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Abstract—In this paper, we introduce a novel mathematical
framework for assessing the performance of joint communication
and sensing (JCAS) in wireless networks, employing stochastic
geometry as an analytical tool. We focus on deriving the meta
distribution of the signal-to-interference ratio (SIR) for JCAS
networks. This approach enables a fine-grained quantification
of individual user or radar performance intrinsic to these
networks. Our work involves the modeling of JCAS networks
and the derivation of exact mathematical expressions for the
JCAS SIR meta distribution. Recognizing the computational
complexity of these expressions, we also present practical, tight
approximations. Through simulations, we validate both our exact
and approximated theoretical analysis and illustrate how the
JCAS SIR meta distribution varies with the network deployment
density.

I. INTRODUCTION

One of the envisioned features of sixth generation (6G)
mobile networks is the synergy between wireless communi-
cations and sensing [1]–[4]. Joint communication and sensing
(JCAS) paves the way for diverse applications, such as indoor
localization, autonomous aircraft, and extended reality [5]–[7],
while also presenting a challenge in efficiently sharing the
spectrum. To address this, a detailed analysis of the underlying
trade-offs is necessary, with well-defined performance metrics
to gauge the network’s effectiveness.

Stochastic geometry emerges as a robust analytical frame-
work for this task, offering theoretical models to characterize
network-wide performance. For instance, time-sharing net-
works were explored in [8], detailing their radar detection
range, false alarm rates, and communication success probabil-
ities. Other studies have focused on the energy and spectrum
efficiency in base station (BS) deployments [9] and the exten-
sion of coverage probability and ergodic capacity concepts
to radar settings [10]. Notably, JCAS techniques are also
crucial in vehicular networks, with studies investigating the
detection range in spectrum-sharing scenarios and the impact
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of interference on road obstacle detection and communication
[11], [12].

Despite these advancements, a gap remains in understanding
the individual performance of users or radars within a JCAS
network. Existing studies have primarily concentrated on the
coverage probability, a geographic average that only provides
information about the expected JCAS performance across all
network deployments, overlooking the variability in user or
radar experiences. For example, while one network realization
may exhibit a wide range of success probabilities (e.g., 0.5
to 0.99), another might show a narrower range (e.g., 0.85 to
0.95), yet both could have the same spatial average.

In this paper, we employ a more fine-grained tool and ana-
lyze the performance of JCAS networks by deriving the meta
distribution of the signal-to-interference ratio (SIR), a concept
previously introduced in [13]. While the SIR meta distribution
has been applied separately to either communication or radar
detection scenarios [14]–[17], our work uniquely applies it
to JCAS networks. Our contributions can be summarized as
follows:

• We establish an analytical framework for modeling the
JCAS network, based on which we derive exact math-
ematical expressions for the conditional JCAS coverage
probability and (the complementary of) its distribution,
namely, the SIR meta distribution.

• As the above exact expressions may require a consider-
able effort to be numerically evaluated, we also propose
tight approximations based on practical assumptions.

• We validate both our exact and approximated analysis
through simulations, and present numerical results to
illustrate the behavior of the JCAS SIR meta distribution
with respect to the network deployment density.

II. SYSTEM MODEL

A. Network Deployment

We consider the JCAS wireless network depicted in Fig. 1,
consisting of multiple base stations (BSs), users (UEs), and
sensed objects (SOs). The locations of the BSs, UEs, and
SOs are modeled as three independent homogeneous Poisson
point processes (PPPs), denoted by Φb, Φu and Φs with
intensities of λb, λu, and λs, respectively. The BSs are in
charge of sending information packets to UEs in the downlink;



Fig. 1: Illustration of the JCAS network considered, with BSs simul-
taneously sending information packets to UEs and sensing waveforms
to the SOs for which they receive radar echoes.

simultaneously, they send sensing waveforms to the SOs and
receive echoes from them. We consider that communication
and sensing functionalities are carried out via a shared multi-
carrier waveform that is universally reused across the network;
hence, the transmissions of different nodes will interfere with
each other. All of the BSs are assumed to be active, and we
have λu ≫ λb and λs ≫ λb. We further assume that any
pair of wireless transmission channels is subject to path loss,
which obeys the power law, and Rayleigh fading, with the BSs
transmitting at a fixed power Ptx. By utilizing the maximum
average received power association policy, the UEs and SOs
associate with the nearest BSs in space.

