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Abstract—Precision ranging technology has become indis-
pensable for ensuring efficient, reliable, and low-latency fifth-
generation (5G) networks. In this paper, we propose a novel
ranging method which is multipath component (MPC) power
delay profile (PDP) based ranging. Whereas the Received Signal
Strength (RSS) only summarizes the PDP into a single char-
acteristic, we aim to furthermore exploit the range dependent
curvature of the PDP envelope over its delay spread. However, the
multipath propagation only allows to sample the PDP envelope
at the path delays and suffers from (slow) fading. Hence our
approach involves constructing a statistical fading model of the
PDP and establishing a relationship between the distribution pa-
rameters and the propagation distance. To theoretically validate
the feasibility of our proposed method, we adopt the widely
accepted Nakagami-m fading model, which renders traditional
estimation methods difficult to apply. Therefore we introduce the
Expectation Maximization (EM)-Revisited Vector Approximate
Message Passing (ReVAMP) algorithm. This algorithm is specif-
ically designed to handle difficulties in parameter estimation for
Gaussian linear models (GLMs) with hidden random variables
and intractable posterior distributions. Extensive numerical sim-
ulation results have been conducted which exhibit preliminary
evidence of the effectiveness of our MPCPDP-based ranging
method compared to the received signal strength (RSS)-based
method. Moreover, the versatility of the EM-ReVAMP algorithm
allows for its extension to other statistical fading models beyond
the Nakagami-m model with minor modifications, which opens
the door to potential improvements based on more accurate
statistical fading models. Nevertheless, the applicability of our
MPCPDP-based ranging method should be validated in real-
world scenarios in future studies.

Index Terms—Ranging Estimation, Multipath Component,
Power Delay Profile, Expectation Maximization, Revisited Vector
Approximate Message Passing Algorithm

I. INTRODUCTION

W ITH the advent of 5G communications, ranging tech-
nology has become indispensable, playing a pivotal

role in ensuring efficient, reliable, and low-latency networks
[1]. Its applications extend to both indoor and outdoor posi-
tioning services [2], supplying dependable location informa-
tion for various scenarios, including smart cities [3], intelligent
transportation [4], and the Internet of Things (IoT) [5].

Consequently, there is a growing interest in utilizing wire-
less signals for determining distances accurately. In complex
environments, receivers may encounter multiple signals arriv-
ing through various paths, including both line-of-sight (LoS)
and non-line-of-sight (NLoS) paths, intensifying the multipath
effect as depicted in Fig. 1. Numerous studies have focused
on mitigating or exploiting multipath components (MPCs) for
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Fig. 1. Example of LoS and NLoS links.

ranging and localization [6]–[19]. Some methods [6], [7] aim
to mitigate the multipath interference. For example, Dardari
et al. [6] describe a maximum-likelihood estimator (MLE)
for Time of Arrival (ToA)-based ranging, along with practical
low-complexity schemes to reduce the multipath interference.
Wymeersch et al. [7] present a machine learning approach to
directly mitigate bias in both LoS and NLoS conditions. Other
studies leverage MPCs for ranging and localization [8]–[12].
Li et al. [12] propose a belief propagation (BP)-based algo-
rithm for sequential channel estimation and detection (CEDA)
of MPC parameters, such as the distance and the angle of
arrival (AoA) based on radio signals. Building on CEDA,
Venus et al. [10], [11] address obstructed LoS situations to
provide high-accuracy position estimation. However, these
methods often require additional information like the ToA,
the direction of arrival (DoA), and the AoA, with channel
fading amplitudes used solely for MPC detection. Addition-
ally, some approaches jointly estimate and exploit scatterer
positions, assuming a single-bounce multipath model and a
simple topological map [13]–[19]. Despite constraints such as
single-bounce models, these methods still necessitate at least
three parameters (e.g., ToA, DoA, DoD) per path to provide
useful information. Methods based on ToA typically assume
very precise ToA estimates, leading to accurate range estimates
as well. In summary, the aforementioned methods require
additional information such as the DoA or the ToA, which
necessitate extra hardware or synchronization. In contrast,
received signal strength (RSS)-based ranging [20]–[22] offers



an alternative that may avoid these requirements.
As an integral of power delay profile (PDP), however,

it was asserted that RSS, as a single number that exploits
attenuation as a function of distance, is not an ideal metric
in complex environments due to its vulnerability to multipath
effects [23]–[25]. To solve this problem, in the state of the art,
the PDP has been exploited in [26], [27] to handle multipath
and NLoS via PDP fingerprinting, something that has become
again popular more recently [28]. However, these methods still
need additional information like ToA, etc..

In this paper, we propose a novel MPCPDP-based rang-
ing method requiring no additional hardware or estimation
information, by exploiting the evolution of the attenuation
over the whole delay spread and capturing the attenuation
at a number of delays (distances), which in particular allows
to capture the curvature of the PDP envelope (the distance
dependent attenuation function). Whereas the attenuation is
sensitive to calibration errors in synchronization and Tx/Rx
gain estimation, the curvature is insensitive to such offsets.
As demonstrated in our previous work [29], we confirm
that MPCPDP-based ranging achieves more precise range
estimation compared to RSS-based methods. However, the
PDP envelope is much harder to estimate from a single
channel realization than the single number which is RSS,
being sensitive to not only fast fading but also shadowing,
scatterer spread, and the fact that the PDP in some sense only
samples its envelope at the subset of multipath delays that
are present. To handle this last effect, we exploit the specular
part of the channel and focus on the attenuations of the MPC,
hence MPCPDP. The other challenge is the proper statistical
modeling of the shadowing, in combination with the distance-
dependent attenuation.

One widely accepted statistical model for indoor multi-
path propagation is the Saleh-Valenzuela model [30], which
takes into account factors such as reflection, diffraction and
scattering caused by indoor structures. However, this model
may not accurately represent channel behavior in outdoor or
wide-area environments, as it does not explicitly consider
wide-area path loss, shadowing, and other outdoor-specific
phenomena [31]. To accurately model outdoor or wide-area
channel behavior, different empirical models based on exten-
sive outdoor measurements, such as the Okumura-Hata model
[32] or some 3GPP models [33], are commonly used. Given
the multitude of options, selecting the appropriate statistical
model for validation is paramount. On one hand, we must
ensure its applicability across the majority of cases, while
on the other hand, we need to confirm that the algorithm
employed for this model can be extrapolated to other models.
In comparison to alternative models like Rayleigh, Rician,
or log-normal distributions, the Nakagami-m distribution [34]
demonstrated superior versatility and accuracy in fitting a wide
range of experimental data [35]. This superiority stems from
its capability to accommodate the superposition of primary
and clutter signals resulting from diffuse reflections within a
single path, making it a better fit than the Rayleigh distri-
bution [36]. It is worth noting that Nakagami-m and Rician
distribution models behave approximately equivalently near
their mean value. Therefore, we concluded that the Nakagami-

m decay model is well-suited for validating the feasibility of
our PDP-based ranging approach. However, the Nakagami-m
fading model diverges from the Rayleigh fading model in that
obtaining an analytic form for the likelihood function becomes
impractical due to intractable integrals, as will be elucidated
further in this paper.

