

LAAS

OASIS: An Intrusion Detection System Embedded in Bluetooth Low Energy Controllers

Journées du GDR - 11 juin 2024

Romain CAYRE - Vincent Nicomette - Guillaume Auriol - Mohamed Kaâniche - Aurélien Francillon

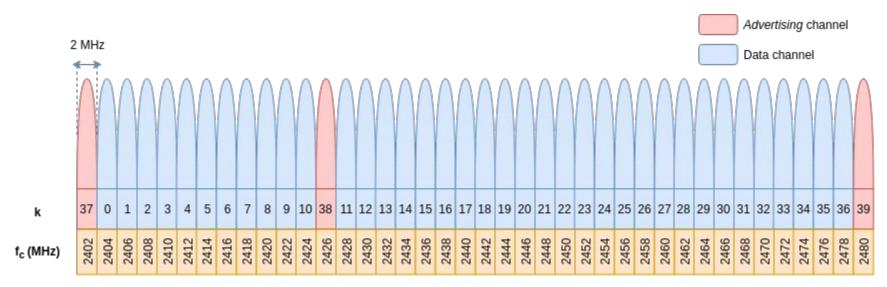
romain.cayre@eurecom.fr

Romain CAYRE

- Assistant professor (Software and System Security group S3) at EURECOM (Sophia Antipolis).
- Former PhD student of LAAS-CNRS and Apsys.Lab (Toulouse).
- My research thematic is focused on embedded security and wireless security for Internet
 of Things, both from an offensive and defensive perspective.

- Introduction (context & prerequisites)
- Embedded software & framework design
- Detection modules
- Experiments: detection & performance
- Conclusion

INTRODUCTION



- Lightweight variant of Bluetooth BR/EDR, introduced in version 4.0 of the specification,
- Optimized for low energy consumption,
- Low complexity protocol stacks,
- **Deployed in billions of devices** (smartphones, laptops, smart devices, ...)

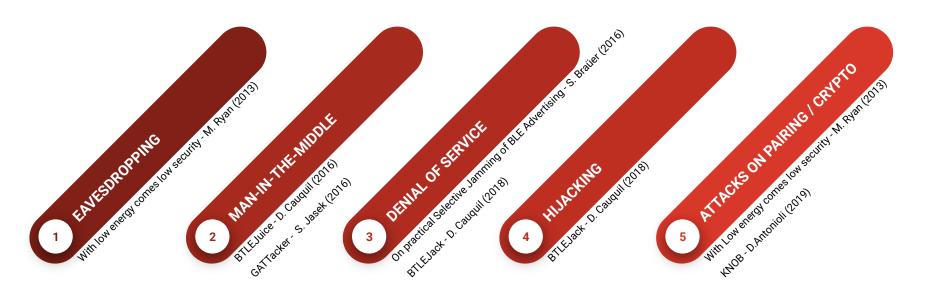
BLUETOOTH LOW ENERGY

Advertisements

BLE connection

Master (Central)

Slave (Peripheral)


Advertiser

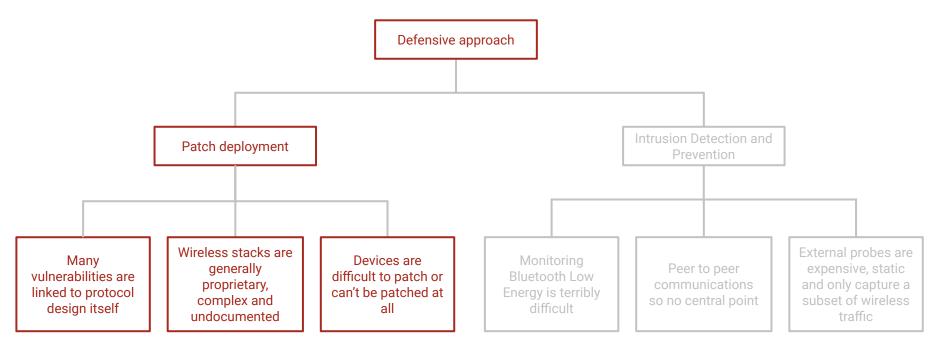
OVERVIEW OF BLUETOOTH LOW ENERGY SECURITY

In the recent years, many critical vulnerabilities targeting Bluetooth Low Energy have been found and released publicly (InjectaBLE, Gattacker/BTLEJuice, BTLEJack, etc).



