the LLM to develop effective negotiation
strategies, sometimes following the optimizer’s advice or
choosing a different path based on the context.

It is crucial that the LLM maintains autonomy and remains
the central part of the reasoning, since it understands the
business and service intents deeply by capturing effectively the
intent’s semantics written in natural language. The optimizers
then with their mathematical precision provide decision value
proposals as an approximation of the optimal solution, which
can be challenging or expensive to compute for each case.
The goal is to improve the LLM’s accuracy, steering into right
directions, while it retains independent decision-making.

6) LLM: The central LLM receives its role (e.g. negotiator
or mediator) and the negotiated topic together with inputs
from all units, including the optimizers’ proposals, to for-
mulate the final strategy. The LLM evaluates the received
message’s proposed value and reasoning, considering any
arbitral indications of malicious intent and incentive actions. It
then factors in regulatory constraints, grounds its decisions in
current network conditions, and incorporates the optimizers’
mathematical proposals. The LLM consolidates everything to
output the decision value and reasoning based on the template.

The central LLM is trained on vast datasets with negotiation
tactics tailored to each organization. For our PoC, we use pub-
lic LLMs pre-trained on general data due to infra limitations
considering the massive cost and complexity of custom LLM
training, though this remains an open research challenge. We
encourage the community to explore such suitable datasets and
techniques for LLM negotiations in future work.

7) Validation: The validation unit safeguards the LLM’s
output by checking syntax, logic, and template structure. It
confirms agent function, aligns decisions with regulations and
API limits, and compares results with the optimizer. If discrep-
ancies or random values appear, warnings indicate potential
issues. Decision reasoning is cross-checked by specialized
LLMs or algorithms, with human oversight as a backup. If
problems arise, the LLM can be replaced with another model
or temporarily substituted by the optimizer until recovery.

IV. EVALUATION

We experiment on an Open RAN 5G testbed deployed
at EURECOM in France. It is built using OpenAirInter-
face (OAI)1 for network functions, ATHENA [5] for Service
Management and Orchestration (SMO), FlexRIC2 for Radio
Intelligent Controller (RIC), and custom implementations for
the other operators. The testbed features a single 5G NR
base station shared by competing business parties, achieving
a theoretical maximum throughput of 134 Mbps with one
carrier, one MIMO layer, 40 MHz bandwidth, and 30 kHz sub-
carrier spacing. For LLM agents, we use the GPT-4o model
via OpenAI’s API3. We use standard prompting, describing
the role, context and objectives of the task, providing one ex-
ample (One-shot) for understanding the communication JSON
template. Our evaluation is split into two parts: (1) Malicious
LLM Negotiations and (2) Multi-Agent Negotiations. In the
former, we evaluate standalone LLMs without any additional
unit to understand the effect of malicious LLM personalities.
The latter evaluates the complete LLM agent design of Fig. 2
focusing on the optimizer unit for improving decision-making
accuracy. The regulatory, arbitral and observability are out of
scope and space of this work and will be evaluated in future
works. Nevertheless, we include them as a PoC in Section V.

A. Malicious LLM Negotiations

LLMs can have different personalities mirroring social psy-
chology theories [6]. We explore standalone LLM negotiations
having various personalities to understand malicious agents.
We evaluate negotiations between two LLM agents, prompting
them based on five personalities. Normal (N) agent negotiates
ethically and logically. Agreeable (A) negotiates fairly and
logically, but tends to agree with others, while Disagreeable
(D) often disagrees. Vulnerable (V) is highly agreeable to
others’ opinions and could be easily manipulated, whereas
Toxic (T) is highly disagreeable trying to manipulate others.

Two conflicting BO LLM agents share the base station. The
first intends to reduce the operational cost, while the second
to maximize the QoS. Among various parameters, they also
control the throughput intent, defined as the desired throughput
at which the base station should operate. The cost agent tries to
minimize it, while the QoS agent to maximize it. Each agent is
prompted with details about its own and also the other’s goals
along with its personality. For simplicity, a fair middle-ground
is considered around 50 Mbps. Each trait pair negotiates for
50 games with a max of 5 rounds. At the end, we gather
the throughput decision of each agent, regardless of reaching
consensus and plot their consensus distribution in Fig. 3a.

Crucially, the personality significantly changes the outcome.
Starting from left to right with normal agents (N-N), we see
an agreement at a throughput of 55 Mbps. Then as Cost
agent becomes more agreeable and QoS more disagreeable,
the latter is dragging the former to high values, slightly in
the A-D pair (mean 64), significantly in V-D (mean 72) and
completely in V-T (mean 100). Then, as Cost agent becomes

1https://www.openairinterface.org/
2https://gitlab.eurecom.fr/mosaic5g/flexric
3OpenAI GPT, 2024. Available: https://openai.com/api/. Accessed 6/2024.



