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Abstract—Sparse signal reconstruction (SSR) involves tackling
large underdetermined systems of linear equations while incor-
porating constraints or regularizers. Expectation propagation
(EP) emerges as a robust method for SSR, converting these
constraints into prior information. However, the cubic complexity
of matrix inversion per EP cycle hinders its implementation in
large systems without approximation. In various applications like
direction of arrival estimation (DoA), radar imaging etc., the
signal to be recovered exhibits sparsity in the Fourier dictionary.
To address this, we present a fast EP algorithm based on the
Gohberg-Semencul (G-S) formula and Levinson-Durbin (L-D)
type algorithm, boasting only quadratic complexity. Notably, no
approximation operations or random measurement matrices are
required for matrix inversion compared to approximate message
passing (AMP) and other message passing based algorithms. Fur-
thermore, it is compatible with non-identically and independently
distributed (n.i.i.d.) priors. Numerical simulations conclusively
demonstrate the efficacy of fast EP.

I. INTRODUCTION

Compressed sensing (CS) [1] is a signal processing tech-
nique aimed at efficiently acquiring and reconstructing a sparse
signal within an underdetermined linear system. It can be
succinctly formulated as:

y = Hx+ v, (1)

where x ∈ CN×1 represents the sparse signal vector to be
recovered, y ∈ CM×1 denotes the measurement data vector,
v ∈ CM×1 stands for the additive white complex Gaussian
noise vector, and H ∈ CM×N denotes the overcomplete
dictionary matrix, where M ≪ N .

One of the most well-known approaches is to frame this
problem as a Bayesian inference problem, with a focus on
determining the posterior probability. In this scenario, the
Bernoulli-Gaussian model [2] which is understood as the
minimization of the L0 norm of the vector x is commonly
employed to represent the prior. However, in practice, the
posterior distribution often becomes intractable with this prior,
necessitating the use of variational inference methods.

For an independent and identically distributed (i.i.d.) Gaus-
sian/complex Gaussian matrix H , the approximate message

passing (AMP) [3], as proven in [4], was shown to be an
asymptotically Bayesian-optimal algorithm for SSR when the
belief-propagation threshold is smaller than the compression
rate [5]. However, it has been recognized that the original AMP
fails to converge for non-i.i.d. H [6]. Another approach is to
leverage the expectation propagation (EP) method, which does
not require any specific properties of the measurement matrix
[7], [8]. Moreover, with unitarily invariant measurement matri-
ces, EP is asymptotically Bayes-optimal [9] as AMP. However,
EP entails higher computational complexity, primarily due to
a high-dimension matrix inversion per EP cycle under large
systems. Therefore, reducing the computational complexity of
EP becomes crucial for enhancing its efficiency.

In fields such as array signal processing [10], Direction of
Arrival (DoA) estimation [11], radar imaging [12], etc., the
measurement matrix H often assumes the form of a Fourier
matrix, which is unitarily invariant. Given this characteristic,
we develop a fast-EP algorithm. The key feature of our fast-
EP algorithm lies in its ability to express the matrix inverted
per EP cycle as a Hermitian-Toeplitz matrix. The inversion
of a Hermitian-Toeplitz matrix can be accelerated using the
Gohberg-Semencul (G-S) formula [13] and Levinson-Durbin
(L-D) type algorithm [14]. Moreover, owing to the Fourier ma-
trix’s properties, the fast Fourier transform (FFT) can be em-
ployed to enhance the computation efficiency of our algorithm
[15]. It is noteworthy that the fast implementation based on the
G-S formula has found success in various fields [16]. However,
its application to EP for solving the sparse signal recovery
problem is novel. Compared to standard EP, this approach can
reduce complexity from cubic to quadratic complexity. While
other EP-like algorithms, such as vector approximate message
passing (VAMP) [17], also exhibit quadratic complexity, they
are limited to the i.i.d. case and often require approximation. In
contrast, our fast EP can handle the non-i.i.d. case. Numerical
simulations validate the effectiveness of fast EP, confirming
its potential in practical applications.

Notations: We denote vectors as x and matrices as X .



For a complex Gaussian random vector x with mean m and
covariance Σ, its probability density function is represented as
CN (x;m,Σ). The symbols IM and 0M signify the M ×M
identity matrix and zero vector of size M , respectively. The no-
tation (·)T indicates the transpose of a matrix, while C denotes
the complex field. The function diag(C) returns a vector with
its elements being the diagonal elements of the square matrix
C. Additionally, (·)∗, (·)T and (·)H represent the conjugate
operator, the transpose operator and the conjugate transpose
operator, respectively.

