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Abstract—We introduce an energy-efficient downlink rate
splitting multiple access (RSMA) scheme, employing a simple
matched filter (MF) for precoding. We consider a transmitter
equipped with multiple antennas, serving several single-antenna
users at the same frequency-time resource, each with distinct
message requests. Within the conventional 1-layer RSMA frame-
work, requested messages undergo splitting into common and
private streams, which are then precoded separately before
transmission. In contrast, we propose a novel strategy where
only an MF is employed to precode both the common and
private streams in RSMA, promising significantly improved
energy efficiency and reduced complexity. We demonstrate that
this MF-precoded RSMA achieves the same delivery performance
as conventional RSMA, where the common stream is beamformed
using maximal ratio transmission (MRT) and the private streams
are precoded by MF. Taking into account imperfect channel state
information at the transmitter, we proceed to analyze the delivery
performance of the MF-precoded RSMA. We derive the ergodic
rates for decoding the common and private streams at a target
user respectively in the massive MIMO regime. Finally, numerical
simulations validate the accuracy of our analytical models, as well
as demonstrate the advantages over conventional RSMA.

I. INTRODUCTION

Conventional multi-access (MA) schemes like space divi-
sion MA heavily rely on timely and highly accurate channel
state information at the transmitter (CSIT), which poses signif-
icant challenges in real wireless communications, particularly
for high-speed moving users and hardware impairments. To
tackle these challenges, rate-splitting multiple access (RSMA)
has emerged as a potent and resilient non-orthogonal transmis-
sion framework, efficiently leveraging time, frequency, power,
spatial, and code-domain resources [1]–[3]. RSMA refers to a
broad class of multi-user (MU) schemes relying on the rate-
splitting (RS) principle. RS involves partitioning each message
into multiple segments for inter-user interference management,
allowing for flexible decoding by receivers [4]. This flexibility
has been shown to suit the dynamics of wireless networks.

Consider the downlink 1-layer RSMA (cf. [4]–[6]) illus-
trated in Fig. 1, where a multi-antenna transmitter concurrently
serves K single-antenna users, each with distinct message
requests. Each message is first divided into two components:
the common segment and the private segment. Subsequently,
the common segments derived from all requested messages are
aggregated to form a collective common message beneficial
for all the K users. Meanwhile, the private segments are indi-
vidually encoded into K private streams, each dedicated to a
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specific user, before undergoing processing by a precoder. The
beamformed common stream and the precoded private streams
are finally superposed for transmission. On the receiver end,
the common stream is prioritized for decoding, allowing the
receiver to eliminate interference stemming from the common
stream through 1-layer successive interference cancellation
(SIC) before decoding the intended private stream. Notably,
by adjusting the power distribution between the common and
private streams, we gain the flexibility to manage interference
levels at receivers effectively.

Compared to conventional MU multiple-input multiple-
output (MU-MIMO) systems, RSMA requires the transmitter
to design a beamformer for the common stream and a precoder
for the private streams separately. This undoubtedly involves
significantly higher energy consumption and increased hard-
ware costs. Moreover, the optimal beamformer for the com-
mon stream, which must address the max-min fairness issue,
necessitates solving a non-convex and NP-hard optimization
problem in each channel realization [7]. Although non-linear
dirty paper coding (DPC) can achieve the MU-MIMO channel
region, linear precoders such as zero-forcing (ZF), regularized
ZF (RZF), and matched-filter (MF) are commonly employed in
current MU-MIMO systems due to their practicality [8]–[10].
As a result, there has been an increasing interest in developing
simple beamformers and linear precoders individually tailored
for the common and private streams in RSMA (cf. [5], [11],
[12]). Despite these efforts, the separate design of the beam-
former and precoder continues to present more complexity
than conventional linear precoding schemes.

