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Abstract—This paper presents enhanced receiver metrics for
joint estimation-detection in short blocklength transmissions,
addressing scenarios with unknown channel state information
and low or sparse training resource density. We show that it
is possible to enhance the performance and sensitivity through
block-wise joint estimation—detection compared to standard re-
ceivers. The performance analysis makes use of a full 5G
transmitter and receiver chains for both Polar and LDPC
coded transmissions paired with QPSK modulation scheme. We
consider transmissions where reference signals are interleaved
with coded data and both are transmitted over a small number
of OFDM symbols so that near-perfect channel estimation cannot
be achieved. Unlike conventional symbol-by-symbol detection in
BICM systems, where the observation for a given coded bit is
confined to the symbol in which it is conveyed,the proposed
method performs block-wise joint detection over a sliding window
of adjacent symbols to fundamentally leverages their statistical
dependencies. Accordingly, the LLR for a particular coded bit
incorporates information from all symbols within the detection
window, rather than being constrained to its host symbol alone.
Performance evaluation spans SIMO and SU-MIMO config-
urations, emphasizing the efficacy of the estimation-detection
strategy in realistic base station receiver scenarios. Our findings
demonstrate that when the detection windows used in the metric
units are on the order of four modulated symbols, the proposed
receivers remarkably outperform the conventional ones and can
be used to achieve detection performance that is close to that of
coherent receivers with perfect CSI.

Index Terms—Coded Modulation, 5G NR Polar code, 5G NR
LDPC Code, SG NR Physical Uplink Channels, Short Packet
Communications, Unknown Channel State Information, Joint
Estimation and Detection.

I. INTRODUCTION

T IS EXPECTED that the 6G air-interface will build upon
Ithe 5G standard and address new paradigms for feedback-
based cyber-physical systems combining communications and
sensing. In particular, the deployment of 6G-enabled devices
will necessitate ultra-tight control loops over the air interface,
demanding unprecedented levels of reliability and latency
potentially exceeding the sub-millisecond uplink application-
layer latency targets in the microwave spectrum currently
set by 5G. This critical requirement for ultra-reliable and
low-latency communications fundamentally drives ongoing
advancements in the physical layer, with a particular emphasis
on the design of highly sophisticated receivers. Notably, relia-
bility emerges as a cornerstone metric, underpinning receiver
architectures designed to satisfy the stringent key performance
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indicators (KPIs) imposed by beyond-5G (B5G) and 6G wire-
less communication standards.

However, although 5G transmission formats can provide
very short-packet transmission through the use of mini-slots,
the ratio of training information to data is not necessarily
adapted to extremely short data transmission. Moreover, these
formats are primarily designed under the assumption of con-
ventional quasi-coherent receivers, which can become highly
suboptimal in scenarios where accurate channel estimation
is infeasible either due to the sporadic nature of of such
transmissions or to stringent constraints on decoding latency.

This challenge is particularly emerging in so-called ultra-
reliable-low-latency communication (URLLC) industrial IoT
applications. This would be similar for evolved channel state
information (CSI) feedback control channels, or for future
joint-sensing and communication paradigms requiring rapid
sensory feedback to the network. One of the main applications
is in the field of mission-critical communications, such as
those used by emergency services or in industrial control
systems that require extremely high levels of reliability and
low latency. In this work, we investigate bit-interleaved coded
modulation receiver design for short data transmission. Specif-
ically, we are interested in designing joint estimation—detection
based receivers compliant with polar and low-density parity-
check (LDPC) coded modulation transmission, targeting short
packets in the range of 20-100 bits for the envisaged beyond
5G/6G signaling scenarios. Indeed, BICM remains a widely
adopted coded-modulation technique for error-prone wireless
channels. On the receiver side, its efficacy hinges on the
underlying detection and decoding metrics, underscoring the
trade-off between enhanced performance and low complexity.
Noteworthy is the historical integration of BICM into 3GPP
systems, a practice dating back to the 3G-era.

Furthermore, there is a wealth of literature on BICM re-
ceivers from various perspectives [1] [2] demonstrating their
potential impact and importance. Among the pioneers who
sparked interest in BICM was the seminal work conducted
by Caire et al. [2], wherein they provided a comprehensive
analysis in terms of information rate and error probability.
Afterwards, numerous research inquiries have been directed
towards the design of reliable low-complexity receivers for
MIMO (multiple input multiple output) and Non-MIMO BICM
systems, but mostly restricted to coherent communication
scenarios. Staring closely at the primary focus of this investi-
gation, namely the transmission of short packets, it is evident
that this area has garnered significant scholarly attention in
recent years. Extensive research has addressed various aspects,
including the design of signal codes and receiver algorithms
[3]-112]], as well as the establishment of state-of-the-art con-
verse and achievability bounds [13[]-[17].
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This work distinguishes itself from prior literature by intro-
ducing novel enhanced receiver designs tailored to scenarios
with imperfect channel state information (CSI) over various
channel conditions. As previously mentioned, the proposed
receivers are specifically designed to effectively support the
reception of short data packets in beyond 5G/6G signaling
scenarios by evaluating their performance over 5G short
block channels using both Polar and LDPC coded modula-
tion formats. (a) We look into receiver metrics exploiting
joint estimation and detection (JED), which are particularly
amenable to configurations where low-density of demodulation
reference signals (DMRS) are interleaved with coded data
symbols. (b) We specifically address situations where accu-
rate channel estimation is impossible, demonstrating that a
well-conceived joint estimation—detection receiver, leveraging
interleaved DMRS within the detection metric, can achieve re-
markably significant performance gains over conventional 5G
orthogonal frequency division multiplexing (OFDM) receivers,
and can potentially approach the performance of a perfect CSI
receiver, applicable to both uplink and downlink transmission
scenarios.

Explicitly, our proposal consists of designing and utilizing
novel soft-likelihood metrics that directly integrate channel
estimation performed via joint least squares followed by
averaging or smoothing across DMRS dimensions for bit-
level LLR generation. Moreover, we apply to the underlying
soft-likelihood metrics an advanced block-wise joint detection
scheme defined over a detection window of four modulated
symbols (M = 4). Unlike conventional symbol-by-symbol
detection in BICM systems, where the observation for a given
coded bit is confined to the symbol in which it is conveyed, the
proposed block-wise detection approach fundamentally lever-
ages the statistical dependencies between adjacent symbols;
that is, the LLR for a given coded bit incorporates information
from all symbols within the detection window, rather than
being constrained to its host symbol alone, thereby enhancing
detection reliability. Hence, our contributions span the follow-
ing principal avenues. Initially, we introduce a BICM receiver
metric specifically tailored for non-coherent fading channels
in single-input multiple-output (SIMO) transmissions. These
metrics effectively address challenges arising from both line-
of-sight (LOS) and non-line-of-sight (NLOS) fading chan-
nels. Secondly, we extend the BICM receiver metric design
to single-user MIMO systems, specifically addressing block
fading channel conditions.

The article is structured as follows. Section II lays out the
system model and the foundations of 5G polar and LDPC
coded modulations, Section III focuses on the proposed BICM
receiver metrics, Section IV presents the numerical results
and performance analysis, and finally Section V concludes the
paper.