Taking into account the uniform distribution of the phase
varying from 0 to 2π for each MPC, we considered how
to establish the relationship between the parameters of the
Nakagami-m distribution and the propagation distance to en-
able distance estimation. The shape parameter m of Nakagami-
m distribution is closely associated with the environment,
while the scale parameter Ω represents the average attenu-
ation power intensity [37], which is directly linked to the
propagation distance. Consequently, when the received data
contains sufficient information about the attenuation of dif-
ferent paths, we can directly estimate the distance based on
these measurements. While vast studies have explored the use
of MPCs for ranging/localization estimation, to the best of
our knowledge, no prior research has specifically focused on
directly estimating the propagation distance of the LoS path by
assuming that both the LoS and NLoS paths of PDP conform
to specific fading distributions.

With formulating the range estimation problem, we found
that traditional estimation approaches are not available. To
overcome this problem, we proposed the EM-ReVAMP algo-
rithm as an effective solution. The EM algorithm is employed
to handle estimation problem with hidden variables. In cases
where the analytic formula for the posterior probability density
function (pdf) is unavailable within the EM algorithm, we
introduce the ReVAMP inference algorithm to approximate the
posterior distribution [38]. Compared to the original VAMP
[39], which only provides averaged variances, reVAMP can
yield distinct variances. In reVAMP, each marginal extrinsic
distribution is approximated using a complex Gaussian distri-
bution through the process of approximation belief propaga-
tion. The simulations verify the theoretical feasibility of our
PDP-based ranging and validate the effectiveness of our EM-
ReVAMP algorithm.

However, we have not yet had a chance to test the proposed
MPCPDP-based ranging on experimental data in various real
environments. This may call into question the applicability
of the Nakagami-m model in all scenarios. Fortunately, the
versatility of the EM-ReVAMP algorithm allows the MPCPDP
based ranging to extend to other statistical channel fading
models beyond the Nakagami-m model with minor modifica-
tions [38]. Even though our MPCPDP-based ranging approach
may not be as precise as some state-of-the-art (SoTA) methods
that require more information and hence more procedures or
additional hardware, it outperforms the RSS-based ranging
method. Our simulation results validate this finding, making
our method a low-cost alternative when additional hardware
is not available. The paper makes the following key contribu-
tions:

• Proposal of a novel MPCPDP-based ranging method
requiring only the channel impulse response, building
statistical attenuation models for each MPC in the PDP.



• Introduction of the EM-ReVAMP algorithm as a practical
and robust solution for EM based Maximum Likelihood
estimation involving random hidden variables with in-
tractable posteriors, as in the proposed MPCPDP based
ranging approach.

• Verification of the superior accuracy and robustness of the
proposed MPCPDP-based ranging method and the EM-
ReVAMP algorithm with Nakagami-m statistical models
through comprehensive simulations.

The organization of the remaining sections is as follows:
Section II presents the system model, encompassing the
orthogonal frequency-division multiplexing (OFDM) model,
Nakagami-m amplitude fading of MPCs, and MPCPDP-based
ranging estimation. Sections III and IV delve into detailed
explanations of the EM algorithm and the ReVAMP algorithm,
respectively. In Section V, we describe the procedure for
estimating the LoS distance using the EM-ReVAMP algorithm
and derive the Cramér-Rao bound (CRB) for our MPCPDP-
based ranging method when the Nakagami-m distribution
becomes a Rayleigh distribution with a shape parameter
m = 1. Subsequently, Section VI showcases the simulation
results. Finally, Section VII concludes with our findings and
conclusions.

Notation: The following notation will be used throughout
this paper. Column vectors are denoted by lowercase bold
x. Matrices are denoted by uppercase bold X . Scalars are
represented without bold, such as x. The ith entry of a vector x
is designated as x[i] or xi. The element at row i and column j
of matrix X is denoted as Xij .The operation diag(X) is used
to extract the column vector consisting of the main diagonal
elements of the matrix X . p(x) denotes the pdf of continuous
random vector. (·)T , (·)H and (·)∗ denote matrix transpose,
Hermitian transpose and complex conjugation, respectively.
∥ · ∥ represents the Euclidean norm and | · | is the absolute
value of a real number set or the module value of a complex
number set. diag(X) denote the diagonal entries of matrix
X . IN is an identity matrix of dimension N and 0N denotes
zero vector of dimension N . C and Z+ denote the domain of
complex numbers and the set of positive integers, respectively.

II. SYSTEM MODEL

In this section, we will offer a succinct introduction to
the system model. We will begin with a brief overview of
the OFDM signal model in Subsection II-A. Following that,
Subsection II-B will delve into the Nakagami-m fading of
MPCs’ amplitudes. Lastly, in Subsection II-C, we will present
our MPCPDP-based ranging estimation.

A. OFDM model

The widely preferred modulation technique in communi-
cation networks is OFDM, which finds extensive application
in 5G-NR [40]. In the OFDM model, the received baseband
signal can be mathematically expressed as the convolution of
the transmitted OFDM signal, denoted as s(t), and the channel
impulse response, denoted as g(t). Additionally, complex

additive white Gaussian noise, represented as v(t), is added to
the received signal. This relationship can be represented as:

r(t) = s(t) ∗ g(t) + v(t), (1)

where * denotes the convolution operation. After the received
signal, r(t), is sampled at a rate of Ts, time and frequency
synchronizations are performed prior to the N -point fast
Fourier transform (FFT) operation. The output of the FFT,
denoted as y, can be written as:

y = Xh+ v ∈ CN×1, (2)

where X is an N × N diagonal matrix containing the
transmitted symbols on its diagonal, h represents the channel
frequency response (CFR) as a vector, and v is a vector of
independently and identically distributed (i.i.d.) complex zero-
mean Gaussian noise samples with equal variance σ2

v .
In the case of a block fading channel that remains constant

over the duration of a packet, the channel impulse response
(CIR) can be described as follows: [41]

g(t) =
L−1∑
l=0

alδ(t− κlTs), (3)

where al ∈ C and κlTs(κ0 < κ1 < ... < κL−1 and κl ∈ Z+)
represent the gain and delay of the lth path, respectively, and
δ(t) denotes the Kronecker delta function. Let

h = [h0, h1, ... , hN−1]
T , (4)

be the discrete CFR. Under the assumption that the sampling
starts at t = 0, the n th element of h can be written as [42]:

hn =
L−1∑
l=0

ale
−jκlω|

ω=
2π[n]N

N

, (5)

where

[n]N =

{
n, n ≤ N/2− 1,

n−N, n ≥ N/2 + 1.
(6)

Therefore, we can present (5) as

h = Ta ∈ CN×1 (7)

where a ∈ CL×1 is a vector filled with fading gains and T ∈
CN×L is a transformation matrix that Tkl = e−jκlω|

ω=
2π[k]N

N

.

