Large Language Models as Storage
for SQL Querying

Paolo Papotti
EURECOM France
paolo.papotti @eurecom.fr

I. INTRODUCTION

Declarative querying is one of the main features behind the
popularity of databases. However, SQL can be executed only
on structured datasets, leaving out of immediate reach infor-
mation in unstructured text. Technologies have been deployed
to extract structured data from unstructured text and to model
such data in relations or triples, but creating well-formed data
from text is still time consuming and error prone.

While declarative querying of text is a challenge, there
has recently been progress in guestion answering (QA) over
text. In this setting, Large Language Models (LLMs) can
answer complex questions expressed in natural language (NL)
(example (2) in Figure [I). Such models store high quality
factual information, but they are not trained to answer complex
SQL queries and may fail short with such input.

We argue that if pre-trained LLMs could be queried with
SQL scripts, it would overcome the problem of information
extraction from text, thus enabling data applications on top
of LLMs. As depicted in example (1) in Figure |1} we aim at
using a pre-trained LLM as the data storage containing the
information to answer a SQL query. Our solution preserves
the characteristics of SQL when executed over this new data
source: (i) queries are written in arbitrary SQL over a user
defined relational schema, enabling data applications to be
executed on LLM'’s factual data; (ii) answers are correct and
complete w.r.t. the information stored in the LLM. This last
point requires the correct execution of the queries and does not
assume that LLMs always return perfect information. While
LLMs can make factual mistakes, this work shows that it is
already possible to collect valid tuples from them.

In this work, LLLMs are used as a component in a tra-
ditional DB query processing architecture. Our core idea is
that the query plan is a natural decomposition of the (possibly
complex) process to obtain the result, in analogy with the
approaches in NLP showing that breaking a complex task
in a chain of thoughts is key to get the best results. We
therefore introduce the problem of querying with SQL scripts
an existing pre-trained LLM. These ideas are implemented in
GALOIS, a prototype that executes SPJA queries over LLMs
under assumptions that enable a large class of data applications
(code available at https://gitlab.eurecom.fr/saeedm1/galois).

Background. Our effort is different from the problem of
semantic parsing, i.e., the task of translating NL questions into
SQL [1]. Our goal is also different from querying an existing
relational database to answer a NL question [2]. We retrieve
data from the LLM with SQL queries, with the traditional
semantics and with the output expressed in the relational

Querying with SQL

SELECT c.cityName, cm.birthDate

FROM city c, cityMayor cm

WHERE c.major = cm.name,
cm.electionYear = 2019

GALOIS ‘/(1)
Break it down into LLM
simple sub-tasks

Question answering with NL

List names of the cities and
mayor birth date for the cities
where the current mayor has

been in charge since 2019.

v
LLM

v

cityName birthDate - New York City: Bill de Blasio,
Chicago | August 4 1962 born May 8, 1961
- Chicago: Lori Lightfoot, born
Tampa December 7 1960 August 4, 1962
[5 more rows] [5 more lines]
Fig. 1. Querying a LLM with SQL: GALOIS executes the query over the

information stored in a LLM and outputs a relation (1). The corresponding
QA task consumes and produces NL text (2).

model, as if the query were executed on a DBMS. While some
of these facts can be retrieved with QA, (i) the SQL query
must be rewritten as an equivalent question in NL, which is
not practical for complex scripts, (ii) the textual result must be
parsed into a relation, (iii) current LLMs in some cases fail in
answering complex queries expressed as NL.

II. OVERVIEW

Our goal is to execute SQL query over the data stored into
LLMs. When we look at these models from a DB perspective,
they have extensive coverage of facts from textual sources.
However, LLMs have their shortcomings. We delve into three
issues that have impacted the design of GALOIS.

1. Tuples and Keys. LLMs do not have a concept of schema
or tuple, but they model existing relationships between entities
(“Rome is located in Italy”) or between entities and their
properties (“Rome has 3M residents”). In the current prototype,
we assume that every relation in the query has a key and that
the key is expressed with one attribute, e.g., its name.

2. Schema Ambiguity. Similarly, attribute labels can have
multiple meanings. These alternatives are represented differ-
ently in the LLMs. An attribute label in the query can be
mapped to multiple real world attributes in the LLM, e.g., size
for a city can refer to population or urban area [3]. We assume
that meaningful labels are used in the queries.

3. Factual Knowledge in LLMs. LLMs return the next token
in a stream. Such token may be based on either reliable
acquired knowledge, or it may be a guess. However, we

https://gitlab.eurecom.fr/saeedm1/galois

[_|Python operator
[]LLM based op.

Project

q’: SELECT c.name, p.name
: names

FROM Cities ¢, Politicians p

WHERE c.population> ‘“1M’,
p.age<40, :
p.name=c.currentMayor :

Vv c’eC’, ¢’.currentMayor = \LLM
“Get current mayor of ¢’.name” *<___"’

v c’eC”, vV peP’
p’.name=c”.currentMayor

V peP “Has
politician p.name

V ceC, “Has city c.name age less than 407"

more than 1M population?” ¢

Tuples C: “Get city names” LLM LLM

Tuples P: “Get
politician names”

Fig. 2. Plan for query q’. Base relations are retrieves as tuple sets (C, P)
with one key attribute (name) from the LLM.

experimentally demonstrate that it is possible to extract factual
information from LLMs to answers SQL queries.