Notation : Scalars are denoted by italic letters, vectors
and matrices are denoted by bold-face lower-case and upper-
case letters, respectively. For a complex-valued vector x, ||x||
denotes its Euclidean norm, || denotes the absolute value. ||-||g
is the Frobenius norm of matrix. tr{-} denotes the trace of
matrix. E{-} denotes the statistical expectation. Re(-) denotes
the real part of a complex number. Iy(-) is the zero-th order

modified Bessel function of the first kind. I is an identity
matrix with appropriate dimensions. x € xj = {x:e; = b}
is the subset of symbols x for which the j — th bit of
the label e is equal to b = {0,1}, x is the modulation
alphabet (e.g., QPSK, 16-QAM, ...). The number of bits
required to a symbol is denoted by m := log, |x|, where
|x| is the cardinality of . A’ (-) denotes log likelihood
ratio, with j = 1,2,...,m. M is the number of symbols
making up a block on which joint detection is performed. The
superscripts | and T denote the transpose and the complex
conjugate transpose or Hermitian. The operator | denotes
a disjoint union: d = E—Jszl Dy means that the index sets
Dy are pairwise disjoint and their union exactly covers d,
ie.DyNDy =0 forallb#b, and |J.,D,=d.

II. GENERAL FRAMEWORK
A. Bit-Interleaved Polar-coded Modulation (BIPCM)

Bit interleaved polar coded modulation is referred to as
BIPCM. In this instance, we are dealing with the cyclic re-
dundancy check (CRC)-aided polar coding scheme, one of the
basic code construction techniques established by the 3GPP
Standard [[18]. Using polar codes as a channel coding scheme
for 5G control channels has demonstrated the significance of
Arikan’s invention [19]], and its applicability in commercial
systems has been proven. This new coding family achieves
capacity rather than merely approaching it as it is based on the
idea of channel polarization. Polar codes can be used for any
code rate and for any code length shorter than the maximum
code length due to their adaptability. In 5G new radio, the polar
codes are employed to encode broadcast channel (BCH) as
well as downlink control information (DCI) and uplink control
information (UCI). Furthermore, the transmission process is
straightforward and complies with the 3GPP standard specifi-
cations [18]].

With respect to the decoding process, several main polar
code decoding algorithms are currently used, including the
SC algorithm [19]], the successive cancellation list (SCL)
algorithm [20] [21], the CRC-aided SCL (CA-SCL) algorithm
[22] [23]], the belief propagation (BP) algorithm [24]], and the
successive cancellation with adaptive node (SCAN) algorithm
[25]. The SCL algorithm improves upon the SC algorithm
by providing multiple paths and outperforms it in terms of
performance. The CA-SCL algorithm incorporates a high-rate
CRC code to assist in selecting the correct codeword from the
final list of paths in the SCL decoder, effectively enhancing
its reliability. It has been observed that the right codeword is
usually included in the list every time the SCL decoder fails.
The performance ranking of the decoding algorithms
is as follows: CA-SCL> state-of-the-art
SCL>BP=SCAN>SC. Therefore, for improved performance,
the channel decoder technique should utilize CA-SCL
decoding for downlink (DCI or BCH) or uplink (UCI)
messages. The adoption of polar codes by 3GPP was partly
due to the well-acknowledged potential of CA-SCL decoding
to outperform Turbo or LDPC codes.



B. Bit-Interleaved LDPC-coded Modulation (BILCM)

Bit-Interleaved LDPC-Coded Modulation is referred to as
BILCM. First proposed by Gallager in the early 1960s [26],
LDPC coding has proven to be highly suitable for 5G NR due
to its advantages such as high throughput, low latency, efficient
decoding complexity, and rate compatibility. The performance
of LDPC codes in 5G NR is impressive, exhibiting an error
floor at or below the 107° block error rate (BLER), a
significant improvement over traditional coding techniques.

Furthermore, the BILCM transmission procedure is almost
identical to that described with BIPCM.

A code block is encoded by the 5G LDPC encoder accord-
ing to the procedure defined in the 3GPP standard [[18]]. At the
receiver, the LDPC decoding is performed on each code block
individually. For LDPC decoding, various techniques can be
implemented, with belief propagation (BP) methods being the
most commonly used. BP methods rely on iterative message
exchange between bit nodes and check nodes, offering near-
optimal decoding performance at the cost of computational
complexity. However, to strike a better balance between perfor-
mance and complexity, several simplified and effective decod-
ing algorithms have been proposed in the scientific literature.
One such decoding algorithm is layered message passing [27]],
which stands out as a promising approach for URLLC due to
its ability to speed up convergence times [28]], [29]], making it
a suitable candidate for short packet transmissions.

The foundations of polar and LDPC coding and decoding are
beyond the scope of this paper, but interested readers may
wish to refer to one of our prior correspondences [30].

C. Modulation and Resource Mapping

In both scenarios, the encoded payload undergoes rate-
matching and code block concatenation prior to being fed
into a QPSK modulator. This process yields a set of complex-
valued modulation symbols. Subsequently, the resource map-
ping process is executed, where one or multiple OFDM
symbols are used to allocate the modulated symbols to re-
source blocks and insert the DMRS resources. The number of
resource blocks is determined by the payload size and coding
settings. When the payload size is small, fewer resource blocks
are required, thereby maintaining a constant effective coding
rate.

Furthermore, the transmitted signal x typically consists of
data-dependent x(@ and data-independent x(P) components,
known as pilot or reference signals. The reference signals
are used to resolve channel ambiguity across time, frequency,
and/or spatial domains. Specifically, they are employed to
estimate the channel. In practice, the reference signals are
commonly interleaved among the data-dependent components.
It is notably the case in current OFDM systems. In earlier
CDMA systems, reference signals were sometimes superim-
posed on top of data-dependent signals. The number of data
dimensions is denoted by Ny, and the number of reference
signal dimensions is denoted by N,,, where Ny + N, = N.
In 3GPP standard, N is typically equal to 12K L. This
represents the number of complex dimensions or resource
elements(REs) in the physical resource blocks (PRBs). The
number of PRBs, K ranges from 1 to 16, while the number

of OFDM symbols, L, ranges from 1 to 14, and can be
increased if multiple slots are used for signaling the channel
bits. Resource elements x = {x, : n = 1,2,...,N} are
mapped onto N subcarriers such that Vn € N, UN; with
Np the set of subcarriers for DMRS and N, the set of
subcarriers for data. The assumption in this work is that the
data-dependent components x@) are generated from a binary
code whose output is interleaved and subsequently mapped
onto an M-ary modulation symbol alphabet. We will assume
that the binary code generates E bits and the interleaver
mapping is one-to-one so that E bits are also fed to the
modulator. The binary-code and interleaver combination can
thus be seen as a (E, B) binary block code. We denote the
E interleaved coded bits as ex, k= 0,1,--- , E — 1. Adjacent
log, |x| bit-tuples are used to select the modulated symbols in
the symbol alphabet. Unless otherwise stated, we assume that
Gray mapping is applied when using non-binary modulation
schemes. In instance of the quadrature phase-shift keying
(QPSK) modulation, pairs of bits e[2n] and e[2n + 1], are
mapped to complex-valued modulation symbols as follows:

%(1 +1), f (e[2n],e[2n + 1]) = (0,0)
L (—144), if (e[2n],e[2n+1]) = (0,1)
n| = V2 n
X ln] (1), if (el2n],el2n + 1)) = (1,1) vn &N
%(1—1'), f (e[2n],e[2n + 1]) = (1,0)

