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Abstract—Generalized Approximate Message Passing (GAMP)
algorithms have demonstrated significant efficacy in signal re-
covery. GAMP has been derived by applying asymptotic ap-
proximations to Expectation Propagation (EP). EP algorithms
start from a factored approximate posterior in an exponential
family. They update a factor by fitting an exponential family pdf
to a approximate posterior which is obtained by replacing one
approximate factor by the original (prior) factor. The remaining
factors form the approximate extrinsic. Hence extrinsics are
obtained by marginalizing the product of all pdf factors except for
the prior. A marginal posterior is then obtained by combining the
extrinsic with the prior. Low complexity algorithms like GAMP
in turn obtain the extrinsic from the posterior. In the Gaussian
case, we reveal the intimate relation of extrinsics to Component-
Wise Conditionally Unbiased Minimum Mean Squared Error
(CWCU MMSE) estimation, whereas the posterior allows MMSE
estimation. In the Gaussian case, MMSE estimation means Linear
MMSE estimation, non-Gaussianity leads to nonlinear estimators.
We rederive the revisited GVAMP algorithm as asymptotic
alternating minimization of a Kullback-Leibler Divergence. We
then explore the extrinsics in GAMP by asymptotic perturbations
relating posterior beliefs and extrinsics.

I. INTRODUCTION

Sparse signal recovery is a fundamental problem in signal
processing with a wide range of applications. Many of these
problems can be framed as the task of estimating a latent
vector x based on a correlated observation vector y [1]. In
the Bayesian framework, the complexity of Canonical Methods
such as MMSE and MAP experiences exponential growth as
the dimension of the problem grows.
By exploiting the structure of the models, graphical model
based methods prove to be effective. Belief Propagation (BP)
transforms the global inference problem into a local inference
problem as outlined by [2]. Loopy Belief Propagation (LBP)
extends BP by directly employing BP on a factorization
scheme for p(x|y) that may involve loops [3]. In comparison
to BP, LBP can be considered as an approximation method.
A limitation of (L)BP is that the (iterative) updating scheme
leads to pdfs that correspond to the product of a large number
of messages, leading to high complexity. To address this issue,
Expectation Propagation (EP) was introduced [4]. EP has
been shown to share a similar updating scheme as (L)BP,
but for computational efficiency, the messages in (L)BP are
projected into a suitable member of the family of exponential
distributions [4].

A. Prior Work

In both [1] and [5], the authors unify EP and BP within
the framework of minimizing variational free energy. They
demonstrate the close relationship between the fixed points of

various message-passing algorithms and the stationary points
of Bethe Free Energy (BFE).
EP can serve as an inference method in the linear Gaussian
model. However, the computational cost in terms of the mes-
sage count is quadratic in the data size. Approximate Message
Passing (AMP) [6] builds upon EP, but through the application
of large system approximations (LSA), it effectively reduces
the number of messages to the order of the data size, providing
a more computationally efficient approach.
In [7], the authors investigated the fixed points of the Gener-
alized AMP (GAMP) algorithm for generalized linear models
(GLMs). They discovered that GAMP shares the same fixed
point as the stationary points of the Large System Limit Bethe
Free Energy (LSL BFE).

B. Main Contributions

We rederive the reGVAMP algorithm that we introduced in
[8], [9], from the point of view of alternating minimization
of a LSL version of a desirable KLD. The asymptotics here
involve only the CLT for extrinsics. We then derive the GAMP
algorithm by directly introducing LSL simplifications in the
LBP algorithm. This leads us to relate extrinsic messages to
posterior pdfs by first order Taylor series expansion based
perturbations. We also apply LSL approximations to the vari-
ances of the various Gaussians involved, which in fact leads to
a rederivation of a fundamental LSA theorem describing the
deterministic limit of LMMSE posterior variances.