It is important to highlight that both ZF and RZF require
the inversion of the channel matrix [10], which demands
significant computational resources, particularly in scenarios
with massive connectivity. In contrast, MF simply involves
taking the conjugate of the channel matrix, resulting in sub-
stantially lower complexity [13]–[15]. Moreover, real wireless
channels often exhibit rank deficiency, further amplifying the
computational burden associated with matrix inversion in ZF
precoding. Consequently, MF is commonly preferred in some
practical implementations. However, it is well-known that MF
is interference-limited, causing transmission rates to plateau in
the high signal-to-noise ratio (SNR) regime. The work in [16]
demonstrates that RSMA effectively controls the interference
level associated with MF precoding by judiciously allocating
power between the common and private streams, consequently
resulting in increased overall throughput. Furthermore, insights
from [17] suggest that utilizing an MF matrix for precoding the



common stream can outperform a vector beamformer in terms
of transmission rate. However, it is essential to acknowledge
that this approach involves processing signals with several
times more dimensions than those handled by the vector-based
beamformer.

This paper presents a novel precoding scheme for the
downlink 1-layer RSMA, wherein an MF matrix is utilized to
precode both the common and private streams. This approach
eliminates the need for designing a dedicated beamformer
for the common stream and allows for better control of
interference levels in MF for the private streams. Then, we
analyze the corresponding delivery performance in the widely
considered massive MIMO regime (cf. [12], [18]). The tech-
nical contributions are outlined below.

• We will demonstrate that MF-precoded RSMA achieves
equivalent delivery performance compared to the conven-
tional RSMA, where maximum ratio transmission (MRT)
and MF are employed to process the common and private
streams separately.

• In the presence of imperfect CSIT, we will rigorously
establish that the transmission rate for the common stream
converges in distribution to a specific random variable
under an average power constraint.

• Once more, under imperfect CSIT, we will rigorously
prove that the rate for sending a private stream converges
almost surely to a constant.1

• Utilizing the aforementioned convergence results, we will
derive the ergodic rates individually for transmitting the
common and private streams to a target user.2

II. SYSTEM MODEL

In the downlink transmission, a base station (BS) has L
transmit antennas to serve K single-antenna users at a time,
with each user requesting different messages.

A. Conventional 1-layer RSMA With Linear Precoder

In this subsection, we will elaborate on the conventional
1-layer downlink RSMA under linear precoding (cf. [4]).
Let Wk denote the message intended by the k-th user for
k = 1, 2, · · · ,K. As depicted in Fig. 1, under the 1-layer
RSMA framework, each message Wk will be first split into
two parts, i.e., the common part Wc,k and the private part
Wp,k. Then all the common parts generated from K messages

1To the best of the authors’ knowledge, this is the first time to present a
rigorous proof to reveal the convergence results of MRT and MF under an
average transmit power constraint in the massive MIMO regime. We refer to
[13]–[15] and [18]–[20] for some prior efforts.

2Notations. We use C to denote the complex number set, and use IL to
denote the L×L identity matrix. For a matrix A, we use AH , AT and A∗ to
denote the conjugate transpose, the non-conjugate transpose and the conjugate
part of A respectively. | · | denotes the magnitude of a complex number, while
||·|| denotes the norm-2 of a vector. E{·} and Tr{·} represent the expectation
operator and the trace operator respectively. Diag{a} denotes the diagonal
matrix where the elements in a are the diagonal elements. 1L ∈ CL×1 stands
for the vector with all elements equaling 1, while 0L × CL×1 is the vector
with all zero elements. CN denotes the complex Gaussian distribution. We

use d.−→, a.s.−→ and L1

−→ to denote the convergence in distribution, the almost
sure convergence and the convergence in the mean of order 1 respectively.

{Wc,1,Wc,2, · · · ,Wc,K} will be combined together to form a
common message, which is useful for all users. The K private
parts will be independently mapped into K private streams,
each private stream associating with a dedicated user. Let
xp,k represent the private stream for the k-th user, and let xc

represent the common stream for all the users. A beamformer
wc ∈ CL×1 will be carefully designed for broadcasting the
common stream to the served K users, while the private
stream vector xp ≜ [xp,1, xp,2, · · · , xp,K ]T will be precoded
by a matrix Wp = [wp,1,wp,2, · · · ,wp,K ] ∈ CL×K . Let
W = [wc Wp] ∈ CL×(K+1) and x = [xc,x

T
p ]

T . The transmit
signal s ∈ CL×1 at the BS can be mathematically written as

s =
√
αWPx =

√
αρwcxc +

√
α(1− ρ)Wpxp, (1)

where ρ ∈ [0, 1] is the power-splitting factor be-
tween the common and the private streams3, and P ≜
Diag{√ρ,

√
1− ρ, · · · ,

√
1− ρ} ∈ C(K+1)×(K+1). In (1),

α ≜ Pt

Tr{E{WHW}P2} , denoted as the power normalization
factor, serves to confine the transmit power within an aver-
age constraint of Pt. It is easy to check that E{||s||2} =
αE
{
xHPWHWPx

}
= αTr

{
E{WHW}P2

}
= Pt.

