
Link Inference Attacks in Vertical Federated Graph Learning

Oualid Zari
EURECOM
Biot, France

oualid.zari@eurecom.fr

Chuan Xu
Univ. Côte d’Azur, Inria, CNRS, I3S

Biot, France
chuan.xu@inria.fr

Javier Parra-Arnau
Universitat Politècnica de Catalunya

Barcelona, Spain
javier.parra@upc.edu

Ayşe Ünsal
EURECOM
Biot, France

ayse.unsal@eurecom.fr

Melek Önen
EURECOM
Biot, France

melek.onen@eurecom.fr

Abstract—Vertical Federated Graph Learning (VFGL) is a
novel privacy-preserving technology that enables entities to
collaborate on training Machine Learning (ML) models with-
out exchanging their raw data. In VFGL, some of the entities
hold a graph dataset capturing sensitive user relations, as in
the case of social networks. This collaborative effort aims to
leverage diverse features from each entity about shared users
to enhance predictive models or recommendation systems,
while safeguarding data privacy in the process. Despite these
advantages, recent studies have revealed a critical vulnerabil-
ity that appears in intermediate data representations, which
may inadvertently expose link information in the graph. This
work proposes a novel Link Inference Attack (LIA) that
exploits gradients as a new source of link information leakage.
Assuming a semi-honest adversary, we demonstrate through
extensive experiments on seven real-world datasets that our
LIA outperforms state-of-the-art attacks, achieving over 10%
higher Area Under the Curve (AUC) in some instances, thereby
highlighting a significant risk of link information leakage
through gradients. Our attack’s effectiveness primarily stems
from label information embedded in gradients, as evidenced by
comparison with a label-only LIA. We analytically derive our
Label-based LIA’s accuracy using graph characteristics, assess-
ing target graph vulnerability. To address these vulnerabilities,
we evaluate two types of defenses: edge perturbation based on
differential privacy and a novel label perturbation approach,
demonstrating that our proposed label perturbation defense
is more effective against all attack types across all datasets
examined, offering a more favorable privacy-utility trade-off.
Our comprehensive analysis shows why LIAs are effective and
identifies potential defenses, highlighting the need for further
research to improve the security of VFGL systems against link
information leakage.

1. Introduction

Recent research results in AI technology have shown
that graph data are becoming increasingly popular as they

improve the performance and accuracy of machine learning
models. According to Gartner1, graph technologies will be
used in 80% of data and analytics innovations.

The use of graph data in AI systems also introduces new
concerns in terms of privacy and security. Recent works have
shown that, if not appropriately protected, Graph Neural
Networks (GNN) are exposed to the so-called link infer-
ence attacks (LIA) [He et al.(2021)], which aim to discover
relations among graph nodes by identifying or inferring
whether or not there exist edges between them. Such attacks
can reveal sensitive information about the relationships or
interactions between parties represented by nodes in the
graph. For example, in a social network graph, an LIA could
potentially reveal private connections between individuals,
such as friendships, professional relationships, or even more
sensitive associations.

In this paper, we propose to study link inference attacks
within the federated learning setting. Introduced by McMa-
han et al.[McMahan et al.(2017)], federated learning allows
multiple parties to collaboratively train machine learning
models while keeping their data on local premises, thereby
ensuring data privacy. To integrate the use of graph data
with federated learning, federated graph learning can be
adapted in two settings: the horizontal federated setting,
where multiple parties collaborate to train a global model
using their local graph datasets that share similar feature
spaces but differ in samples, and the vertical federated graph
learning (VFGL) setting, where each collaborating party
holds different features of the same samples. For example,
one party may possess a graph dataset, while another may
have features about the samples without any associated
graph topology. In VFGL, the parties utilize their local
datasets, which may include graphs, to train local models
that generate intermediate or latent representations of their
data that are then sent to the server. The server combines
these intermediate representations from the participating
parties along with its own training labels to train its model.

1. Gartner: Top 10 Data and Analytics Trends for 2021

https://www.gartner.com/en/newsroom/press-releases/2021-03-16-gartner-identifies-top-10-data-and-analytics-technologies-trends-for-2021

To illustrate a practical application of VFGL, consider
a collaboration between a social network company and
another company that shares the same user base. The social
network holds a graph of user connections, while the other
company holds user feature data. By using VFGL, they
can collaboratively improve an ad recommendation system.
The social network company provides the graph data, which
captures user relationships, and the other company supplies
additional user features. Through VFGL, they can leverage
both graph structures and feature data without sharing raw
data, thus preserving user privacy while enhancing the rec-
ommendation system’s effectiveness.

This paper focuses on edge/link inference attacks in the
VFGL setting. In this architecture, clients participating in the
training of the model but not holding the actual graph data
can become potential adversaries and infer some information
about the edges/links in the graph from the available training
information. This information ranges from the gradients that
were shared among parties during each training epoch to the
model output when queried. Such a distinction arises from
the party that can perform these attacks, namely the querier,
any participating client, or the server itself. While some
of the attacks relying on the knowledge of classification
output or intermediate results were already proposed and
evaluated as in [Qiu et al.(2022)], we have spotted that the
knowledge of gradients or training labels were not studied
yet. We therefore propose to study the impact of such attacks
and compare them with existing ones and observe that
the knowledge of gradients results in a substantial privacy
leakage of links in the graph. Interestingly, we identify that
the reason why Gradient-based link inference attacks are
powerful is mainly due to the correlation of the gradients
with the labels of training nodes. We indeed observe that
the impact of the knowledge of labels is sufficient to infer
graph edges. We also explore how the different properties
of the graph such as its density or the class diversity
help improve Label-based LIA. For example, our analysis
shows that when labels are uniformly distributed, LIAs reach
the maximum accuracy. To address these vulnerabilities,
we evaluate two types of defenses: edge-level perturbation
using Lapgraph and a novel label perturbation approach.
Our analysis reveals that Lapgraph is largely ineffective
against the introduced attacks, while our proposed label
perturbation defense demonstrates effectiveness against all
attack types across all datasets examined, offering a more
favorable privacy-utility trade-off at lower privacy budgets.

To summarize, this paper makes the following contribu-
tions to the field of Vertical Federated Graph Learning and
privacy in graph data:

1) We construct a new LIA that exploits the gradients
information during training.

2) We study and evaluate our attack using seven real-
world datasets. In some datasets, our results demon-
strate that our proposed Gradient-based LIA outper-
forms other forms of LIAs where the adversary is even
stronger and, for example, knows the model’s output
predictions.

3) We identify that the successful performance of our

proposed Gradient-based LIA is mainly due to the
node label information embedded in the gradients. This
facilitates the attack against certain graphs with specific
characteristics.

4) We mount a new Label-based LIA to show its strong
connection to our primarily proposed Gradient-based
LIA. We also provide a theoretical study on how the
success of label-based LIA is influenced by some graph
properties. These include its homophily, density, and
class diversity.

5) We evaluate two defense mechanisms against our pro-
posed attacks: edge-level perturbation (Lapgraph) and a
novel label perturbation approach. We demonstrate that
our label perturbation defense is more effective in mit-
igating the attacks while maintaining a better privacy-
utility trade-off compared to edge-level perturbation.

2. Background

2.1. VFL system

TABLE 1: Table of Notations

Notation Description
PG Party owning the graph dataset
PA Party holding the separate feature set
PY Party owning the training labels
G Target graph owned by PG
XG Features owned by party PG
HG Intermediate representation of XG
GG The gradients sent to party PG
XA Features owned by party PA
HA Intermediate representation of XA
P Output prediction computed by PY
GA The gradients sent to party PA
Y Training labels owned by party PY

In this study, we investigate a two-party VFL setting
involving parties PG and PA, along with an active party PY .
PG owns a graph dataset denoted as DG = (G, XG), while
PA holds a separate feature set denoted as XA. The parties
share a user space of N samples, implying that the graph
G contains N nodes, each representing a user. Within this
user space, PG and PA manage user features of dimensions
dG and dA respectively. They collaborate with PY , the party
owning the classification labels Y , to perform a supervised
learning task.

Specifically, PG employs a Graph Neural Network
(GNN) to transform XG into its intermediate representation
HG , while PA uses a deep neural network to transform
XA into its intermediate representation HA. PY gathers
these intermediate representations and trains a Deep Neural
Network (DNN) to compute the output prediction P for
classification.

The process of training involves computing the loss
function L, deriving the gradients with respect to the model

2

parameters, and then updating these parameters. The gradi-
ents are computed according to the following rule:

∇θkL =
∂L
∂θk

=
∑
i

∂L
∂Hi,k

∂Hi,k

∂θk
(1)

where θk represents the model parameters, Hi,k is the latent
representation of the ith sample computed by party Pk, and
∂L

∂Hi,k
is the gradient of the loss function L with respect

to Hi,k for k ∈ {G,A}. The details of the VFL training
protocol are outlined in Algorithm 4 in Appendix A.

2.2. Graph neural networks

Graph Neural Networks (GNNs) have emerged as a
prominent machine learning architecture for leveraging
graph data structures in predictive modeling. GNNs excel
at modeling complex relationships between entities by uti-
lizing the features of these entities and their connections
within a graph. They have found applications across various
domains, including social networks where users and their
relationships are modeled as nodes and edges, respectively,
to enhance recommendation systems [Sharma et al.(2022)].
GNNs demonstrate superior performance in a wide array of
classification tasks, such as node classification, link predic-
tion, and graph classification. This paper focuses exclusively
on the node classification task, aiming to predict the classes
of individual nodes based on their features and connections
in the graph. Specifically, in a graph G = (V,E), where
V represents nodes and E denotes edges, the primary
objective of a GNN is to learn the mapping from the
nodes’ feature space to an embedding space through the
aggregation of neighboring features using a neural network.
These embeddings are then utilized for downstream tasks
such as node classification. In our VFL scenario, the node
embeddings, referred to as intermediate representations, are
transmitted to the server for further processing to generate
final output predictions. Various GNN architectures exist,
differing mainly in their aggregation rules.

