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ABSTRACT

Performing data analysis over incomplete data produces biased re-
sults and sub-par performance. Imputation over relational datasets
that contain both categorical and continuous variables is chal-
lenging. The challenges are accentuated when the missingness
proportion of dataset is high, wherein a large fraction of the
relation contain missing values, or if missing values occur in mul-
tiple attributes of a single tuple. In this paper, we propose GRIMP,
a novel approach for imputation that tackles these challenges.
GRIMP achieves high imputation accuracy through a combina-
tion of three novel ideas. First, it represents relational data as a
heterogeneous graph, encoding sophisticated relationships be-
tween tuples, attributes and cell values. Second, it uses graph
representation learning based on message passing to combine
and aggregate the representations from appropriate neighbor-
hoods. This allows GRIMP to leverage information from other
cell values of the same tuple and that of similar tuples for im-
putation. Finally, it uses a self-supervised multi-task learning
paradigm for training imputation models. In other words, GRIMP
does not need any explicit training data as it uses the existing
relational data, even when it has missing values. GRIMP trains an
imputation model for each attribute using a two-stage approach
consisting of a task agnostic section, where the parameters are
shared across all attributes, and an attribute specific imputation
model. Experiments over ten datasets and seven baselines show
that GRIMP performs accurate imputation and provides new
insights about the limitations of data imputation systems.

1 INTRODUCTION

Missing data is one of the most common data quality issues.
Any analysis performed on the incomplete data would produce
biased estimates leading to poor decision making. It can also
affect the downstream applications, such as machine learning
(ML), by reducing the amount and quality of complete training
data. If the amount of missing data is minimal and the data is
missing completely at random (MCAR), then a natural, if wasteful
approach would be to ignore tuples with missing values during
the analysis. In practice, many real-world datasets might contain
too much missing data, or have systematic sources of missing
values: here, omitting “dirty” tuples would result in biased data
analysis.

Prior Work and their Limitations. There has been extensive
work on data imputation. Discriminative models such as random
forests or neighborhood methods often produce poor results in
the presence of systematically missing data as they produce bi-
ased estimates that affect interpolation based approaches [52].
An alternate approach is to use (deep) generative models such as
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Figure 1: Example of data imputation challenges (left) and

opportunities (right).

Generative Adversarial Networks (GANs) or denoising autoen-
coders to reconstruct missing values. These approaches make
assumptions about data distributions. When these assumptions
hold, they produce accurate imputation and better generalization.
However, exemplars of both these classes of techniques have
many limitations that minimize their effectiveness on relational
data.

First, most of the prior work cannot handle mixed datasets con-
taining both categorical and continuous attributes. Unfortunately,
most of the relational datasets fall into this category, as depicted
in Figure 1. A key challenge is that training a classifier requires
multiple objectives, such as minimizing RMSE for continuous
data and cross-entropy for categorical data. This is especially
non-trivial for deep generative models, where poor training re-
sults in non-convergence or mode collapse [9, 52]. Second, many
imputation models require a clean data subset for training. This
might not always be possible when a large portion of the data
has missing values, thus resulting in relatively poor performance.
Third, popular approaches for multiple imputations (where a
tuple might have multiple attributes with missing values) such as
MissForest [46] or MICE [48] are iterative in nature. Specifically,
they train𝑚 separate models for imputing𝑚 attributes wherein
each model uses all attributes but one to impute the remaining
attribute. This process is iterated over all features to produce a
completely imputed dataset. A key issue with this approach is
that each of the𝑚 models learns the imputation without sharing
the commonalities. Finally, most of prior approaches do not take
global relationships into account for imputation. Discriminative
models are trained over individual tuples and used for imputing
on individual tuples. However, it is beneficial to involve infor-
mation beyond the single tuple – such as other similar tuples or
meta-information such as functional dependencies that establish
relationships between multiple attributes.