B. Nakagami-m amplitude fading of MPCs
As discussed in the previous subsection, the received signal

in OFDM can be represented as follows:

y = XTa+ v = Ha+ v; v ∼ CN (0, σ2
vI), (8)

where a ∈ CL×1 denotes the complex attenuation coefficients
(amplitude m and phase ϕ). For each individual element
ai = mie

jϕi of a, we assume its magnitude mi with a
Nakagami-m distribution and phase ϕi with a uniform dis-
tribution. Therefore, the pdf of magnitude and phase can be
expressed as follows:

p(mi|Ωi) =
2mmm2m−1

i

Γ(m) Ωm
i

exp

[
−mm2

i

Ωi

]
,mi > 0,m ≥ 0.5;

(9a)

p(ϕi) =
1

2π
, ϕi ∈ [0, 2π), (9b)



where Γ(·) denotes the gamma function m is the shape
parameter of the Nakagami-m distribution and Ωi is the
average power intensity of path i. The shape parameter m
controls the fading characteristics of the distribution. For lower
values of m, the distribution resembles a Rayleigh distribution
with a more rapid decay. As m increases, the distribution
becomes more concentrated around its mean, resembling a
more concentrated fading behavior. In practice, m is often
estimated from channel measurements to accurately model
the fading characteristics of the specific wireless channel.
Referring to [43], the parameter Ωi can be defined as:

Ωi(d0) = PtGtGr

[
λ

4π(d0 + cτi)

]n
= G0(d0+cτi)

−n, (10)

in the given equation, several variables are defined as fol-
lows: Pt represents the transmitting power, Gt denotes the
transmitting antenna amplification, λ is the wavelength of the
electromagnetic wave, c is the velocity of light, n represents
the propagation fading factor influenced by the environment,
d0 indicates the LoS distance, and τi indicates the propagation
delay between the i-th path and the LoS path.

In (10), the term PtGtGr

(
λ
4π

)n
can be considered as

a constant, denoted as G0, which combines the effects of
transmit power, antenna gains, wavelength, and path loss
exponent. The propagation fading factor n plays a crucial
role in determining the rate of signal attenuation with distance
and can vary depending on the characteristics of the wireless
channel and the environment in which the signals propagate.
As the propagation distance d0 + cτi increases, Ωi decreases
following an inverse power-law relationship (d0+cτi)

−n. This
allows us to estimate the specific range d0 based on Ωi when
τi is known in a given environment.

Using the Jacobi determinant [44], we can obtain the pdf
of complex fading coefficient ai as follows:

pai(ai|Ωi(d0)) =
mm|ai|2m−2

π Γ(m) Ωm
i

exp

[
−m |ai|2

Ωi

]
. (11)

For simplicity, we denote pai(ai|Ωi(d0)) by pai(ai|d0). Thus,
the pdf of the collection a can be given as:

pa(a|d0) =
L−1∏
i=0

pai
(ai|d0). (12)

Before presenting the specific ranging estimation process, we
assume the presence of a LoS path with an unknown distance
d0, as well as measurable time delays between NLoS paths
and the LoS path. While acknowledging the possibility of
measurement and calibration biases, this paper does not focus
on their effects. Consequently, we disregard these biases in the
subsequent estimation process.

C. MPCPDP-based Ranging Estimation

Our objective is to estimate d0 directly from y. To achieve
this, we will employ the maximum likelihood estimation
(MLE) method, which transforms the problem into the fol-
lowing equation:

d̂0 = argmax
d0

ℓ(d0;y) = argmax
d0

lnL(d0;y), (13)

where L(·) and ℓ(·) represent the likelihood function and log-
likelihood function, respectively.

Regarding the optimization problem (13), the likelihood
function can be expressed as:

L(d0;y)=p(y|d0)=
∫

p(a,y|d0)da=
∫
py(y|a)pa(a|d0)da.

(14)
The pdf p(y|d0) is crucial for estimating the LoS range d0
based on the received signal y in (13). However, solving
the integral problem directly to acquire p(y|d0) proves to
be intractable, as finding an analytical form poses significant
challenges. Furthermore, the latent variable a is unobserved,
and its distribution is unknown before reaching d0. To tackle
these challenges, the EM-ReVAMP algorithm is introduced in
Sections III and IV.

III. REVIEW OF EXPECTATION MAXIMIZATION (EM)

As we discussed before, in the linear mixing data model
described by (8), we have a known measurement matrix
H ∈ CM×L and an non-identically and independent dis-
tributed (n.i.i.d.) prior pa(a|d0) =

∏L−1
i=0 pai

(ai|d0) for the
vector a. Additionally, we consider a zero-mean Gaussian
measurement noise p(v) = CN (v;0M ,Cvv) with covariance
matrix Cvv ∈ RM×M .

To address the optimization problem (13), the Expectation-
Maximization (EM) algorithm [45] proves to be a suitable
solution. This algorithm is effective for estimation problems
involving latent variables, such as a, which are unobserved.

Using minorization maximization (MM) [46], we construct
a more easily optimized lower bound of the log-likelihood
function and iteratively approximate the optimal parameters
by continuously optimizing this lower bound. Assuming at t
th iteration that we have the estimated d0

(t), which allows us
to write

ℓ(d0)− ℓ(d0
(t)) = ln

∫
py(y|a)pa(a|d0)da− ln p(y|d(t)0 )

= ln

∫
py(y|a)pa(a|d0)

p(a|y, d(t)0 )
p(a|y, d(t)0 )da

−
∫

p(a|y, d(t)0 ) ln p(y|d(t)0 )da,

(15)
where p(a|y, d0) is the posterior distribution of a as which
can be expressed by Bayes’ rule as

p(a|y, d0) =
py(y|a)pa(a|d0)

p(y|d0)
=

py(y|a)pa(a|d0)∫
py(y|a)pa(a|d0)da

.

(16)
By using the concavity of ln(·) and Jensen’s inequality, (15)



becomes

ℓ(d0)− ℓ(d0
(t)) ≥

∫
p(a|y, d(t)0 ) ln

py(y|a)pa(a|d0)
p(a|y, d(t)0 )

da

−
∫
p(a|y, d(t)0 ) ln p(y|d(t)0 )da

=

∫
p(a|y, d(t)0 ) ln

py(y|a)pa(a|d0)
p(y|d(t)0 )p(a|y, d(t)0 )

da

= E
p(a|y,d(t)

0 )

[
ln

py(y|a)pa(a|d0)
p(y|d(t)0 )p(a|y, d(t)0 )

]
.

