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Multi-modal Generative models
▶ Multi-modal generative models aim at approximating the distribution of

multi-modal data ( such as images, text, audio) while providing the
capability to draw new samples either unconditionally (joint generation)
or conditionally on a set of available modalities. These models are
evaluated in terms of :
▶ Quality of the generation which reflects the fidelity of the generated samples to

the observed data.
▶ Coherence of the generation in terms of consistency of the semantic information

across the modalities.

▶ VAE-based multi-modal models have dominated this field, so far.

Limitations of multi-modal VAEs
▶ Coherence-Quality trade-off.
▶ Latent collapse impacting the quality of the latent variables.
▶ Modality collapse gradient-conflict.

Despite several efforts appearing in the recent literature, these limitations
are still not resolved [1].

Contributions
Multi-modal Latent Diffusion (MLD) is a novel method for multi-modal
generative modeling that, by design, does not suffer from the aforementioned
limitations. Our approach is a two-stage procedure :
▶ Deterministic uni-modal autoencoders map the multi-modal data to the

latent space. Their independent training avoids any gradient conflict.
▶ A score-based diffusion model is applied on the multi-modal latent

space. The multi-time masked diffusion process enables joint and
conditional generation for any subset of modalities.

Our approach achieves both high-quality and coherent joint/conditional
data generation.

X 1

XM

X̂ 1

X̂M

eψ1

Z

eψM

dθ1

dθM
ZM

Z 1

Forward SDE

Equation (1)

R0

RM
0

R1
0

RT ∼ ρ(r)
RM
T

R1
T

Reverse SDE

Equation (2)

R0 ∼ ρ(r)
RM

0

R1
0

RT

RM
T

R1
T

Figure: A schematic representation of MLD: Top: deterministic, modality-specific
encoder/decoders, Bottom: A score-based diffusion model applied on the multi-modal latent
space.
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Figure: Qualitative results on CUB data-set. Caption used as condition to generate images.
(MLD*: denotes a version of our method using a powerful image autoencoder.)

Multi-modal Latent Diffusion
Given a generic partition of all modalities into non overlapping sets A1 ∪ A2,
we define the masked forward diffusion process.

The masked forward SDE

dRt = m(A1) ⊙ [α(t)Rtdt + g(t)dWt] , (1)
where α(t)Rt and g(t) are the drift and diffusion terms, respectively,
and Wt is a Wiener process. The mask m(A1) ensures that only the
portion of the latent space concerning the modalities of the subset A1 is
diffused.

To sample from qψ(zA1 | zA2), we derive the reverse-time dynamics of eq. (1):

The masked reverse SDE

dRt = m(A1) ⊙
[(

−α(t ′)Rt + g 2(t ′)∇ log
(
q(Rt, t

′ | zA2)
))

dt + g(t ′)dWt

]
, (2)

with t ′ = T − t, the initial conditions R0 = C(RA1
0 , zA2) and RA1

0 ∼
ρ(rA1). The true score function ∇ log

(
q(r , t | zA2)

)
is approximated by

a conditional score network sχ(rA1, t | zA2).

Multi-time Diffusion
Instead of training a separate score network for each possible combination, we
use a single architecture that accepts all modalities as input and a multi-time
vector τ = [t1, ... , tM ]. The multi-time vector serves as a conditioning signal
and additionally indicates the diffusion time.
▶ Training: At each step, a randomly selected set of modalities A1 is

diffused while A2 is freezed during the forward process.
▶ Generation: Any valid numerical integration scheme (E.g.

Euler-Maruyama ) for eq. (2) can be used for conditional generation.

MLD captures efficiently the interactions across modalities

MLD treats the multi-modal latent space as variables that evolve dif-
ferently through the diffusion process according to a multi-time vector.
Each modality diffusion time modulates its influence on the generation.
▶ Joint generation (same diffusion time) : All the modalities influence

each other equally.
▶ Conditional generation: The conditioning modalities are not

perturbed which reflects a maximal influence on the generation.

Table: Generation coherence and quality for MNIST-SVHN ( M :MNIST, S: SVHN). Quality is
measured in terms of FID. Coherence is measured as in [3, 4, 2], using pre-trained classifiers.

Models
Coherence (%↑) Quality (↓)

Joint M → S S → M Joint(M) Joint(S) M → S S → M

MVAE [6] 38.19 48.21 28.57 13.34 68.9 68.0 13.66
MMVAE [3] 37.82 11.72 67.55 25.89 146.82 393.33 53.37
MOPOE [4] 39.93 12.27 68.82 20.11 129.2 373.73 43.34
NEXUS [5] 40.0 16.68 70.67 13.84 98.13 281.28 53.41

MVTCAE [2] 48.78 81.97 49.78 12.98 52.92 69.48 13.55

MLD 85.22 83.79 79.13 3.93 56.36 57.2 3.67
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