Two recent approaches leverage different kinds of information
to improve imputation performance. AimNet [52] leverages the
attention mechanism to learn the relationships between attributes,
such as State and AreaCode in Figure 1. GINN [45] uses a graph
convolutional layer within an autoencoder architecture. This
allows the model to leverage similar tuples, as depicted in Figure 1
for the imputation of Salary in the last tuple. However, both



approaches fall short by not completely leveraging all possible
global information. Furthermore, GINN uses a similarity matrix
for quantifying relationships between tuples, which requires
quadratic time complexity and is unsuitable for large datasets.

Leveraging All Global Information. We introduce GRIMP
(Graph embeddings for Relational data IMPutation), a novel
graph based approach that tackles each of the aforementioned
limitations.

Mixed Datasets. GRIMP represents the relational data as a concise
heterogeneous graph allowing it to handle both categorical and
numerical attributes. This graph allows one to capture global
relationships between tuples and attributes. Additionally, the
graph can easily be augmented to encode other domain specific
information.

GRIMP formulates the imputation problem as a multi-task ML
problem [13]. Specifically, GRIMP trains𝑚 models where the 𝑖-th
model is used to impute attribute 𝐴𝑖 . Imputation of categorical
attributes is achieved using multi-class classification whereas
imputation of numerical attributes is formulated as a regression
problem.

No Training Data. GRIMP leverages the self-supervised learning
paradigm so that it can be trained without the need for labeled
data or a clean subset of data. This capability is especially appeal-
ing when the missingness proportion of the dataset is high.

Local and Global Information. Specifically, GRIMP uses graph
neural networks (GNN) that produce lower-dimensional vector
representation for any node by leveraging both structure and
attributes of the graph [53]. This approach is inductive, which
allows GRIMP to be used for imputation on tuples unseen during
training. GNNs are trained through message-passing over multi-
ple rounds, combining and aggregating the representations from
relevant neighborhoods. This allows GRIMP to exploit local and
global relationships, such as those between attributes and tuples.

A key innovation of GRIMP is a two step approach that avoids
needless redundancies between the imputation models for each
attribute. The first stage is a general shared section where the
model parameters are shared across imputation models for each
attribute. The second stage is a task specific setting that focuses
on imputing an individual attribute. This shared approach allows
sharing of relevant information across imputation models for
different attributes resulting in superior accuracy. The imputation
models for all attributes is trained end-to-end by using a dual loss
function that combines the losses for categorical and numerical
attributes.

Experimental Results. We evaluated GRIMP against six repre-
sentative baselines, and we develop one additional baseline by
extending one of them to handle external information. Experi-
ments were executed over ten datasets with mixed data types.
The experiments were conducted over missingness proportions
up to 50%. GRIMP outperforms the baselines in almost all the
cases and remains competitive with the best performing baseline
in the remaining cases. We investigate the role of the key com-
ponents of GRIMP and demonstrate that they are indispensable
to provide improved results.

Contributions. The high level contribution of GRIMP is a graph
based representation of relational data to encode local and global
relationships. Once the graph is constructed, one could use graph
representation learning to obtain node representations that pro-
vide good imputation. We note that GRIMP is agnostic to the

specific GNN model used for representation learning. GRIMP
handles heterogeneous data and multiple types of missingness
patternswith arbitrary data distributions andmissingness propor-
tions as high as 50%. We summarize our four main contributions
as follows.
• We investigate the problem ofmultiple imputation over datasets
with mixed data-types with significant amount of tuples with
missing data.

• We propose GRIMP, which represents the relational data as a
heterogeneous graph. It then uses graph representation learn-
ing for obtaining the node embeddings that can be used for
imputation of individual attributes.

• GRIMP tackles the multiple imputation problem using the para-
digm ofmulti-task learning.GRIMP uses a two stage approach –
a shared task agnostic section and attribute specific imputation
model based on attention.

• We run a systematic experimental campaign over ten datasets
and seven baselines to show that (1) GRIMP can perform accu-
rate imputation and (2) it can exploit external information in
the form of functional dependencies to improve performance.
We conclude with a section on error analysis, where we show
that most imputation methods share weaknesses and that im-
puting rare values is the hardest part for all proposed solutions.