Likewise, it is worth examining how DMRS sequences
making up x(®) are constructed. These sequences are derived
from Zadoff-Chu (ZC) sequences, leveraging their desirable
properties in terms of ideal auto-correlation, low PAPR (Peak-
to-Average Power Ratio), constant amplitude, and their proven
standardization adoption in LTE and 5G NR. In that respect,
the DMRS sequence is defined as:

® exp | —im - %2) if N, even
xPin] = ; M) if N, odd
N, P

exp | —im

—~

VnenN,, ()

where u is the root index, which must be coprime with N,
(i.e., gcd(u, Np) = 1). The power of each DMRS sequence
is typically normalized to unity. Furthermore, in spatially
multiplexed MIMO systems, the resource mapping procedure
must account for pilot symbol allocation not only in time and
frequency but also across the spatial dimension. Specifically,
training symbols must be transmitted in a way that avoids
interference to ensure accurate CSI estimation. This requires
careful consideration of pilot allocation strategies, which may
exploit frequency orthogonality, time orthogonality, or signal
orthogonality. In this study, signal orthogonality is adopted
for the MIMO configuration. Indeed, in a MIMO transmission
system with (Nt > 1), these antennas often share the same
time-frequency resources for DMRS. To prevent inter-antenna
interference, Zadoff-Chu sequences with the same root are
orthogonalized across antennas using cyclic shifts (i.e., linear
phase rotations). Thus we define the DMRS sequence X§P> [n]
transmitted via antenna port t = 1,2,..., Nt by

XEP) [n] = <(P) [n] - exp (Z . W) . VYn € Np. 3)
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The second term e*?:("), where ¢;(n) = M , applies

a linear cyclic phase shift to orthogonallze "the DMRS
sequences across different transmit antennas. To ensure this
orthogonality, as required by the 5G standard, an additional
condition must be satisfied. Indeed, the number of DMRS
positions [V, must be at least equal to the number of antenna
ports N1, which means: Nt < N,,.

Figure [T] presents an overview of the BIPCM/BILCM pro-
cess short block uplink channels. The transmit-end procedure
includes several steps such as adding a transport block CRC,
segmenting code blocks with additional CRC attachment,
channel encoding, rate matching, code block concatenation,
and modulation. It is important to emphasize that the receiving
chain simply follows the reverse flow of the transmitter-end.

III. RECEIVER DESIGN
A. (1 x NR) SIMO Non-Coherent Fading Channel

Considering a SIMO OFDM BICM system with a single
antenna element on the transmit array (Nt = 1) and multiple
element receive arrays (Ng). The transmitted and received
signals are /N-dimensional column vectors, and thus a system
is designed in such a way that the relationship between the
transmitted and received signals is as follows:

YT:hrx+Z7’7 7’:0717"'7NR717 (€]

where z, is additive white Gaussian noise whose real and
imaginary components are independent and have variance and
h, represents the channel vector.

1) Perfect Channel State Information

In the instance of perfect channel state information, the
likelihood function is shown to be:

CI(X7 {YT'7hT'}) = p()’mhv' | X) =p(y-|x hv‘)p(hr ‘ X)' &)

If the transmitted signal x is independent of the channel
realization h,, the term p (h, | x) in (5) can be dropped since
it will disappear in (6). The likelihood function is commonly
equivalent to :

1
A (%, {yr, ) o exp (—N0|y,. - h,.x|2) . ®

Using the norm extension property, ignoring terms that are in-
dependent of x, the likelihood function then simply becomes:

2 1
10 ynbe}) o exp (NioRe(ythXT)—Nflofoﬁ‘ @
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ale;(x) =b,{yrh})= > a(x

xexi

Ay he}) (3

As is common in the case of BICM-based systems, the soft
input to the binary channel decoder is given as the log-
likelihood ratio (LLR) for the j — th coded bit, such that :

q(ej(x) =0, {yr, by })
q (ej(x) =1, {YTa hr}) .

We simplify (@) wusing a max-log approximation:
log {> ", exp (Ai)} ~ max; {\;}, resulting in (10).

Ne—1
> (=1 [ max i <Z 2Re (y,hix") - ||h, X|2>]

be{0,1} x € X
(10

This metric is typically used in Perfect CSI based receivers
as well as in conventional quasi-coherent receivers which
employs least-squares channel estimation followed by linear
interpolation, thereby replacing h with h. We consider these
receivers as a benchmark for comparison with the subsequent
proposed receivers.

Moreover, within the framework of a conventional receiver,
it is presupposed that, at the very least, the observation of a
single reference signal spans a PRB in order to generate the
coded bits corresponding to each data symbol in that PRB. In
addition, this conventional metric applies a so-called symbol-
by-symbol detection, that’s to say that each symbol is detected
independently of the other symbols. We will note this as No
CSI Conv.

2) Unknown Channel State information

Non-coherent fading channels refer to communication chan-
nels in which the fading coefficients are not known a pri-
ori and must be estimated, thereby requiring detection or
estimation techniques that do not rely on explicit CSIL. In
what follows, we describe BICM metrics for a general non-
coherent fading channel with unknown phase on the line-of-
sight (LOS) components and fully unknown diffuse (Non-
LOS) com{onents. The overall unknown channel gain is given

by h, = (/aei + VI—aht )) I, where 6, is assumed to

be i.i.d. uniform random variables on [0, 27), h'? is a zero-

mean, unit-variance, circularly-symmetric complex Gaussian
random variable and « is the relative strength of the LOS
component. The amplitude |h,.| on each receive branch is thus

N (y,) = log 9)

N(y) =



Ricean distributed. It is worth noting that the i.i.d. assump-
tion for the 6, is somewhat unrealistic for a modern array
receiver with accurate calibration. The phase differences would
be more appropriately characterized by two random-phases,
one originating from the time-delay between transmitter and
receiver and the other from the angle of arrival of the incoming
wave. The phase differences of individual antenna elements for
a given carrier frequency could then be determined from the
angle of arrival and the particular geometry of the array. To
avoid assuming a particular array geometry, the i.i.d. uniform
model provides a simpler and universal means to derive a
receiver metric.

Proposition 1. [A novel soft-likelihood metric for SIMO.]
Neglecting multiplicative terms independent of the transmitted
message, the likelihood function can be expressed as follows:

pe| o |||
axy) =[] T exp (— T
’I”:O X X
2
Bty ) 10 (227 ety

2 2(1—«
where L, = No + 2(1 — ) [x[*. B = xorvrssisy

and Io(-) is the zero-order modified Bessel function.

1)

Proof. see Appendix Section A. |
We then apply equations (8)—(9) to succinctly generate the
LLR of the j-th coded bit.

Note that in the above expressions, we do not limit
the dimensionality of the observations when computing
likelihoods of particular bits. In the original work of
Caire et al. [2f], the authors assume an ideal interleaving
model which allows limiting the observation interval of a
particular coded bit to the symbol in which it is conveyed.
For long blocks, this assumption is realistic for arbitrary
modulation signal sets and is sufficient for BPSK and QPSK
irrespective of the block length when the channel is known
perfectly. Nevertheless, practical systems usually apply single
symbol likelihood functions for short blocks and high-order
modulations. Furthermore, for the primary case of interest
here, namely transmission without channel state information,
single symbol detection is impossible. At the very least,
the observation of one reference symbol must be used to
generate likelihoods of the coded bits of a data symbol, thus
warranting the study of block detection.