II. GENERALIZED LINEAR MODEL (GLM)

We consider a GLM with

p(x)=
∏N
i=1 p(xi), z=Ax, p(y|z) =

∏M
j=1 p(yj |zj), (1)

where the ratio N/M is a constant for large system con-
siderations. We interpret the linear mixing as a conditional
probability

p(z|x) = δ(z−Ax). (2)

This generalized linear model is characterized by the following
factored posterior pdf:

p(x, z|y) ∝ p(x,y, z) = p(y|z) δ(z−Ax) p(x). (3)

The problem in Bayesian estimation is the computation of the
normalization constant p(y) and of the posterior means and
variances (if the interest is MMSE estimation).



III. REGVAMP

reGVAMP (revisited Generalized Vector AMP) is motivated
by only a single asymptotic approximation: the asymptotic
Gaussianity of extrinsics. The extrinsic pdf of a variable xi
is the conditional pdf p(y|xi), in which xi is treated as a
deterministic variable (no prior information), but the other
variables xi remain random and their prior pdf is exploited to
eliminate them from the joint pdf. The randomness of x and A
will quickly lead to Gaussianity of p(y|xi) by the CLT (think
of asymptotic Gaussianity of Maximum Likelihood estimates).
reVAMP introduces both Gaussian and non-Gaussian marginal
posteriors from Gaussian extrinsics and the true prior. This
involves also the introduction of Gaussian approximations
for the priors. Which in turn also leads to a multivariate
Gaussian posterior approximation, which exhibits the posterior
correlations between the variables. reGVAMP postulates a
factored posterior approximation of the form

qx,z(x, z) =
∏
i qxi|y(xi)

∏
j qzj |y(zj)

=
∏
i qxi(xi)mxi(xi)

∏
j qzj (zj)mzj (zj),

(4)

where qxi and qzj are the Gaussian approximations for the
priors while mxi and mzj are the Gaussian extrinsics for xi
and zj .
A byproduct are non-Gaussian posterior marginals, e.g. of
the form mi(xi) p(xi) where p(xi) is the true prior for xi.
Note that involving the true priors is something that could
also be considered in Variational Bayes (VB) [1]. reVAMP at-
temps to optimize the better KLD(p, q) whereas VB optimizes
KLD(q, p).
So, reGVAMP performs alternating minimization of the fol-
lowing KLD argminqx,z|y KLD(p(x, z|y)‖qx,z|y(x, z)),
with the approximate posterior as in (4). The KLD becomes

KLD(p(x, z|y)‖qx|y(x)]+KLD[p(x, z|y)‖qz|y(z))+ct

=
∑
i KLD(p(x, z|y)‖qxi|y(xi))
+
∑
j KLD(p(x, z|y)‖qzj |y(zj)) + ct

=
∑
i KLD(p(xi|y)‖qxi|y(xi))
+
∑
j KLD(p(zj |y)‖qzj |y(zj)) + ct

(5)

where ct denotes some constant. In the last equality, we
marginalized out the irrelevant variables. The marginalized
posteriors p(xi|y) and p(zj |y) are

p(xi|y) ∝ pxi(xi)︸ ︷︷ ︸
prior

∫
p(y|z)p(z|x)

∏
k 6=i

pxk(xk)dzdxi︸ ︷︷ ︸
extrinsic p(y|xi)

, (6)

p(zj |y) ∝ p(y, zj) =
∫
p(y, z)dzj

= pyj |zj (zj)︸ ︷︷ ︸
prior

∫ ∏
k 6=j

pyk|zk(zk)δ(z−Ax)p(x)dxdzj︸ ︷︷ ︸
extrinsic p(yj ,zj)

. (7)

In order to see which probability the extrinsic for z corre-
sponds to, consider the short hand notation

p(z) =

∫
δ(z−Ax)p(x)dx = p(zj |zj)p(zj) (8)

which depends only on the prior for x. Therefore, in (7),∫ ∏
k 6=j pyk|zk(zk)δ(z−Ax)p(x)dx

= pyj |zj (zj)p(zj |zj)p(zj) = p(yj , zj , zj),
(9)

Thus, we have

p(xi|y) ' pxi(xi)mxi(xi),
p(zj |y) ' pyj |zj (zj)mzj (zj).