(a) Malicious Negotiations of 2 Agents

(b) Benchmarking of LLM Negotiations employing Optimizers

Fig. 3: Experimental Evaluation LLM Negotiations

more disagreeable, we observe an increasing resistance staying
to lower values, a minimal in N-T (mean 83), a strong one in
D-T (mean 51) and no collaboration at all in T-T. The large
sd in N-T and D-T show that the Cost agent often compro-
mises for high values despite being disagreeable revealing the
LLM’s sensitivity to toxicity. This highlights the necessity of
malicious agents arbitration. Interestingly, disagreeable agents
(D-D) have the healthiest discourses at around 52 to 57 Mbps.
From a game-theoretic angle, the healthiest discourse of dis-
agreeable agents is explained by a combination of strategies,
such as minimax reasoning, subgame perfect equilibrium, and
the balance between conflict and collaboration. Disagreeable
agents negotiate cautiously, protecting their interests without
outright hostility, which leads to more thoughtful, stable, and
ultimately mutually beneficial outcomes.

Convergence speeds are also interesting. Normal agents
converges fast at around 7 secs quickly finding a middle
ground. The pairs including agreeableness, (A-D, V-D and
V-T) converge fast in no more than 10 secs since agreeable
agents quickly compromise. The rest have convergence times
from 20 to 40 secs because of disagreeableness finishing
sometimes without agreement. The convergence times are
acceptable for high-level autonomy in non-real-time loops,
such as SLA negotiation, but could be a challenge at lower
levels of abstraction for real-time loops.

B. Multi-Agent Negotiations

To scale to multi-agent negotiations, we need to ground
our evaluation of LLM agents to state-of-the-art approaches.
In multi-agent systems (MAS) negotiations are modeled as a
distributed optimization problem where multiple agents must
reach a consensus. We consider a theoretical optimal consen-
sus representing the collective best outcome and a Pareto-
efficient Nash Equilibrium (NE), taking into account both
individual objectives and mediator feedback. Nash Equilibria
represent stable consensus points where no agent can improve
their position unilaterally. In LLM negotiations with non-
cooperative agents (e.g toxic or disagreeable), the NE may
deviate from the theoretical optimal, as the agents act more
selfishly. MAESTRO’s mediation role and incentives guide the

Fig. 4: Framework’s Workflow on SLA Use Case

system to a more cooperative NE, targeting Pareto-efficiency,
closer to the theoretical optimal, even when agents are not
cooperative. The notion of learning rate η exists also in LLM
negotiations and represents the speed and stability of agents
convergence to a consensus. A poor η causes instability or
slow convergence, especially with non-cooperative LLMs.

We benchmark LLM negotiations compared to a distributed
optimization algorithm based on equation 1, considered as
state-of-the-art. This formula mirrors the business plane topol-
ogy of Fig. 1, featuring multiple agents (BOs) and one media-
tor (MAESTRO). Each BO i aims to maximize its utility func-
tion Ui(x

(k)
i ) according to its business intents, while MAE-

STRO seeks to optimize the overall utility U0(x
(k)
1 , . . . , x

(k)
n ),

balancing both individual and collective goals. The process is
iterative: each BO i updates its demand x

(k+1)
i by adjusting its

current state x
(k)
i using the gradient of its utility function ∇Ui

combined with MAESTRO’s feedback, ∇U0. This iterative
process continues until the changes between iterations fall
below a predefined threshold ϵ, indicating consensus.

x
(k+1)
i = x

(k)
i − η

(
∇Ui(x

(k)
i ) + ∇U0(x

(k)
1 , . . . , x

(k)
n )

)
(1)

Fig. 5: Collaborative Achievable Throughput in Time

The evaluation is focused on MAESTRO’s optimizer unit
(Fig. 2) for enhancing its LLM’s accuracy, so as to mediate
the negotiations efficiently. As the optimizer, we develop an
algorithm based on formula 1. We use custom utility functions
U0, U1 that show balance and fairness across the experiments.
This way, MAESTRO’S optimizer models the complete ne-
gotiation topology as a distributed optimization problem and



approximates the theoretical optimal consensus; then feeds it
to its LLM as a soft or hard consensus proposal. In parallel,
the BOs employ their LLM agents (same design of Fig. 2)
running their own custom optimizers to assist them negotiate
toward a consensus. For creating diversity between the BOs,
we use custom algorithms with varied utility functions.