B. SIR Models

Based on Slivnyark’s theorem [18], we can concentrate on a
typical UE located at the origin. Let X0 denote the location of
the tagged BS (also referred to as the typical BS) of the typical
UE and Xk denote the location of the k-th BS in the network.
Then, the SIR received at the typical UE can be expressed as

SIRc =
h0∥X0∥−α∑

k ̸=0 hk∥Xk∥−α
, (1)

where α is the path loss exponent, hk ∼ exp(1) stands for the
channel fading from the k-th BS to the typical UE, and ∥ · ∥
denotes the Euclidean norm.

Similarly, we consider a monostatic sensing scenario where
the BSs transmit the sensing waveforms and listen to the echo
of the SOs. Without loss of generality, we place the typical
SO at the origin [10]. As such, the signal strength of the radar
echo measured at the typical BS is given by [19]

Ss =
PtxGtGrλ

2
wσcs∥X0∥−2α

(4π)3
= A

σcs

4π
∥X0∥−2α, (2)

where Gt and Gr denote the antenna gains of transmission
and reception in the sensing stage, respectively, λw is the
carrier wavelength, σcs ∼ exp(1) represents the radar cross-
section, which can be modeled as a random variable that

follows the exponential distribution with unit mean [20], and
A = PGtGr(λw/4π)

2.
Since sensing employs the same carrier as communication,

the interference accumulated at the typical BS from all other
BSs can be expressed as

Is =
∑
k ̸=0

Ah̃k∥Xk −X0∥−α (3)

By analogy with the communication scenario, the sensing SIR
at the average BS can be written as follows

SIRs =
Ss

Is
=

σcs

4π ∥X0∥−2α∑
k ̸=0 h̃k∥Xk −X0∥−α

. (4)

We note that while SIRc is an actual SIR, SIRs is a
conceptual one, constructed as a proxy for the BS’s efficacy
in estimating the SO’s parameter of interest.1 Based on these
SIR models, we can establish suitable metrics to assess the
JCAS network performance.

C. Performance Metric

The probability that SIRc surpasses a decoding threshold
θc is known as the coverage probability, a widely used
metric to evaluate link performance in cellular networks. This
metric provides information about the fraction of UEs in the
network that achieves a SIR at least at the level of θc. The
sensing performance can be defined in a similar manner. The
estimation rate, which is the mutual information between the
radar return and the parameter of interest divided by coherent
processing interval, can be used to characterize the quality of
the sensing, with upper and lower bounds determined by log-
arithmic functions of SIRs [10]. Hence, the sensing accuracy
can be captured using a measure based on the distribution of
SIRs. For instance, one could consider the sensing coverage
probability, defined as the probability of SIRs surpassing a
predetermined threshold θs and reflecting the average portion
of the SOs whose SIR reaches θs.

Since the coverage probabilities only provide information
about the average JCAS performance across all network de-
ployments, in this paper, we leverage the notion of conditional
coverage probability and meta SIR distribution [13]–[15] to
obtain a fine-grained perspective of the network performance.
Specifically, given the point process Φb, we define the condi-
tional JCAS coverage probability as follows:

P (θc, θs) = P(SIRc > θc,SIRs > θs | Φb). (5)

We note that P (θc, θs) is still a random variable, since while
channel fading is averaged out, the randomness stemming from
Φb remains.2 We then define the complementary cumulative
distribution function (CCDF) of P (θc, θs) as the JCAS SIR
meta distribution, given by

F (θc, θs, x) = P(P (θc, θs) > x), x ∈ [0, 1]. (6)

1In the following, for the sake of readability, we neglect the constant
multiplier 1

4π
in (4) as it can be embedded into the decoding threshold.

2The conventional coverage probability can be obtained by taking the
expectation of P (θc, θs) with respect to Φb, thereby disregarding the de-
pendence of the JCAS performance on the network realization Φb.



The meta distribution F (θc, θs, x) quantifies the probability
that the UEs and SOs in the network can attain SIRc of θc
and SIRs of θs, with a link reliability (i.e., probability) of at
least x.