(17)
The lower bound B(d0, d(t)0 ) can be obtained as

B(d0, d(t)0 ) = ℓ(d0
(t)) + E

p(a|y,d(t)
0 )

[
ln

py(y|a)pa(a|d0)
p(y|d(t)0 )p(a|y, d(t)0 )

]
.

(18)
The updated d

(t+1)
0 can be obtained from

d
(t+1)
0 = argmax

d0

B(d0, d(t)0 )

= argmax
d0

{
ℓ(d0

(t)) + E
p(a|y,d(t)

0 )

[
ln

py(y|a)pa(a|d0)
p(y|d(t)0 )p(a|y, d(t)0 )

]}
= argmax

d0

E
p(a|y,d(t)

0 )
[ln p(y,a|d0)] .

(19)
At convergence we get d

(t)
0 = d

(t+1)
0 which leads to the

inequality becoming an equality:

ln

∫
py(y|a)pa(a|d(t+1)

0 )

p(a|y, d(t)0 )
p(a|y, d(t)0 )da = ln p(y|d(t+1)

0 )

=

∫
p(a|y, d(t)0 ) ln

py(y|a)pa(a|d(t+1)
0 )

p(a|y, d(t)0 )
da

⇐⇒ ℓ(d
(t+1)
0 )− ℓ(d0

(t)) = 0.
(20)

This proves that the EM algorithm can converge to the (local)
optimal point. Moreover, the EM iteration can be specified as:

d
(t+1)
0 = argmax

d0

E
p(a|y,d(t)

0 )
[ln p(a,y|d0)]

= argmax
d0

E
p(a|y,d(t)

0 )
[ln pa(a|d0) + ln py(y|a)]

= argmax
d0

E
p(a|y,d(t)

0 )
[ln pa(a|d0)] .

(21)
When considering the pdf of a as described in (11) and (12),
the EM iteration in (21) can be transformed as follows:

d
(t+1)
0 = argmax

d0

E
p(a|y,d(t)

0 )

[
L−1∑
i=0

(− lnΩi(d0)−
|ai|2

Ωi(d0)
)

]

= argmin
d0

L−1∑
i=0

[
lnΩi(d0) +

E
p(a|y,d(t)

0 )

[
|ai|2

]
Ωi(d0)

)

]
,

(22)
where Ωi(d0) was defined in (10). Here, as it is easy to find
that both lnΩi(d0) and 1

Ωi(d0)
are convex functions w.r.t. d0.

This characteristic ensures that the entire optimization function
is convex, with only one global minimum point for d0.

However, in this scenario, the EM algorithm remains
intractable because obtaining the posterior distribution

p(a|y, d(t)0 ) is challenging due to the integration involved in
(16). Therefore, it becomes crucial to develop an algorithm that
approximates this posterior distribution with another tractable
distribution. To achieve this goal, we propose an algorithm
called Revisited Vector Approximate Message Passing (Re-
VAMP).

IV. REVISITED VECTOR APPROXIMATE MESSAGE
PASSING (REVAMP)

Our objective is to find a distribution q(a) that approximates
the posterior distribution p(a|y, d(t)0 ) with minimal Kullback-
Leibler divergence (KLD) between p(a|y, d(t)0 ) and q(a),
where d

(t)
0 is given. Mathematically, we have:

q̂(a) = argmin
q(a)

DKL [p(a|y, d0)∥q(a)] . (23)

As seen in (22), the posterior distribution p(a|y, d(t)0 ) is
used to get second order moment of each ai. To accom-
plish this, we choose q(a) as complex Gaussian distribution
CN (a;m,Cm), which turns to match the first-order and
second-order moments of q(a) and p(a|y, d(t)0 ) [47] if (23)
is satisfied as follows:

Eq(a)[a] = E
p(a|y,d(t)

0 )
[a], (24a)

Eq(a)[aaH ] = E
p(a|y,d(t)

0 )
[aaH ]. (24b)

It ensures that even with an approximate distribution q(a), the
updated estimation value of d

(t+1)
0 in (22) will be the same

as if it were calculated using the true posterior distribution
p(a|y, d(t)0 ). However, solving equation (23) directly is com-
putationally intractable. Therefore, we introduce the ReVAMP
algorithm [38] as a solution.

To begin, we consider the factorization of the joint distri-
bution as follows:

p(a,y|d0) = py(y|a)
L−1∏
i=0

pai
(ai|d0). (25)

This factorization can be represented as a factor graph, as
shown in Fig. 2. In this graph, the variable nodes ai, where
i = 0, . . . , L − 1, are connected to the factor nodes py(y|a)
and pai

(ai).

py(y|a)

aL−1

· · ·

a0

paL−1
(aL−1)

· · ·

pa0
(a0)

Fig. 2. Factor graph of ReVAMP



Applying the sum-product rule [39], the message
µpy→ai(ai) passed from left factor node py(y|a) to
variable node ai can be expressed as:

µpy→ai
(ai) ∝

∫
py(y|a)

∏
j ̸=i

µaj→py (aj)daj , (26)

where µaj→py (aj) represents the message passed from vari-
able node aj to left factor node py(y|a). In addition, the
message µpai

→ai
(ai) passed from right factor node pai

to
variable node ai can be represented as:

µpai
→ai(ai) = pai(ai). (27)

At variable node ai, the received messages bsp(ai) ∝
µpy→ai(ai)µpai

→ai(ai) are approximated with a complex
Gaussian belief (approximated posterior) bapp(ai) = q(ai) =
CN (ai; âi, τai

) by minimizing the KLD. This approximation
is formulated as:

b̂app = argmin
bapp

DKL(bsp(ai)||bapp(ai)). (28)

Analogous to the sum-product rule, the messages µai→py (ai)
shown in (26) can be calculated by:

µai→py (ai) =
bapp(ai)

µpy→ai
(ai)

. (29)

In the following, we will provide a detailed derivation of Re-
VAMP for the case where the measurement noise is assumed
to be complex Gaussian.

A. Extrinsic to variable nodes
Assuming that at each iteration, the message µai→py (ai)

passed from each variable node ai to left factor node py(y|a)
is redefined as assumed prior qi(ai) for all i = 0, . . . , L− 1,
where qi(ai) is supposed to be a complex Gaussian distribu-
tion. In this case, we can prove by induction that they will
remain complex Gaussian. Without loss of generality, let us
define qi(ai) = CN (ai; pi, τpi), where pi and τpi are the mean
and variance of assumed prior of each ai, respectively.

In this case, the joint distribution
∏L−1

i=0 qi(ai) is equal
to CN (a;p,Dp), where p =

[
p0 . . . pL−1

]T
and Dp is

a diagonal matrix whose ith entry is τpi
. The real poste-

rior p(a|y) is approximated as q(a) = CN (a;m,Cm) ∝
p(y|a)

∏L−1
i=0 qi(ai).