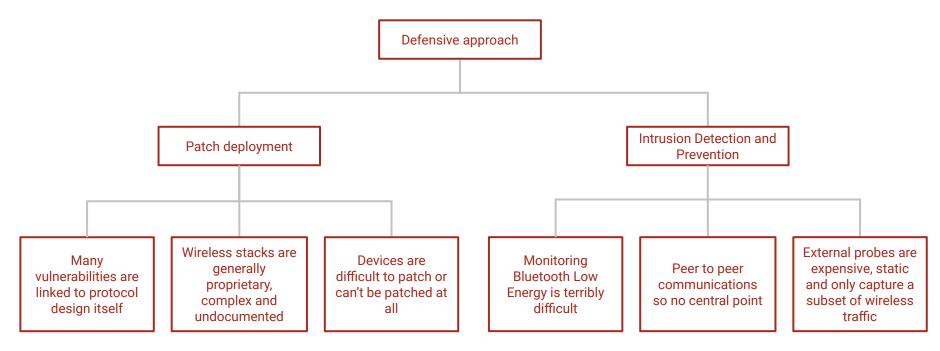
DEFENSIVE MECHANISMS

Building a relevant defensive approach is very complex:



DEFENSIVE MECHANISMS

Building a relevant defensive approach is very complex:



DEFENSIVE MECHANISMS

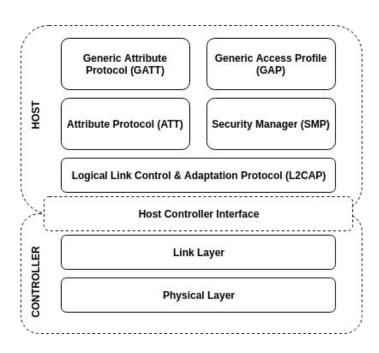
Building a relevant defensive approach is very complex:

STATE OF THE ART

		BlueShield [36]	MARC [39]	HEKA [23]	I.S. IT [32]	MiTM ML [21]	
Online Detection Extensible IDS Mobility		~	~	×	~	×	
		×	×	×	×	×	
		×	×	×	×		
	Scope	Stationary Networks	Medical	Medical	Beacon Tags	Generic	
Detected Attacks	BTLEJuice	~	×	~	×	~	
	GATTacker	~	~	×	×	~	
	InjectaBLE	×	×	×	×	×	
	BTLEJack	×	×	×	×	×	
	KNOB	×	×	×	×	×	
	Device DoS	×	×	~	×	×	
	Replay	×	×	~	×	×	
ë	False Data injection	×	×	~	×	×	
О	Physical Intrusion	×	×	×	-	×	
Modes		Adv.	Adv.	Conn.	Adv.	Adv. / Conn.	
- 1	Features collection	Static Probe	Static Probe	Manual	Static Probe	Manual	
Feat.	Advertising	4/4	3/4	0/4	0/4	0/4	
	Connection	0/4	0/4	1/4	0/4	0/4	
	Metadata	3/7	1/7	0/7	1/7	3/7	
Implementation available		~	×	×	×	×	

- Few papers in Intrusion Detection for Bluetooth Low Energy
- Existing approaches are:
 - based on external probes and inherit the limits of BLE sniffers (or ignore the problem)
 - o generally focused on **spoofing attacks** targeting the **advertisement phase**
 - o **not reproducible** at all or **based on deprecated tools** and **libraries** (Ubertooth One, python2)

APPROACH OVERVIEW



- Deporting intrusion detection to the nodes themselves, solving issues linked to the difficulty of monitoring the protocol and the partial perception of external probes.
- OASIS: modular framework, enabling easy development of small detection modules in C language without the need to reverse-engineer controller firmwares.
- Implementation on massively deployed controllers from **Broadcom**, **Cypress** and **Nordic SemiConductors**.
- A first step towards the development of a **distributed**, **decentralized intrusion detection system**, particularly suited to IoT constraints.