In this paper, we primarily focus on the Graph Convolu-
tional Network (GCN) architecture. Later, we demonstrate
that our attacks can also be executed on other types of
GNNs, including GraphSAGE and GAT. Therefore, we first
introduce these architectures.
Graph Convolutional Networks (GCN). GCNs are a piv-
otal architecture in the field of GNNs, lauded for their abil-
ity to perform node-level prediction and facilitate learning
on graph-structured data [Kipf and Welling(2017)]. GCNs
adapt the convolutional operation from image processing to
the domain of graphs, allowing the model to harness the
graph’s structural information as well as node features. The
central operation within a GCN is the aggregation of neigh-
boring node embeddings, which enables the propagation of
informative signals across the graph’s edges. The update rule
for node embeddings at each layer in a GCN is detailed by
the following formula:

H(k+1) = σ
(
D̃− 1

2 ÃD̃− 1
2H(k)W (k)

)
, (2)

where H(.) represents the embeddings of the nodes at the
corresponding layer with H(0) being the node features.
Ã = A + I denotes the adjacency matrix A of the graph
with self-loops added via the identity matrix I; D̃ is the
diagonal degree matrix corresponding to Ã; W (k) is the
trainable weight matrix of the k-th layer, and σ is a non-
linear activation function (e.g., ReLU). This recursive rela-
tion allows the GCN to effectively learn representations that
integrate neighborhood embeddings, capturing both local
structure and global topology of the graph.
GraphSAGE. GraphSAGE stands for Graph Sample and
AggregatE, and addresses the scalability issue of GCN to
large graphs by aggregating features from a sampled subset
of a node’s neighbors [Hamilton et al.(2017)]. The feature
aggregation in GraphSAGE is formulated as follows:

h(k+1)
u = σ

(
W (k) · CONCAT

(
h(k)
u ,AGGREGATE

v∈N(u)

(
h(k)
v

)))
.

In this formula, h(k)
u represents the feature vector of node

u at the k-th layer, N(u) denotes the sampled neighbors
of u, and W (k) is the trainable weight matrix at the k-th
layer. The AGGREGATE function can be a mean, sum, or
max operation, depending on the specific implementation of
GraphSAGE. The CONCAT operation combines the node’s
current features with aggregated neighbor features before
applying the non-linear activation function σ. This approach
controls the dimensionality of the embeddings through the
dimensions of the weight matrices W (k), ensuring consistent
embedding sizes across layers.
Graph Attention Network (GAT). GAT, introduced
in [Velickovic et al.(2017)], leverages a similar message-
passing approach as GCN in Eq.(2) but with a distinct aggre-
gation function. The aggregation function in GAT employs
an attention mechanism, allowing the GAT to assign edge
weights dynamically based on node features, as opposed
to the static, degree-based weighting in GCN. Attention
coefficients aij , derived from node features, prioritize in-
formation from certain neighbors during aggregation. The
GAT’s aggregation function is defined by:

hk′

u = σ

(∑
v∈Nu

auvW
khk−1

v

)
,

where hk′

u is node u’s embedding at the k-th layer, Nu is its
set of neighbors, auv represents the attention coefficients,
W k is the weight matrix at the k-th layer, and σ is an
activation function such as ReLU.

3. Related Work

3.1. Link stealing attacks

Link stealing attacks were first introduced in
[He et al.(2021)], demonstrating a correlation between
the output predictions of nodes and the structure of the
graph’s links, as a source of edge information leakage.
Additionally, [He et al.(2021)] explored the use of node

3

feature similarities to infer the graph’s connections. In
subsequent work, [Duddu et al.(2020)] showed that it is
possible to reconstruct graph edges by analyzing predictions
based on node embeddings, which are trained to capture
the graph structure. Another work [Chen et al.(2024)]
employs a graph autoencoder method, where the adversary
is a server that uses node embeddings to predict links,
assuming partial knowledge of the target graph to train
the graph autoencoder. This stronger assumption makes
the attack more powerful but less practical. In contrast,
our approach does not require prior knowledge of the
target graph, offering more realistic and broadly applicable
assumptions for real-world VFGL settings.

Recent literature has explored both passive and ac-
tive link stealing attacks. Active attacks, such as altering
node features [Wu et al.(2021)] or introducing new nodes
[Zari et al.(2023)], can potentially lead to more significant
edge privacy leakage but require stronger assumptions about
adversary capabilities. Our work, like other passive attacks,
focuses on more realistic scenarios adhering to standard
federated learning protocols. We exploit information leakage
from model gradients and labels without requiring additional
adversarial capabilities or partial knowledge of the target
graph, making our approach more applicable in real-world
VFGL settings. In the VFL setting, the first LIA was in-
troduced in [Qiu et al.(2022)]. This research indicated that
edge information could be revealed through the intermediate
representations and output predictions of nodes. Multiple
attack strategies were developed based on these leaks, de-
pending on the adversary’s knowledge of the target graph.
However, the study did not address potential leakages from
gradients or training labels of the nodes.

3.2. Privacy attacks in federated learning

A significant number of attacks have been developed,
with a predominant focus on the horizontal federated learn-
ing (HFL) setting, compared to the VFL setting. Notably,
in the case of VFL, one of the first developed attacks
is the label-inference attack, wherein adversaries leverage
gradients to infer the labels of nodes [Fu et al.(2022)],
[Li et al.(2021)], [Zou et al.(2022)], [Sun et al.(2022)]. Be-
side label inference attacks to VFL, feature inference attacks
have also been extensively studied in [Luo et al.(2020)],
[Ye et al.(2022)]. In [Ye et al.(2022)], the authors showed
that it is possible to reconstruct binary features of partici-
pating clients based on the intermediate representations of
the samples, if the features dimension is not exceedingly
large. In [Luo et al.(2020)], the authors demonstrated the
feasibility of the reconstruction of features based on model
predictions.

In contrast, the HFL setting has seen extensive study of
gradient-based attacks, largely because gradients often rep-
resent the sole form of information exchange between partic-
ipating parties. For instance, it has been shown that gradients
can reveal the membership of training data, as highlighted in
[Nasr et al.(2019)]. Furthermore, gradient-inversion attacks
aim to reconstruct inputs from gradients, an attack that

has been effectively mounted to computer vision domain
[Zhu et al.(2019)]. Another study in [Melis et al.(2018)],
which reveals that gradients can inadvertently disclose at-
tributes unrelated to the primary machine learning task.
Specifically, the authors showed that gradients could expose
sensitive attributes, such as gender or race.

In this paper, we explore edge privacy leakage in gra-
dients through the introduction of a new LIA. We aim to
deepen the understanding of edge privacy vulnerabilities
within federated learning environments.

4. Link Inference attacks

In this section, we define five different adversary models
which mainly differ with respect to their knowledge whereas
the goal always remains the same, that is, discovering edges
in a graph. In all these models, we consider an honest but
curious adversary who adheres to the training protocol with-
out altering any of the communicated messages or the data.
We assume a minimal setting with three parties: the server
(the active party), who owns the training labels; the client,
who has the graph with some features; and another client,
who has information about other features. The victim is the
client who owns the graph dataset. The other client and the
active server can each be considered a potential adversary,
who tries to infer graph edges with the information that is
available to them.

4.1. Environment

We consider a VFL setting with two clients and one
server. As illustrated in figure1, the two clients PG and PA
contribute to the trained model and send the intermediate
model representations to the server PY who further com-
putes and sends the gradients. PG is the party who holds
the graph and is considered as the victim party whereas PA
and PY can launch different LIAs which we study in the
next section.

Figure 1: Schematic representation of a VFL setting with
two clients and one server

4

4.2. Adversary’s knowledge

Model gradients: The adversary, a participating client,
receives gradients GA for the cut layer of their model. This
layer is the output of the adversary’s model, interfacing with
layers owned by other parties. The adversary obtains the
gradient of each node in the batch at every training step.
Intermediate Representation: A participating client knows
its intermediate representations HA of its own features about
the nodes.
Features: The adversary, a participating client, uses their
features XA to construct the attack. Features can correlate to
graph edges: nodes are more likely to share similar features
if they are neighbors in the target graph.
Training labels: The server, as an adversary, possesses the
training labels of the graph nodes.
Prediction output: The server, as an adversary, has access
to the final output prediction layer and uses the output
prediction P scores to conduct the attack.

Although the Gradient-based and Intermediate
representation-based LIAs are initially designed for
participating clients, the server also has the necessary
knowledge to perform these attacks. This is because the
server dispatches gradients to the clients and receives
the intermediate representations of the nodes from them.
Table 2 summarizes the knowledge of different adversaries
(i.e., server and client) in our VFGL setting.

TABLE 2: Adversary’s knowledge in VFGL.

Party Features Labels Gradients Inter-Rep. Pred. Output
Client ✓ ✗ ✓ ✓ ✗
Server ✗ ✓ ✓ ✓ ✓

While intermediate representations and prediction output
were already exploited in [Qiu et al.(2022)] and features in
[He et al.(2021)], gradient and label information have not
been studied in the context of the VFGL setting. In the
next section, we describe the actual attacks exploiting this
information.

4.3. Link inference attacks - Description

In this section, we elaborate on the design of LIAs which
differ with respect to the knowledge of the adversary. We
first define our proposed LIAs; Gradient-based and Label-
based LIAs, and then remind the other already existing
attacks that we consider as baseline attacks.

4.3.1. Gradient-based LIA. In this attack, the adversary,
acting as an FL client, exploits the received gradients GA
of node samples to infer links in the target graph G. The
adversary computes the cosine similarity between pairs of
sample gradients and compares this score against a threshold
value τ to determine if a link exists. Algorithm 1 details
our methodology. We use cosine similarity due to its ef-
fectiveness in measuring neural network sample similarity
[Charpiat et al.(2019), Corollary 2] and its common use

in gradient-based FL attacks [Geiping et al.(2020)]. Empir-
ically, it outperforms Euclidean and Chebyshev distances
in our attack. For threshold selection, if the adversary can
estimate the graph’s density d, they could select the top d%
most similar node pairs as connected, using the least similar
among these as the decision threshold [Wu et al.(2021)].
Alternatively, the adversary might use a public partial graph
or a similar graph in the same domain to estimate the
threshold.

To evaluate our attack’s effectiveness comprehensively,
we primarily use the AUC metric, following previous works
[Zari et al.(2023)], [Qiu et al.(2022)], [Salem et al.(2018)],
[He et al.(2021)]. This metric assesses performance across
various thresholds, providing a threshold-independent eval-
uation. For comparison with the label-based attack, which
does not rely on a threshold, we compute the accuracy of
our threshold-dependent attacks at the threshold yielding
the highest F1 score. This approach balances precision and
recall, offering detailed insights into each attack strategy’s
effectiveness while accounting for the practical challenges
of threshold selection in real-world scenarios.

Algorithm 1 Gradient-based LIA
Require: Gradients GA and threshold τ
Ensure: Inferred graph Ĝ

1: Adversary A receives gradients GA from the server.
2: A initializes an empty graph Ĝ.
3: for each pair of samples (i, j) do
4: S ← Cosine similarity(G(i)

A , G
(j)
A).