The received signal at the k-th user then takes the form

yk =
√
αρhT

kwcxc +
√
αρ̄hT

kWpxp + nk, (2)

where ρ̄ = 1 − ρ, hk ∈ CL×1 denotes the channel vector
from the BS to the k-th user, and nk ∼ CN (0, σ2

k) denotes the
Additive White Gaussian noise. Under the Gaussian signalling
assumption, the signal-to-interference-plus-noise ratio (SINR)
for decoding the common stream at the k-th user is4

SINRc,k =
αρ|hT

kwc|2

σ2
k + αρ̄

∑K
i=1 |hT

kwp,i|2
(3)

After decoding the common stream successfully, the k-th
user can remove it from the received signal via 1-layer SIC
before decoding the intended private stream xp,k. Therefore,
the SINR for decoding xp,k at the k-th user takes the form

SINRp,k =
αρ̄|hT

kwp,k|2

σ2
k + αρ̄

∑K
i=1,i̸=k |hT

kwp,i|2
(4)

The sum rate of this RSMA system is of the form [4], [5]

Rsum = log2
(
1 + SINRc

)
+

K∑
k=1

log2
(
1 + SINRp,k

)
, (5)

where SINRc ≜ min{SINRc,1, · · · ,SINRc,K} guarantees the
successful decoding of xc at all served users.

B. MF-precoded RSMA Design

The proposed MF-precoded RSMA scheme is depicted in
Fig. 2. In contrast to designing a beamformer dedicated to

3We note that the total power of (1 − ρ)Pt allocated to the K private
streams can be numerically optimized to enhance the delivery performance.
In this paper, we adhere to the equal-power allocation as adopted in [5], [17].

4To maintain low complexity and alleviate the need for intricate numerical
optimizations, MRT (wmrt

c =
∑K

i=1 h
∗
k) is often employed to efficiently

perform beamforming for the common stream in RSMA (cf. [5], [16]).



Fig. 1. Conventional 1-layer RSMA with linear precoder for downlink transmission

Fig. 2. The transmitter structure of proposed MF-precoded RSMA

the common stream, we superpose the common and private
streams together before entering an MF precoder5. For the
real channel matrix H ≜ [h1,h2, · · · ,hK ]T ∈ CK×L, the
transmit signal is mathematically written as

smf =
√
αmfH

Hxmf =
√
αmf

K∑
i=1

h∗
i

(√
ρxc +

√
ρ̄xp,i

)
, (6)

where xmf ≜
√
ρ1Kxc +

√
ρ̄xp is the signal before MF

precoding, and again ρ ∈ [0, 1] and αmf denote the power-
splitting factor and the power normalization factor respec-
tively. The received signal at the k-th user is then of the form

ymf
k =

√
αmfρ

(
hT
k

K∑
i=1

h∗
i

)
xc +

√
αmf ρ̄

K∑
i=1

hT
k h

∗
i xp,i + nk.

The SINR for decoding xc at the k-th user takes the form

SINRmf
c,k =

αmfρ
∣∣hT

k

∑K
i=1 h

∗
i

∣∣2
σ2
k + αmf ρ̄

∑K
i=1 |hT

k h
∗
i |2

. (7)

So Rmf
c,k = log2(1 + SINRmf

c,k) is the maximum transmission
rate that the k-th user can decode xc successfully. After
decoding the common stream, the k-th user can remove the
common stream from the received signal yk via SIC before
decoding the intended private stream. Therefore, the SINR for
decoding xp,k at the k-th user is of the form

SINRmf
p,k =

αmf ρ̄|hT
k h

∗
k|2

σ2
k + αmf ρ̄

∑K
i=1,i̸=k |hT

k h
∗
i |2

. (8)

5We note that MF can be substituted with any high-performance precoder
based on numerical optimization. However, we confine ourselves to employing
a simple MF for low complexity in this paper. We also note that MF has been
shown to provide very high spectral efficiency which often comes close to
the performance of DPC when the BS has a large number of antennas [8].