Furthermore, the LLR metric calculations based on (TTI)
in the logarithmic domain can be hard to implement and
computationally prohibitive. A common simplification is the
max-log approximation. First, an exponential approximation is
applied to the modified Bessel function of the first kind Iy(z),
which results in Ip(z) ~ \/% ~ €%,

Thus the maxlog-likelihood ratio for the 7 —th coded bit is
given by (12).

Z (71)b {max(r{z d}(x,y,.)) — Z NRlogLX}7 (12)

J
be{0,1} XEXh  p=0 xex]

N(y)=

with the kernel function :

2
_olixl” 4 Be [Ty, + 2Lﬁ Ixy,|.
X

¢(X,y7») = L

It’s also worth noting that the max-log metric performs nearly
as well as the accurate log-based metric since Gray-mapped
constellations are in use. The max-log metric appears to have
a somewhat minimal impact on receiver performance when
operating with low modulation orders.

Remark 1. In equation (I2), many terms can be omitted when
the magnitude of x remains constant, as is the case for BPSK
or QPSK modulations. Additionally, in the presence of strong
line-of-sight (LOS) channels, the quadratic terms in equation
(T2) can also be skipped.

Corollary 1. Observing the structure of the metric and consid-
ering the absence of overlap between the data and the DMRS
symbols, we can easily see that the channel estimate is part of
the metric. By modeling x as a composite signal comprising
both data and DMRS in an interleaved fashion within a
common OFDM symbol, this yields: x = x(P) + x(4) where
d and p are subscripts representing data, DMRS components,
respectively. Hence, we can highlight h™S through the metric

expression:
x(P) Ty @) +x<p>*§ﬁ 4 X(‘Ngfr + x@Ty@
———
channel estimate 0 0

x®Ty®) | @Ty@

x| =

13)

o+ 0|

channel estimate

where x(p)Tygp) = (x(p)TX(P)) s = [|x®)||12his = N, phts
, p is the reference signal power and is typically normalized
to unity. The channel estimate ﬁ';s is obtained via a joint least-
squares (LS) channel estimation using averaging or smoothing
over the number of reference signals within the channel
coherence (namely here, the coherence bandwidth). In general,
the channel estimation procedure will work as usual, and the
resulting channel estimate is fed into the newly derived soft
LLR metric considered in proposition [T}

3) Joint Estimation and Detection

For the case of polar or LDPC coded data, there is a
convincing motivation to divide the coded streams into smaller
blocks for detection for some complexity reasons. Assuming
an ideal interleaving scenario with perfect CSI, detection can
be performed on individual modulated symbols. However, in
the presence of the unknown CSI , and considering joint
estimation and detection, where interleaved DMRS and data
symbols are considered, we need to deal with short blocks that
contain both data or modulated symbols and DMRS symbols.
Hence, the received and transmitted signal sets are subdivided
into smaller block segments, forming detection windows.
Phrased directly, the newly proposed metric is applied to each
group of symbols, or the so-called detection window. Noting
that, in this proposed detection approach, we do not restrict
the observation interval of a particular coded bit to the symbol
in which it is conveyed.



Proposition 2. [Block-wise joint estimation - detection. |
The proposal consists of applying an advanced joint
estimation-detection per block of M = 4 modulated symbols
forming a detection window to generate bit-level LLRs. Unlike
conventional symbol-by-symbol detection in BICM systems
where the observation for a particular coded bit is limited
to the symbol in which it is conveyed, the proposed block-
wise detection approach fundamentally leverages the statistical
dependencies between adjacent symbols. In other respect, the
LLR for a given coded bit incorporates information from all
symbols within the detection window, rather than being con-
strained to its host symbol alone, thereby improving detection
reliability.

To illustrate this statement, let x4 = {x%d) M, exM
be the candidate symbol vector corresponding to a block of
M symbols (with M = 4 in our case). Let the received
frame be denoted by Y € CN*Nr which contains both data
and reference signals. We define the data-carrying positions
(d) are divided into B non-overlapping blocks of size M,
such that: d = E—szl Dy, with |Dy| = M. For each block
b € {1,...,B}, we extract the corresponding block data
observation matrix from the received signal: Y ¥ € CM*Ne,
which gathers all received data symbols at the M subcarriers
in D, across all Ng antennas. Each block Yl()d) is processed
independently to compute the bit-wise likelihoods over the
candidate symbol vectors. More precisely, unlike symbol-
wise detection schemes, the proposed block-wise detection
computes the LLRs of coded bits by evaluating joint symbol
hypotheses over a detection window of size M. This involves
assessing all possible candidate vectors x(@ e M and
partitioning them into two subsets ((i.e., grouping vectors
where the bit is 0 vs. 1) based on the value of the j-th coded
bit. Consequently, each LLR A7 () is derived by marginalizing
the block-wise likelihood function.

Considering QPSK modulation and detection windows of
M = 4, each jointly detected symbol block has |x|* = 256
possible candidate symbol vectors in the search space, where
each candidate x(9) € M represents a distinct symbol vector.
In other terms, the detector exhaustively searches over all 256
possible symbol vector hypotheses to compute the LLRs.

The proposal is conceptually detailed in Algorithm 1.

B. (N1 x NR) MIMO Rayleigh Block Fading Channel

Consider a SU-MIMO transmission model with Nt transmit
and Ng receive antennas operating over a quasi-static, flat-
fading channel. We assume no inter-symbol interference (ISI)
and consider a time-invariant configuration, making it feasible
to use the standard baseband complex-valued representation.
Let H, ,. represent the complex-valued path gain, serving as the
fading coefficient from transmit antenna ¢ to receive antenna
r. At any given time instance, the complex-valued signal
x{x1,Xa,...,Xn; | X € CY*NT} are transmitted through the
Nt respective antennas. The received signal y belongs to the
complex vector space C'*Nrk z ~ C!'*Nr js the additive
white Gaussian noise with independent real and imaginary
components, each having a variance of o2 in every dimension,

Algorithm 1: Block-wise Joint Estimation-Detection (SIMO)

1 Input: Received frame: Y € CN*Nr  Data and DMRS indices:
(d), (p), Candidate list size: L = |x|™, Candidate symbol set
tensor: X (@) e xM XL Adjustable parameter: c, noise power: N

2 Output: LLR vector A(y(®)

3 for each block b=1,...,B do

4 Extract data observations over blocks:
5 Let idxp = [(b— 1) M 4+ 1 : b M] then,
6 Set: Y\ = Y@ (idx, : ) € CM*Nk,
7 Set: yl(:l = Yéd)(:,r) € CMx1,
8 Step 1: Joint Channel Estimation
9 for each antenna r = 1,...,Ng do
10 Extract DMRS observations: y» = Y ®)(:,r) € CNpx1
11 Compute the direct channel estimate:
12 Npﬁ];S = x(p)fyip)
13 Step 2: Likelihood Function Processing
14 for each candidate index c =1,...,L do
15 Set candidate symbol vector: xﬁd) =X, )
16 Compute aggregated received signal energy:
N - )t (d)]?
17 S, = Zril ’Nph];s + xg )Tyl(a,z
18 Set: Ly, = No +2(1 — a)[|x? 12,
. — 20—
19 Set: Bz, = NoLo.
20 Evaluate the likelihood function: q(x&d),yéd)) =
()2 -
o (—BE g s ) o (2E)
21 Step 3: Joint Detection
2 for each bit index j = 1,..., M - logy |x| in the block do
23 Compute the LLR of coded bit e; € {0, 1}:
) __j q(xgd),yf,d))
u Aj(yy") = log 20—
Zx(d)e jaxe Ly, )

25 Step 4: Concatenate the block-wise LLR vectors
d d d
return A(y@) = [A{?), AY), . A

[
N

and the channel matrix is denoted by H € CNT*Nr  The
MIMO channel model is succinctly expressed as

y =xH + z. (14)

However, the system model given in (14)), which describes
transmission during a single symbol interval, can be extended
to multiple consecutive transmissions. Consider N consecutive
transmitted vectors {x1,Xas,...,Xy}, where N denotes the
total number of symbol intervals.