In addition, the message µpy→ai
(ai) is recalled as the

extrinsic message qy(ai) for all i = 0, . . . , L−1, where qy(ai)
is supposed to be a complex Gaussian distribution with mean
ri and variance τri . The extrinsic message for any variable
node ai is obtained by:

qy(ai) ∝

∫
a/i

p(y|a)CN (a;p,Dp)da/i

qi(ai)

∝

∫
a/i

CN (a;m,Cm)da/i

CN (ai; pi, τpi)
,

(30)

where a/i represents a vector that is the same as a except that
it excludes the i-th entry, with

Cm =
(
HHC−1

vv H +D−1
p

)−1

, (31a)

m = Cm

(
HHC−1

vv y +D−1
p p

)
. (31b)

By following these steps, we can derive the extrinsic mes-
sages for the variable nodes, which play a crucial role in the
algorithm for handling the complex Gaussian measurement
noise. Additionally, we define τm =

[
τm0

. . . τmL−1

]T
=

diag(Cm). Exploiting the properties of multivariate com-
plex Gaussian distribution and (30), the extrinsic message
qy(ai) is represented by the complex Gaussian distribution
CN (ai; ri, τri) with

ri =
τpi

mi − τmi
pi

τpi − τmi

, (32a)

τri =
τmi

τpi

τpi
− τmi

. (32b)

To approximate the belief q(ai) = CN (ai; âi, τai
) at vari-

able node ai as a complex Gaussian distribution, we minimize
the KLD as

arg min
q(ai)

DKL [p(ai)CN (ai; ri, τri)||q(ai)]

⇔ arg min
âi,τai

DKL [p(ai)CN (ai; ri, τri)||CN (ai; âi, τai
)] .

(33)
Define the normalization factor as

Zi(ri, τi) =

∫
p(ai)CN (ai; ri, τri)dai, (34)

then we obtain

âi =

∫
aipai

(ai)CN (ai; ri, τri)dai
Zi(ri, τi)

, (35a)

τai
=

∫
|ai − âi|2pai(ai)CN (ai; ri, τri)dai

Zi(ri, τi)
. (35b)

It’s worth noting that pai
(ai) in (35) is not restricted to

the Nakagami-m propagation model prior of (11); it can
accommodate other priors as well. When transitioning to a
different statistical propagation model, minor adjustments of
prior should be made to ensure the continued functionality of
the reVAMP algorithm.

B. Passing the Approximation to the Factor Node

The assumed prior qi(ai) can be expressed as the quotient
of two complex Gaussian pdfs w.r.t. q(ai) and qy(ai). This
ensures that the resulting message distribution qi(ai) remains
complex Gaussian. Specifically, it is defined as:

qi(ai) = CN (ai; pi, τpi
) ∝ CN (ai; âi, τai)

CN (ai; ri, τri)
. (36)

From (36), we can determine pi and τpi
as follows:

pi =
τri âi − τairi

τai
τri

, (37a)

τpi
=

τriτai

τri − τai

. (37b)

It is worth noting that when using the sequential updating
method, the complexity of the matrix inverse operation in (31)
can be reduced by employing matrix inverse lemma. Let us
denote the result of τnewpi

during the update messages of the

ai and define ∆pi
=

τpi−τnew
pi

τpiτ
new
pi

. Moreover, we define hC(·)



as the updating of the Cm with the new value of τnewpi
as

follows:

Cnew
m = hC(Cm, ei,∆pi) =

[
C−1

m +∆pieie
T
i

]−1

= Cm −Cmei
(
1/∆pi

+ eTi Cmei
)−1

eTi Cm, (38)

where ei is a unit vector with only the i-th entry set to 1. To
handle the cycles, we define e0 = eN .

The computation for updating m in (31) can also be sim-
plified with the same technique. We define Ψpi =

pnew
i

τnew
pi

− pi

τpi
and denote hm(·) as its update equation as follows:

mnew = hm(m,Cm, ei,∆pi ,Ψpi)

= Cnew
m (HTC−1

vv y +Dpp+Ψpi
ei)

= m+
Ψpi

−∆pi
eTi m

1 + ∆pi
eTi Cmei

Cmei. (39)

In summary, our algorithm iteratively computes messages from
factor nodes to variable nodes and subsequently calculates
messages from variable nodes back to factor nodes until
convergence is achieved. The final approximation for p(a|y)
is represented by q(a) = CN (a;m,Cm). Importantly, these
update steps can be performed in parallel, yielding a similar
algorithm to VAMP but with individual variance updates. By
leveraging the matrix inverse lemma, the sequential update
method maintains the same complexity as the parallel update
method. Algorithm 1 delineates the detailed steps of this
process.

C. Relation to Expectation Propagation (EP)

Algorithm 1 can be regarded as an EP algorithm by approx-
imating the factorization in Equation (25) as follows:

p(a|y) ≃ q(a) ∝ p(a,y) ≃ py(y|a)
L−1∏
i=0

qi(ai), (40)

where each qi(ai) is a Gaussian distribution with mean pi
and variance τpi

. To further explore the EP connection, let us
consider the optimization problem:

arg min
qnew

DKL

[
q(a)

qi(ai)
p(ai)||qnew(a)

]
= arg min

qnew

∫
ai

∫
a/i

q(a)da/i
p(ai)

qi(ai)
ln

[
p(ai)

qnew(ai)

]
dai.

(41)
Let us continue by introducing h(ai) =∫

a/i
[q(a)da/i]/qi(ai) and then we can rewrite the

optimization problem (41) as follows:

arg min
qnew

∫
ai

h(ai)pai
(ai) ln

[
h(ai)pai

(ai)

h(ai)qnew(ai)

]
dai

= arg min
qnew

DKL [h(ai)pai
(ai)||h(ai)qnew(ai)] .

(42)
In Algorithm 1, this marginal extrinsic is represented as

a complex Gaussian distribution with mean ri and variance
τri . Lastly, the first equality in (41) holds because during
the update for the i-th entry, for all k ̸= i, the minimum
is achieved when qnew(ak) = q(ak).

Algorithm 1 ReVAMP (Complex Gaussian measurement
noise via sequential updating)
Ensure: m,Cm

Require: y, H , pa(a), p(v)
1: Initialize: m,Cm,p, τ p

2: repeat
3: repeat [For each i = 0 . . . L− 1]
4: [Update the extrinsic]
5: τm = diag(Cm)

6: ri =
τpimi−τmi

pi

τpi−τmi

7: τri =
τmi

τpi
τpi−τmi

8: [Approximate the marginal posterior]
9: Update âi with (35a)

10: Update τai with (35b)
11: [Propagate the approximation back]
12: pnewi =

τri âi−τai
ri

τri−τai

13: τnewpi
=

τriτai

τri−τai

14: ∆pi
= 1

τpnew
i

− 1
τpi

15: Ψpi
=

pnew
i

τnew
pi

− pi

τpi
16: [Update the posterior approximation]
17: Cm = hC(Cm, ei,∆pi

)
18: m = hm(m,Cm, ei,∆pi

,Ψpi
)

19: until All i-s have been updated
20: p = pnew

21: τ p = τnew
p

22: until Convergence

D. Implementation Details

For the practical implementation with finite-dimensional H ,
we suggest incorporating small enhancements to reVAMP, as
discussed in Algorithm 1.