5: if S > τ then
6: PA decides there is a link between (i,j) in graph Ĝ.

4.3.2. Label-based LIA. Unlike the Gradient-based LIA,
where the adversary exploits the received gradients of the
samples, in Label-based LIA, the adversary leverages the
training labels Y of the samples to infer their links in
the target graph G. This method assumes that nodes with
the same labels are more likely to be connected. More
specifically, the adversary compares the labels of each pair
of node samples to determine if they match. If the labels of
two samples are identical (Yi = Yj), the adversary A infers
that there is a link between these two samples in the target
graph G. This attack method is captured in Algorithm 2. It is
important to note that the Label-based LIA requires different
knowledge compared to the Gradient-based LIA, specifically
access to training labels. While this assumption might seem
strong, it is not unrealistic in certain scenarios. For instance,
in our VFGL protocol, the server has access to the labels
to perform the final model training. The Label-based LIA
was introduced to provide deeper insights into the Gradient-
based LIA’s effectiveness, highlighting the complementary
nature of the two methods in understanding link inference
attacks in VFGL.

4.3.3. Baseline LIAs. Similar to the Gradient-based LIA, in
Baseline LIAs, the adversary computes the cosine similarity
between the observations of samples. These observations

5

Algorithm 2 Label-based LIA
Require: Labels Y
Ensure: Inferred graph Ĝ

1: A initializes an empty graph Ĝ.
2: for each pair of samples (i, j) do
3: if Yi == Yj then
4: PA decides there is a link between (i,j) in graph Ĝ.

could consist of either intermediate representations or out-
puts as already studied in [Qiu et al.(2022)], or features as
investigated in [He et al.(2021)]. The aim is to use these
similarities to infer links in the target graph G. Similar to
Gradient-based attacks, the effectiveness of such attacks is
evaluated using the AUC metric across a range of potential
threshold values. The details of the baseline attacks are
outlined in Algorithm 3.

Algorithm 3 Baseline LIA
Require: Observations O based on attack type (intermediate rep-

resentations, outputs, or features) and threshold τ
Ensure: Inferred graph Ĝ

1: Adversary A collects observations depending on the specific
attack focus.

2: A initializes an empty graph Ĝ.
3: for each pair of samples (i, j) do
4: S ← Cosine similarity(Oi,Oj).
5: if S > τ then
6: PA decides there is a link between (i, j) in graph Ĝ.

4.4. Analytical results for LIAs

In this section, we first provide theoretical guarantees
for the performance of Label-based LIA (Algorithm 2),
given some common statistics of the graph dataset such
as density d, homophily ratio h [Zhu et al.(2020)] and the
number of classes C. Following this, we demonstrate a
special case, where the Baseline LIA (Algorithm 3) with
prediction outputs as observation (called Output-based LIA
below) achieves the same link inferences as Label-based
LIA. Note that these two attacks can only be executed by
the server (Sect. 4.2) as a participating client lacks access
to the required corresponding knowledge. Lastly, we illus-
trate a toy example showing the close relationship between
the performance of Gradient-based LIA (Algorithm 1) and
Label-based LIA (Algorithm 2).

4.4.1. Performance of Label-based LIA. Label-based LIA
(Algorithm 2) infers a link when the two nodes share the
same label. First, we can see that the success of Label-based
LIA hinges on the correlation between links and the labels
of nodes within a graph. In some real-world networks, it
is often observed that adjacent nodes share similar labels
(e.g., papers within the same research domain are likely
to be cited together). This correlation can be quantified
by the edge homophily ratio of a graph [Zhu et al.(2020)],
which is the fraction of edges with nodes of the same label

(see formal definition in 1). However, it is important to
note that the homophily ratio only aids in measuring the
success of inference on existing links. When inferring non-
existing links, the diversity of class labels in a graph plays
a crucial role in performance. If all nodes in the graph
belong to one specific class, our LIA incorrectly predicts
all non-existing links as existing ones. Thus, we introduce
a metric 1 −

∑C
c=1 α

2
c , where αc represents the proportion

of nodes with label c, and C is the number of label classes,
to measure this diversity. We observe that when the distri-
bution of nodes across classes is uniform (αc = 1

C), this
metric reaches its maximum

(
1− 1

C

)
, signaling high class

diversity. Conversely, when all the nodes are concentrated
in one class t (αt = 1, αi = 0 for i ̸= t), the metric
reaches its minimum, zero. In balanced datasets where labels
are uniformly distributed, a dataset with a higher number
of classes is considered more diverse than one with fewer
classes, even though both are balanced. This is because the
diversity metric 1 − 1

C directly reflects the impact of the
number of classes on the perceived diversity; more classes
mean a higher potential for diversity within the dataset,
given that the distribution remains uniform across these
classes. Due to this behavior, we refer to this metric as "class
diversity" in our evaluations, highlighting its importance in
accurately inferring non-existing links within a graph. With
the knowledge of the aforementioned homophily ratio and
the class diversity metric for label classes in the graph, we
can derive the exact accuracy of Label-based LIA (Theo-
rem 1) given the graph size and its density (i.e., the ratio of
the number of edges in the graph to the maximum possible
number of edges). The proofs are in Appendix B.

Definition 1 (Homophily Ratio [Zhu et al.(2020)]). The
homophily ratio of a graph quantifies the likelihood that
adjacent nodes in the graph share the same label. Formally,
the homophily ratio h can be expressed as:

h =
|{(v, w) : (v, w) ∈ E ∧ Yv = Yw}|

|E|
, (3)

where E denotes the set of edges in the graph, v and w
represent nodes, and Yu and Yw are their respective class
labels.

Theorem 1 (Accuracy of Label-based Link Inference At-
tack). For a graph G with N nodes, exhibiting homophily
ratio h, density d, and C distinct label classes, let αc =

Nc

N
represent the proportion of nodes with label c. The accu-
racy Acc of the Label-based link inference attack can be
computed as:

Acc = 2hd− d+
N

N − 1
(1−

C∑
c=1

α2
c) (4)

When labels are uniformly distributed across nodes
(αc = 1

C), the accuracy of Label-based LIA reaches its
maximum:

Acc ≤ 2hd− d+
N

N − 1
(1− 1

C
) (5)

6

4.4.2. Performance of Prediction Output-based LIA.
When a model is well-trained, its prediction output highly
correlates with the true label. Consequently, the performance
of Output-based LIA is related to the performance of Label-
based LIA. Here, we aim to establish a direct equivalence
between these two attacks in the scenario where a GNN
achieves perfect prediction for every data sample. Since
Output-based LIA infers the links based on the cosine
similarity of prediction outputs, a critical question arises:
What is the minimum prediction score that models should
assign to the true label in the output, ensuring that the
cosine similarity of outputs for nodes with identical labels
is distinguishable from those with different labels?

We demonstrate that in the case of binary classification,
and where the loss function is log loss, such as cross-
entropy, the condition for equivalence between the two types
of attacks can be met under specific constraints on the
training samples’ loss. This equivalence is encapsulated in
the following theorem:

Theorem 2. For a Graph Neural Network (GNN) trained
with cross-entropy loss for a binary classification task
and with each training sample’s loss li satisfying li ≤
− log

(
3−

√
3

2

)
, the output-based LIA with threshold τ =

√
3
2

infers the same graph as Label-based LIA.

The proofs are moved to Appendix C. In addition, we
validate this theorem through empirical analysis, detailed in
Appendix D.Briefly, we use the Cora dataset and a two-layer
GCN, demonstrating that pairs of samples with loss below
the threshold result in matching link predictions for both
attack methods.

4.4.3. Performance of Gradient-based LIA. From Fig-
ure 1, we can see that although a participating client lacks
access to the prediction output P and the labels Y , the
gradient GA encodes this information in its calculation. Pre-
vious research on centralized graph learning demonstrates
that gradients can leak label information [Fu et al.(2022)],
[Li et al.(2021)]. Here, we illustrate a toy example showing
that the cosine similarity of the gradients considered in our
Gradient-based LIA is heavily dependent on the labels rather
than the prediction output. Consequently, the performance
of our Gradient-based LIA should closely align with that
of Label-based LIA, which will be further confirmed by
experiments in Section 5.3.

The toy example is a binary classification task with log
loss, where the DNN owned by the Party PY is a fully
connected layer with weights A and bias b, followed by
a sigmoid function σ. Let HA and HG be the intermediate
representations of party PA and of party PG respectively.
We denote the Hi the i-th row of matrix H and Yi the
label of sample i. For every sample i, the prediction output
Ŷi is

Ŷi = σ(A[Hi
G Hi

A] + b).

We have the log loss L which is

L =

N∑
i=1

Li = −
N∑
i=1

Yi log Ŷi + (1− Yi) log(1− Ŷi).

The gradient of sample i is

Gi
A =

∂L

∂Hi
A

=
∂Li

∂Hi
A

= (Ŷi − Yi)A
′, (6)

where A′ are the weights in A that apply to Hi
A.

According to Eq. 6, we can see that since ∀i, 0 ≤ Ŷi ≤
1, regardless of the prediction outputs, if two samples i
and j are of different labels, the cosine similarity of Gi

A
and Gj

A is negative. Conversely, if the samples belong to
the same label, the cosine similarity is positive. In other
words, even if the prediction outputs Ŷi = Ŷj , if these
two samples are of different labels, our Gradient-based LIA
will infer no link between them. Therefore, our Gradient-
based LIA should be highly related to the Label-based LIA,
which is less dependent on the gradient dimension and
the features dimension. This contrasts with the other two
possible attacks for the participating client, namely Baseline
LIA with observations of intermediate representations and
features, whose performance are inherently related to the
observation dimension.

5. Evaluation

5.1. Overview

First, we outline our experimental setup, detailing
datasets, GNN architectures, training protocols, and per-
formance metrics in Section 5.2). We then present our
experimental results (Section 5.3), highlighting the effec-
tiveness of our proposed attacks compared to baselines and
confirming the analytical studies from Section 4.4. Our main
ablation studies (Section 5.4) focus on the gradient-based
LIA’s effectiveness over training time and the impact of
the adversary-controlled feature ratio, comparing it with In-
termediate representation-based and Feature-based attacks.
Additional ablation studies are provided in Appendix E,
which include analyses on the impact of GNN architecture,
the number of parties, and model complexity on gradient-
based LIA performance, offering further insights into our
attack’s robustness under various conditions.