III. ANALYSIS OF JCAS SIR META DISTRIBUTION

This section details the steps followed to derive analytical
expressions for the quantity in (6).

A. Exact Analysis of the JCAS SIR Meta Distribution

Conditional JCAS coverage probability: We begin by de-
riving the conditional JCAS coverage probability P (θc, θs)
by averaging out the randomness in channel fading. The
quantity P (θc, θs) represents the probability that, given a
network realization Φb, the effect of channel fading results
in communication and sensing SIRs exceeding θc and θs,
respectively.

Lemma 1: Conditioned on the point process Φb, the JCAS
coverage probability is given by

P (θc, θs) =
∏
k ̸=0

1(
1 + θc

∥X0∥α

∥Xk∥α

)(
1 + θs

∥X0∥2α

∥Xk−X0∥α

) . (7)

Proof: Using (1) and (4), we can calculate the conditional
JCAS coverage probability as

P (θc, θs) =P(SIRc > θc,SIRs > θs | Φb)

(a)
=P
(
h0 > θc∥X0∥α

∑
k ̸=0

hk∥Xk∥−α | Φb

)
× P

(
σcs > θs∥X0∥2α

∑
k ̸=0

h̃k∥Xk −X0∥−α | Φb

)
(b)
=E
{
exp

(
− θc∥X0∥α

∑
k ̸=0

hk∥Xk∥−α
)}

× E
{
exp

(
− θs∥X0∥2α

∑
k ̸=0

h̃k∥Xk −X0∥−α
)}

(c)
=
∏
k ̸=0

1(
1 + θc

∥X0∥α

∥Xk∥α

)(
1 + θs

∥X0∥2α

∥Xk−X0∥α

) , (8)

where (a) holds since channel fading realizations are mutually
independent, while (b) and (c) follow from noticing that h0 and
σcs obey exponential distributions.

JCAS SIR meta distribution: Next, we derive the JCAS SIR
meta distribution, defined as the CCDF of P (θc, θs).

Theorem 1: The meta distribution of the SIR in the JCAS
network under consideration is given by

F (θc, θs, x) =
1

2
− 1

π

∫ ∞

0

Im
{
x−jωMjω

}dω
ω

, (9)

where j =
√
−1, Im{·} denotes the imaginary part of the

input variable, and Mb is the b-th moment of P (θc, θs), given
by

Mb =

∫ ∞

0

2πλbr0 exp
(
−λbπr

2
0 − λbFb(r0)

)
dr0, (10)

with

Fb(r0) = −
∞∑
t=1

(
−b

t

) ∑
i1+i2+i3=i

(
t

i1, i2, i3

)
θi1+i3
c

× θi2+i3
s

∫ 2π

0

∫ ∞

1

r
(i2+i3)α+2
0 v1−(i1+i3)αdvdθ

(v2 + 1− 2v cos(θ))
(i2+i3)α/2

. (11)

Proof: Please refer to Appendix A.
JCAS coverage probability: As a byproduct, we can obtain

the JCAS coverage probability [10] by computing the first
moment of (7) with respect to Φb, denoted as P̄ (θc, θs) =
E{P (θc, θs)} and characterized as follows.

Corollary 1: The JCAS coverage probability is given by

P̄ (θc, θs) =

∫ ∞

0

2πλbr0 exp
(
−λbπr

2
0 − λbFc(r0)

)
dr0, (12)

in which

Fc(r0) =∫ 2π

0

∫ ∞

1

[
1−

(
v2 + 1− 2v cos θ

)α
2 vα(

(v2+1−2v cos θ)
α
2 +θsrα0

)
(vα+θc)

]
r20vdvdθ.

(13)

Proof: Equation (12) follows by setting b = 1 in (10).

B. Approximation of the JCAS SIR Meta Distribution
Approximated conditional JCAS coverage probability:

While Theorem 1 provides an exact analytical expression for
the JCAS SIR meta distribution, evaluating it can be compu-
tationally expensive due to the infinite summation in (11). To
obtain a simplified expression, we approximate the conditional
JCAS coverage probability in (7) via a beta distribution [13]
by matching the first and second moments, M1 and M2.