(10)

Due to the CLT, the extrinsics can be approximated as Gaus-
sian when system dimensions increase. The marginal KLDs
become

arg min
qxi|y

KLD(p(xi|y)‖qxi|y(xi))

' argmin
qxi

KLD(pxi(xi)mxi(xi)‖qxi(xi)mxi(xi)), (11)

arg min
qzj |y

KLD(p(zj |y)‖qzj |y(zj))

' argmin
qzj

KLD(pyj |zj (zj)mzj (zj)‖qzj (zj)mzj (zj)). (12)

A. reGVAMP from (Minka) EP

We can arrive at the same point (11),(12) by Minka-style EP.
Approximate p by q at factor level, with
p(x, z|y) = 1/Zp

∏
i pxi(xi)

∏
j pyj |zj (zj) δ(z−Ax),

q(x, z) = 1/Zq
∏
i qxi(xi)

∏
j qzj (zj)m(x, z).

What is m(x, z)? The tilted pdf p̃δ =
1/Zq

∏
i qxi(xi)

∏
j qzj (zj) δ(z − Ax) is already Gaussian,

hence is unchanged after Gaussian projection. So we can
take m(x, z) = δ(z − Ax) and we get q(x, z) =
1/Zq

∏
i qxi(xi)

∏
j qzj (zj) δ(z −Ax). For the optimization

of a factor qxi(xi), fit a Gaussian to the tilted/target pdf

p̃xi(x, z) = 1/Zp̃xi pxi(xi)
∏
k 6=i

qxk(xk)
∏
j

qzj (zj)δ(z−Ax)

(13)We get:

argminf(xi)KLD(p̃xi , q)

= arg min
qxi (xi)

KLD(p(xk)
∏
k 6=i

qxk(xk)
∏
j

qzj (zj)δ(z−Ax),∏
k qxk(xk)

∏
j qzj (zj)δ(z−Ax)) =

arg min
qxi (xi)

∫
p(xi)

∏
k 6=i

qxk (xk)
∏
j

pzj (zj)δ(z−Ax) ln(
p(xi)

pxi(xi)
)dxdz

= arg min
qxi (xi)

∫
p(xi) ln(

p(xi)

qxi(xi)
)

[

∫ ∏
k 6=i

qxi(xk)
∏
j

qzj (zj)δ(z−Ax)dxkdz]︸ ︷︷ ︸
=mxi (xi) Gaussian extrinsic

dxi

= arg min
qxi (xi)

∫
pxi(xi)mxi(xi) ln

pxi(xi)mxi(xi)

qxi(xi)mxi(xi)
dxi

= arg min
q(xi)/mxi (xi)

∫
pxi(xi)mxi(xi) ln

pxi(xi)mxi(xi)

q(xi)
dxi

(14)



Since mxi(xi) is Gaussian, it will suffice to fit a Gaussian in
xi, say q(xi), via

KLD(p(xi|y)||q(xi)) = KLD(pxi(xi)p(y|xi)/Zi||q(xi))
≈ KLD(pxi(xi)mxi(xi)/Zi||q(xi))
= KLD(pxi(xi)mxi(xi)/Zi||qxi(xi)mxi(xi)/Z

′
i) .