5.2. Experimental setup

5.2.1. GNN Model architecture and learning setting.
Our study follows the model architecture established in the
baseline [Qiu et al.(2022)]. The server’s model, also called
the top model, is designed as a DNN featuring two fully
connected layers activated by ReLU functions. To deter-
mine the vulnerability of the target/victim party’s GNN’s
architecture to the attack, we utilize GCN, GraphSAGE,
and GAT architectures.The GNNs’ hop count are set to
2. The GNN implementations are derived from a publicly

7

TABLE 3: Datasets statistics.

Dataset Nodes Edges Features Classes Density(%)
Photo 7650 119081 745 8 0.41
Cora 2708 5278 1433 7 0.14
Computer 13752 245861 767 10 0.26
Citeseer 3327 4552 3703 6 0.08
Twitch-DE 9498 157887 128 2 0.35
Twitch-EN 7126 38887 128 2 0.15
Twitch-FR 6551 115941 128 2 0.54

accessible code2. Similarly, the model of the other client,
who can be a potential adversary, comprises a DNN with two
fully connected layers employing ReLU activation functions.
The bottom models, i.e., the two FL clients’ models, are
set to encode input features into a 16-dimensional latent
space as a standard configuration, where the first layer maps
first into half the input dimension. Note that, by default, the
adversary controls 50% of the features.

We follow the same training protocol in baseline
[Qiu et al.(2022)], where the VFGL models are trained over
300 epochs, by using a learning rate of 0.001 and by setting
the regularization parameters to 0.001. The loss function of
choice is cross-entropy, and model parameters are updated
using the Adam optimizer. All experiments are conducted
under identical settings but with different random seeds,
repeated five times to calculate and report the average and
standard deviation values of the performance metrics.

5.2.2. Datasets. We utilize seven public datasets
for our analysis as Cora [Kipf and Welling(2017)],
Citeseer [Kipf and Welling(2017)], Amazon Computers
(Computer) [Shchur et al.(2018)], Amazon Photos
(Photo) [Shchur et al.(2018)], and Twitch-(FR, DE,
and EN) [Rozemberczki and Sarkar(2021)] datasets.
These are widely recognized as benchmark datasets for
evaluating the performance and privacy aspects of GNNs
[Qiu et al.(2022)], [Zari et al.(2023)], [He et al.(2021)],
[Wu et al.(2021)].

The Citeseer and Cora datasets are citation networks,
where nodes and edges respectively correspond to publica-
tions and citations among these publications. Node features
consist of the declared keywords in the publications, and
class labels represent the research fields of the corresponding
publications. The Amazon Computers and Amazon Photos
datasets are parts of the Amazon co-purchase graph, where
nodes and edges respectively represent products and the
actual two products are frequently bought together. Node
features are bag-of-words representations of the correspond-
ing product reviews, and class labels categorize the product
types. The Twitch datasets are social network datasets that
depict the followership connections between users on the
Twitch streaming platform. Node features include users’
preferred games, location, and streaming habits, while class
labels indicate whether a streamer uses explicit language.

2. https://pytorch-geometric.readthedocs.io/

5.2.3. Evaluation Metrics. AUC. The performance of the
attack is evaluated by using the area under the ROC curve
(AUC). The AUC provides a comprehensive measure of
the attack’s performance across various decision thresh-
olds, highlighting its threshold-independent nature. An AUC
value of 0.5 means that the attack performance is equivalent
to random guessing and hence the adversary has no power,
as opposed to the case where the AUC approaches 1, the
attack becomes successful in inferring graph links.

Accuracy. Accuracy is used to measure the performance of
label-based LIA, which uniquely does not require a decision
threshold for link prediction unlike the other attacks. For
a comparative analysis of label-based LIA against our in-
troduced threshold-dependent attacks, accuracy is assessed
at the threshold with the highest F1 score. This approach
ensures a balance between precision and recall, providing a
detailed insight into the effectiveness of each attack strategy.

5.3. Performances of LIAs.

We first conduct all the attacks across all the datasets in
the scenario where the Party PA has owned 50% of the fea-
tures, i.e., the size of XA is equivalent to the size of XG . We
also report the maximum accuracy achieved over the train-
ing epochs for time-dependent attacks, including Gradient-
based, Intermediate Representation-based, and Output-based
LIAs. The accuracy of the LIAs are shown in Table 4. Note
that participating clients can only conduct Gradient-based,
Intermediate-Representation-based and Features-based LIA
as mentioned in Section 4.2.

Label-based LIA. First, we can observe from Table 4
that the performance of Label-based LIA is positively cor-
related with the homophily ratio h and the class diver-
sity 1 −

∑C
c=1 α

2
c , which confirms the analytical results in

Sect. 4.4.1. In fact, due to the low density of the datasets
(Table 3), the performance of the attack is primarily influ-
enced by the class diversity metric (the third term in Eq. 4).
Note that variability in results observed across the 5 trials
stems from the random partitioning of nodes into training
and testing sets (Sect. 5.2.2). Here we report the average
metrics for homophily ratio and the class diversity.

Prediction Output based LIA. For the datasets Photo,
Cora, Computer, and Citeseer, the output-based LIA demon-
strates similar performance compared to the Label-based
LIA where the difference is within 2 percentage points
(p.p.). The reason behind this, as explained in Section 4.4.2,
is that since the model, being well-trained, yields prediction
outputs that strongly align with the true labels. For Twitch
datasets, since the model is less pertinent (as also observed
in [Wu et al.(2021)], [Zari et al.(2023)]), the performance
displays a weaker correlation with the Label-based attack.
Moreover, the links within Twitch datasets (followership
connections) are primarily associated with features (such
as users’ streaming habits) rather than labels (indicating
whether a streamer uses explicit languages). Therefore, the

8

Figure 2: Overlap of predictions between gradient-based and
label-based LIAs in Photo dataset.

prediction output, which inherently relies on these features,
surpasses the performance of the Label-based attack.

Gradient-based LIA VS. Label-based. In Sect. 4.4.3,
we presented a simplified example where the DNN archi-
tecture of Party PY consists of only one fully connected
layer with one neuron as output. This example was used
to illustrate that the effectiveness of Gradient-based LIA
is strongly influenced by the inherent embedding of label
information into the gradients, resulting in predictions that
closely resemble those produced by Label-based LIA. Our
experimental results, as depicted in Table 4, confirm that this
observation still remains applicable in a more intricate DNN
scenario, characterized by two fully-connected layers, each
followed by a ReLU activation function, when the dataset
is with high homophily ratio (>0.7) and class diversity
(>0.7). The accuracy difference between Gradient-based and
Label-based attacks is within 1.7 p.p.. To further investi-
gate this observation, we examine the predictions of both
attacks, focusing on True Positives (TP) and False Positives
(FP). Specifically, we conduct a comparative analysis on a
subgraph of the Amazon-Photo dataset, comprising 10000
positive pairs (unlinked pairs) and 10000 negative pairs
(linked pairs). The experiment (Figure 2) reveals a signifi-
cant overlap in link predictions between the two attacks. In
the case of label-based LIA, out of 9811 link predictions,
8192 are correctly identified (TP), and 1619 pairs of nodes
are incorrectly identified as linked (FP). Similarly, gradient-
based LIA results in 9740 link predictions, with 8110 cor-
rectly identified (TP) and 1630 pairs incorrectly identified as
linked (FP). The TPs of both attacks overlap by 8108 pairs,
and the FPs overlap by 1609 pairs. This overlap suggests
that the success of gradient-based LIA is not coincidental
but rather indicative of its reliance on label information for
link prediction. Given the high overlap in predictions and
equivalent performance of the two attacks, Label-based LIA
(the attack performance of which can be analytically derived
in Eq. 6) can serve as a proxy for estimating an adversary’s
potential performance using gradients to infer links in the
target graph.

Gradient-based LIA VS. Prediction Output-based. For
datasets with lower homophily ratios and class diversity,
our gradient-based LIA performs similarly to the Prediction
Output LIA (accuracy differences within 0.3 p.p.). While not
significantly improving accuracy, our attack offers greater
practicality. The output prediction-based attack requires

server-level access to predictions, whereas our gradient-
based attack adheres to strict VFL protocol without addi-
tional assumptions, as shown in Algorithm 4.

Gradient-based LIA VS. Intermediate-representation
and feature-based. Recall that for a participating client
adversary, the attack can be only executed based on the
gradients GA, intermediate representations HA, and the
features XA. In the table, we highlighted the best attack
performance among these three attacks for every dataset.
We can see that the Gradient-based LIA outperforms the
other two attacks in 5 out of 7 datasets. Particularly for the
Photo, Cora, and Computer datasets, the attack performance
is enhanced by at least 10 p.p.. This improvement can be
attributed to the fact that the links in these datasets are
more label-related than feature-related (see Section 5.2.2
for more further details on datasets). Although Citeseer and
Cora are both citation datasets, Citeseer possesses more than
twice the number of features compared to Cora (Table 3).
Therefore, the Feature-based LIA performance is close to
the Gradient-based LIA performance, given that Citeseer
exhibits a unique property where the links are both label-
related and feature-related. For the other Twitch datasets,
where the links are primarily associated with features, the
Gradient-based LIA still demonstrates comparable perfor-
mance. Additionally, as discussed in Section 4.4.3, one
advantage of the gradient-based attack is its independence
w.r.t. the number of features possessed by the adversary,
while the other two attacks are significantly influenced by
this factor. In our subsequent ablation study (Section 5.4.2),
we will demonstrate that the Gradient-based attack yields
even greater advantages when the feature ratio is decreased
from 50% to 10%.
Overall, the Gradient-based LIA demonstrates comparable
results in both label-related and feature-related scenarios
(all ragne of h), while Intermediate-representation, Feature-
based and Label-based attacks fail in one of these scenarios.
It also outperforms Prediction output LIA by 0.75 p.p. in
average even though Prediction output LIA requires a strong
adversary. In real-world applications, the adversary may lack
prior knowledge regarding whether the dataset is more label-
related or feature-related. Therefore, the Gradient-based at-
tack stands out as the optimal choice for the adversary.

5.4. Ablation study

5.4.1. Impact of training epochs on gradient-based LIA
performance.. In this study, we aim to asses the impact of
the training epochs on the performance of our gradient-based
LIA. We conduct a parallel analysis on the Intermediate
representation-based LIA baseline, noting that both attacks
can be mounted on the client side by party PA and are
inherently time-dependent. We specifically investigate how
the learning epochs affect the AUC of these two attack
strategies, executing them at each training epoch. According
to Figure 3, our gradient-based LIA outperforms in the
initial epochs, though its efficiency decreases as training pro-
gresses. This pattern likely emerges because the gradients in

9

TABLE 4: Accuracy of link inference attacks across datasets using GCN architecture. Bold numbers indicate highest accuracy
among client-side attacks (first three columns). Participating clients can only conduct these three attacks.