II. BRIEF REVIEW OF SYSTEM MODEL

In this paper, we consider the Bernoulli-Gaussian prior of
n.i.i.d. x, and its probability density function (pdf) can be
expressed as:

p(x; ρ, ξ) =
N∏
i=1

p(xi) =
N∏
i=1

(1− ρ)δ(xi) + ρ CN (xi; 0, ξ
−1
i ),

(2)
δ(·) represents the Dirac delta function [18], and ρ ∈ [0, 1]
signifies the sparse coefficient, utilized to model any prior
knowledge regarding the sparsity of the signal. Here, ξi
represents the precision (inverse variance) of xi, where xi ̸= 0.
Typically, ρ and ξ are deterministic yet unknown.

The observation noise v is characterized as a zero-mean
complex white Gaussian vector with an unknown precision λ.
Its pdf is defined as follows:

p(v;λ) =

M∏
i=1

p(vi) = CN (v;0M , λ−1IM ). (3)

Based on the above assumptions, the marginal density of x
can be derived as follows:

p(x|y; ρ, ξ, λ) = 1

Zp
p(y|x;λ)p(x; ρ, ξ), (4)

where the partition function Zp is determined through integra-
tion:

Zp =

∫
p(y|x;λ)p(x; ρ, ξ)dx. (5)

Using the minimum mean square error (MMSE) estimator, we
aim to find a recovered sparse signal x̂ whose components
are the first-order moment of function (4). However, even
in the absence of unknown parameters, the MMSE estima-
tor becomes impractical due to the exponentially growing
computational complexity. Additionally, because of the non-
convex nature of the Bernoulli-Gaussian prior, there is no
technique capable of directly solving the maximum a posteriori
(MAP) optimization problem. Therefore, it becomes crucial to
approximate the posterior distribution with another tractable
distribution. To accomplish this objective, we introduce the

expectation propagation (EP) approximation schema, which
relies on an adaptive complex Gaussian approximation.

III. EXPECTATION PROPAGATION

The purpose of the EP algorithm is to find a complex Gaus-
sian distribution CN (x;m,Cm) approximating the posterior
p(x|y; ρ, ξ, λ) of (4) as:

p(x|y; ρ, ξ, λ) ≈ q(x) = CN (x;m,Cm), (6)

where ρ, ξ and λ are supposed to be known. Although they
are typically unknown in real scenarios, the main focus of this
paper is not to study how to estimate them jointly. However,
they can be estimated using the Expectation Maximization
(EM) technique, with further details available in [19].

To obtain m and Cm in the linear mixing data model, we
factorize the approximate distribution q(x) as follows:

q(x) =

N∏
i=1

q(xi;mi, [Cm]ii) ∝ p(y|x;λ)
N∏
i=1

fi(xi), (7)

where fi(xi) is supposed to be complex Gaussian
CN (xi; pi, [Cp]ii) and

∏N
i=1 fi(xi) = CN (x;p,Cp). Here,

Cp is always a diagonal matrix as each xi is independent.
The EP is given as:

1) Initialize the factors: fi(xi)
2) Compute the posterior for x from the product of fi(xi):

q(x) =
p(y|x)

∏N
i=1 fi(xi)∫

p(y|x)
∏N

i=1 fi(xi)dx
. (8)

3) Until all fi(xi) converge:
a) Choose a fi(xi) to refine
b) Remove fi(xi) from the posterior and integral out

x except xi to get an extrinsic:

b(xi) =

∫
q(x)

fi(xi)
dx\i. (9)

c) Combine with real prior p(xi|ξi) and minimize
Kullback–Leibler (KL) divergence to get an ap-
proximate marginal posterior q(xi):

q(xi) = arg min
q(xi)

DKL [b(xi)p(xi|ξi)||q(xi)] .

(10)
d) Update fi(xi) ∝ q(xi)/b(xi)

4) Generate an approximated posterior q(x):

q(x) =
p(y|x)

∏N
i=1 fi(xi)∫

p(y|x)
∏N

i=1 fi(xi)dx
. (11)



This algorithm consistently converges to a fixed point with
complex Gaussian approximation factors. However, if initial-
ized too far away from the fixed point, it may diverge. In (8),
two operations are required as follows:

Cm = (λHHH +C−1
p )−1; (12)

m = Cm(λHHy +C−1
p p), (13)

where p and Cp represent the mean and covariance of the
approximated prior of x during EP, respectively.