For notational convenience, we organize these vectors into ma-
trices as follows: X = [x1,Xp,...,xy] € CNNe| Y =
iy ....yn]T € CVNe . Z = [zy,2,,.. 2y €
CN*N&  The MIMO channel model can then be compactly
expressed as

Y = XH + Z, (15)

where H is assumed to be constant over the N symbol inter-
vals or the N-symbol block and changes independently across
blocks. We adopt a wide assumption regarding H ~ CN(0, 1),
which is that its entries, H,,, are statistically independent
for the sake of simplicity. Accordingly, the complex-valued
fading coefficients H;, can be treated as independent zero-
mean complex Gaussian random variables with unit variance.
Therefore, the MIMO channel model can be referred as



the identically and independently distributed Rayleigh fading
channel, or more precisely, the Rayleigh block-fading. Both
the fading coefficients and the noise follow complex Gaussian
distributions. Thus, conditioned on the transmitted signal X,
the received signals are jointly complex Gaussian. In other
terms, the received signal is zero mean E{Y|X} = 0, circu-
larly symmetric complex Gaussian with a N x N covariance
matrix ®y, concretely.

Hence, the likelihood function or conditional probability
density is simply given by :

exp( tr{Y‘I) 1Y‘L})

Y |X) =
p( | ) WNXNR detNR (@Y)

(16)

We will proceed by following the steps below to derive the
detection metric. Consequently, to determine the formulation
of the covariance matrix, ®y, we shall invoke the subse-
quent theorem [31, Sec. 2, Th. 2], stating that for any A
an arbitrary M x N complex matrix, and let R = AW,
where W~ CN(0,I), meaning that Wy,... Wy, are
independent and identically distributed with independent real
and imaginary parts, then: & = E[AWWTAT] = AAT
Therefore, R ~ CA/(0, AAT).

Stated directly, the covariance matrix can then be expressed
as follows:

&y =E{YY'},
—E{(XH + Z) (XH + Z)'} = E{XHH'X'} + E{ZZ!}, (17)
=X E{HH'} X' + E{ZZ"} = XX 4 N,I .

This expression of the covariance matrix is commonly encoun-
tered in the literature [32] [33].
Next, the determinant of ®vy is shown to be:

H No + An)

where )\, are the eigenvalues of XXT. Furthermore, the
covariance matrix ® involves the addition of two matrices,
making it amenable to the application of matrix inversion
lemmas such as the Sherman—Morrison—Woodbury formula, or
more generally, the Woodbury matrix identity [[34]], to compute
the inverse of the covariance matrix &3 = (NoI + XXT) -t

det ®y = det (NoI + XX1) = (18)

(A+UCV)1:=A~1— AU (C'+ VA'U) ' VA, (19)
where A, U, C, and V are matrices with comfortable dimen-
sions: A is an x n matrix, Cis a k x k matrix, Uisan x k
matrix, and V is a k X n matrix.

Saying A=NgI, C=1I, U=X, V=X then,
&' =(A+UCV)"
=Ny 'T— Ny X [NoI + XTX] ' X,
=Ny'I-Ny'XDX'!, where D =

(20)
[NoI+XTX] .

The likelihood function q (X,Y)
as follows:

q(X,Y) = £ exp (—tr {Y'®,'Y})

le exp (
1 1 2n
. _ T 1 — T
=i exp( tr {Y (NOI NOXDX )Y}) R

= p(Y|X) can be stated

where Ly = 7V *Nr det"® (NoI + XXT).
Ignoring the multiplicative terms independent of X,
reduces to:

(X, Y) x Lixexp (Notr{(XTY)TD (XW)}) . 2)

As described in (T3), we can incorporate the channel estimate
into the metric to take the full merit of the JED principle. For
this purpose, we simply rewrite X = X 4+ X(P) Then, we
can reveal Hyg in the metrics:

Xty = XOTy® 4+ x@O'y@ = ¢+ XOTy©@

channel estimate

(23)
where C., = X®TX®) o Hi« — XOy® .

p = given that Hyg = <o Tx® - Lhis
channel estimate is obtained via a joint least-squares (LS)
channel estimation using averaging or smoothing over the
number of dimensions exhibiting channel coherence.

Proposition 3. [A novel soft-likelihood metric for MIMO.]
Consistent with the above derivation steps, the proposed
likelihood function for joint estimation - detection over MIMO
Rayleigh block fading channel can be subsequently formulated
as follows :

~ T
q(X,Y) = 1 exp ! (CPHLS + X(d)TY(‘D)
L PN " (24)

D (CpﬁLS + X(d)TY(d)) }) .

Then, the likelihood of the coded bit e; s.t. b € {0, 1} is

given by
>

X e x{;
The LLR bit metric for the 7 — th bit in BICM receiver is
a(e;(X) = 0,Y)
q(e;(X) =1,Y)

To ease the process of implementing such a LLR bit metric
in (26), one may use its max-log approximation version given
in 27).
AM(Y) = > (-1)"|maxI'(X,Y) = ) logLy|.
be{0,1} Xex; Xexd

q (ej (X> =0, Y) = q (XvY) . (25)

A (Y) = log (26)

27

with the score function or max-log decision metric

P(X,Y) = o 6 (C,His + X1 Y@) D (C, s + XD Y@) |,

Remark 2. For a MIMO system with Nt transmit antennas
employing block-wise detection (block size M) and QPSK
modulation (|x| = 4), each antenna’s symbol vector is
selected from |x|* possible candidates. The joint search space
across all Nt antennas then expands to (|x|" )NT possible
combinations - computationally expensive but optimal (ML
joint detection). However, under the assumption of no spatial
correlation, the search space can be processed independently
for each of the N1 streams. In this case, each transmit stream is
detected independently without inter-antenna joint processing.
This stream-wise implementation reduces the computational
complexity from exponential to linear scaling with respectt
to Nt, requiring only Nt x |x|™ total candidates. This



per-stream block-wise joint detection approach demonstrates
somewhat significantly reduced complexity compared to full
joint detection (i.e., joint-stream block-wise detection).

Algorithm 2 outlines this stream-wise implementation of

block-wise JED for spatially multiplexed MIMO systems.
Algorithm 2: Stream-wise Block-wise Joint Detection (MIMO)

1 Input: Received frame: Y € CNXNRr Data and DMRS indices:
(d), (p), Candidate list size per stream: L = |x|,
Candidate symbol tensor: X (9) g xLxMxNt where each
candidate block X<d)(c, ;1) € xM,  Noise power: No

Output: LLR vector for all coded bits: A(Y ()

begin

Step 1: Joint Channel Estimation (LS)

Extract DMRS-based LS estimate for each transmit antenna
t=1,...,Nt:

6 Hyg(t,:) = —[X(p)(:’f)]fy(p) ,

[x® (0] [x® 0]
7 Compute MMSE equalizer once:

w=(H.H NoIy,) | HI
8 —( Ls Hrs + No NT) Ls-

9 Step 2: Stream-wise Block Processing

7 I ¥

Hep(t,:) = [XP(, 0] Y®).