Firstly, it is advisable to clip the variances τri and τnewpi

within a positive interval [γmin, γmax]. Occasionally, the re-
VAMP algorithm may yield negative values for τri and τnewpi

if not addressed. In our numerical results presented in Section
VI, we utilized γmin = 10−10 and γmax = 1010.

Secondly, rather than mandating reVAMP to complete sev-
eral iterations, we propose stopping the iterations when the
normalized difference ∥mnew − m∥/∥mnew∥ falls below a
tolerance threshold ε. In Section VI, our numerical results
employed ε = 10−4.

Lastly, it’s important to note that the reVAMP algorithm
requires the user to initialize p, τ p, m and Cm. Generally,
all elements of τ p and all diagonal elements of Cm must
be positive; other initializations do not significantly affect
the final result. In our experiments in Section VI, we set all
elements in m, p, and τ p to be 1, and Cm to be an identity
matrix.

V. RANGING ESTIMATION WITH NAKAGAMI-M PRIOR
DISTRIBUTION

A. MPCPDP-based Ranging Method

We propose the EM-ReVAMP algorithm, outlined in Algo-
rithm 2, for estimating d0. This algorithm utilizes ReVAMP



sequentially at each step of the EM algorithm to obtain
approximate second-order moments. Specifically, within the
ReVAMP part, with given Ωi in (10) w.r.t. d̂0 and prior
distribution in (11), the marginal posterior approximation
involves the calculation of âi and τai

in (35a) and (35b) can
be computed as follows:

âi =
mΩiri

mτri +Ωi

1F1(m+ 1; 2; Ωi|ri|2
mτ2

ri
+τriΩi

)

1F1(m; 1; Ωi|ri|2
mτ2

ri
+τriΩi

)
; (43a)

τai =
mΩiτri

mτri +Ωi

1F1(m+ 1; 1; Ωi|ri|2
mτ2

ri
+τriΩi

)

1F1(m; 1; Ωi|ri|2
mτ2

ri
+τriΩi

)
− âiâ

∗
i , (43b)

where 1F1(a; b; z) represents the confluent hypergeometric
function [48], defined by the hypergeometric series:

1F1(a; b; z) =
∞∑
k=0

(a)k
(b)k

zk

k!
. (44)

The detailed derivation is provided in Appendix.
In Algorithm 2, for accelerating convergence, we typically

recommend users to initialize d̂0 based on the actual char-
acteristics of the environment, such as the maximum range
or distance resolution. In our subsequent experiments, we
initialized it to 0.1 meter. Additionally, we set the EM-loop
to terminate when the difference of d0 before and after the
iteration is less than 0.1 meters for greater precision and
maximum iteration times to be 20. When transitioning from
the Nakagami-m fading model to another statistical model,
the EM-reVAMP algorithm can be adapted by primarily mod-
ifying (12), (13), and (26). These adjustments will enable the
algorithm to effectively accommodate the characteristics of the
new statistical model while maintaining its functionality.

B. Theoretical Cramér-Rao Bound (CRB) For m = 1

When m = 1, the path complex attenuation coefficients
a ∈ CL×1 that each element ai (i = 0, · · · , L − 1) is an
i.i.d. complex zero-mean Gaussian random variable, can be
expressed as follows:

a ∼ CN (0,Caa), Caa =

Ω0(d0) · · · 0
...

. . .
...

0 · · · ΩL−1(dK)

 .

(45)
To estimate d0 directly and solely based on y using the
maximum likelihood estimator (MLE) of the pdf of y given
Ω(d0), we proceed as follows:

p(y|Ω(d0)) = π−N (det(Cyy))
−1 exp (−yHC−1

yyy) (46)

where
Cyy = HCaaH

H + σ2
vI. (47)

To compute the Fisher Information Matrix (FIM) from the pdf
p(y|Ω(d0)), the FIM can be represented as follows:

Jd0d0
= tr

[
C−1

yy

∂Cyy

∂d0
C−1

yy

∂Cyy

∂d0

]
, (48)

Algorithm 2 EM-ReVAMP

Ensure: d̂0
Require: y, H , pv(v), m, [τ0, · · · , τL−1], G0, n

1: Initialize: d̂0
2: repeat [For t = 0 . . . L− 1]
3: Initialize: m,Cm,p, τ p

4: Update Ω(d̂0) w.r.t. G0, n, τ i and d̂0 with (10)
5: repeat
6: repeat [For each i = 0 . . . L− 1]
7: [Update the extrinsic]
8: τm = diag(Cm)

9: ri =
τpimi−τmi

pi

τpi−τmi

10: τri =
τmi

τpi
τpi−τmi

11: [Approximate the marginal posterior]
12: Update âi with (43a)
13: Update τai

with (43b)
14: [Propagate the approximation back]
15: pnewi =

τri âi−τai
ri

τri−τai

16: τnewpi
=

τriτai

τri−τai

17: ∆pi
= 1

τpnew
i

− 1
τpi

18: Ψpi
=

pnew
i

τnew
pi

− pi

τpi
19: [Update the posterior approximation]
20: Cm = hC(Cm, ei,∆pi)
21: m = hm(m,Cm, ei,∆pi ,Ψpi)
22: until All i-s have been updated
23: p = pnew

24: τ p = τnew
p

25: until Convergence
26: d̂0 = argmin

d0

∑L−1
i=0

[
lnΩi(d0) +

τmi
+|mi|2

Ωi(d0)
)
]

27: until Convergence

where tr denotes the trace operator. After some algebraic
computations, we obtain the expression in (48)

∂Cyy

∂d0
= H

∂Caa

∂d0
HH , (49a)

∂Caa

∂d0
= −nG0

(d0 + cτ0)
−n−1 · · · 0

...
. . .

...
0 · · · d0 + cτK−1)

−n−1

 .

(49b)

In conclusion, using (48) and (49), the CRB of d0 w.r.t.
MPCPDP-based ranging can be calculated as follows:

CRBd0 = J−1
d0d0

. (50)

Unfortunately, if m ̸= 1, the high-dimensional integration
required to obtain the likelihood p(y|d0) is intractable, making
it impossible to calculate its CRB.