(15)
The reVAMP algorithm [8] approximates the posterior to
Gaussian with the approximated Gaussian extrinsic:

p(xi|y) ≈
pxi(xi)mxi(xi)

Zxi(y)
≈ N (xi; x̂i, τxi) = q(xi) . (16)

where mxi(xi) = N (xi; ri, τri). The approximate Gaussian
posterior q(xi) is obtained by moment matching with the better
posterior approximation pxi(xi)mxi(xi)/Zxi .
We interpret the quotient of the approximated posterior and
the approximate extrinsic as the approximated Gaussian prior.

pxi(xi) ≈ qxi(xi) = N
(
xi;mxi , σ

2
xi

)
∝ N(xi;x̂i,τxi)
N(xi;ri,τri)

,

1/σ2
xi = 1/τxi − 1/τri , mxi = σ2

xi(x̂i/τxi − ri/τri) .
(17)

This Gaussian approximation qxi(xi) does not correspond
to direct moment matching of the true prior pxi(xi). So,
reGVAMP admits two points of view:
(1) minimize KLD(p, q) with q =

∏
i q(xi)

∏
j q(zj)

(2) do Minka EP with q =
∏
i qxi(xi)

∏
j qzj (zj)δ(z−Ax)

Both points of view lead to the same results!
The sense of the Gaussian prior approximations qxi(xi),
qzj (zj) is that they are the equivalent Gaussian priors that,
in the presence of the Gaussian extrinsics, produce the exact
(nonlinear) MMSE estimate and variance that the original non-
Gaussian prior would do! Direct Gaussian approximation of
the priors is very suboptimal because that would only produce
the correct LMMSE estimate and variance!!!
In the case the true priors are Gaussian, the two are the same
of course.
Apart from the improved marginal posteriors
mxi(xi)pxi(xi)/Z

′
i (and similar for the zj), together

with δ(z −Ax), the Gaussian prior approximations qxi(xi),
qzj (zj) in reGVAMP lead to an equivalent overall Gaussian
linear model. This can be used for Large System Analysis
(random A model) for the resulting posterior variances
(MSEs), as obtained by GAMP. reVAMP does alternating
minimization of KLD(p, q) which becomes iterative because an
extrinsic mxi(xi) depends on the approximate Gaussian priors∏
j 6=i qxj (xj),

∏
j qzj (zj). Since alternating minimization of

a convex cost function converges, reVAMP can be expected
to converge.
The Gaussian extrinsics approximations p(xi|y) ≈ mi(xi)
are asymptotically tight. The Gaussian approximations that are
not tight and that constitute the variational approximations are
approximating marginal posteriors by Gaussian q(xi) or what
follows from that, approximating priors pxi(xi) by Gaussian
qxi(xi). Or the overall multivariate Gaussian posterior approx-
imation is not tight also, but at least captures full second-order
moments.

Hence in one point of view, re(G)VAMP minimized the
desirable KLD(p, q), which becomes feasible thanks to asymp-
totic Gaussianity of the extrinsics like p(y|xi) ≈ mxi(xi).
However, re(G)VAMP can also be derived using EP, using a
different formal posterior approximation.

IV. RELATION TO CWCU MMSE ESTIMATOR

The algorithm proposed by [8] can be interpreted as an
iterative method of finding consistent extrinsic and posterior
messages for the case of a AWGN p(y|z). [8] also shows the
close relation between CWCU LMMSE estimation [10] and
the extrinsic. In the following, we will interpret the extrinsic
as CWCU LMMSE estimation based on the Gauss-Markov
theorem.
Based on the discussion of the previous section, when deriving
the extrinsic for z and x, we find the system to be equivalent
to a Gaussian linear model. Therefore, we can use the approx-
imate prior and approximate likelihood as if they are the true
prior and likelihood when deriving the extrinsics without large
system approximations [11].
Consider jointly Gaussian y and x (scalar)[

y
x

]
∼ N

([
my

mx

]
,

[
Cyy Cyx
Cxy Cxx

])
(18)

Then the extrinsic p(y|x) is Gaussian and based on Gaussi-
Markov theorem
−2 ln p(y|x) = c+(y −my|x)