Approximated JCAS SIR meta distribution: The JCAS SIR
meta distribution (9) can then be approximated as

F (θc, θs, x) ≈ 1− Iv

( βµ

1− µ
, β
)
, v ∈ [0, 1], (14)

where Iv(x, y) =
∫ 1−v

0
zx−1(1 − z)y−1dz/B(x, y) is the

regularized incomplete beta function, in which B(·, ·) denotes
the beta function, and µ = M1 and β = (M1−M2)(1−M1)

M2−M2
1

.
Since the above requires computing the first two moments, and
since the exact expression of the b-th moment in (10) contains
multiple nested integrals, we adopt the following approxima-
tion, which treats communication and sensing independently
and whose accuracy will be validated in Fig. 2.

Corollary 2: The b-th moment of P (θc, θs) can be approx-
imated as

Mb≈
∫ ∞

0

2πλbr0 exp
(
−λbπr

2
0− λb(F

c
b +F s

b (r0))
)
dr0, (15)

where

F c
b = πr20C1

(
b, θc, δ

)
, (16)

F s
b (r0) = 4πr20C1

(
b, θs

(r0
2

) 2
δ , δ
)
+2πr20C2

(
b, θs

(r0
2

) 2
δ , δ
)

+ 4r20

∞∑
n=0

Γ(n+ 1
2 )

Γ( 12 )n!(1+2n)
C2

(
b, θs

(r0
2

) 2
δ , δ
(
n+

3

2

))
, (17)



in which δ = 2/α, Γ(·) is the gamma function, and

C1(x, y, z) = 2F1(x,−z; 1− z; y)− 1, (18)

C2(x, y, z)=1−2F1

(
x, x+z;x+z+1;−1

y

)
× z

yx(x+z)
(19)

whereas 2F1(·, ·; ·, ·) represents the Gaussian hyper-geometric
function.

Proof: Please refer to Appendix B.
A simpler approximated expression for the SIR meta distri-
bution can then be obtained by replacing (9) with (14) and
adopting (15) in place of (10) for the moments computation.

Approximated JSAC coverage probability: Finally, the
JCAS coverage probability can be approximated as

P̄ (θc, θs) ≈ P̄c(θc)× P̄s(θs), (20)

in which

P̄c(θc) =
1

2F1(1,−δ; 1− δ;−θc)
, (21)

P̄s(θs) =

∫ ∞

0

2πλbr0 exp
(
−λb(πr

2
0 + F s

1 (r0))
)
dr0, (22)

where F s
1 (·) can be calculated by setting b = 1 in (17).

Specifically, equation (20) follows by treating the sensing and
communication functionalities as independent, (21) from [21],
and (22) from (30) by setting b = 1 and de-conditioning on
the distance r0 between the SO and its serving BS.

By comparing (21) to (22), we note that while the com-
munication coverage probability does not depend on the BS
density λb—a known result for the system model adopted in
this paper—the sensing coverage probability does.

IV. NUMERICAL RESULTS

We now provide numerical results to validate our analysis
and evaluate how the JCAS SIR meta distribution is affected
by the SIR thresholds and by the BS density. We generate
100 PPP realizations for the locations of BSs, UEs, and SOs.
Within the Voronoi cell formed by the BSs, UEs and SOs are
situated in a square area measuring 1,000 m in width on each
side. Once constructed, the topology remains unchanged, but
the fading realizations of communications and sensing across
each link are recalculated across 1,000 time periods. Then,
we collect the statistics of communications and sensing to
compute the conditional JSAC coverage probability of each re-
alization. We adopt the following parameters unless otherwise
noted: α = 4, λb = 10−4 m−2, and λu = λs = 10−3 m−2.

Fig. 2 compares the simulated CCDF of the conditional
JCAS coverage probability (black circles) to the exact analysis
in Theorem 1 (red solid) and the approximation obtained using
Corollary 2 (blue dashed), under various pairs of communica-
tion and sensing thresholds. The close match of all three val-
idates both our exact mathematical derivations in Theorem 1
and the proposed approximation based on Corollary 2.