The maximum transmission rate for sending the k-th private
stream is Rmf

p,k = log2(1 + SINRmf
p,k).

It is easy to see from (7) and (8) that the SINRs separately
for decoding the common and intended private streams at a
target user have the same forms as those in the MRT-MF
precoded RSMA. So we have the following statement.

Remark 1: Under the average power constraint of Pt, the
MF-precoded RSMA achieves the same delivery performance
as the conventional 1-layer RSMA where MRT beamforms the
common stream and MF precodes the K private streams.

Remark 2: In conventional RSMA, a dedicated beamformer
for the common stream needs to be carefully designed, typi-
cally involving a non-convex and NP-hard optimization prob-
lem (cf. [21], [22]). Moreover, the fully or partially connected
radio frequency (RF) chains in this beamformer entail addi-
tional power consumption compared to conventional MIMO
setups. The proposed superposition of common and private
streams before entering a precoder offers a significantly lower
complexity and power consumption alternative to implement
RSMA with satisfactory performance. The energy efficiency
will be thoroughly analyzed in our follow-up work.

III. PERFORMANCE ANALYSIS ON MF-PRECODED RSMA

In this section, we will analyze the delivery performance of
the MF-precoded RSMA in the massive MIMO regime.

A. Analytical Model

In this subsection, we will present some basic assumptions
for performance analysis. The channel vector hk from the
BS to the k-th user follows a multivariate complex Gaussian
distribution, i.e., hk ∼ CN (0L, βkIL), where βk accounts
for the large-scale pathloss and/or shadowing [13]. We also
assume that the downlink channel training is perfect for the
receivers, while the channel feedback to the BS appears with
some errors, i.e., imperfect CSIT. For the maximum likelihood
(ML) estimator in TDD training, the ML estimate of hk is
ĥk = hk + h̃k where h̃k ∼ CN (0L, β̃kIL) is the estimation
error, which is independent of hk (cf. [23]). Obviously, the
variance of each element in ĥk is β̂k = βk + β̃k.

In this analytical model, we consider the delay-tolerant
transmission such that sending the common stream and the
k-th private stream at ergodic rates guarantees successful



decoding at the k-th user (cf. [5], [6], [16]). Accordingly, the
ergodic sum rate (ESR) takes the form

R̄mf
sum = min

k=1,··· ,K

{
R̄mf

c,k

}
+

K∑
k=1

R̄mf
p,k, (9)

where R̄mf
c,k ≜ E{Rmf

c,k} and R̄mf
p,k ≜ E{Rmf

p,k} with the
expectation over channel states.

In the imperfect CSIT case, the transmit signal at the BS
under the MF-precoded RSMA scheme becomes

smf =
√
αmfĤ

Hxmf , (10)

where Ĥ ≜ [ĥ1, ĥ2, · · · , ĥK ]T is the estimated channel
at the BS. For the power normalization factor, after some
mathematical manipulations, we can easily derive that

αmf =
Pt

L
∑K

k=1 β̂k

, (11)

which is the same as the conventional MF precoding under an
average power constraint of Pt (cf. [14]).

The received signal at the k-th user becomes

ymf
k =

√
αmfρ

(
hT
k

K∑
i=1

ĥ∗
i

)
xc +

√
αmf ρ̄

K∑
i=1

hT
k ĥ

∗
i xi + nk,

which can be further written as (12), shown at the top of the
next page. The SINR for decoding xc is of the form6

SINRmf
c,k=

αmfρ
∣∣∣hT

k

K∑
i=1

h∗
i

∣∣∣2 + αmfρ
K∑
i=1

β̃i||hk||2

σ2
k+αmf ρ̄

K∑
i=1

(∣∣hT
k h

∗
i

∣∣2 + β̃i||hk||2
) . (13)