TC−1y|x(y −my|x), with
my|x = my +CyxC

−1
xx (x−mx),

Cy|x = Cyy −CyxC
−1
xxCxy

(19)
Interpreting (19) as a pdf in x (which Fisher called fiducial
statistics), we can rewrite this quadratic exponent as
−2 ln p(y|x) = c(y) + (x− x̂CL)2/Cx̃CLx̃CL ,

x̂CL = mx + dCxyC
−1
yy(y −my) = d x̂L + (1− d)mx

Cx̃CLx̃CL = dCx̃Lx̃L ,
with
x̂L=mx+CxyC

−1
yy(y −my), Cx̃Lx̃L=Cxx−CxyC

−1
yyCyx

d =
Cxx

CxyC
−1
yyCyx

≥ 1,

(20)
where x̂CL, Cx̃CLx̃CL are the CWCU LMMSE estimate and
error variance, and x̂L, Cx̃Lx̃L are the LMMSE (and hence
MMSE since Gaussian) estimate and error variance.
Now we will investigate the vector case. Define the operation
Diag(C) = diag[diag(C)], which returns a diagonal matrix
from the vector diag(C), composed of the diagonal elements
of square matrix C.
Interpreting the previous x as a component xi of a vector x,
we can write
x̂CL=mx+DCxyC

−1
yy(y −my) = D x̂L+(I−D)mx

Cx̃CLx̃CL = Cx̃Lx̃L + (D− I)Cx̂Lx̂L(D− I)
with
D=Diag(Cxx)[Diag(Cx̂Lx̂L)]

−1, Cx̂Lx̂L=CxyC
−1
yyCyx

(21)
where the expression for Cx̃CLx̃CL follows from x̃CL = x−
x̂CL = x̃L− (D−I)CxyC

−1
yy(y−my) and the two terms in



this difference are decorrelated by the orthogonality property
of LMMSE estimation.
Next, we’ll show: D = diag(τCL./τL), where τL =
diag(Cx̃Lx̃L) and τCL = diag(Cx̃CLx̃CL), and ”./” denotes
element-wise division.

Cx̃CLx̃CL= Cx̃Lx̃L + (D− I)Cx̂Lx̂L(D− I)
= Cxx −Cx̂Lx̂LD−DCx̂Lx̂L +DCx̂Lx̂LD

(22)

Calculate the diagonal elements

diag(τCL) = Diag(Cx̃CLx̃CL) = Diag(Cxx)
+DDiag(Cx̂Lx̂L)D−Diag(Cx̂Lx̂L)D−DDiag(Cx̂Lx̂L)
= Diag(Cxx)[Diag(Cx̂Lx̂L)]

−1Diag(Cxx)−Diag(Cxx),
(23)

where we use D = Diag(Cxx) [Diag(Cx̂Lx̂L)]
−1 in (21).

Now we want to show D diag(τL) = diag(τCL) :

D diag(τL) = DDiag(Cx̃Lx̃L)
=Diag(Cxx)[Diag(Cx̂Lx̂L)]

−1·
·[Diag(Cxx)−Diag(Cx̂Lx̂L)] = diag(τCL)

(24)

The extrinsic for x without large system approximations can
be interpreted as CWCU MMSE estimation from the Gaussian
model[

mz

x

]
∼N

([
Amx

mx

]
,

[
ADσ2

x
AT +Dσ2

z
ADσ2

x

Dσ2
x
AT Dσ2

x

])
.

(25)
The underlying equivalent Gaussian linear model is

mz = Ax+ vx (26)

where x ∼ N (mx,Dσ2
x
) and vx ∼ N (0,Dσ2

z
).

Likewise, we can interpret the extrinsic for z as CWCU
MMSE estimation from[

Amx

z

]
∼ N

([
mz

mz

]
,

[
Dσ2

z
+ADσ2

x
AT Dσ2

z

Dσ2
z

Dσ2
z

])
. (27)

The underlying equivalent Gaussian linear model is

Amx = z+ vz (28)
where z ∼ N (mz,Dσ2

z
) and vz ∼ N (0,ADσ2

x
AT ).