The JCAS SIR meta distribution in Fig. 2 provides a fine-
grained evaluation of the network performance in terms of
both communication and sensing. For instance, the plot shows
that for θc = θs = 0 dB and θc = θs = 10 dB, respectively,
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setting a reliability threshold of 0.8 on the x-axis corresponds
to values of about 0.3 and 0.1 on the y-axis. This indicates that
30% of the BSs in this network can simultaneously achieve
communication and sensing SIRs of at least 0 dB with an
80% reliability, but this fraction drops to 10% when both SIR
thresholds are raised to 10 dB.

In Fig. 3, we plot the coverage probabilities of communica-
tion only, sensing only, and JCAS, vs. the decoding thresholds
according to Corollary 2. While for convenience of plotting
the two SIR thresholds are equally set as θc = θs, our
framework allows to compute the coverage probability for
any combination of values. Fig. 3 shows that compared to
sensing, the coverage probability of communication is more
sensitive to changes in the SIR threshold. This indicates that
the sensing performance exhibits more variability across SOs
than the communication performance does across UEs.

Fig. 4 depicts the sensing coverage probability as a func-
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tion of the BS deployment density for three values of the
SIR threshold. In line with the findings in [10], the figure
shows that the sensing coverage probability increases with the
BS deployment density. This is in contrast to what occurs
to communications under the adopted single-slope pathloss
assumption, where the coverage probability is independent of
the BS density, as captured in (21).

V. CONCLUSION

In this paper, we developed a framework to assess the
performance of JCAS in wireless networks, utilizing stochastic
geometry as a key analytical apparatus. Our approach involved
deriving mathematical expressions for the conditional JCAS
coverage probability and its distribution, known as the SIR
meta distribution. Given the computational complexity of these
expressions, we also presented practical, tight approximations
for simpler numerical evaluations. Our theoretical models,
validated through simulations, capture the impact of network
deployment density on the JCAS SIR performance. Unlike
previous studies, our analysis allows to quantify individual
user or radar performance within network realizations.

While this work primarily focused on the impact of network
deployment density on the JCAS SIR meta distribution, we
note that this distribution is also influenced by the propagation
environment model and the specific deployment scenario.
Future research directions include examining JCAS perfor-
mance for channels with line-of-sight (LoS) and non-LoS
state transitions, and incorporating a minimum BS inter-site
distance. Exploring dynamics in the temporal domain, such
as data traffic for communication [22] and status updates for
sensing [23], is another avenue for further investigation.

APPENDIX A: PROOF OF THEOREM 1

The b-th moment of P (θc, θs) can be expressed as:

Mb = E

{∏
k ̸=0

(
1(

1 + θc
∥X0∥α

∥Xk∥α

)(
1 + θs

∥X0∥2α

∥Xk−X0∥α

))b
}

(a)
= E

{
EX0

{
exp

(
− λbFb(∥X0∥)

)}}
, (23)

where (a) follows by leveraging the probability generating
function (PGFL) of PPP and conditioning on the location of
the serving BS X0.

By writing X0 in polar coordinates as X0 = (r0, θ0), the
analytical expression of Fb(r0) can be derived as

Fb(r0) =

∫
R2/B(0,r0)

[
1− 1(

1 + θc
rα0

∥x∥α

)b(
1 + θs

r2α0
∥x−X0∥α

)b ]dx
(b)
= −

∞∑
t=1

(
−b

i

) ∑
i1+i2+i3=i

(
i

i1, i2, i3

)
θi1+i3
c

× θi2+i3
s

∫
R2/B(0,r0)

ri1+2i2+3i3
0

(∥x∥i1+i3∥x−X0∥i2+i3)b
dx

(c)
= −

∞∑
t=1

(
−b

i

) ∑
i1+i2+i3=i

(
i

i1, i2, i3

)
r
(i1+2i2+3i3)α
0

×
∫ 2π

0

∫ ∞

r0

θi1+i3
c θi2+i3

s r1−(i1+i3)αdrdθ

(r2 + r20 − 2rr0 cos(θ − θ0))(i2+i3)α/2

(d)
= −

∞∑
t=1

(
−b

i

) ∑
i1+i2+i3=i

(
i

i1, i2, i3

)
r
(i2+i3)α+2
0

× θi1+i3
c θi2+i3

s

∫ 2π

0

∫ ∞

1

v1−(i1+i3)αdvdθ

(v2 + 1− 2v cos θ)(i2+i3)α/2
,

(24)

where B(0, r0) denotes a disk centered at the origin with
radius r0, (b) follows by applying the binomial expansion, i.e.,(

i
i1,i2,i3

)
= i!