According to the Woodbury matrix identity [20], the matrix
Cm in (12) can be written as:

Cm = Cp − λCpH
HΣ−1HCp, , (14)

where
Σ = IM + λHC−1

p HH . (15)

Also, the vector m can be written as following by substituting
(14) and (15) into (13):

m = λCpH
HΣ−1y + (IN − λCpH

HΣ−1H)p

= p+ λCpH
HΣ−1(y −Hp). (16)

In EP, the process known as "learning" involves finding the
optimal mean of the posterior distribution of x. It entails
updating and iterating m and Cm, using them to derive
the new prior distribution of x. Once the iterative process
converges, the recovered sparse signal x̂ is determined by the
mean vector of the posterior distribution:

x̂ = m, (17a)

Ĉx = diag(Cm). (17b)

From the above iteration procedure, we observe that the
key to utilizing EP to solve the sparse signal reconstruction
problem lies in computing Cm and m during each iteration.
This process, from (14) to (16), involves the inversion of an
M ×M matrix Σ, where M is the dimension of the observed
data. It is well-known that the general inverse method requires
O(M3) operations, resulting in a significant computational
burden even for moderate data sizes.

Apart from using approximations under large system as-
sumptions like AMP and VAMP, there is no general method
available to accelerate the computation of the inverse of Σ
for an arbitrary dictionary matrix Σ. However, we find that
the Fourier dictionary is commonly applied in many practical
applications. Fortunately, when the dictionary matrix H is a
Fourier matrix, Σ exhibits properties that enable significant
acceleration of computations involving Σ and Σ−1. In the
following section, we present the fast implementations of these
methods.

IV. FAST COMPUTATION WITH FOURIER MATRIX

In the model described in (1), the overcomplete dictionary
matrix H is an overcomplete Fourier matrix. The (n + 1)th
column hM (ωn) of H is defined as follow

hM (ωn) = [1, e−jωn , · · · , e−j(M−1)ωn ]T , (18)

where ωn = 2πn/N , n = 0, · · · , N − 1. In this case, the
matrix Σ defined in (15) can be denoted as:

Σ = IM + λΨ, (19)

where Ψ = HC−1
p HH is a Hermitian-Toeplitz matrix which

has the following structure:

Ψ =


a0 a∗1 · · · a∗M−1

a1 a0
. . .

...
...

. . .
. . . a∗1

aM−1 · · · a1 a0

 . (20)

Cp is a diagonal matrix which is given as:

Cp =


γ−1
0

γ−1
1

. . .

γ−1
N−1

 . (21)

Therefore, using the definition of Ψ, given Cp, we have

am =

N−1∑
n=0

γne
−j2πmn/N ,m ∈ [0, · · · ,M − 1]. (22)

Referring to the definition of the Fourier transform, am in
(22) can be computed by applying an N-point FFT to the
vector composed of all γn in sequence and extracting the first
M values. According to (20), the matrix Ψ can be constructed,
and Σ can be computed using (19) with the given Ψ. Clearly,
the computation of Ψ requires O(N log2 N) floating-point
operations.

As Ψ is a Hermitian-Toeplitz matrix, Σ also possesses the
Hermitian-Toeplitz structure and evidently shares the same
characteristics as Ψ. Compared to an arbitrary matrix, com-
putations involving a Toeplitz matrix and its inverse can be
significantly simplified due to the structural properties of the
Toeplitz matrix. The inverse of a Toeplitz matrix can be
decomposed using the Gohberg-Semencul formula and has
a low displacement rank, leading to reduced computational
complexity. Given that Σ is a Hermitian-Toeplitz matrix, it
can be represented as:

Σ =

[
σ0 σH

M−1

σM−1 ΣM−1

]
(23)

=

[
ΣM−1 σ̃∗

M−1

σ̃T
M−1 σ0

]
, (24)



where ΣM−1 denotes the (M − 1) × (M − 1) subma-
trix of Σ ∈ CM×M , and ΣM−1 is also a Hermitian-
Toeplitz matrix. σM−1 = [σ1, σ2, · · · , σM−1]

T and σ̃M−1 =
[σM−1, · · · , σ2, σ1]

T . Then, Σ−1 can be computed by apply-
ing the matrix inversion formula to the right-hand sides (RHS)
of (23) and (24) as follows:

Σ−1 =

[
0 0T

M−1

0M−1 Σ−1
M−1

]
+

1

ϵM−1

[
1

aN−1

] [
1 aH

N−1

]
(25)