10 for each transmit stream t = 1,..., Nt do

1 Extract equalizer vector wy = [W (¢, :)]T,

12 and compute effective noise:Ngi)eH = Np [|w:]|?.
13 For each block b=1,..., B:

14 Compute block-index range and extract data block:

15| Setidwy = [(b—1) M +1:bM], then Y. = Y@ (idxy, :).

16 Equalize data block : )~(l(7d) = YZ()d) W (size: M x N1).

17 Extract stream-¢ component and form intermediate observation:
d < (d 3

s | Y =X 1) [Hps(t,0)] € CMxNe,

19 Step 2.1: Likelihood Function Evaluation

20 for each candidate index c =1,...,L do
2 Let X{9(:,t) 2 X (c,:,t) € xM¥1.
2 Compute: A(t,:) = Heop(t,:) + [Xg‘”(:,t)} t Ygdg.
N-1
3 Compute D(t, t) = (Ngfiﬂ + XD 0]" X9, t)]) .
24 Compute the metric core function and Stabilize:
% P (1), YY) = & SN, AT(t, ) D(t, 1) A7)
26 Evaluate likelihood metric:
(d) (d) eXP(F(XEd)(Ht%Y(d)))
27 Q(Xc (:,t),th) = - bt \NR
’ wMNR det(NgflffIM+[XS;’>(:¢)} [X(Cd)(:,t)}])
28 Step 2.2: LLR Computation
29 for each bit index 5 = 1,..., M log, |x| in block b do
30 Compute the LLR of coded bit e; € {0, 1}:
(d) (d)
. Xe ' (5t),Y
(b)) Zxﬁd)(:,t)ex{, q( (58),%5 1)
3 AT =log 5 XD Cox @
i X exd K GO
32 | Store {A®D)} as the LLR vector for stream ¢, block b.
33 Step 3: Concatenate All LLRs
34 A(YD) =AY AMLB) A@RD A@B) AN ANT-B)]

AD) A2
5 return final LLR vector A(Y<d))

w

IV. NUMERICAL RESULTS

For illustrative purposes, we consider two distinct configu-
rations: (1 x 4) SIMO BICM, and (4 x 4) MIMO BICM.
The subsequent figures illustrate the performance of BIPCM/-
BILCM with joint estimation and detection using the proposed
block-wise joint estimation—detection metrics under various
channel conditions. The evaluation highlights performance
differences across three scenarios: Perfect CSI or ideal or
coherent receiver, No CSI JED using the block-wise(M = 4)
joint detection approach, and No CSI Conv, using conventional
symbol-by-symbol detection.

The simulations employ NR POLAR and NR LDPC coding
schemes paired with QPSK modulation. The transmission
involves a transport block of 48 bits. The resource allocation
procedure uses a single OFDM symbol with 48 resource
elements spread over 4 PRBs (comprising 32 REs for data
component and fewer REs for DMRS component).

A. Performance Analysis

1) SIMO Non Coherent Fading channel

The results illustrated in Figure [2a] Figure [2c] delineate the
performance of the (1 x 4) SIMO BICM systems, with joint
estimation and detection, over LOS channel (o« = 1) and
rayleigh fading channel (o« = 0), respectively. This evaluation
is aiming to discern the performance disparity between the
Perfect CSI and No CSI conditions, particularly in coverage
scenarios characterized by low signal-to-noise ratios. More-
over, we explore the most challenging situation where the
DMRS density is very low, in order to show how robust the
proposed receiver metrics can be compared to the conventional
ones. To do this, we consider a single DMRS symbol across
the entire coherence bandwidth or, at the very least, across a
PRB. In this way, two structures of the conventional receiver
are considered: (No CSI Conv., LS CE + Interpol.), where least
squares channel estimation is followed by linear interpolation,
and (No CSI Conv., LS CE + Avg.), where channel estimation
is performed by averaging over the DMRS symbols for a fairer
comparison with the proposed JED receiver.

Figure [2a] illustrates the performance over a pure LOS
channel (o« = 1) under 5G polar coded modulation. The JED-
based receiver achieves a performance gain of 3.75 dB and
0.75 dB compared to the conventional receivers at a BLER
threshold of 1%. However, a gap of approximately 0.5 dB
remains between the JED receiver (with M = 4) and the
perfect CSI receiver.

Similarly, Figure [2b] shows the performance under 5G LDPC
coded modulation. The JED-based receiver provides a perfor-
mance gain of 3.5 dB over the conventional receiver (No CSI
Conv., LS CE + Interpolation) at the same BLER threshold.
To further highlight the advantage of the JED receiver over
the conventional receiver, Figure [2b] depicts performance over
a pure Rayleigh fading channel (a = 0) under 5G polar coded
modulation. Here, the JED-based receiver (M = 4) achieves a
gain of 2.75 dB with respect to the conventional receiver (No
CSI Conv., LS CE + Interpolation).

In addition, the Figures also includes finite blocklength
bounds, integrating both converse and achievability results for
a comprehensive comparative analysis. References are made
to the scholarly works [14]], [[17] detailing the metaconverse
(MC) and Random Coding Union (RCU) bounds employed.
Indeed, The RCU provides an achievability bound and gives
a practical estimate of how well a communication system
can perform at finite blocklength. It estimates the error prob-
ability of a random code at a given blocklength, rate, and
SNR. Conversely, the meta-converse bound establishes a lower
bound on the minimum achievable error probability for any
coding scheme. In other words, it complements the finite
blocklength achievability bound by setting a benchmark for the
best possible performance, ensuring that practical systems do
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bounds, DMRS power Boosting via a scaling factor 3.

not overestimate their capabilities, which justifies its inclusion
in the graphs.

As shown in Figure 2a] the Gallager parameter s is numerically
optimized (i.e., s — s*) to maximize the RCU bound and min-
imize the meta-converse Verdi-Han bound (i.e., the tightest
bound), where s* corresponds to the saddle point. Conversely,
in Figure no optimization of the Gallager parameter s is
performed; instead, a fixed value of s = 1 is chosen, resulting
in a more relaxed constraint.

Next, Figure 2d| compares the performances under a TDL-
C Non-Line-of-Sight (Long Delay Spread = 300 ns, urban
macro, Sampling rate f; = 30.72 MHz) channel configuration
with 4 receive antennas. The antenna ports were subjected to
independent and identically distributed realizations, with no
correlation modeling applied. Indeed, the TDL-C, is a 3GPP
reference channel model characterized by its long delay-spread
and emphasis for non-MIMO evaluation scenarios [35]. It
models a multipath-rich environment where no dominant direct
path (LOS) is explicitly present. Specifically, the TDL channel,
being purely NLOS, behaves like a multi-tap Rayleigh channel
where all taps are statistically distributed as independent and
random Rayleigh fading. Consequently, we implement the
proposed metric by setting o« = 0 in our simulations. Since
the TDL-C channel is frequency selective, channel estimation
using the least squares method followed by interpolation is
typically required to better track channel fluctuations. How-

ever, it is important to recall that for the JED receiver under
consideration, no interpolation is performed. Instead, a least-
squares (LS) estimation is conducted, followed by averaging
over the dimension of DMRS symbols, before incorporating
the resulting channel estimate into the soft detection metric.