Datasets Attack Methods
h Class diversity Gradients Inter-Reps Features Labels Prediction output

Photo 0.83 0.84 82.12 ± 1.32 67.61 ± 2.76 63.58 ± 0.42 83.76 ± 0.10 81.80 ± 0.68
Cora 0.81 0.82 81.71 ± 0.21 65.77 ± 1.19 71.34 ± 1.95 81.74 ± 0.15 80.14 ± 0.58
Computer 0.78 0.79 78.23 ± 1.26 66.46 ± 0.40 63.75 ± 0.86 79.35 ± 0.05 78.82 ± 0.70
Citeseer 0.74 0.82 82.76 ± 0.38 73.53 ± 2.58 82.65 ± 0.70 82.14 ± 0.02 79.64 ± 0.64
Twitch-DE 0.64 0.48 58.76 ± 0.22 55.35 ± 1.47 56.76 ± 0.47 48.02 ± 0.03 58.61 ± 0.01
Twitch-EN 0.60 0.50 53.28 ± 0.25 54.63 ± 0.79 54.37 ± 0.80 49.65 ± 0.10 53.51 ± 0.44
Twitch-FR 0.55 0.47 50.89 ± 0.66 50.16 ± 1.09 56.04 ± 0.45 46.68 ± 0.20 49.72 ± 0.51

0 100 200 300
Training epoch

0.5

0.6

0.7

0.8

0.9

AU
C

Cora

0 100 200 300
Training epoch

0.5

0.6

0.7

0.8

0.9
Citeseer

0 100 200 300
Training epoch

0.5

0.6

0.7

0.8

0.9
Computer

0 100 200 300
Training epoch

0.5

0.6

0.7

0.8

0.9
Photo

0 100 200 300
Training epoch

0.450

0.475

0.500

0.525

0.550
Twitch-FR

Gradients Inter-Reps

Figure 3: Evolution of the AUC for Gradient-based LIA (blue) and Intermediate-representation LIA (red) Over Time. The
horizontal dashed lines indicate the maximum AUC achieved by the two attacks. Attacks were conducted at each training
epoch, across five runs, with the mean and standard deviation of the AUCs reported.

10 20 30 40 50 60 70 80 90
Feature ratio (%)

0.5

0.6

0.7

0.8

0.9

AU
C

Cora

10 20 30 40 50 60 70 80 90
Feature ratio (%)

0.5

0.6

0.7

0.8

0.9
Citeseer

10 20 30 40 50 60 70 80 90
Feature ratio (%)

0.5

0.6

0.7

0.8

0.9
Computer

10 20 30 40 50 60 70 80 90
Feature ratio (%)

0.5

0.6

0.7

0.8

0.9
Photo

10 20 30 40 50 60 70 80 90
Feature ratio (%)

0.450

0.475

0.500

0.525

0.550

0.575

0.600
Twitch-FR

Gradients Inter-Reps Features

Figure 4: Comparison of AUC between Gradient-based LIA (blue), Intermediate Representations-based LIA (red), and
Feature-based LIA (orange) across different feature ratios of the adversary. The maximum AUC achieved by both attacks
during training is reported, alongside the mean and standard deviation of these AUCs across five runs.

the initial epochs are more informative, gradually becoming
less distinguishable as the model nears convergence. In par-
ticular, as the model approaches convergence, the gradients
of all nodes start to concentrate around zero, complicating
the adversary’s task of differentiating between connected
and non-connected node pairs, as depicted in Figure 5.

On the other hand, the Intermediate representation-based
LIA shows modest performance in the first training epochs,
with its performance reaching its maximum after the early
training epochs. This pattern is attributed to the fact that,
during the early epochs, the intermediate representations
do not capture the features of nodes due to the adver-
sary’s model lack of optimization. Thus, the Intermediate
representation-based LIA reaches peak efficiency in the
later stages of training. In contrast, our gradient-based LIA

achieves its highest performance in the training’s early
epochs.

5.4.2. Impact of feature ratio owned by the adversary..
In this study, we examine the impact of the proportion of
features owned by the adversary PA on the performance
of our gradient-based LIA, intermediate representation LIA,
and the feature-based LIA. For this purpose, we analyze
the success of the attack across varying ratios of adversary-
owned features XA, which aids in comparing the attacks and
their dependence on the number of features the adversary
possesses. As illustrated in Figure 4, we report the peak
AUC over time achieved by the attacks across a range of
feature ownership ratios, adjusting from the default con-
dition where the adversary controls 50% of the features,
ranging from 10% to 90% of the entire set. As shown

10

1 0 1
0

5

10

15

20
Epoch 1

1 0 1
0

5

10

15

20
Epoch 100

1 0 1
0

5

10

15

20
Epoch 200

1 0 1
0

5

10

15

20
Epoch 300

linked pairs unlinked pairs

Figure 5: Distribution of the cosine similarities of gradients
among linked and unlinked pairs at different training epochs.

in Figure 4, the gradient-based LIA outperforms the inter-
mediate representation-based and feature-based LIAs when
less than half of the features are owned by the adversary,
except for the Twitch-FR dataset. This is mainly due to
the low homophily and class diversity, while the features
are more representative of the links in the graph. However,
the intermediate representation-based LIA performs better
at higher feature ratios. This phenomenon is attributed to
the richness of intermediate representations when a larger
number of features is available, leveraging the correlation
between features and the connections within the target
graph. This also accounts for the proportional increase in the
intermediate representation-based LIA’s AUC with the num-
ber of features the adversary controls. Unlike the gradient-
based LIA, whose AUC remains relatively unaffected by
changes in the number of adversary-owned features, this
stability stems from the fact that gradients rely not only
on the adversary’s intermediate representations, which are
impacted by the features owned, but also on the labels of
the training nodes as discussed in section 4.4.3. The same
phenomenon of feature size dependence on the performance
of feature-based LIA is observed, except for the Photo
and Computer datasets. We think this may be attributed
to the sparsity of the features compared to other datasets.
In the Photo and Computer datasets, the feature sparsity
is relatively higher than in the other datasets as indicated
in [Qiu et al.(2022)], which means that even 10% of the
features is sufficient to reach the maximum performance in
inferring the links of these datasets.

6. Defense

In this section, we evaluate potential defenses against
the LIAs introduced earlier. We consider two types of de-
fenses: edge perturbation and label perturbation. The edge
perturbation aims to obscure the graph structure, while the
label perturbation addresses the core issue of label leakage.
For edge perturbation, we use Lapgraph [Wu et al.(2021)],
a differential privacy (DP) mechanism that guarantees edge-
level DP by adding noise to the graph structure. For label

perturbation, we develop a novel approach using quadratic
optimization to strategically obfuscate labels. In our vertical
federated learning setting, the edge-level perturbation (Lap-
graph) is implemented by the (honest) client, which owns
the graph structure, while the label perturbation is applied
by the (honest) server, which possesses the labels. In the
following subsections, we will analyze how these distinct
defenses impact each of the previously introduced attacks.

6.1. Lapgraph

Lapgraph [Wu et al.(2021)] is a defense mechanism that
applies differential privacy at the edge level by perturbing
the adjacency matrix of the graph. It adds Laplace noise
to the adjacency matrix, controlled by a privacy parame-
ter ε, followed by a binarization process. This effectively
alters the graph structure by potentially adding fake edges
and removing real ones. In our implementation, we vary
ε from 1 to 10 to demonstrate the defense’s effectiveness
across different privacy levels. Figure 6 shows the results
of Lapgraph defense on the Computer, Photo, Cora, and
Citeseer datasets, along with a random guessing baseline
for test accuracy of the model. From the results, we can see
that the Lapgraph defense does not effectively mitigate the
attacks’ effectiveness across all datasets, particularly for our
introduced gradient-based attack. The gradient-based attack
remains highly resilient, showing minimal to no reduction
in accuracy across different ε values. This resilience can be
attributed to the fact that the gradient information, which
is closely tied to the label information, remains largely
unaffected by the graph structure perturbation.

2 4 6 8 10
0

20

40

60

80

100
Computer

2 4 6 8 10
0

20

40

60

80

100
Photo

2 4 6 8 10
0

20

40

60

80

100
Cora

2 4 6 8 10
0

20

40

60

80

100
Citeseer

Ac
cu

ra
cy

 (%
)

Random Guessing
Gradients

Inter-Reps
Prediction Output

Test Accuracy

Figure 6: The performance of LIAs under Lapgraph defense.
ε = ∞ represents no defense; lower ε values indicate
stronger privacy protection.

The prediction output attack follows a similar pattern to
the gradient-based attack, with only a marginal decrease in
effectiveness across all datasets. On Cora at ε = 6, its accu-
racy is 80.96%, compared to the baseline of 80.14% without
any defense. Interestingly, the intermediate representation
attack exhibits an unexpected inverse behavior across all
datasets, showing increased performance as ε decreases. For
Cora at ε = 6, its accuracy rises to 76.89% from the baseline
of 65.77%. We speculate that this counterintuitive result
occurs because as the graph edges become noisier, the server
model pays more attention to the adversary model than to the
victim GNN model. This shift leads to the adversary model

11

becoming a stronger learner about the labels and features
of the nodes, hence making its intermediate representation
a better signal for the edges of the graph, thus increasing
the attack’s accuracy. This phenomenon aligns with observa-
tions in [Qiu et al.(2022)], where perturbation of the victim
party’s intermediate representations as a defense mecha-
nism inadvertently resulted in strengthening the intermediate
representation-based attack of the adversary model.

It is important to note that the label-based attack remains
unaffected by this defense. This is because Lapgraph only
perturbs the graph structure and does not alter the label
information, which is the primary source of information
for this attack. The same goes for features-based attack, as
Lapgraph does not modify the node features.

While the defense shows minimal impact on the attacks’
effectiveness, there is a significant decrease in test accuracy
as ε decreases, indicating a substantial utility loss across
all datasets. On Cora at ε = 6, the test accuracy drops
to 59.66% from the baseline of 83.97%. This underscores
the limitation of edge perturbation as a defense mechanism
against our proposed attacks, which primarily exploit label
information leakage rather than graph structural properties.