=

[
Σ−1

M−1 0M−1

0T
M−1 0

]
+

1

εM−1

[
b∗N−1

1

] [
bTN−1 1

]
,

(26)

where

aN−1 = −Σ−1
M−1σM−1, (27)

ϵM−1 = σ0 − σH
M−1Σ

−1
M−1σM−1, (28)

b∗N−1 = −Σ−1
M−1σ̃

∗
M−1, (29)

εM−1 = σ0 − σ̃T
M−1Σ

−1
M−1σ̃

∗
M−1. (30)

For the sake of convenience, we define a matrix TM ∈ CM×M

in which the sub-diagonal elements are one and the other
elements are 0:

TM =


0 · · · 0 1
0 · · · 1 0
... . .

. ...
...

1 · · · 0 0

 , (31)

therefore, σ̃M−1 in (24) can be obtained as:

σ̃M−1 = TM−1σM−1. (32)

According to the basic property of a Hermitian-Toeplitz ma-
trix, we can get:

ΣT
M−1 = Σ∗

M−1 = TM−1ΣM−1TM−1, (33)

then (27) and (28) can be rewritten as:

aN−1 = −Σ−1
M−1σM−1 = (−Σ−∗

M−1σ
∗
M−1)

∗

= −(Σ−T
M−1σ

∗
M−1)

∗

= −(TM−1Σ
−1
M−1TM−1σ

∗
M−1)

∗

= −(TM−1Σ
−1
M−1σ̃

∗
M−1)

∗

= TM−1(−Σ−∗
M−1σ̃M−1) = b̃M−1; (34)

ϵM−1 = σ0 − σH
M−1Σ

−1
M−1σM−1

= σ0 − σH
M−1TM−1Σ

−T
M−1TM−1σM−1

= σ0 − σ̃H
M−1Σ

−T
M−1σ̃M−1

= (σ0 − σ̃T
M−1Σ

−1
M−1σ̃

∗
M−1)

T = εM−1. (35)

Substituting the results of (34) and (35) into (26) yields:

Σ−1 =

[
Σ−1

M−1 0
0T 0

]
+

1

εM−1

[
ã∗
N−1

1

] [
ãT
N−1 1

]
. (36)

We define another matrix SM ∈ CM×M , which is a lower-
triangular matrix where the −1th main diagonal elements are
1, and the other elements are 0, as shown below:

SM =


0 0 · · · 0
1 0 · · · 0
...

. . .
. . .

...
0 · · · 1 0

 . (37)

Then, we define the displacement representation [13] ∇Σ−1
M

of Σ−1
M as:

∇Σ−1
M = Σ−1

M − SMΣ−1
M ST

M

=Σ−1
M −SM

([
Σ−1

M−1 0
0T 0

]
+

1

ϵM−1

[
ã∗
N−1

1

][
ãT
N−1 1

])
ST
M

=
1

ϵM−1

[
1

aM−1

] [
1 aH

M−1

]
− 1

ϵM−1

[
0

ã∗
M−1

] [
0 ãT

M−1

]
.

(38)

Let

αM =
1

√
ϵM−1

[
1

aM−1

]
, (39)

βM =
1

√
ϵM−1

[
0

ã∗
M−1

]
, (40)

then αM in (40) can be represented as:

∇Σ−1
M = αMαH

M − βMβH
M . (41)

By using the property that (SM )MΣ−1
M (ST

M )M = 0 and (41),
Σ−1

M can be computed as:

Σ−1
M =

M−1∑
m=0

(SM )m(αMαH
M − βMβH

M )(ST
M )m (42)

=
1

ϵM−1

M−1∑
m=0

(SM )m(

[
1

aM−1

] [
1 aM−1

]
−
[

0
ã∗
M−1

] [
0 ã∗

M−1

]
)(ST

M )m (43)

=
M−1∑
m=0

(SM )m∇Σ−1
M (ST

M )m. (44)

Then defining two M × M lower triangular matrices ∆αM

and ∆βM
as:

∆αM
= [αM ,SMαM , · · · , (SM )M−1αM ]; (45)

∆βM
= [βM ,SMβM , · · · , (SM )M−1βM ]. (46)



By using (45) and (46), (42) can be rewritten as:

Σ−1 = ∆αM
∆H

αM
−∆βM

∆H
βM

. (47)

Then, the expression on the right-hand side of (47) is termed
the G-S formula, and αM and βM are the G-S-type factors
of Σ−1

M . These factors can be computed using the Levinson-
Durbin (L-D)-type algorithm with only O(M2) floating-point
operations (flops), as provided below:

1) Initializing ϵ1 and a1:
a) a1 = −σ1

σ0
;

b) ϵ1 = σ0 + a1σ
∗
1 .