Furthermore, Figure [3] displays LLR distribution charac-
teristics shown via histograms at SNR = 0 dB for the No
CSI Conv., the proposed No CSI JED (M = 4), and the
Perfect CSI receivers. It should be noted that LLR values
represent the confidence level in binary decisions (bit = O or
1) after demodulation. An LLR value = 0 indicates significant
uncertainty or ambiguity in the binary decision, whereas values
> 0 or < 0 correspond to high-confidence decisions (bit =
1 or 0, respectively). The histogram shapes thus reflect the
quality of information provided by each receiver. The No CSI
JED (M = 4) receiver exhibits a bimodal histogram with
peaks near —3 and +3, showing well-separated LLR values
that correspond to more confident and accurate decisions. This
strongly suggests effective receiver operation without explicit
CSI, further supported by the close similarity between its
histogram and that of the ideal receiver. The discrepancy
between the ideal receiver and the proposed one can be
explained by the fact that the simulations are conducted under
low DMRS density scenarios (i.e., | DMRS per PRB). In other
respect, only fewer resource elements are allocated to DMRSs.
This helps to some extent reduce the additional transmission
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overhead inherent in dense DMRS-assisted schemes.

Lastly, To fully exploit the performance potential of the
JED receiver, we explore extra enhancement strategies. There
are two possibilities: (a) DMRS densification, and (b) DMRS
power boosting. If a certain sweet pot in terms of DMRS
density per PRB cannot be found, increasing DMRS density
inherently introduces additional transmission overhead. There-
fore, the ideal approach is to prioritize transmission with low
DMRS density just to bootstrap the JED receiver, followed
by DMRS power boosting. Indeed, DMRS power boosting
was extensively discussed in our prior correspondence [5],
particularly in scenarios where reference and data symbols are
jointly conveyed in common OFDM symbols. Conceptually,
envision the signal as comprising a data component and a data-
independent component, or pilots, in a frequency-interleaved
fashion. To enhance the power of pilot signals within an
interleaved set, scaling the power of DMRSs while keeping
the data signals unchanged or constant is crucial. Put simply,
the boosted transmitted signal, denoted as Xpoosteq, 1S then
defined as Xpoosieqa = X + 8 x(P). The adaptive power
adjustment procedure is contingent on (3 values and aims to
increase the power or strength of the pilot signals within the
composite signal. Care should be taken to select an appropriate
value for 3 to achieve the desired power augmentation without
introducing distortion or signal saturation. To comply with
potential radio frequency constraints, S must be perfectly
calibrated. Consequently, optimal performance enhancement
is achieved when f is set to 1.75 (corresponding to a 75%
increase in DMRS power w.r.t. its initial value). For instance,
Figure [2a] shows that the proposed JED-based receiver delivers
an additional gain of approximately 1 dB, approaching the
performance bound of the ideal receiver. Overall, the im-
plications of slightly adjusting the DMRS power within the
3GPP standard are significant. Specifically, it is feasible to
allow the user equipment (UE) to adjust the power allocation
between the DMRS and data transmission. This flexibility in
adaptive DMRS power adjustment is somewhat transparent to
the receiver.

2) MIMO Rayleigh Block Fading Channel

In previous simulations, we considered a low-density DMRS
scenario with 1 DMRS per PRB. However, for MIMO cases,
we increased the DMRS density to 4 per PRB. Indeed, channel
estimation quality depends on the total number of DMRS
resources per antenna stream not just on having orthogonal
sequences. For a (4 x 4) MIMO configuration, 1 DMRS per
antenna (stream) is insufficient to properly estimate all four
channels. Multiple DMRS (e.g., 4) per antenna are required
to ensure stable channel estimation. While a single orthogonal
DMRS sequence can uniquely identify each antenna’s channel,
it does not provide reliable estimation, as it remains sensitive
to channel variations, noise, and interference

Figure [54| illustrates the performance over a (4 x 4) MIMO
Rayleigh block fading channel under 5G polar-coded modula-
tion. The JED-based receiver achieves a performance gain of
approximately 2.75 dB compared to the conventional receiver
at a BLER threshold of 0.1%. However, there remains a
performance gap of about 1.75 dB between the JED receiver
(M = 4) and the ideal or Perfect CSI receiver

Similarly, Figure [5b| shows the performance under 5G
LDPC-coded modulation. The JED-based receiver provides a
gain of approximately 2 dB over the conventional receiver, and
the gap between the JED receiver (M = 4) and the perfect
CSI receiver is around 1.75 dB.

Therefore, it can be remarkably asserted that the advanced
JED-based receiver outperforms the conventional counterpart
and demonstrates greater resilience under imperfect channel
estimation.

B. Complexity Analysis

The complexity of the detection metrics is analysed using
Monte Carlo simulation. The execution time highlights the
time elapsed between the input and output of the demodulator,
concisely, until the LLRs are generated. It is relevant to pin-
point the block size range wherein complexity is relatively low
compared to conventional metrics in order to establish a better
trade-off between performance and complexity. Analytically,
within a very short block regime(.i.e, small input symbol
size), the conventional and JED receiver metrics will almost
close. Considering the JED Metrics proposed in (TI), we
observe a quasi-linear complexity as a function of the input
symbol size applied at the demodulator level, namely here
n = {12,24,32,48,100}. Based on the average time com-
plexity curves on Figure[d] the complexity of the JED(M = 4)
receiver is of the form Ve € (0,1),3 a € Ry tel que
T(n) = an'tc = O (n'*e).
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Fig. 4. Average Time Complexity of the proposed SIMO JED metrics vs
Conventional metrics.

At n = 32 for example, as in our simulations, the con-
ventional receiver metric is around 39x faster in terms of
detection than the JED (M = 4) metric over pure LOS
condition (o« = 0) in log domain versus 25X against its
max-log domain version. This makes the JED metric in max-
log domain about 1.5x faster than the log-domain version. It
should also be emphasized that by also increasing M (e.g.,
M = 8), we’ll expect the complexity to escalate, making the
JED approach difficult to handle.
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Fig. 5. Block Error Rate, 48 bits(TBs+CRC), NR POLAR BICM (CRC-aided successive-cancellation list decoder, List length=8), NR LDPC BICM (belief
propagation decoder, iteration=30) QPSK modulation, 1 OFDM symbol, 4 PRBs, 48 REs (32 data, 16 DMRS), (4 x 4) MIMO.

C. Current Limitations and Future Work

This proposed joint detection approach has inherent lim-
itations. It becomes computationally prohibitive for higher-
order modulation schemes like 16-QAM (where |x| = 2%).
With a joint detection block size of M = 4, this would
require processing |x|" = 65,536 possible symbol vector
combinations, which is computationally intractable. In such
scenarios, reducing the detection block size (e.g., to M = 2)
becomes necessary to maintain feasible complexity.