APPROACH OVERVIEW

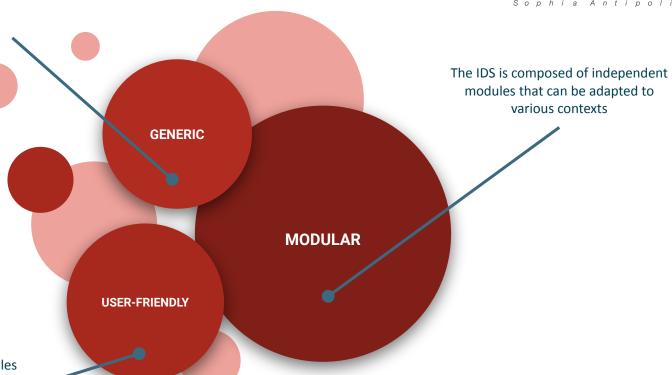
Objective: Controller instrumentation

- Access to Link Layer traffic
- Access to low-level indicators (RSSI, CRC, timestamps, ...)
- Allows detection of attacks targeting upper layers
- Strategic position for intrusion prevention

Challenges:

- Proprietary protocol stacks implementations (requires reverse engineering),
- Heterogeneous architectures,
- No mechanism to add defensive code,
- Strong timing constraints.

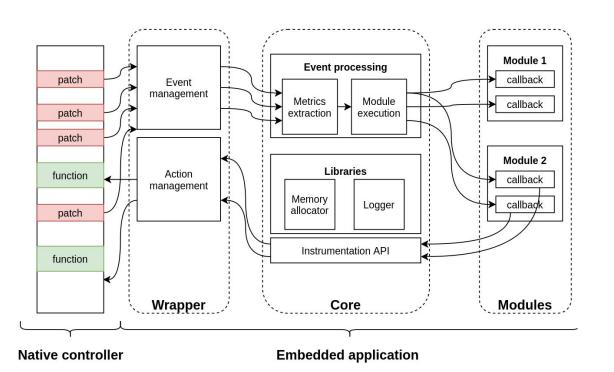
FRAMEWORK & EMBEDDED SOFTWARE



MAIN GUIDELINES

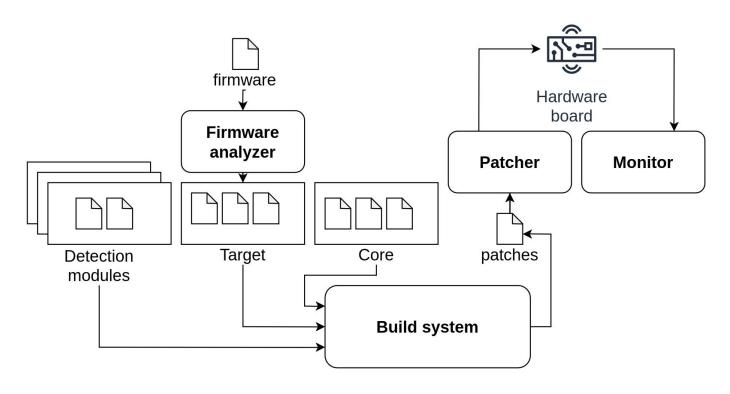
various contexts

The framework allows the development of modules independent of the controllers architectures