V. GAMP FROM LSL BELIEF PROPAGATION

In reGVAMP, extrinsics in the GLM are built from the
equivalent Gaussian linear model, which introduces equivalent
Gaussian priors from Gaussian posterior approximations and
Gaussian extrinsics.
GAMP exploits LSL simplifications of reGVAMP for a
random A with i.i.d. signs which leads to
(i) Gaussianity of extrinsics (also in reGVAMP), and
(ii) independence of marginals (extra w.r.t. reGVAMP).
(ii) leads to the large system simplifications of the variances,
avoiding covariance matrix inverses. But also posterior and
extrinsic estimates x̂, ẑ and r, p that are constructed by
combining decoupled pieces of information. These estimates
are non-linear MMSE and CWCU MMSE estimates in
general. Extrinsics are not obtained as linear perturbations
of corresponding MMSE estimates because those are not
necessarily close to each other. Rather the interplay between
x and z is exploited with perturbations due to the small

Fig. 1. Factor Graph for the GLM used by reGVAMP. Circles: variable nodes,
squares: factor nodes.

Fig. 2. Factor Graph for the GLM used by GVAMP.

effect of a single term in A in the LSL. In both reGVAMP
and GAMP, we have:
Gaussian extrinsics: N (x; r, τr), N (z;p, τp), and
Posterior marginals proportional to: px(x)N (x; r, τr),
py|z(y|z)N (z;p, τp) with Gaussian approximations
N (x; x̂, τx), N (z; ẑ, τz).
reGVAMP considers the joint pdf factorization into M+N+1
factors

p(x, z,y) = δ(z−Ax)
N∏
i=1

pxi(xi)
M∏
k=1

pyk|zk(yk|zk) (29)

where δ(z −Ax) =
∏M
k=1 δ(zk − aTk x), AT = [a1 · · ·aM ].

The factor graph in Fig. 1 is without cycles. The factor graph
considered determines the associated Belief or Expectation
Propagation algorithms for minimizing the Bethe Free Energy
[5]. GVAMP on the other hand considers the following joint
pdf factorization into 2M +N factors

p(x, z,y) =
N∏
i=1

pxi(xi)
M∏
k=1

pyk|zk(yk|zk) δ(zk−a
T
k x) (30)

which leads to the factor graph in Fig. 2 which does contain
cycles.
Message passing in the GLM scalar level factor graph of Fig. 2
alternates between the following message updates:

mk,n(xn)∼
∫
p(yk|zk) δ(zk−Ak,:x)

∏
m6=n

mm,k(xm) dzkdxn

mn,k(xn) ∼ pxn(xn)
∏
i6=k

mi,n(xn) (31)



where ∼ denotes equality up to a normalization factor. This
results in:
marginal posteriors: mn(xn) ∼ pxn(xn)

∏
imi,n(xn),

extrinsic zk : ∼
∫
δ(zk −Ak,:x)

∏
nmn,k(xn) dx,

extrinsic xn : ∼
∏
imi,n(xn).

Like reGVAMP, GAMP uses Gaussian approximations for
extrinsics. This requires Gaussian models for the messages.
GAMP applies Gaussian approximations in 2 steps: (middle
expression = prior × Gaussian extrinsic)

mk,n(xn)→
∫
p(yk|zk) δ(zk−Ak,:x)

∏
m6=n

qm,k(xm) dzkdxn

→qk,n(xn)=N (xn; x̂k,n, τ
x
k,n) (32)

mn,k(xn)→ pxn(xn)
∏
i6=k

qi,n(xn)

→ qn,k(xn) = N (xn; x̂n,k, τ
x
n,k) (33)

A. Output Node

We get for the incomplete extrinsic for zk:∫
δ(zk−Ak,:x)

∏
m6=n

qm,k(xm) dxn ∼ N (zk; pk,n+Ak,nxn, τ
p
k,n)

with pk,n = Ak,n x̂n,k, τ
p
k,n = Sk,n τ

x
n,k ≈ Sk,n τ

x
n

Define pk = Ak,:x̂:,k ⇒ pk,n = pk −Ak,nx̂n,k.
And τpk,n = τpk − Sk,nτ

x
n,k where τpk = Sk,:τx.