VI. SIMULATION RESULTS

This section presents the simulation verification using MAT-
LAB to assess the impact of different parameters. Table I
lists the main parameters involved. In general, the primary
environmental factors influencing our MPCPDP-based rang-
ing method are the number of distinguishable MPCs, the



TABLE I
PARAMETERS SETTING

Parameter Value
G0 1.

SNR (dB) Range from 0 to 20, default 10.
N 20.
L Ranging from 2 to 8.
n Ranging from 2 to 4, default 3.
m Ranging from 1 to 10, default 5.

d0 (meter) 20.
Distance of NLOS path (m) Random between 1.1d0 to 2.0d0.

Test repetitions 50.

magnitude of Signal-to-Noise Ratio (SNR), the propagation
attenuation factor n, and the shape parameter of Nakagami-
m distribution m. In the following subsections, we analyze
the effects of these factors on ranging accuracy through
simulations. We conducte 10000 times for each scenario and
calculate the Root Mean Square Error (RMSE). For m = 1, we
calculate the square root of CRB (SR-CRB) for our MPCPDP-
based ranging method. Moreover, we compare with the SoTA
RSS-based ranging method in [49]. In the simulation result
figures, we use a solid line to denote the RMSE of the RSS-
based ranging method, a dashed line to denote the RMSE
of the MPCPDP-based ranging method, and a dotted line to
denote the SR-CRB.

A. Impact of SNR and Number of NLoS Paths
In this set of experiments, we set n = 3 and examine

the influence of SNR and the number of NLoS paths on the
estimation bias. Figs. 3 and 4 illustrate the simulation results
for m = 1 and m = 5, respectively. We observe that varying
SNR from 15dB to 40dB does not significantly affect our
performance. Moreover, the estimation accuracy of our method
gradually improves with an increasing number of NLoS paths
which act better than the RSS-based ranging method under the
same conditions. Even for m ̸= 1, it is hard to get its theoretic
CRB, comparison to RSS-based ranging method can show our
method’s high precision.

B. Impact of the propagation fading factor n and Number of
NLoS Paths

This set of experiments investigates the effects of the
environmental propagation fading factor n and the number of
NLoS paths on the estimation bias. The simulation results,
depicted in Figs. 5 and 6 for m = 1 and m = 5, respectively,
indicate that the variation of n within the range of 2 to 4
has a obvious impact on our performance. As n increases,
the variance of Nakagami-m actually decreases, thus leading
to an increase in estimation accuracy for both the RSS-
based ranging method and our method. This is theoretically
verified by the SR-CRB when m = 1. It is clear to see that
our method consistently performs better than the RSS-based
ranging method for different n.

C. Impact of the shape parameter m and Number of NLoS
Paths

In this simulation, we set n as 3, SNR as 10 dB, d0 as
20 meters, and we examine the influence of the shape param-
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Fig. 3. The impact of SNR and the number of NLoS paths on d0 estimation
with m = 1
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Fig. 4. The impact of SNR and the number of NLoS paths on d0 estimation
with m = 5
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Fig. 6. The impact of the environment propagation fading factor n and the
number of NLoS paths on d0 estimation with m = 5

eter of the Nakagami-m distribution, denoted as m, and the
number of NLoS paths on the estimation bias. Fig. 7 presents
the simulation results, indicating that varying m from 1 to
10 significantly affects the performance of MPCPDP-based
ranging method. As m increases, the variance of Nakagami-m
distribution decreases and the accuracy of estimation method
gets higher. Moreover, with the number of NLoS paths in-
crease, the performance of our method also increases but
RSS-based ranging generally decreases. Obviously, under the
same condition, the method proposed in this paper has the
small range error compared to the RSS-based range method.
In addition, the range error of the new method increases along
with the number of NLoS paths increases.
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Fig. 7. The impact of the Nakagami-m distribution’s shape parameter m and
the number of NLoS paths on d0 estimation with n = 3

D. Impart of number of NLoS and the mismatched shape
parameter m

We investigate the impact of a mismatched shape parameter
m in the Nakagami-m distribution, where we set a true value of
m = 5, SNR = 10 and n = 3. Our simulations reveal that the
estimation error is relatively small when the deviation of m is
not substantial. This observation underscores the robustness of
our algorithm under theoretical conditions. However, achiev-
ing accurate parameter initialization in practical scenarios is
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Fig. 8. The impact of the mismatched Nakagami-m distribution’s shape
parameter m and the number of NLoS paths on d0 estimation with true
m = 5

challenging, and significant errors in initialization can lead to
substantial estimation deviations. One approach to address this
challenge is to jointly estimate all parameters using the EM
algorithm, which remains a topic for our future research. While
theoretically effective of the EM algorithm, this method en-
counters difficulties due to the complex nonlinear relationships
among parameters and non-convex optimization problems.
Moreover, increasing the number of parameters to estimate can
degrade performance due to constraints imposed by available
observed data. Another promising approach that warrants
further research attention is minimizing errors resulting from
model mismatches.

E. Simulation Conclusions

Based on experimental simulations with varying SNR val-
ues, n and m, and the number of NLoS paths, our method
has demonstrated strong performance in diverse and com-
plex environments. Notably, the number of NLoS paths has
emerged as a crucial parameter, significantly influencing es-
timation accuracy. As the number of NLoS paths increases,
our algorithm’s accuracy improves, whereas the performance
of the RSS-based method declines. Furthermore, as m or
n increases, the variance of the fading channel decreases,
thereby enhancing our method’s performance. Consequently,
in complex environments characterized by significant fading
with large m and n and multiple NLoS paths, the MPCPDP-
based ranging algorithm proves to be a more effective solution
than RSS-based method for estimating the LoS distance.

VII. CONCLUSIONS

In conclusion, we propose a novel MPCPDP-based ranging
method, aimed at exploit multipath effect. To theoretically
validate the feasibility of our approach, we selected the
widely adopted Nakagami-m statistical model and established
a relationship between distribution parameters and propagation
distance. On one hand, this model ensures its applicability
across the majority of cases; on the other hand, it exemplifies



many other statistical models that traditional estimation tools
cannot approach. To address the challenges of ranging estima-
tion, which involve hidden random variables and intractable
posterior distributions due to complex statistical models such
as the Nakagami-m model, we introduce the EM-ReVAMP
algorithm. The simulation results convincingly demonstrate
the effectiveness of our approach than the RSS-based ranging
method, providing substantial evidence to support the accuracy
and robustness of our approach. Moreover, the EM-ReVAMP
algorithm can be adapted for other statistical fading models
with minor modifications, assuming that the statistical models
and their parameter initializations are sufficiently accurate.
To further validate the practicality and effectiveness of our
method, our next objective is to collect measurement data from
diverse environments and conduct comprehensive experimen-
tal analysis. This pivotal step will enable us to assess the per-
formance of our method in real-world scenarios. Additionally,
exploring further application scenarios of EM-ReVAMP and
investigating its theoretical performance are essential aspects
that warrant attention. Finally, the robustness and accuracy of
this algorithm need to undergo further testing.