6.2. Label perturbation

Label perturbation is a defense mechanism that directly
addresses the issue of label leakage by strategically ob-
fuscating a portion of the labels. This approach operates
with a budget B, representing the percentage of labels to
be changed. We implement this defense by formulating a
quadratic optimization problem to find the optimal class
proportions that minimize the attack accuracy derived in
our theorem 1, subject to the budget constraint. The label
perturbation defense is implemented in two steps: label pro-
portion optimization (Algorithm 5) and label redistribution
(Algorithm 6). These algorithms are outlined in Appendix F.

Figure 6 shows the results of our label perturbation
defense on the Computer, Photo, Cora, and Citeseer datasets,
along with a random guessing baseline for test accuracy of
the model. We observe that the label perturbation defense
demonstrates significant effectiveness in mitigating various
attacks across all datasets. As the budget increases from 0.05
to 0.90, we see a substantial decrease in the accuracy of all
attacks, albeit at different rates.

0 0.3 0.6 0.9
B

0

20

40

60

80

100
Computer

0 0.3 0.6 0.9
B

0

20

40

60

80

100
Photo

0 0.3 0.6 0.9
B

0

20

40

60

80

100
Cora

0 0.3 0.6 0.9
B

0

20

40

60

80

100
Citeseer

Ac
cu

ra
cy

 (%
)

Random Guessing
Gradients

Inter-Reps
Prediction Output

Label
Test Accuracy

Figure 7: The performance of LIAs under label perturbation
defense. B = 0 represents no defense; higher B values
indicate stronger protection.

The label-based attack is the most affected across all
datasets, with its accuracy on Cora dropping from 79.14%
at a 0.05 budget to near-zero (0.14%) at a 0.90 budget,
compared to the baseline of 81.74% without defense. This
dramatic reduction is expected as the defense directly targets
the label information that this attack relies on. The gradient-
based attack also shows a significant decrease in accuracy
across all datasets. On Cora, it drops from 79.03% at a 0.05
budget to 58.93% at a 0.90 budget, a substantial reduction
from the baseline of 81.71%. This substantial reduction
reflects the strong correlation between gradient informa-
tion and labels. The prediction output attack and inter-
representation attack show more resilience to the label per-
turbation defense across all datasets. On Cora, the prediction
output attack’s accuracy decreases from 77.41% to 64.18%,
while the inter-representation attack’s accuracy drops from
66.77% to 51.90% as the budget increases from 0.05 to 0.90.
These are still significant reductions from their baselines of
80.14% and 65.77% respectively. Comparing these results
to Lapgraph at points where the utility (test accuracy) is
similar, we see that label perturbation defense tends to be
more effective across all datasets. For instance, on Cora at
a budget of 0.30, label perturbation achieves a test accuracy
of 59.12%, which is comparable to Lapgraph’s 59.66% at
ε = 6. At these points, the gradient-based attack accuracy
is 63.14% for label perturbation, compared to 82.24% for
Lapgraph. Similarly, the inter-representation attack accuracy
is 57.21% for label perturbation, but 76.89% for Lapgraph.
The label perturbation defense does impact the system’s
utility across all datasets, with the test accuracy on Cora
decreasing from 73.87% at a 0.05 budget to 29.79% at a 0.90
budget, compared to the baseline of 83.97%. However, its
privacy-utility trade-off appears more favorable compared to
Lapgraph, especially at lower privacy levels where the utility
loss is less severe. In conclusion, these results suggest that
addressing the fundamental issue of label leakage through
targeted perturbation is generally more effective than graph
structure alterations in defending against LIAs, particularly
when considering the privacy-utility trade-off.

7. Conclusion

In this study, we have introduced gradient-based and
label-based link inference attacks on Vertical Federated
Learning (VFL). We have demonstrated that gradients in
VFL can reveal link information, primarily due to the em-
bedded label information within the gradients. To explore
their relation, we have developed a label-based link infer-
ence attack. Our comprehensive evaluation has confirmed
that both attack methods perform similarly, supporting our
hypothesis. Our findings have also indicated that these
attacks surpass alternative link inference attacks that rely
on model predictions and intermediate representations. To
counter these vulnerabilities, we proposed a label perturba-
tion defense that shows promise in mitigating these attacks
across all datasets. While effective, future work is needed
to further improve the privacy-utility trade-off in VFGL
systems.

12

Acknowledgments

Oualid Zari acknowledges support from the 3IA pro-
gram. Chuan Xu’s research received support from Groupe
La Poste, sponsor of the Inria Foundation, within the Fed-
Malin Inria Challenge framework, and was partly funded
by the European Network of Excellence dAIEDGE under
Grant Agreement Nr. 101120726. Javier Parra-Arnau ac-
knowledges his “Ramón y Cajal” fellowship (ref. RYC2021-
034256-I) funded by the Spanish Ministry of Science and
Innovation and the European Union – “NextGeneration
EU”/PRTR. This research was supported by Spanish Gov-
ernment projects: “DISCOVERY” - PID2023-148716OB-
C32, “COMPROMISE” - PID2020-113795RB-C31, and
“MOBILYTICS” - TED2021-129782B-I00, funded by MI-
CIU/AEI/10.13039/501100011033, and the “NextGenera-
tion EU/PRTR.” Support also came from the Generalitat de
Catalunya under AGAUR grant "2021 SGR 01413."

References

[Charpiat et al.(2019)] Guillaume Charpiat, Nicolas Girard, Loris Felar-
dos, and Yuliya Tarabalka. 2019. Input Similarity from the Neural
Network Perspective. In Advances in Neural Information Processing
Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett (Eds.), Vol. 32. Curran Associates, Inc.

[Chen et al.(2024)] Jinyin Chen, Minying Ma, Haonan Ma, Haibin Zheng,
and Jian Zhang. 2024. An Empirical Evaluation of the Data Leakage
in Federated Graph Learning. IEEE Transactions on Network Science
and Engineering 11, 2 (2024), 1605–1618.

[Duddu et al.(2020)] Vasisht Duddu, Antoine Boutet, and Virat She-
jwalkar. 2020. Quantifying Privacy Leakage in Graph Embedding.
MobiQuitous 2020 - 17th EAI International Conference on Mo-
bile and Ubiquitous Systems: Computing, Networking and Services
(2020).

[Fu et al.(2022)] Chong Fu, Xuhong Zhang, Shouling Ji, Jinyin Chen,
Jingzheng Wu, Shanqing Guo, Junfeng Zhou, Alex X. Liu, and Ting
Wang. 2022. Label Inference Attacks Against Vertical Federated
Learning. In USENIX Security Symposium.

[Geiping et al.(2020)] Jonas Geiping, Hartmut Bauermeister, Hannah
Dröge, and Michael Moeller. 2020. Inverting Gradients - How easy
is it to break privacy in federated learning?. In Advances in Neural
Information Processing Systems, H. Larochelle, M. Ranzato, R. Had-
sell, M.F. Balcan, and H. Lin (Eds.), Vol. 33. Curran Associates, Inc.,
16937–16947.

[Hamilton et al.(2017)] William L. Hamilton, Zhitao Ying, and Jure
Leskovec. 2017. Inductive Representation Learning on Large Graphs.
In Neural Information Processing Systems.

[He et al.(2016)] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recognition. In Pro-
ceedings of the IEEE conference on computer vision and pattern
recognition. 770–778.

[He et al.(2021)] Xinlei He, Jinyuan Jia, Michael Backes, Neil Zhenqiang
Gong, and Yang Zhang. 2021. Stealing links from graph neural
networks. In 30th USENIX Security Symposium (USENIX Security
21). 2669–2686.

[Kipf and Welling(2017)] Thomas N. Kipf and Max Welling. 2017. Semi-
Supervised Classification with Graph Convolutional Networks. In 5th
International Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track Proceedings.

[Li et al.(2021)] Oscar Li, Jiankai Sun, Xin Yang, Weihao Gao, Hongyi
Zhang, Junyuan Xie, Virginia Smith, and Chong Wang. 2021. Label
leakage and protection in two-party split learning. arXiv preprint
arXiv:2102.08504 (2021).

[Luo et al.(2020)] Xinjian Luo, Yuncheng Wu, Xiaokui Xiao, and
Beng Chin Ooi. 2020. Feature Inference Attack on Model Predic-
tions in Vertical Federated Learning. 2021 IEEE 37th International
Conference on Data Engineering (ICDE) (2020), 181–192.

[McMahan et al.(2017)] Brendan McMahan, Eider Moore, Daniel Ra-
mage, Seth Hampson, and Blaise Aguera y Arcas. 2017.
Communication-Efficient Learning of Deep Networks from Decen-
tralized Data. In Proceedings of the 20th International Conference
on Artificial Intelligence and Statistics (Proceedings of Machine
Learning Research, Vol. 54), Aarti Singh and Jerry Zhu (Eds.). PMLR,
1273–1282.

[Melis et al.(2018)] Luca Melis, Congzheng Song, Emiliano De Cristo-
faro, and Vitaly Shmatikov. 2018. Exploiting Unintended Feature
Leakage in Collaborative Learning. 2019 IEEE Symposium on Secu-
rity and Privacy (SP) (2018), 691–706.

[Nasr et al.(2019)] Milad Nasr, Reza Shokri, and Amir Houmansadr. 2019.
Comprehensive privacy analysis of deep learning: Passive and active
white-box inference attacks against centralized and federated learning.
In 2019 IEEE symposium on security and privacy (SP). IEEE, 739–
753.

[Qiu et al.(2022)] Pengyu Qiu, Xuhong Zhang, Shouling Ji, Tianyu Du,
Yuwen Pu, Jun Zhou, and Ting Wang. 2022. Your Labels Are
Selling You Out: Relation Leaks in Vertical Federated Learning. IEEE
Transactions on Dependable and Secure Computing (2022), 1–16.

[Rozemberczki and Sarkar(2021)] Benedek Rozemberczki and Rik
Sarkar. 2021. Twitch Gamers: a Dataset for Evaluating Proximity
Preserving and Structural Role-based Node Embeddings. CoRR
abs/2101.03091 (2021). arXiv:2101.03091

[Salem et al.(2018)] A. Salem, Yang Zhang, Mathias Humbert, Mario
Fritz, and Michael Backes. 2018. ML-Leaks: Model and Data
Independent Membership Inference Attacks and Defenses on Machine
Learning Models. ArXiv abs/1806.01246 (2018).

[Sharma et al.(2022)] Kartik Sharma, Yeon-Chang Lee, Siva Nambi,
Aditya Salian, Shlok Shah, Sang-Wook Kim, and Srijan Kumar.
2022. A Survey of Graph Neural Networks for Social Recommender
Systems. ArXiv abs/2212.04481 (2022).