Neglecting terms of order Sk,n, we get N (zk; pk,n +
Ak,nxn, τ

p
k,n) ≈ N (zk; pk+Ak,nx̃n, τ

p
k ) with x̃n = xn− x̂n.

Then mk,n(xn)
≈∼ Zz(pk +Ak,nx̃n, yk, τ

p
k ) with

Zz(p, y, τp) =
∫
py|z(y|z) e

− 1
2τp

(z−p)2
dz

∂ lnZz
∂p =

Z′
z

Zz
= s = ẑ−p

τp
, ẑ = 1

Zz

∫
z py|z(y|z) e

− 1
2τp

(z−p)2
dz

∂2 lnZz
∂p2 = −τs = −τs = Z′′

z

Zz
− (

Z′
z

Zz
)2 = −(1− τz/τp)/τp

Then up to second order in Ak,nx̃n (Laplacian approximation
in MAP case, Gaussian moment matching in MMSE case), a
single measurement extrinsic for xn becomes: lnmk,n(xn)

≈ lnZz(pk, yk, τ
p
k ) +

∂ lnZz
∂p Ak,nx̃n + ∂2 lnZz

2 ∂p2 A2
k,nx̃

2
n

= ct + [skAk,n +A2
k,nτ

s
k x̂n]xn − 1

2 τ
s
k A

2
k,n x

2
n .

Now lnmn,k(xn) = ct+ln pxn(xn)+
∑
i6=k

lnmi,n(xn)

= ct+ln pxn(xn)− 1
2τrn,k

(xn−rn,k)2

with 1
τrn,k

= ST
k,n
τ s
k

(≈ ST:,nτs =
1
τrn
)

and rn,k = τ rn,k(s
T
k
Ak,n + ST

k,n
τ s
k
x̂n) = x̂n + τ rn,k s

T
k
Ak,n .

B. Input Node

We now get for the approximate posterior

mn(xn) =
1

Zx(rn,τrn)
pxn(xn) e

− 1
τrn

(
x2n
2 −xnrn) with

Zx(r, τr) =
∫
px(x) e

− 1
τr

( x
2

2 −x r)dx

τr
∂ lnZx
∂r =

∫
xm(x)dx = E(x|r, τr) = x̂ = x̂(r, τr)

τ2r
∂2 lnZx
∂r2 = τr

∂x̂
∂r = τx

Now, with rn = x̂n + τ rn s
TA:,n, we can write

rn,k ≈ x̂n + τ rn s
T
k
Ak,n = rn − τ rn skAk,n. We get similarly

for the mean x̂n,k of mn,k(xn):

x̂n,k = x̂n(rn,k, τ
r
n) = x̂n(rn − τ rn skAk,n, τ

r
n)

≈ x̂n(rn, τ rn)− ∂
∂rn

x̂n(rn, τ
r
n) τ

r
n skAk,n = x̂n − τxn skAk,n

Plugging this in, we get

pk = Ak,: x̂:,k = Ak,: x̂− Sk,:τx sk = Ak,: x̂− τpk sk
which completes the message passing. We may note that the
variance derivations in the LSL of BP are equivalent to the
large random matrix analysis of the MSE of LMMSE in the
equivalent Gaussian linear model.

VI. CONCLUDING REMARKS

We rederived the reGVAMP algorithm from the point of
view of alternating minimization of a LSL version of a
desirable KLD. The asymptotics here involve only the CLT
for extrinsics. We then derive the GAMP algorithm by directly
introducing LSL simplifications in the LBP algorithm. This
leads us to relate extrinsic messages to posterior pdfs by first
order Taylor series expansion based perturbations. We also
apply LSL approximations to the variances of the various
Gaussians involved, which in fact leads to a rederivation of
a fundamental LSA theorem describing the deterministic limit
of LMMSE posterior variances.
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