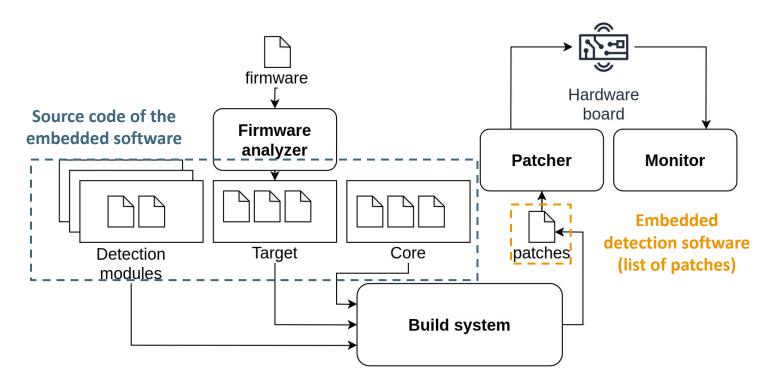
A developer can implement a new modules without deep understanding of the underlying controller architecture

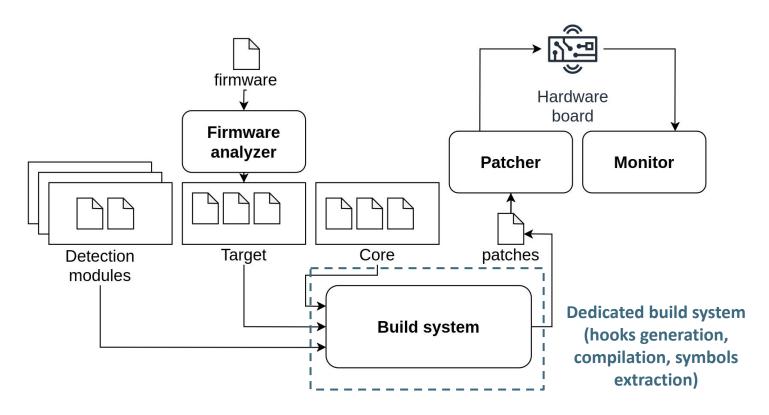
EMBEDDED DETECTION SOFTWARE

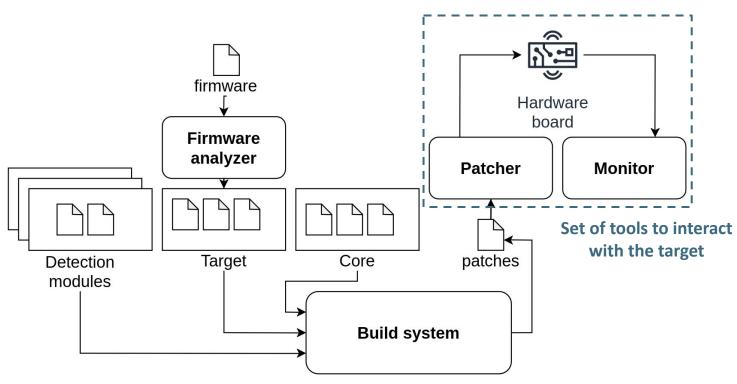


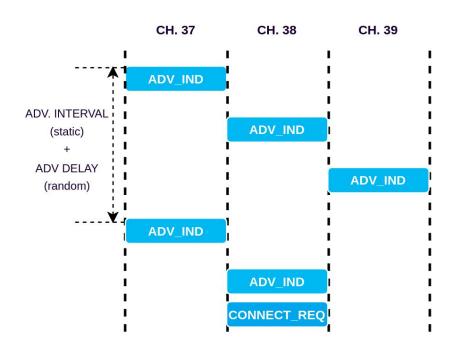
THREE MAIN COMPONENTS:

- A target-specific wrapper, instrumenting strategic code and structures,
- A generic core, extracting various detection features and metrics,
- A set of defensive modules, implementing lightweight detection heuristics.