After removing the common stream from the received signal,
the signal for decoding xp,k becomes

ymf
p,k =

√
αmf ρ̄

K∑
i=1

(
hT
k h

∗
i + hT

k h̃
∗
i

)
xi + nk (14)

The SINR for decoding xp,k takes the form

SINRmf
p,k =

αmf ρ̄||hk||4 + αmf ρ̄β̃k||hk||2

σ2
k + αmf ρ̄

K∑
i=1,i̸=k

(
|hT

k h
∗
i |2 + β̃i||hk||2

) . (15)

B. Convergence Results in Massive MIMO

In this subsection, we will derive some convergence results
based on rigorous proof in the massive MIMO regime where
both L and K go to infinity with the ratio θ = L/K fixed.
Before giving the main results, we define some parameters.

βave ≜ lim
K→∞

1

K

K∑
i=1

βi, β̂ave ≜ lim
K→∞

1

K

K∑
i=1

β̂i, (16)

6We note that each receiver has perfect CSI for decoding, so the impact
of imperfect CSIT should appear in the numerator of the SINR expression
(cf. [5]). We also note that each receiver can perform perfect SIC in delay-
tolerant transmission with imperfect CSIT, provided that the common and
private streams are transmitted at their ergodic rates (cf. [5], [6]).

are both assumed to be finite. We define their ratio as
δ ≜ βave/β̂ave ∈ [0, 1]. Let X denote a random variable
that follows a Noncentral chi-squared distribution with the
degrees-of-freedom of 2 and the non-centrality parameter of
2θβk

βave
, denoted by X ∼ χ2

(
2, 2θβk

βave

)
. The probability density

function (PDF) of X is then of the form

fX(x) =
1

2
exp

(
− x

2
− θβk

βave

)
I0

(√
2θβk

βave
x

)
, (17)

where I·{·} denotes the modified Bessel functions of the first
kind. Now, we can present the following result for Rmf

c,k.
Lemma 1: As L,K → ∞ with a fixed ratio θ under

imperfect CSIT, the transmission rate for the common stream
to the k-th user has the convergence result:7

Rmf
c,k

d.−→ log2

(
1 +

βkρPt

(
δ
2X + 1− δ

)
σ2
k + ρ̄βkPt

(
1 + θβk/β̂ave

)). (18)

Proof: The proof is relegated to Appendix A. ■
Corollary 1: As L,K → ∞ with a fixed ratio θ, the ergodic

rate for decoding the common stream at the k-th user takes
the form in (19), shown at the top of the next page.
Proof: For SINRmf

c,k in (27), we can have that

SINRmf
c,k ≤ ρ

ρ̄

∣∣∑K
i=1 u

T
k h

∗
i

∣∣2 +∑K
i=1 β̃i∑K

i=1

∣∣uT
k h

∗
i

∣∣2 +∑K
i=1 β̃i

≤ ρ

ρ̄

∑K
i=1

∣∣uT
k h

∗
i

∣∣2 +∑K
i=1 β̃i∑K

i=1

∣∣uT
k h

∗
i

∣∣2 +∑K
i=1 β̃i

=
ρ

ρ̄
< ∞, (20)

which implies that Rmf
c,k is always uniformly integrable. In this

case, convergence in distribution implies the convergence in
expectation. That is, we have that

lim
L,K→∞

R̄mf
c,k = lim

L,K→∞
E{Rmf

c,k}

= E
{
log2

(
1 +

βkρPt

(
δ
2X + 1− δ

)
σ2
k + ρ̄βkPt

(
1 + θβk/β̂ave

))}. (21)

Substituting the PDF of X (cf. (17)) into the above, we arrive
at (19), which concludes the proof. ■

Next, we will present the convergence result for Rmf
p,k.