i1!i2!i3!
, indicating all sequences of non-negative

integers that sum up to i, with i1, i2, i3 representing the three
different sequences; (c) holds due to the integration on the
polar coordinates of x = (r, θ), and (d) substituting v = r/r0
and eliminating θ0 because of periodicity. Substituting (24)
into (23) and de-conditioning on r0, we obtain the expression
of the b-th moment given in (10). The proof is concluded
by invoking the Gil-Paleaz theorem [24] and then substituting
(10) into (9).

APPENDIX B: PROOF OF COROLLARY 2

Assuming communication and sensing to be independent,
the b-th moment can be approximated as

Mb = E

{∏
k ̸=0

( 1

(1 + θc
∥X0∥α

∥Xk∥α )(1 + θs
∥X0∥2α

∥Xk−X0∥α )

)b}

≈ Er0

{
E
{∏

k ̸=0

( 1

1 + θc
∥X0∥α

∥Xk∥α

)b
| r0
}

︸ ︷︷ ︸
Mc

b|r0

× E
{∏

k ̸=0

( 1

1 + θs
∥X0∥2α

∥Xk−X0∥α

)b
| r0
}
.︸ ︷︷ ︸

Ms
b|r0

}
(25)



Then, one must determine the moment of the coverage proba-
bility for both sensing and communication, conditioned on the
distance between the serving BS and the origin, r0 = ∥X0∥,
separately.

According to [25], the conditional moment of the commu-
nication coverage probability can be derived as

M c
b|r0 = exp

(
− λbπr

2
0

(
2F1

(
b,−δ; 1− δ;−θc

)
− 1
))

(26)

where the Gaussian hyper-geometric function 2F1(·, ·; ·, ·)
originates from the calculation of the integral in (27) [26,
3.194]. Since the proof will employ this type of integration
several times, we use the following notations for convenience:

C1(x, y, z) = z

∫ 1

0

(
1− 1

(1 + yu)x

)
u−z−1du

= 2F1(x,−z; 1− z; y)− 1 (27)

C2(x, y, z) = z

∫ ∞

1

(
1− 1

(1 + yu)x

)
u−z−1du

= 1−
(

z

yx(x+ z)

)
2F1(x, x+ z;x+ z + 1;−1

y
)

(28)

Lemma 2 of [10] states that the point process of the distance
of interfering BSs with regard to serving BS conditioned on r0
is a PPP on R+ with the following intensity function, provided
as Π0

B = {∥Xk −X0∥ : Xk ∈ Φ!X0

B }:

λ0
b(r; r0) = 2λbr(π − arccos(

r

2r0
)1{r ≤ 2r0}). (29)

Then via the PGFL of PPP, the conditional moment of the
sensing coverage probability can be derived as

Ms
b|r0 = exp

(
−
∫
R2

[
1− 1

(1 + θsr2α0 r−α)b

]
λ0
b(r; r0)dr

)
(a)
= exp

(
− 4λbπr

2
0δ

∫ 1

0

(
1− 1

(1 + θs(
r0
2 )

2
δ v)b

)
v−δ−1dv

− 2λbπr
2
0δ

∫ ∞

1

(
1− 1

(1 + θs(
r0
2 )

2
δ v)b

)
v−δ−1dv

− 4λbr
2
0δ

∞∑
n=0

Γ(n+ 1
2 )

Γ( 12 )n!(1 + 2n)

×
∫ ∞

1

(
1− 1

(1 + θs(
r0
2 )

2
δ v)b

)
v−δ(n+ 3

2 )−1dv

)
(b)
= exp(−λbF

s
b (r0)) (30)

where step (a) follows by the substitution of v = ( 2r0r )α

and the Taylor expansion of arcsin(x), step (b) shows the
calculation of the integration with (27) and (28) and F s

b (r0)
is defined as (17). The proof is completed by de-conditioning
on r0 and substituting (30) and (26) in (25).
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