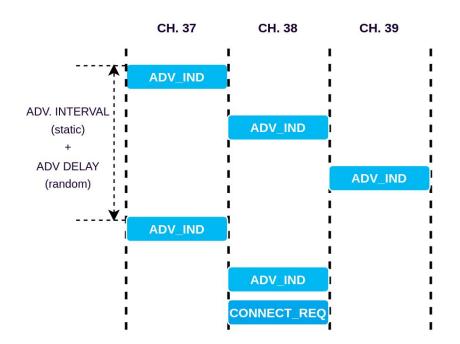




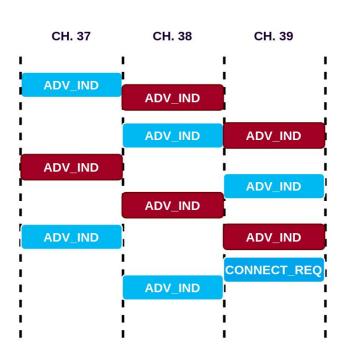
DETECTION MODULES

GATTACKER DETECTION

LEGITIMATE PERIPHERALADVERTISING PHASE



PERIPHERAL SPOOFING GATTACKER ATTACK



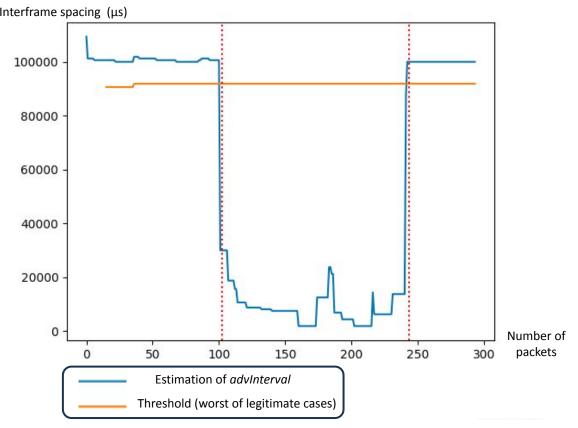
GATTACKER DETECTION

ADVERTISING PHASE

PERIPHERAL SPOOFING
GATTACKER ATTACK

| P. 24

GATTACKER DETECTION


Principle: real-time analysis of the time Interframe spacing (μs) between two packets sent by the same advertiser

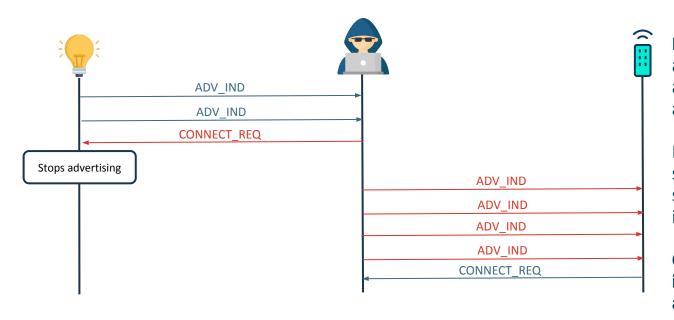
- Computation of the duration between two consecutive packets with the same address
- Estimation of the advertising interval (minimum in a sliding window)
- Computation of a threshold based on the worst legitimate case

When an attack occurs:

- Superposition of malicious and legitimate trafic → the metric significantly decreases
- An alert is reported if the metric is lower than the threshold


IP. 25

BTLEJUICE DETECTION



BTLEJUICE DETECTION

Principle: when a Peripheral accepts a connection, it initiates a scan operation and collects advertising packets.

If an advertisement with the same address is received, a spoofer is detected and an alert is raised.

Concrete example of what instrumenting the controller allow: trigger a scan operation.

EVALUATION

EVALUATED TARGETS

Raspberry Pi 3+/4 (BCM4345C0) [Ra]

Nexus 5 (BCM4335C0) [Ne]

IoT Development Kit (CYW20735) [D1]

Gablys (nRF51822) [Ga]

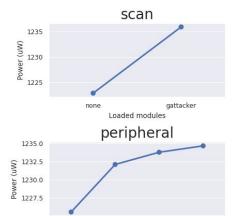
IoT Development Kit (nRF51422) [D2]