[Shchur et al.(2018)] Oleksandr Shchur, Maximilian Mumme, Aleksandar
Bojchevski, and Stephan Günnemann. 2018. Pitfalls of Graph Neural
Network Evaluation. ArXiv abs/1811.05868 (2018).

[Sun et al.(2022)] Jiankai Sun, Xin Yang, Yuanshun Yao, and Chong
Wang. 2022. Label Leakage and Protection from Forward Embedding
in Vertical Federated Learning. ArXiv abs/2203.01451 (2022).

[Velickovic et al.(2017)] Petar Velickovic, Guillem Cucurull, Arantxa
Casanova, Adriana Romero, Pietro Lio’, and Yoshua Bengio. 2017.
Graph Attention Networks. ArXiv abs/1710.10903 (2017).

[Wu et al.(2021)] Fan Wu, Yunhui Long, Ce Zhang, and Bo Li. 2021.
LINKTELLER: Recovering Private Edges from Graph Neural Net-
works via Influence Analysis. 2022 IEEE Symposium on Security
and Privacy (SP) (2021), 2005–2024.

[Ye et al.(2022)] Peng Ye, Zhifeng Jiang, Wei Wang, Bo Li, and Baochun
Li. 2022. Feature Reconstruction Attacks and Countermeasures of
DNN training in Vertical Federated Learning. ArXiv abs/2210.06771
(2022).

[Zari et al.(2023)] Oualid Zari, Javier Parra-Arnau, Ayşe Ünsal, and
Melek Önen. 2023. Node Injection Link Stealing Attack. ArXiv
abs/2307.13548 (2023).

[Zhu et al.(2020)] Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann,
Leman Akoglu, and Danai Koutra. 2020. Beyond Homophily in
Graph Neural Networks: Current Limitations and Effective Designs.
In Proceedings of the 34th International Conference on Neural In-
formation Processing Systems (Vancouver, BC, Canada) (NIPS’20).
Curran Associates Inc., Red Hook, NY, USA, Article 653, 12 pages.

[Zhu et al.(2019)] Ligeng Zhu, Zhijian Liu, and Song Han. 2019. Deep
leakage from gradients. Advances in neural information processing
systems 32 (2019).

13

[Zou et al.(2022)] Tianyuan Zou, Yang Liu, Yan Kang, Wenhan Liu, Yuan-
qin He, Zhi qian Yi, Qian Yang, and Ya-Qin Zhang. 2022. Defending
Batch-Level Label Inference and Replacement Attacks in Vertical
Federated Learning. IEEE Transactions on Big Data (2022).

Appendix A.
VFL training protocol

Algorithm 4 Two-Party Vertical Federated Learning
Require: learning rates ηG and ηA
Ensure: Trained model parameters θG , θA, ψ

1: Parties PG , PA and PY initialize θG , θA, ψ.
2: for each training iteration t = 1, 2, . . . do
3: In parallel do the following:
4: Party PG :
5: Computes HG = GNN(XG , θG)
6: Sends HG to party PY
7: Party PA:
8: Computes HA = DNN(XA, θA)
9: Sends HA to party PY

10: End
11: Party PY computes the prediction output PY =

DNN((XG , XA), ψ)
12: PY updates ψt+1 = ψt − ηG ∂L∂ψ
13: PY computes and sends the gradients GG = ∂L

∂HG
and

GA = ∂L
∂HA

to PG and PA, respectively.
14: In parallel do the following:
15: Party PG :
16: Computes ∇θGL with Equation 1
17: Updates θt+1

G = θtG − ηG∇θGL
18: Party PA:
19: Computes ∇θAL with Equation 1
20: Updates θt+1

A = θtA − ηA∇θAL
21: End

Appendix B.
Proof of theorem 1

B.1. Notations

Consider a graph G consisting of N nodes and a set of
edges E, characterized by a homophily ratio h, density d,
and C distinct label classes. Let αc =

Nc

N denote the fraction
of nodes that have the label c. We use the binary indicator
eij to specify whether nodes i and j are connected (eij = 1)
or not (eij = 0). The label of node i is represented by yi.
The density d of the graph G is defined by the equation:

d =
|E|

N(N−1)
2

, (7)

where |E| is the number of edges in the set E.

B.2. Accuracy of the label-based LIA

The accuracy Acc of the label-based LIA can be ex-
pressed in terms of the confusion matrix elements:

Acc =
TP + TN

TP + FP + TN + FN
. (8)

The different terms in Acc are defined in below:
True Positives (TP): The number of correctly predicted
edges that exist between nodes with the same label; i.e.
nodes that are connected and have the same labels, given
by:

TP = |{(i, j) | eij = 1 ∧ yi = yj}|. (9)

True Negatives (TN): The number of correctly predicted
non-edges between nodes with different labels; nodes that
are not connected/neighbors and do not share the same label,
computed as:

TN = |{(i, j) | eij = 0 ∧ yi ̸= yj}|. (10)

False Positives (FP): The number of incorrectly predicted
non-edges for pairs of nodes with the same label; nodes that
are not connected but have the same labels.

FP = |{(i, j) | eij = 0 ∧ yi = yj}|. (11)

False Negatives (FN): The number of incorrectly predicted
edges between nodes with different labels.

FN = |{(i, j) | eij = 1 ∧ yi ̸= yj}|. (12)

We know that the sum of all the metrics is equal to the
total number of possible edges in the graph; TP + FP +
TN + FN = N(N−1)

2 , Hence:

Acc =
TP + TN

TP + FP + TN + FN
=

TP + TN
N(N−1)

2

. (13)

Expressing TP in terms of homophily, based on Definition
1, yields to:

TP = h|E|. (14)

For TN , we obtain:

TN = |{(i, j) | eij = 0 ∧ yi ̸= yj}|
= |{(i, j) | eij = 0}| − |{(i, j) | eij = 0 ∧ yi = yj}|

=
N(N − 1)

2
− |E| − FP. (15)

Here, |{(i, j) | eij = 0}| represents the number of non-edges
that is equal to the total number of possible edges in the
graph (N(N−1)

2) minus the number of existing edges (|E|)
whereas the second term corresponds to FP . Developing
the term FP , we obtain the following:

FP = |{(i, j) | eij = 0 ∧ yi = yj}|
= |{(i, j) | yi = yj}| − |{(i, j) | eij = 1 ∧ yi = yj}|
= |{(i, j) | yi = yj}| − TP

= |{(i, j) | yi = yj}| − h.|E|.

The first term counts combinations of nodes pairs with the
same label, expressed as:

|{(i, j) | yi = yj}| =
C∑

c=1

(
Nc

2

)
,

Where Nc is the number of nodes with label c, and C the
number of labels. Defining αc = Nc

N as the proportion of

14

nodes with label c, and noting
∑C

c=1 αc = 1, we derive:

FP =

C∑
c=1

αcN(αcN − 1)

2
− h.|E|

=
N2

2

C∑
c=1

α2
c −

N

2
− h.|E|. (16)

Substituting the expression for FP (16) into TN (15), we
obtain:

TN =
N(N − 1)

2
− |E| − FP

=
N(N − 1)

2
− |E| −

(
N2

2

C∑
c=1

α2
c −

N

2
− h.|E|

)
.

(17)

Substituting the expressions for TP (14) and TN (17) into
the accuracy (13) and applying the graph density definition
(7), we deduce the accuracy of the attack as follows:

Acc =
TP + TN
N(N−1)

2

=
h.|E|+ N(N−1)

2 − |E| −
(

N2

2

∑C
c=1 α

2
c − N

2 − h.|E|
)

N(N−1)
2

=
4h|E|

N(N − 1)
+ 1− 2|E|

N(N − 1)
− N

N − 1

C∑
c=1

α2
c +

1

N − 1

= 2h.d− d+
N

N − 1
(1−

C∑
c=1

α2
c).

To establish the upper bound of accuracy, we apply the lower
bound 1

C ≤
∑C

c=1 α
2
c , which is a direct application of the

L1 − L2 norm inequality:

C

C∑
c=1

α2
c ≥

C∑
c=1

αc

C∑
c=1

α2
c ≥ 1

C

Finally, we prove that the upper bound on the accurracy
Acc, using the lowed bound above is:

Acc ≤ 2hd− d+
N

N − 1
(1− 1

C
)

This upper bound is attained when αc =
1
C , corresponding

to a uniform distribution of labels across nodes. This con-
cludes our proof, demonstrating the derived upper bound for
the accuracy of the attack.

Appendix C.
Proof of theorem 2

The essence of this proof is to demonstrate the spe-
cific conditions required to prevent the overlap of cosine

similarities between prediction vectors of nodes with the
same label and those with different labels. Therefore, we
establish the minimum probability assigned to the true label
of nodes that ensure the cosine similarity between any
pair of prediction vectors with the same labels is greater
than those with different labels. For a binary classification
task involving two classes, c1 and c2. Let θ represent the
minimum probability assigned to the true label of a node,
we have:

• P 1
max = [1, 0]: the maximum posterior probability

for class c1,
• P 1

min = [θ, 1 − θ]: the minimum θ posterior proba-
bility for class c1,

• P 2
min = [1 − θ, θ]: the minimum θ posterior proba-

bility for class c2.
The goal is to find a value of θ. This value should

ensure that the cosine similarity between P 1
max and P 1

min is
greater than the cosine similarity between P 1

min and P 2
min.

Here, P 1
max and P 1

min represent the prediction vectors for
nodes within the same class, yielding the minimum cosine
similarity for nodes with the same label. Conversely, P 1

min
and P 2

min represent nodes with different labels, yielding the
maximum cosine similarity for nodes with different labels.
To solve this problem, We need to find θ such that the
cosine similarities are equal as a boundary condition, and
then ensure θ is set such that it satisfies the inequality in
practice.

The cosine similarity between two vectors A and B is
given by Cos(A,B) = A·B

∥A∥∥B∥ .
For the pair (P 1

max, P
1
min), the cosine similarity is:

Cos(P 1
max, P

1
min) =

1 · θ + 0 · (1− θ)√
12 + 02

√
θ2 + (1− θ)2

=
θ√

θ2 + (1− θ)2
. (18)

For the pair (P 1
min, P

2
min), the cosine similarity is:

Cos(P 1
min, P

2
min) =

θ · (1− θ) + (1− θ) · θ√
θ2 + (1− θ)2

√
(1− θ)2 + θ2

=
2θ(1− θ)

θ2 + (1− θ)2
. (19)

To find θ such that the similarity conditions are equal,
which represents the boundary condition for our inequality,
we equate the two cosine similarities (18, 19):

θ√
θ2 + (1− θ)2

=
2θ(1− θ)

θ2 + (1− θ)2
.