The high-level architecture of GALOIS is presented in
Figure We assume that the schema (but no instances) is
provided together with the query. The system processes SQL
queries over data stored in a pre-trained LLM. This design
enables developers to implement their data applications in a
conventional manner, as the complexities of using a LLM are
encapsulated within GALOIS.

We use LLMs to implement specialized physical operators
in a traditional query plan, as in Figure 2] As tuples are not
directly available, we implement the access to the base rela-
tions (leaf nodes) with the retrieval of the key attribute values.
We then retrieve other attributes as we go across the plan.
A prompt is obtained for each operator by combining a set
of operator-specific prompt templates with the labels/selection
conditions in the given query. If a join or a projection involve
an attribute that has not been collected for the tuple, this is
retrieved with a node injected right before the operation. Once
the tuples are completed, operators implemented in Python in
our prototype are executed on those, e.g., joins and aggregates.

III. EXPERIMENTS

GALOIS is written in Python and all LLMs have been
executed locally with the exception of ChatGPT.

Dataset. Spider is a Text2SQL dataset with 200 databases,
each with a set of SQL queries [[1]. For each query, it provides
its paraphrase as a NL question. We focus on a subset of 46
queries for which we can obtain answers from an LLM.

Setup. We test four LLMs. Flan: TS5 fine-tuned on datasets
described via instructions (783M parameters). TK: TS with
instructions and few-shot with positive and negative examples
(783M parameters). GPT-3: fine-tuned GPT-3 using instruc-
tions from humans (175B parameters). ChatGPT: chat model
in the OpenAl API (175B parameters). We construct prompts
for each model. For a given LLM M and a SQL query ¢ with
its Spider relation D and the corresponding NL question ¢, we
collect three results: (a) relation Rj; from GALOIS executing
q over M, (b) relation Rp by executing q over D, (c) text T
by asking t over Only (b) uses the relations from Spider,
(a) and (c) get the data from the LLM.

'In the full paper [4], we report also a baseline that uses chain-of-thought
reasoning; its results are lower than those from GALOIS.

TABLE 1. CELL VALUE MATCHES (%) BETWEEN THE METHOD’ S
RESULT AND THE SAME QUERY RAN ON THE GROUND TRUTH DATA (Rp)
FOR THE 46 SPIDER QUERIES. AVERAGED RESULTS FOR CHATGPT.

All Selections Aggregates Joins
only
Rar (SQL Queries) 50 80 29 0
T (NL Questions) 44 71 20 8

Evaluation. We analyze the results across two dimensions.
(1) Cardinality. We measure to which extent GALOIS returns
correct results in terms of number of tuples. All output
relations have the expected schema, i.e., every Rj; has the
same schema as every Rp. However, in terms of number of
tuples there are differences. Smaller miss lots of result rows, up
to 47.4% w.r.t. the size of results from the SQL execution Rp.
For GPT models, almost all queries return a number of tuples
close to Rp. Most differences are explainable with errors in
the results of the prompts across the query plan execution .

(2) Content. Second, we measure the quality of the results
comparing cell values after manually mapping tuples between
Rp on one side (ground truth) and (R, Ts) on the other. As
T contains NL text, we manually postprocess them to extract
the records. We consider a numerical value in (Ry;, Ths) as
correct if the error w.r.t. Rp is less than 5%. As this analysis
requires to manually verify every result, we conduct it only for
ChatGPT. Results in Table [l show that GALOIS executes the
queries with a better average accuracy in the results compared
to the same queries expressed as questions in NL. We believe
this is a promising result, as one can think that the results
coming from the NL QA task are the upper bound for what
the LLM knows. For the easiest subclass of queries, selection-
only, the query approach returns correct values in 80% of the
cases. Joins are the most problematic, as the equality test fails
due to different formats of the same text, e.g., an attempt to
join the country code “IT” with “ITA” for entity Italy.

IV. CONCLUSION

This work shows how a LLM can be used as a storage
layer in a DBMS. The research leaves open many questions
on logical and physical query optimization. Future work can
explore combining operators over the LLM to reduce the
number of calls to the model. In the physical optimization, it
would be valuable to explore the automatic generation of more
precise textual prompts, for example using data samples [5] or
pre-defined embeddings for attribute types [6].

REFERENCES

[1] T. Yuand et al, “Spider: A large-scale human-labeled dataset for complex
and cross-domain semantic parsing and text-to-SQL task,” in EMNLP,
2018, pp. 3911-3921.

[2] S. Papicchio, P. Papotti, and L. Cagliero, “Qatch: Benchmarking sql-
centric tasks with table representation learning models on your data,” in
NeurlIPS, 2023.

[3] E. Veltri, G. Badaro, M. Saeed, and P. Papotti, “Data ambiguity profiling
for the generation of training examples,” in /CDE. 1EEE, 2023.

[4] M. Saeed, N. D. Cao, and P. Papotti, “Querying large language models
with SQL,” in EDBT, 2024.

[5] M. Urban, D. D. Nguyen, and C. Binnig, “Omniscientdb: A large
language model-augmented DBMS that knows what other dbmss do not
know,” in aiDM. ACM, 2023, pp. 4:1-4:7.

[6] M. Saeed and P. Papotti, “You are my type! type embeddings for pre-
trained language models,” in EMNLP, ACL, Ed., 2022.

	Introduction
	Overview
	Experiments
	Conclusion
	References