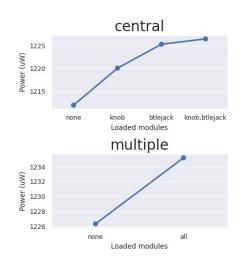
DETECTION EXPERIMENTS

01	GATTACKER	 250 attacks, 250 periods of legitimate traffic Attacks performed using Mirage framework (HCI) Eval. of devices supporting Scan role: Ra, Ne, D1, D2
02	BTLEJUICE	 250 attacks, 250 periods of legitimate traffic Attacks performed using Mirage framework (HCI) Eval. of devices supporting Peripheral role: Ga, D1, D2
03	KNOB	 250 attacks, 250 periods of legitimate traffic Attacks performed using Mirage framework (HCI) Eval. of devices supporting Peripheral role: Ga, D1, D2
04	INJECTABLE	 100 injections, 100 legitimate packets Attacks performed using Mirage framework (nRF52) Eval. of devices supporting Peripheral role: Ga, D1, D2
05	BTLEJACK	 100 attacked connections, 100 legitimate connections Attacks performed using BTLEJack firmware (nRF51) Eval. of devices supporting Central role: Ne, D1

DETECTION EXPERIMENTS

Experiment	Target	TP	FP	TN	FN	Recall	Precision
	Ra	250	0	250	0	1.0	1.0
GATTacker	Ne	250	0	250	0	1.0	1.0
GATTacker	D_1	250	0	250	0	1.0	1.0
	D_2	250	19	231	0	1.0	0.93
	Ga	245	0	250	5	0.98	1.0
BTLEJuice	D_1	239	0	250	11	0.96	1.0
	D_2	250	0	250	0	1.0	1.0
	Ga	247	0	250	3	0.99	1.0
KNOB	D_1	250	0	250	0	1.0	1.0
	D_2	249	0	250	1	0.99	1.0
	Ra	99	0	100	1	0.99	1.0
InjectaBLE	D_1	100	0	100	0	1.0	1.0
	D_2	94	0	100	6	0.94	1.0
BTLEJack	Ne	95	0	100	5	0.95	1.0
DILLJACK	D_1	98	0	100	2	0.98	1.0


- Good recall values: our detection heuristics successfully detect attacks
- Experiments performed in realistic conditions: representative of a real attacker
- Good precision values: low number of false positives
- 4 experiments without any false positivenumber of false positive slightly higher w
- number of false positive slightly higher when the experiment involves advertising packets more noisy environment (GATTacker)
- Homogeneous behaviour of targets: Genericity objective seems to be achieved

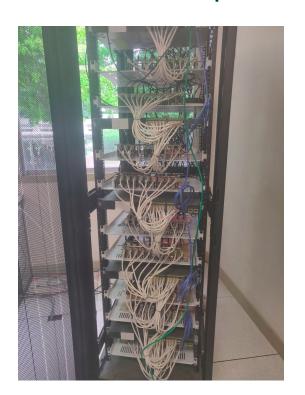

POWER CONSUMPTION EVALUATION - FINE GRAINED ANALYSIS

Profile	Supported modules	Benchmark action			
Scanner (P_S)	GATTacker	running a scan			
Peripheral (P_P)	InjectaBLE, KNOB, BTLEJuice	accepting connection			
Central (P_C)	BTLEJack, KNOB	initiating connection			
Multiple (P_M)	all	alternating scan & connections			

Loaded modules

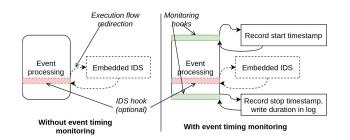
- Evaluation of the contribution of each module (nRF52-DK with Zephyr + Nordic Semiconductor Power Profiler Kit).
- For each profile, we collected 4 minutes long traces under various configurations (with / without OASIS, running one or a combination of modules).
- Increase between 0.54% (KNOB) and 1.11% (GATTacker):
 - Low but measurable impact,
 - Results consistent with the number of modules and their respective complexity,
 - Marginal cost of embedding multiple modules instead of the most costly ones.