V. CONCLUSIONS

This paper has introduced enhanced BICM receiver metrics for
joint estimation—detection in short blocklength transmissions,
specifically targeting scenarios with unknown channel state
information and limited or sparse training resources. Through
block-wise joint estimation—detection, we demonstrate signif-
icant improvements in performance and sensitivity compared
to conventional receivers. Our analysis, conducted using full
5G transmitter and receiver chains with both Polar and LDPC
coded transmissions under QPSK modulation, shows that
even when reference signals are interleaved with coded data
over a small number of OFDM symbols, precluding near-
perfect channel estimation. Unlike conventional symbol-by-
symbol detection in BICM systems, where the observation
for a given coded bit is confined to the symbol in which it
is conveyed,the proposed method performs block-wise joint
detection over a sliding window of adjacent symbols to
fundamentally leverages their statistical dependencies; that is,
the LLR for each coded bit incorporates information from
multiple symbols rather than being confined to its host symbol.
Performance evaluation in SIMO and SU-MIMO configura-
tions confirms the effectiveness of this strategy in realistic
base station receiver scenarios. Notably, detection windows
spanning approximately four modulated symbols allow the
proposed receivers to substantially outperform conventional
ones, achieving detection performance approaching that of
coherent receivers with perfect CSI. Overall, the presented
joint estimation—detection strategy built upon an enhanced
likelihood metrics offers a significant advancement in receiver
design for BSG/6G, especially in highly dynamic or resource-
constrained environments.

APPENDIX
A. Metric derivation for non-coherent fading channel

Assuming that 6,. is unknown and randomly distributed over

[0,27), the conditional probability density function is de-
fined as

2
At = gaog [ o0 (50 Wk o g
@y, — ufx,0.))) a0,

Saying p{x,6,} = \/ael’x, then

1 27 ) t
= — _ JOr
q (X7 YT) 27 det @ /O exXp ( (yr \/&6 X)
(29)

o1 (yr — \/aej‘g’“x)) dé, .

DN =

Covariance Matrix:
Knowing that y, — y/ae?? x = /1T — ah; yx + z;, then

o=k [(mhgﬂx +2,) (VI—ahx + zi)*] ,

= (1 —a)xx'o} + oI, where 07 = 1,
(30)
Determinant:

det ® = det ((1 — a)xx! + o?1), 31

=det (o2 + (1 — a)xxT) , Gl
Lemma 1. [36l Sylvester’s determinant identity].
when we have a matrix of the form: A = B + uv’, where
u and v are column vectors, we can apply the determinant
formula for a matrix perturbed by a rank-1 term (i.e., the
rank-1 matrix determinant formula or Sylvester’s determinant
Lemma), where B is an invertible square matrix of dimension
N x N, u and v are complex column vectors of dimension
N x 1, and uv' is thus a rank-1 matrix. The determinant of
A is given by:

det(A) := det(B) - (1 +vIB~'u). (32)



Regarding the Sylvester’s determinant Lemma, (31) then
becomes,

1— T
det@<k¢(o§1p(1a)xxf)03N’<1%(aﬂxx>7

2
0z

. 2
_ o (Hu )l )
g

z

<1+ (1—§3||x||2> |

1 N N—-1
= ¢ (No+2(1 — a) x|, where ¢ = <20) |

o No + 2(1 — a)||x||*.
(33)
In what follows, we will pose Ly = Ny + 2(1 — o)||x|*
Inverse of ® :
The covariance matrix ® involves the addition of two matrices,
which is amenable to consider the use of matrix inversion
lemmas, Sherman-Morrison-Woodbury formula, or simply the
Woodbury Matrix identity.
Lemma 2. [34) The Woodbury Matrix identity].
(A+UCV) ' = A'—A'U(C™' + VA'U) ' VA,
(34)
where A, U, C, and V are matrices with comfortable dimen-
sions: A is a n x n matrix, C is a k x k matrix, Uisan x k
matrix, and V is a k X n matrix.

Note that, here, we have a special case where V, U are
vectors, consequently rank{xx} = 1.

Saying: A=0¢’1 C=(1-a)I U=x V=x.
(35)
= (A+UCV) ",

2 2 + (36)
= —J-—x 5 | x".
Ny Ny No + 2(1 — ) ||Ix]|

. _ 2(1—a) -1 _ 2
Saying 3, = oMo 2T then @~' = & — 2x6,x7.

Likelihood function ;
1 4 1 ) i 2
- __ _ JOr R
qa(xyr) = 55 /0 exp < 5 (yr — Vae''rx) <No
—2xﬁ$xT) (yr — \/&ejerx)) dé,,

1 n 1 0,12
= o detd /0 exp <_No Hy, — \/aejngH

8. | (31— vae ) x| o

(37
Extending the terms into the exponential, ignoring those that
are independent of x, the likelihood function is equivalent to

_ 1 ! )
q(x’yr)deetQ)eXp< o || (No 5z><)
27
2 1
eltn”) [ o (248 (5 - o)
0 0
Ixy,|cos (¢; + 6,)) db,.
(38)

us

1
knowing that f/ exp(zcos(v))de = In(z) [37].
7

»=0

_ 1 2 1 2
atewn) = g o (ol (g - 2 I?)
fo |2 1 2 |t
+Bx‘X yr‘ ) x2m x Iy | 2va N—O—ﬁw 1%l |x y,«| ,
1 2 (1 2 2
— g o (ol (g = 2 el + 52 v )
1
X IO (2\/& (N - ﬁm X|2> |XTyr’) .
0
(39

Then after ignoring multiplicative term that are independent
of x, it comes

1 2 1 2
q(x,ynochexp( ox] (N ﬂux)
to |2 1 2\ [t

e ety ) xTo (2va (o = el ) ey )

(40)
Expressing 5, w.r.t. Ly, we have the relation
5, = 2(1 - ) ~2(1-a)  L,—Ng
T No(No+2(1—a)|x|?)  NoLx [x||*NoLy
_ L, Ny _ 1 1
el * NoL  [lel|* NoLyc  [lxl|*No ||| * Lc
(4D
a(x,yr)

= o (ol (5 - G — e )
+ B [xty, ) To (Wa (1\;0 - (JJXHLNO
MLLX)W) Ixfyr|> :

(42)
Thus the likelihood function is simply:
1 o ||x|? 2
q(x,y,) = — exp (— IxI” g, "y, )
L, L,
(43)

2/«
X IO (LX ’xTyT’) .
B. Finit-Blocklength Bounds

Herein, we present the finite-blocklength information theory
tools. An outer bound, derived from the metaconverse theorem
(cf. [14, Th. 28]), is introduced, while an inner bound is
established using the RCUs bound [[17, Th. 1].

Theorem 1. [17, RCU bound, Th. 1].
Let denote the random vectors via X = [Xy, Xo,...
and their vector realizations via x = [X1,Xa2,...,XN].

XN,



To set the achievability bound, let define the generalized
information density as

_axy)
Ela(X,y)"]
In the domain of information theory, the Gallager exponent,
represented by s > 0, characterizes a pivotal factor. The expec-
tation relates to the random vector X’ having N-dimensional
ii.d. components. Over a memoryless channel, the decoding
metric q (x,y) = Hfj:l q (Xn, ¥n ). The random coding unions
(RCUs) posits that, for a specified rate R, the upper bound

on the average error probability is defined as:
e < inf B [ b)) (45)

s>

15 (x,y) = In (44)

where [u]" := max(0, u).
The maximum likelihood decoding metric is shown to be
a(x,y) = pyx,u (¥ | x,h). Thus, the underlying decoding

metric is expressed as q(x,y) o« exp —N%Hy — hx||?).
Theorem 2. [14, Metaconverse (Verdi—Han) bound, Th. 28].
To set the converse bound, consider :
q(x,y)° 1

T~ el)s ;Zs (x,y)
Elq(X',y)’]

Subsequently, for a given rate R, the lower bound on
the average error probability is given as follows.

Js (x,y) =In (46)

6A7R><N'

¢ = supmax P [, (x,y) < Al - (47)

s>0
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