Solving this equation yields θ = 0 and θ = 3
2 −

√
3
2 . The

solution θ = 0 is not practical for our purpose as it does
not represent a valid probability for class prediction. Thus,
we consider the solution θ = 3

2 −
√
3
2 , which signifies the

minimum probability that must be assigned to the true class
of a node to satisfy our initial condition.

For a model trained with cross-entropy loss, the loss
of a sample is given by li = − log(pt), where pt is the

15

probability assigned to the true label of the node. Therefore,
based on our finding, the condition on θ translates to a
condition on the sample loss as:

li ≤ − log

(
3

2
−

√
3

2

)
This result establishes a threshold for the probability as-
signed to the true class, ensuring that inter-class prediction
similarities are always greater than intra-class prediction
similarities, rendering the decision of output-based LIA
equivalent to that of label-based LIA. To achieve identical
inference outcomes between output-based and label-based
LIA, we incorporate our solution θ into one of the cosine
similarity equations (18, 19). This substitution yields a
decision threshold τ =

√
3
2 , ensuring both LIA methods

infer equivalent graphs.

Appendix D.
Validation of theorem 2 through empirical
analysis

In this experiment, we aim to validate Theorem 2, which
states that for a GNN trained with cross-entropy loss for
a binary classification task, the output-based LIA with a
cosine similarity threshold τ =

√
3
2 infers the same graph

as the label-based LIA, provided that each training sample’s
loss li satisfies li ≤ − log

(
3−

√
3

2

)
. We use the Cora dataset,

focusing on a subgraph containing the two most populous
classes. A two-layer GCN is defined with an input GCN
layer of 16 hidden units, followed by a ReLU activation,
dropout, and an output GCN layer producing two units. The
model is trained using the Adam optimizer with a learning
rate of 0.01 and weight decay of 5e-4, minimizing the cross-
entropy loss over 200 epochs.

First, we compute and plot the CDF of the cross-
entropy sample losses, highlighting the theoretical condition
− log

(
3−

√
3

2

)
. We then perform the output-based attack and

the label-based attack for all samples and for samples re-
specting the loss condition. By varying the cosine similarity
threshold, we plot the matching percentage link predictions
between the two attacks, marking the theoretical cosine
similarity threshold

√
3
2 . The results show that the matching

percentage is 100% when only samples respecting the loss
condition are considered. These experimental results vali-
date the theorem by demonstrating that pairs of samples with
cross-entropy loss below the theoretical threshold have the
same link predictions of the output-based and label-based
attacks, confirming that the cosine similarity threshold can
infer the same graph structure as the label-based approach
when the sample loss condition is met.

0 2 4 6 8
Sample Loss

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

CDF of Samples Losses
Theoretical Threshold: log (3

2
3

2)

(a) CDF of sample losses

0.0 0.2 0.4 0.6 0.8 1.0
Cosine Similarity Threshold

50

60

70

80

90

100

M
at

ch
in

g
Pe

rc
en

ta
ge

 (%
)

All Samples
Samples Respecting Loss Condition
Theoretical Threshold: 3

2

(b) Sensitivity analysis of co-
sine similarity threshold

Figure 8: Analysis of sample losses and cosine similarity
threshold

TABLE 5: Accuracy of gradient-based link inference attack
on different GNN architectures

Dataset GAT GCN GraphSAGE
Photo 84.27 ± 0.62 82.12 ± 1.32 82.34 ± 1.31

Cora 82.23 ± 0.97 81.71 ± 0.21 81.40 ± 0.65

Computer 79.38 ± 0.39 78.23 ± 1.26 78.06 ± 1.32

Citeseer 83.40 ± 1.15 82.76 ± 0.38 82.35 ± 0.15

Appendix E.
Ablation Studies

E.1. Impact of GNN’s architecture on the perfor-
mance of gradient-based LIA

We study the influence of the architecture of the attacked
GNN on the accuracy of our gradient-based LIA. For the
architectures under examination, we have included GAT and
GraphSAGE, as they are some of the most well-known
architectures used in the literature. GATs are distinguishable
by their ability to assign varying levels of importance to
nodes in a neighborhood, using attention mechanisms. As
observed in our results (see Table 5), GATs generally exhibit
higher values across various datasets, indicating a greater
susceptibility to LIAs. This slight increased vulnerability
may be attributed to the attention mechanism in GATs
that learns the attention coefficients of the edges (See Eq
2.2), which may results in a slight memorization of the
edges of the target graph. GraphSAGE utilizes a neigh-
borhood sampling and aggregation approach to generate
node embeddings. This method, as reflected in the table,
generally shows lower values compared to GAT, suggesting
reduced susceptibility to LIAs. The fixed-size neighborhood
sampling employed by GraphSAGE potentially obscures
some links between nodes, providing a form of obfuscation
against such attacks. The performance of GCNs, which falls
between GAT and GraphSAGE in our study, suggests a
moderate level of susceptibility to LIAs. It indicates that
while GCNs do learn node connections, they neither reveal
as much detail about the links in the graph as GATs nor
obscure connections as GraphSAGE.

16

E.2. Impact of the number of parties on the per-
formance of gradient-based LIA

In this study, we analyze the sensitivity of the number of
parties on the performance of our gradient-based attack in
varying multi-party settings. We extend our VFGL protocol
by adding more benign participants that contribute features,
while maintaining one adversary and one victim party. We
adopt the same multiparty protocol utilized in the baseline
study, fixing the adversary’s feature ratio at 20%. The re-
maining features are evenly distributed among the benign
participants and the target victim. We vary the number of
parties from 2 to 5 to ensure each participant has at least
20% of the features. From Figure 9, we observe that the
performance of our gradient-based attack is independent of
the number of parties. This is primarily because the attack
exploits the label information embedded in the gradients,
regardless of the number of clients participating in the
VFGL setting. The label-based attack’s performance remains
constant across different numbers of clients. This is because
in our VFGL setting (Figure 1), the server owns the labels,
so the available label information is unchanged regardless
of the number of participating parties.

2 3 4 5
Number of Parties

50

55

60

65

70

75

80

85

AU
C

(%
) Cora

Citeseer
Amazon Computer
Amazon Photo
Twitch-FR

Figure 9: Performance analysis with varying number of
parties. The results show the AUC values across different
datasets as the number of parties changes from 2 to 5.

E.3. Impact of model complexity on the perfor-
mance of gradient-based LIA

We investigate the influence of model complexity on
our gradient-based LIA’s accuracy using ResNet-like archi-
tectures [He et al.(2016)] for both adversary’s and server’s
models. Our results (Table 6) on the Cora dataset show the
attack maintains high accuracy across different complex-
ity levels, from a simple 2-layer neural network (81.71%
± 0.21%) to architectures with multiple residual blocks
(81.26% ± 0.18% with four blocks). This robustness can
be attributed to two factors: complex models’ gradients
still carry sufficient graph structure information, and the
attack leverages label information, which remains present
in gradients regardless of model complexity.

Appendix F.
Label perturbation algorithm

We present the label perturbation defense algorithm in
two parts: optimization (Algorithm 5) and redistribution

TABLE 6: Accuracy of gradient-based LIA on ResNet-like
architectures (Cora dataset)

Number of Residual Blocks Accuracy (%)
Baseline 81.71 ± 0.21

1 81.70 ± 0.21

2 81.54 ± 0.19

3 81.47 ± 0.23

4 81.26 ± 0.18

(Algorithm 6). Given the accuracy formula for Label-based
LIA (Equation 4), our experimental observations (Table 4)
show that terms involving homophily ratio (h) and density
(d) are negligible due to the low density of typical graphs
in our scenarios. We can thus approximate the accuracy as:

Acc ≈ N

N − 1
(1−

C∑
c=1

α2
c) (20)

To minimize this approximated accuracy and reduce the
effectiveness of the Label-based LIA, our objective becomes
maximizing

∑C
c=1 α

2
c . Algorithm 5 optimizes label propor-

tions to maximize
∑C

c=1 α
2
c within the given budget B

using quadratic programming. Algorithm 6 then redistributes
labels to match these optimized proportions through iterative
balancing between classes.

Algorithm 5 Label Proportion Optimization

Require: Initial label proportions αinitc , budget B
Ensure: Optimized label proportions α∗

c

1: Solve the following optimization problem:
2: maxαc

∑C
c=1 α

2
c

3: subject to:
4:

∑C
c=1 αc = 1

5:
∑C
c=1 max(0, αinitc − αc) ≤ B

6: αc ≥ 0, ∀c ∈ {1, . . . , C}
7: return α∗

c

Algorithm 6 Label Redistribution
Require: Current labels y, optimized proportions α∗

Ensure: Obfuscated labels y′

1: Calculate target number of nodes for each class based on α∗

2: Determine classes needing more nodes (C+) and fewer nodes
(C−)

3: for each class ct ∈ C+ do
4: for each class cs ∈ C− do
5: Flip labels from cs to ct until:
6: - ct has enough nodes, or
7: - cs has no more nodes to give
8: return y′

17

	Introduction
	Background
	VFL system
	Graph neural networks

	Related Work
	Link stealing attacks
	Privacy attacks in federated learning

	Link Inference attacks
	Environment
	Adversary's knowledge
	Link inference attacks - Description
	Gradient-based LIA
	Label-based LIA
	Baseline LIAs

	Analytical results for LIAs
	Performance of Label-based LIA
	Performance of Prediction Output-based LIA
	Performance of Gradient-based LIA

	Evaluation
	Overview
	Experimental setup
	GNN Model architecture and learning setting
	Datasets
	Evaluation Metrics

	Performances of LIAs.
	Ablation study
	Impact of training epochs on gradient-based LIA performance.
	Impact of feature ratio owned by the adversary.

	Defense
	Lapgraph
	Label perturbation

	Conclusion
	References
	Appendix A: VFL training protocol
	Appendix B: Proof of theorem 1
	Notations
	Accuracy of the label-based LIA

	Appendix C: Proof of theorem 2
	Appendix D: Validation of theorem 2 through empirical analysis
	Appendix E: Ablation Studies
	Impact of GNN's architecture on the performance of gradient-based LIA
	Impact of the number of parties on the performance of gradient-based LIA
	Impact of model complexity on the performance of gradient-based LIA

	Appendix F: Label perturbation algorithm