2) For m = 2, · · · , M − 1:
a) ϕm−1 = aT

m−1Sm−1σ
∗
M−1 + σm;

b) am =

[
am−1

0

]
− ϕm−1

ϵm−1

[
Sm−1a

∗
m−1

1

]
;

c) ϵm = ϵm−1 − |ϕm−1|2/ϵm−1.
3) Calculating displacement matrix ∇Σ−1

M in (41).
4) Calculating Σ−1

M in (46).
As stated above, the computations of m and diag(Cm) are

crucial during a EP iteration. For [Cm]nn, it is straightforward
to obtain that

[Cm]nn = [Cp]nn − λ[Cp]
2
nn[H

HΣ−1H]nn. (48)

Let
Q = HHΣ−1H, (49)

We define a vector q = [q0, q1, · · · , qN−1]
T , which comprises

all the diagonal elements of Q. The (n+1)th value of qn can
be computed as:

qn =

M+1∑
k=−M+1

zk exp
−j2πkn/N , (50)

where zk is the sum of all the entries on the kth main diagonal
of Σ−1. It should be noted that z−k = z∗k since Σ−1 is a
Hermitian matrix.

Let z̃ = [z0, z1, · · · , zN−1,0
T
N+1−2M , z∗N−1, · · · , z∗1 ]T ,

(50) can be calculated by:

qn =
N−1∑
k=0

z̃k exp
−j2πnk/N , (51)

which implies that q can be computed using FFT. Therefore,
diag(Cm) can be computed via (48) and the FFT of (51)
with O(N log2 N) floating-point operations. The computation
of m in (16) can be divided into several steps to avoid matrix
multiplication with O(N2) flops. Therefore, the overall com-
putational complexity per EP iteration is O(N2) as N ≫ M .

V. SIMULATION

In this section, the performance of fast-EP is evaluated
through numerical simulations. Additionally, fast-EP is com-
pared with normal EP under various scenarios. To illustrate
the reconstruction performance of the algorithm, we define
the normalized root-mean-square error (NRMSE) of recon-
struction as:

NRMSE =
∥x̂− x∥2
∥x∥2

, (52)

where x denotes the real signal and x̂ is the estimated signal.
The size of the Fourier dictionary matrix H is set to be 64×
256 with a frequency oversampling factor N/M = 4. The
signal x is generated with respect to the prior (2) with ρ =
0.95 and ξ = [1, 2, · · · , 256]T . During the simulation, ρ and ξ
are assumed to be known. The signal-to-noise ratio (SNR) is
set to be 10 dB. In Fig. 1, we illustrate the signal reconstruction
results of the fast EP algorithm.

The NRMSE and computation time between fast EP and
normal EP are estimated by averaging the results of 100
independent experiments. The reconstruction results of fast-
EP are good, which verifies its efficiency in sparse signal
estimation. The NRMSE and computational time of EP and
fast-EP are calculated by averaging the results of 100 inde-
pendent experiments. The estimated average computational
time and the average NRMSE are listed in Table I. The
computational time of fast-EP is almost 14 times shorter than
that of normal EP. It is worth pointing out, however, that the
actual efficiency could potentially be further improved, as the
authors’ limited programming skills may have prevented them
from fully utilizing the capabilities of fast-EP algorithm.

TABLE I
AVERAGE COMPUTATION TIME AND AVERAGE NRMSE OF EP AND

FAST-EP

Algorithm Average Computation Time Average NRMSE
EP 2.7153s 0.8598

fast-EP 0.1931s 0.8598

VI. CONCLUSION

This paper introduces a fast EP algorithm for achieving
sparse signal reconstruction when the measurement matrix
is a Fourier matrix. Since the matrix to be inverted in each
iteration within normal EP is a Hermitian-Toeplitz matrix, its
inverses can be decomposed using G-S factorization, which
can be solved via the Levinson-Durbin algorithm. Addition-
ally, due to the Fourier matrix, FFT can also be applied
to reduce computational complexity. The efficiency of SSR
is significantly enhanced without compromising accuracy or
resorting to approximation under large system assumptions, as
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compared to AMP and VAMP. Moreover, it remains applicable
w.r.t. n.i.i.d. prior distributions. In the future, we aim to explore
the application of this fast-EP to practical scenarios in the real
word.
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