APPENDIX

In this appendix, we will derive the expressions for âi and
τai in (35a) and (35b) based on the pdf pai(ai|Ωi). In the
EM-ReVAMP algorithm presented in Algorithm 2, we have
the following expressions:

âi =

∫
aipai(ai|Ωi)CN (ai; ri, τri)dai∫
pai(ai|Ωi)CN (ai; ri, τri)dai

; (51a)

τai =

∫
|ai − âi|2pai

(ai|Ωi)CN (ai; ri, τri)dai∫
pai

(ai|Ωi)CN (ai; ri, τri)dai
, (51b)

where Zi is defined as:

Zi =

∫
pai

(ai|Ωi)CN (ai; ri, τri)dai. (52)

For calculating Zi, we have the integral:

Zi =

∫
mm|ai|2m−2

π Γ(m) Ωm
i

exp

[
−m |ai|2

Ωi

]
× 1

πτri
exp

(
− (ai − ri)

∗(ai − ri)

τri

)
dai.

(53)
Inside the integral, we have:∫ 2π

0

exp

(
2

τri
(|ri|r cos(ϕ− ϕri))

)
dϕ = 2πJ0

(
j
2

τri
r|ri|

)
,

(54)
where J0(x) is the Bessel function of the first kind. By
incorporating the equations and clarifying the expressions, the
derivation of Zi becomes more comprehensible. Moreover,
we can simplify the remaining integral using the confluent
hypergeometric function:∫ +∞

0

xµ exp(−αx2)Jv(βx)dx

=
βvΓ(0.5(v + µ+ 1))

2v+1α0.5(v+µ+1)Γ(v + 1)
1F1

(
0.5(v + µ+ 1);v + 1;−β2

4α

)
,

(55)

where 1F1(a; b; z) is the confluent hypergeometric function.
By utilizing these results, we can evaluate Zi and proceed
with the derivation of âi and τai . Simplifying the integral
and applying the properties of the confluent hypergeometric
function, we obtain:∫ +∞

0

r2m−1 exp

(
−
(
m

Ωi
+

1

τri

)
r2
)
J0

(
j
2

τri
r|ri|

)
dr

=
Γ(m)

2
(

m
Ωi

+ 1
τri

)m 1F1(m; 1;
Ωi|ri|2

mτ2ri + τriΩi
).

(56)
Based on the previous results, we can express the Zi as
follows:

Zi =
mm

πΩm
i τri(

m
Ωi

+ 1
τri

)m
1F1(m; 1;

Ωi|ri|2

mτ2ri + τriΩi
). (57)

Then for
∫
aipi(ai)CN (ai; ri, τri)dai, it can be written as:∫

aipi(ai)CN (ai; ri, τri)dai

=
mm

π2 Γ(m) Ωm
i τri

∫ +∞

0

∫ 2π

0

(cosϕ+ j sinϕ)

exp

{
2

τri
[|ri|r cos(ϕ−ϕri)]

}
dϕr2m−1exp

[
−(

m

Ωi
+

1

τri
)r2

]
rdr.

(58)
Inside this expression, we have the following intermediate
results:∫ 2π

0

(cosϕ+ j sinϕ) exp(
2

τri
(|ri|r cos(ϕ− ϕri)))dϕ

= −j2π exp(jϕri)J1(j
2r|ri|
τri

),

(59)

and∫ +∞

0

r2m exp(−(
m

Ωi
+

1

τri
)r2)J1(j

2

τri
r|ri|)dr

=
j|ri|Γ(m+ 1)

2τri(
m
Ωi

+ 1
τri

)(m+1) 1F1(m+ 1; 2;
Ωi|ri|2

mτ2ri + τriΩi
).

(60)
Thus,

∫
aipi(ai)CN (ai; ri, τri)dai can be expressed as fol-

lows:∫
aipi(ai)CN (ai; ri, τri)dai =

mm+1|ri|
πΩm

i τ2ri(
m
Ωi

+ 1
τri

)(m+1)

× exp(jϕri)1F1(m+ 1; 2;
Ωi|ri|2

mτ2ri + τriΩi
).

(61)
For

∫
a∗i aipi(ai)CN (ai; ri, τri)dai, we can compute it as

follows:∫
a∗i aipi(ai)CN (ai; ri, τri)dai =

mm

π2 Γ(m) Ωm
i τri

∫ +∞

0

∫ 2π

0

exp

{
2

τri
[|ri|r cos(ϕ−ϕri)]

}
dϕ r2mexp

[
−(

m

Ωi
+

1

τri
)r2

]
rdr.

(62)



Inside this expression, we have the following intermediate
results:∫ 2π

0

exp(
2

τri
(|ri|r cos(ϕ− ϕri)))dϕ = 2πJ0(j

2

τri
r|ri|),

(63)
and∫ +∞

0

r2m+1 exp(−(
m

Ωi
+

1

τri
)r2)J0(j

2

τri
r|ri|)dr =

Γ(m+ 1)

2(m
Ωi

+ 1
τri

)(m+1) 1F1(m+ 1; 1;
Ωi|ri|2

mτ2ri + τriΩi
).

(64)
Therefore,

∫
aia

∗
i pi(ai)CN (ai; ri, τri)dai can be given as :∫

aia
∗
i pi(ai)CN (ai; ri, τri)dai

=
m(m+1)

πΩm
i τri(

m
Ωi

+ 1
τri

)(m+1) 1F1(m+ 1; 1;
Ωi|ri|2

mτ2ri + τriΩi
).

(65)
Thus, we can obtain the expressions for E [ai] and E [aia∗i ] as
follows:

E [ai] =
mΩiri

mτri +Ωi

1F1(m+ 1; 2; Ωi|ri|2
mτ2

ri
+τrid0

)

1F1(m; 1; Ωi|ri|2
mτ2

ri
+τriΩi

)
; (66a)

E [aia∗i ] =
mΩiτri

mτri +Ωi

1F1(m+ 1; 1; Ωi|ri|2
mτ2

ri
+τriΩi

)

1F1(m; 1; Ωi|ri|2
mτ2

ri
+τriΩi

)
. (66b)

Finally, we obtain the expressions for âi and τai as follows:

âi =
mΩiri

mτri +Ωi

1F1(m+ 1; 2; Ωi|ri|2
mτ2

ri
+τriΩi

)

1F1(m; 1; Ωi|ri|2
mτ2

ri
+τriΩi

)
; (67a)

τai
=

mΩiτri
mτri +Ωi

1F1(m+ 1; 1; Ωi|ri|2
mτ2

ri
+τriΩi

)

1F1(m; 1; Ωi|ri|2
mτ2

ri
+τriΩi

)
− âiâ

∗
i , (67b)

which are corresponding to (43a) and (43b).
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