Lemma 2: In the massive MIMO regime, the rate for sending
the k-th private stream converges to a constant almost surely,

Rmf
p,k

a.s.−→ log2

(
1 +

βk

β̂ave

θρ̄Ptβk

σ2
k + ρ̄Ptβk

)
. (22)

Proof: Dividing both the numerator and denominator of
SINRmf

p,k in (15) by ||hk||2K−1, we obtain that

SINRmf
p,k =

Kαmf ρ̄||hk||2 +Kαmf ρ̄β̃k

σ2
kK

||hk||2 +Kαmf ρ̄
K∑

i=1,i̸=k

(∣∣uT
k h

∗
i

∣∣2 + β̃i

) (23)

7Unlike the convergence results observed in MF, ZF and RZF (cf. [8])
where their rates converge to constants, we uncover an interesting fact: the
transmission rate of MRT (cf. Remark 1) converges to a specific random
distribution when L and K both approach infinity while with a fixed ratio.



ymf
k =

√
αmfρ

(
hT
k

K∑
i=1

h∗
i

)
xc +

√
αmfρ

(
hT
k

K∑
i=1

h̃∗
i

)
xc +

√
αmf ρ̄

K∑
i=1

hT
k h

∗
i xi +

√
αmf ρ̄

K∑
i=1

hT
k h̃

∗
i xi + nk (12)

lim
L,K→∞

R̄mf
c,k =

1

2

∫ ∞

0

log2

(
1 +

βkρPt

(
δ
2x+ 1− δ

)
σ2
k + ρ̄βkPt

(
1 + θβk/β̂ave

)) exp

(
− x

2
− θβk

βave

)
I0

(√
2θβk

βave
x

)
dx (19)

For L,K → ∞, using the Strong Law of Large Numbers
(SLLN), we can easily have that

Kαmf ||hk||2
a.s.−→ Ptβk

β̂ave

,
K

||hk||2
a.s.−→ 1

θβk
, Kαmf

a.s.−→ 0.

Considering the independence statement in (28), we have that

Kαmf

K∑
i=1,i̸=k

(∣∣uT
k h

∗
i

∣∣2 + β̃i

)
a.s.−→ Pt

θβ̂ave

(
0 + β̂ave

)
=

Pt

θ
.

Combining the convergence results listed above easily yields
Lemma 2, which concludes the proof. ■

Corollary 2: In the massive MIMO regime, the ergodic rate
for decoding the k-th private stream at the dedicated user is
of the form8

lim
L,K→∞

R̄mf
p,k = log2

(
1 +

βk

β̂ave

θρ̄Ptβk

σ2
k + ρ̄Ptβk

)
. (24)

Proof: We first have that

Rmf
p,k =

ln(1 + SINRmf
p,k)

ln 2
≤

SINRmf
p,k

ln 2
. (25)

Based on (23), we can easily prove that E{(SINRmf
p,k

)2} <
∞, so Rmf

p,k is uniformly integrable. According to the Vitali
Convergence Theorem and Lemma 2, we have that

Rmf
p,k

L1

−→ log2

(
1 +

βk

β̂ave

θρ̄Ptβk

σ2
k + ρ̄Ptβk

)
, (26)

which directly yields (24), and which concludes the proof. ■

IV. NUMERICAL RESULTS

In this section, we conduct numerical experiments to show-
case the precision of the derived formulas and to provide
comparisons with other RSMA designs.

In Figs. 3–4, we examine the symmetric fading scenario,
where each user shares identical channel statistics. Moreover,
βk = σ2

k = 1 is assumed for any k = 1, 2, · · · ,K. For the
channel estimation model, we consider that β̃k = (PtN)−1,
where N is the number of training symbols, and which enables
an enhancement in the quality of channel estimation as the
SNR rises. As shown in Fig. 3, ESR exhibits a linear growth
as both L and K increase with a fixed ratio θ. As Pt increases,
the ESR also rises, attributable to the heightened transmit

8We note that various approximations (e.g., [8], [13]–[15], [19], [20]) have
been developed for the ergodic rate of MF precoding in massive MIMO.
Interestingly, these approximations can finally arrive at (24). However, this is
the first time to rigorously prove this well-known convergence result under
the average power constraint.
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Fig. 3. Ergodic sum rate versus ρ for θ = 5, ρ = 0.5, and N = 10.

power and enhanced channel estimation. We also observe a
close alignment between the analytical results obtained from
Corollaries 1 and 2 and the simulated outcomes, particularly in
the regime of large L. However, this correspondence is not as
strong for small L and high transmit power. The discrepancy
primarily arises from Corollary 2 regarding the ergodic rate
under conventional MF precoding, which proves to be an
inadequate approximation in the medium to high SNR range
for finite numbers of L and K (cf. [14], [24]).9