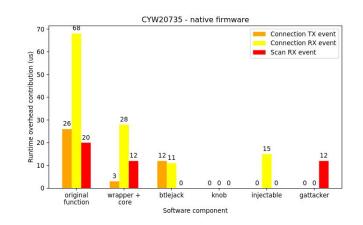
btleiuice iniectable, btleiuice


none

POWER CONSUMPTION EVALUATION - LARGE SCALE ANALYSIS

Evaluation of impact in a realistic network of devices (100 Raspberry Pi 3B+)


- **144 rounds of experiments of 10 minutes each,** with random connection and communication.
- For every round, half of the devices act as centrals (initiating scan & connections) and half acts as peripherals (transmitting advertisements and accepting connections).
- We alternate rounds with and without the embedded IDS and monitored the power consumption of the bay.
- Low but measurable effect (0.51% increase):
 - Mean power consumption with IDS: 238.78W (standard deviation of 2.71 %)
 - Mean power consumption without IDS: 237.56W (standard deviation of 2.45 %)



EXECUTION TIME EVALUATION

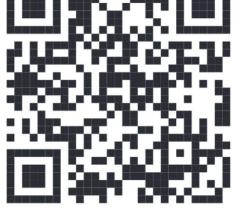
EURECOM

- Analysis on development boards from two manufacturers (CYW20735 & nRF52-DK),
- Lightweight instrumentation to measure execution time with microsecond accuracy,
- 2 minutes benchmarks on the profiles under various conditions (without and with OASIS and different combinations of modules),
- In the worst case (CYW20735 with all modules loaded), OASIS introduces an **overhead of 54μs**, leading to 122μs in total for **packet reception processing (< 150μs)**,
- "Naive" implementation: most processing could be deferred after the packet response.

MEMORY ANALYSIS

- Focus on **static memory** (configurable dynamic memory upper limit)
- Overall static memory between 4291 (Nexus 5) and 6305 bytes (nRF51)
 - Difference related to wrapper complexity + architecture in use
 - Static memory consumption between 48 (KNOB) and 500 bytes (InjectaBLE)
- Could be reduced even more by **fine-grained dependencies management** or **more aggressive compiler optimizations.**

Component		total (all)	wrapper	core	injectable	btlejack	btlejuice	gattacker	knob
nRF51 SoftDevice	code	5278	1266	2708	496	256	124	380	48
(peripheral)	data	1027	587	427	4	4	1	4	0
Raspberry Pi 3	code	3860	730	1902	432	236	124	384	52
Raspberry F13	data	477	41	423	4	4	1	4	0
Nexus 5	code	3798	668	1902	432	236	124	384	52
Nexus 5	data	493	41	439	4	4	1	4	0
CYW20735	code	3904	774	1902	432	236	124	384	52
C1 W 20/33	data	484	41	430	4	4	1	4	0
nRF52 Zephyr	code	3886	692	1958	432	236	124	392	52
(hci_uart)	data	457	21	423	4	4	1	4	0


CONCLUSION

CONCLUSION

explore prevention techniques.

- Show the feasibility of an **intrusion detection approach** embedded in **BLE controllers**:
 - Focus on making an embedded approach practical for detection low level attacks,
 - Address the **concrete challenges** related to **current state of BLE deployment: instrumentation of proprietary controllers & performance.**
- Modular & lightweight framework enabling controllers instrumentation: potentially usable for other applications (protocol stack fuzzing, embedded development, etc.).
- Ongoing work with Paul Olivier (LAAS-CNRS) to explore an hybrid approach (Host + Controller) based on an open-source stack (Zephyr) to detect more complex attacks &

Repository (MIT license):

https://github.com/RCayre/oasis

• First step towards a decentralized / distributed IDS approach (secure cooperation between devices).

I P. 37

Romain Cayre, Vincent Nicomette, Guillaume Auriol, Mohamed Kaâniche, Aurélien Francillon. OASIS: An Intrusion Detection System Embedded in Bluetooth Low Energy Controllers. 2024 ACM Asia conference on Computer and Communications Security (ASIACCS)., Jul 2024, Singapore, Singapore.

Thanks for your attention!