Fig. 3b benchmarks LLM agents’ actual consensus val-
ues in the BOs’ negotiations. They are compared to the
approximated theoretical consensus provided by MAESTRO’s
optimizer (state-of-the-art). Three different designs are tested.
First, standalone LLM agents without optimizers. Second,
LLM agents employing optimizers with soft pressure and third,
using hard pressure. We consider a throughput SLA case,
where agents demand different throughput intents (e.g. 50
Mbps). We run 100 negotiations with various starting intents
for each design, capped at 4 rounds, involving 2, 5, and 10
agents. We calculate the mean absolute error (MAE) between
the theoretical and actual LLM consensus for every design and
plot the error distributions and mean convergence times.

Results indicate that without an optimizer unit, LLM ne-
gotiations deviate significantly (mean: 8, sd: 3 Mbps) from
the theoretical optimal. They rely only on LLM’s internal
knowledge, which can lead to uncontrolled and inconsistent
outcomes. Introducing optimizers provides valuable guidance,
steering negotiations closer to the theoretical value. A soft
optimizer’s direction brings LLM closer to the optimal, while
a hard matches it. Yet, strictly following the optimizer may not
always be ideal in practice. It can undermine the LLM’s au-
tonomy and flexibility as the central entity, which captures the
intent semantics. Also, the optimizer may only approximate
the true optimal, which can be complex and costly to calcu-
late precisely. Therefore, optimizers should serve as advisory
guidance rather than a replacement for LLM decision-making.

Further, we analyze the framework’s overhead complexity
in three parts: (a) communication, (b) convergence time, and
(c) computation. A key observation from experiments is that
all cases of 2, 5, and 10 agents consistently converge in a fixed
number of rounds K, which is approximately 4 in our set up.
Considering n BO agents, in each round, they send n messages
to MAESTRO, who processes and sends back n feedback
messages. Thus, the communication complexity grows linearly
as O(n), since the number of rounds is fixed. Given the fixed
K rounds, the convergence time complexity remains constant,
O(1), across different numbers of agents. The slight increase
in time observed is due to API limitations, not a fundamental
system constraint. The computational overhead is primarily
in MAESTRO’s processing. Each BO processes one message
and generates one response, while MAESTRO processes n
messages and generates feedback for n agents, making the
computation complexity grow linearly as O(n).

V. USE CASE VALIDATION: SLA NEGOTIATION

We employ the full framework on a throughput SLA case
emulating high mobility of moving cars using Channel Quality
Indicator (CQI) public datasets. We show a demo4 of 2 agents.
The framework uses custom optimizers based on equation 1

4Demo available at: https://www.youtube.com/watch?v=WQv61z1deXs

and a RAG-based LLM regulatory unit. A specialized LLM on
arbitral unit classifies malicious agents sending warning incen-
tives. Also, standard monitoring with Open RAN applications
(xApps, rApps) and cloud-native tools supply the observability
unit. The workflow of Fig. 4 shows high level business intents
being translated to negotiated service intents. After consensus,
network intents control the RAN PRB utilization.

Fig. 5 presents the PoC negotiations in time showing high
network conditions variability. CQI fluctuates in time and the
max reachable throughput varies. Also, BOs change their SLA
intents in time accordingly. At each moment, the network tries
to enforce the closest possible throughput to the consensus.
To begin, network operates at high CQI with 100 Mbps
throughput, and BOs negotiate to a consensus of 51 Mbps for
QoS and cost balance. At 200 secs, as conditions worsen, a
second negotiation is triggered. The network uses full capacity
without meeting the intent, initiating agents to adjust their
demands. One BO becomes toxic, pressuring to switch off the
base station to save resources, while others request a maximum
of 20 Mbps to maintain the max possible quality of experience
(QoE). An incentive warns the toxic BO, leading to a more
cooperative consensus at 13 Mbps. Eventually at 300 secs,
BOs unanimously decide to switch off the base station due to
poor service delivery. When conditions improve at 400 secs,
BOs initiate a new negotiation. This time, all act aggressively,
with arbitration helping to reach a consensus of 55 Mbps.

VI. CONCLUSION

We introduced MAESTRO, a concrete LLM-driven collabo-
rative business plane to automate network operation on intent-
based shared infras. Moreover, we delved into the details
of LLM negotiations and propose a novel agent design for
collaboration and conflict mitigation. Evaluation shows that
integrating LLMs with optimization and contextual units is
critical for developing autonomous agents, with higher accu-
racy, flexibility to guidance and agile to variability.
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