In Fig. 4, the ESR is plotted against ρ for various values of
N . It is evident that employing more training symbols results
in a higher ESR in the low and medium ρ regime. However,
as ρ approaches 1 (indicating purely MU multicasting), the
ESRs across different channel estimation qualities converge.
This suggests that the decoding of the common stream is not
significantly affected by the estimation quality. Compared to
conventional MF precoding, RSMA enables us to control the
interference level between the common and private streams,
thereby achieving a higher rate by adjusting the value of ρ.

In Figs. 5–6, we explore a realistic wireless propagation
scenario within a Macro-cell environment [25]. Specifically,
we consider an AWGN spectral density of −174 dBm/Hz,
with a spectrum bandwidth of 20 MHz allocated for each
user. We generate 1000 realizations of user locations, assuming
a uniform distribution of users across a Macro-cell with
an inner radius of 35 meters and an outer radius of 500
meters. Assuming a carrier frequency of 2 GHz, we have
that βk = L0r

−η
k , where rk is the distance from the BS to

9Unfortunately, the magnitude of this discrepancy becomes too significant
to disregard in the simulation settings in Figs. 4–6. We note that a more
precise approximation can be obtained by employing the methods outlined
in our latest work [24], but we have reserved this for follow-up works. For
that, we utilize the simulated result for R̄mf

p,k while employing Corollary 1
for R̄mf

c,k to derive the analytical results presented in Figs. 4–6.
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the k-th user, η = 3.76 denotes the pathloss exponent, and
L0 = 10−3.53 regulates the channel attenuation at 35 meters
[25]. We assume Pt = 40 dBm, which is a typical transmit
power at a Macro-cell BS [26]. Additionally, we employ ZF
and RZF precoders separately for the private streams, while
the common stream is always beamformed by MRT in the
conventional 1-layer RSMA (cf. [5]). These represent two
benchmark schemes for the proposed MF-precoded RSMA. To
ease the simulation, we consider perfect CSIT where β̃k = 0.

In Figs. 5–6, we observe that MF-precoded RSMA out-
performs MRT-ZF precoded RSMA when L = K = 8,
whereas the comparison is reversed when the number of
transmit antennas increases from 8 to 16. As anticipated, MRT-
RZF consistently delivers the best performance. Additionally,
more numerical results (omitted due to space constraints) fully
demonstrate that MF often outperforms ZF for θ = L/K ≤ 1.
It is worth noting that in dense Macro-cell environments,
the number of served users can reach several thousand [26],
making scenarios where θ = L/K ≤ 1 quite common.

V. CONCLUSION

In this paper, we have developed an MF-precoded RSMA
scheme, which offers significantly improved energy efficiency
and reduced complexity. We have demonstrated that the MF-
precoded RSMA exhibits the same delivery performance as
the conventional MRT-MF precoded RSMA. In the massive
MIMO regime and in imperfect CSIT, we have rigorously
proved that the transmission rate for the common stream
converges in distribution to a specific random variable, while
the transmission rate for each private stream converges to a
constant almost surely. Based on the convergence results, we
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Fig. 6. Ergodic sum rate versus ρ for L = 16 and K = 8.

derived the ergodic rates separately for decoding the common
and private streams. Finally, our numerical results have not
only validated the accuracy of our analytical models but have
also showcased the advantages of our proposed scheme over
the conventional RSMA designs.

APPENDIX A: PROOF OF LEMMA 1

Dividing both the numerator and denominator of SINRmf
c,k

in (13) by ||hk||2K−1, we obtain that

SINRmf
c,k =

Kαmfρ
∣∣uT

k

∑K
i=1 h

∗
i

∣∣2 +Kαmfρ
∑K

i=1 β̃i

Kσ2
k

||hk||2 + ρ̄Kαmf

∑K
i=1

(∣∣uT
k h

∗
i

∣∣2 + β̃i

) , (27)

where uk ≜ hk/||hk|| with unit-norm. For any i, j ∈
{1, 2, · · · ,K} and i ̸= j ̸= k, we have that uT

k hi ∼ CN (0, βi)
and uT

k hj ∼ CN (0, βj). We also have that

E
{
uT
k hih

H
j u∗

k

}
= Tr

{
E
{
hi

}
E
{
hH
j

}
E
{
u∗
ku

T
k

}}
= 0, (28)

which implies that uT
k hi and uT

k hj are uncorrelated. As uT
k hi

and uT
k hj are both Gaussian distributed, they are independent

of each other. Therefore, we have that
∑K

i=1,i̸=k u
T
k h

∗
i ∼

CN
(
0, b
)
, where b ≜

∑K
i=1,i̸=k βi. Define the random variable

X ′ as X ′ ≜ uT
k

∑K
i=1 h

∗
i = ||hk|| +

∑K
i=1,i̸=k u

T
k h

∗
i . It is

easy to derive that ||hk|| follows a Nakagami distribution
with the shape parameter L and the spread parameter βkL,
denoted by ||hk|| ∼ Nakagami(L, βkL). So X ′ is the sum
of a Nakagami distributed variable and a complex Gaussian
distributed variable, which has the same definition as the
channel gain over Shadowed-Rician fading channels (cf. [27],
[28]). For that, we have the moment generating function
(MGF) of X ′ as (cf. [27, Eq. (7)])

MX(t) =
1

1− bt

(
1− βkt

1− bt

)−L

, for t <
1

b
. (29)

Let X = 2
bX

′. The MGF of X is of the form

MX(t) = MX′

(2
b
t
)
=

1

1− 2t

(
1− 2βkt

1− 2t

1

b

)−L

, (30)



where t < 1
2 . As b = (

∑K
i=1 βi) − βk = Kβave − βk =

L
θ βave − βk. For L,K → ∞ with a fixed ratio θ, we can
derive the limit MGF of X as

MX(t)=
1

1− 2t
lim

L,K→∞

(
1− 2θβkt/βave

1− 2t

1

L− θβk/βave

)−L

=
1

1− 2t
exp

(
2θβk

βave

t

1− 2t

)
, for t <

1

2
(31)

which equals the MGF of χ2
(
2, 2θβk

βave

)
. Therefore, X

d.−→
χ2
(
2, 2θβk

βave

)
. For other terms in the numerator of (27), we

have that

lim
L,K→∞

Kαmfb

2
= lim

L,K→∞

K

2

Pt

LKβ̂ave

(L
θ
βave − βk

)
= lim

L,K→∞

Pt

2

( βave

θβ̂ave

− βk

Lβ̂ave

)
=

βavePt

2θβ̂ave

, (32)

Kαmf

K∑
i=1

β̃k =
PtK

Lβ̂ave

1

K

K∑
i=1

β̃k =
Pt

(
β̂ave − βave

)
θβ̂ave

. (33)

As L,K → ∞ with a fixed ratio θ, using the Strong Law
of Large Numbers (SLLN) yields that

K

||hk||2
a.s.−→ 1

θβk
, Kαmf ||hk||2

a.s.−→ Ptβk

β̂ave

1

K − 1

K∑
i=1,i̸=k

(∣∣uT
k h

∗
i

∣∣2 − βi

)
a.s.−→ 0, (34)

which helps us derive the convergence result for the denomi-
nator of (27), given by

Kσ2
k

||hk||2 + ρ̄Kαmf

K∑
i=1

(∣∣uT
k h

∗
i

∣∣2 + β̃i

) a.s.−→ σ2
k

θβk
+ ρ̄Pt

θ

(
θβk

β̂ave
+ 1
)
.

All the terms (except X) in (27) converge to constants
almost surely, so SINRmf

c,k has the following convergence:

SINRmf
c,k

d.−→
βaveβkρPt

2β̂ave
X + ρPtβk

β̂ave

(
β̂ave − βave

)
σ2
k + ρ̄βkPt

(
θβk

β̂ave
+ 1
) . (35)

Considering that Rmf
c,k = log2(1+SINRmf

c,k) and then using the
Continuous Mapping Theorem, we can derive the convergence
result for Rmf

c,k in (18).
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