Paper Organization.We introduce the problem setup and ter-
minology in Section 2. Section 3 describes the components of
GRIMP such as graph construction, representation learning and
multi-task imputation. We report the results of our experimental
analysis in Section 4. We discuss the limits of imputation methods
for relational data in Section 5. We describe the relevant prior
work on imputation in Section 6. Finally, Section 7 discusses lim-
its and opportunities of using deep learning for data imputation.

2 BACKGROUND

Let D be a relational dataset with 𝑛 tuples {𝑡1, 𝑡2, . . . , 𝑡𝑛} and𝑚
attributes {𝐴1, 𝐴2, . . . , 𝐴𝑚} which contains missing values. Let
R be the schema of D. Each attribute 𝐴𝑖 ∈ R could be either
categorical or numerical. Let 𝐶 (R) be the set of attributes that
are categorical. Let 𝑁 (R) be the set of attributes that are numer-
ical. We denote the domain of attribute 𝐴𝑖 as 𝐷𝑜𝑚(𝐴𝑖 ). With-
out loss of generality, let 𝐷𝑜𝑚(𝐴𝑖 ) for a categorical attribute
be {1, 2, . . . , |𝐴𝑖 |}, where |𝐴𝑖 | is cardinality of the domain of at-
tribute𝐴𝑖 . We denote the value of attribute𝐴 𝑗 in tuple 𝑡𝑖 as 𝑡𝑖 [𝐴 𝑗 ].
Missing values are represented by a special sentinel token ∅. We
consider two variants of the dataset D: let D̃ be the imputed
dataset where every entry with 𝑡𝑖 [𝐴 𝑗 ] = ∅ is replaced with a
value from 𝐷𝑜𝑚(𝐴 𝑗 ), and let D∗ be the ground truth version of
D̃.

Data imputation is the task of processing the datasetD, which
contains missing or erroneous values, with the objective of cor-
recting the errors on the basis of the context provided by the
existing features. We assume that an orthogonal error detection
procedure has been used to mark erroneous cells with ∅ [1, 36].
Intuitively, the goal of an imputation algorithm A is to output
a dataset D̃ where every entry with 𝑡𝑖 [𝐴 𝑗 ] = ∅ is filled with
the value 𝑡∗

𝑖
[𝐴 𝑗 ] where the tuple 𝑡∗𝑖 is the complete version of 𝑡𝑖

from D∗. The accuracy of the imputation is evaluated based on
the type of the attribute. For numerical attributes, we use RMSE.
The imputation of a categorical cell value is consider as accurate
if 𝑡𝑖 [𝐴 𝑗 ] = 𝑡∗𝑖 [𝐴 𝑗 ]; the overall accuracy is simply the number of
accurate imputations.
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Figure 2: Overview of the GRIMP architecture. Given the dataset, its training samples and its graph are created and both are

fed to the multi-task model. The shared and the task-specific sections in this model are jointly learned at training time.

Every task emits imputation for missing values for a specific attribute.
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Figure 3: Record ID nodes and value nodes are color-coded.

GRIMP’s graph is a heterogeneous, quasi-bipartite graphwhich
encodes the table’s content and its structure. The graph has mul-
tiple node types to represent entities (tuples, and cells) and differ-
ent edge types to represent relationships between them. Figure 3
shows a sample dataset on the left, together with the correspond-
ing graph. In the graph, each tuple is assigned a RID node (record
id nodes highlighted in green). Each unique value in the dataset
(belonging to all attributes) is assigned a cell node (shown in
grey). The RID and cell nodes are connected via a typed edge.
The edge type is defined by the attribute of the cell, with the
number of types being equal to the number of attributes in the
table. Typed edges are color coded according to the respective
attribute and are independent from the attribute labels. For ex-
ample, tuple R1 is connected to value ‘France’ (‘𝑏1’) via a yellow
edge with type ‘Country’ (‘B’). Following the literature [33, 53],
self-loops are added to the graph.

3 GRIMP

In this section, we introduce GRIMP (Graph embeddings for
Relational data IMPutation), a generic data imputation frame-
work.

3.1 System Architecture

An overview of GRIMP is illustrated in Figure 2.

Preprocessing. Given a input dirty (i.e., which includes missing
values) table D, GRIMP first runs a pre-processing step where
it builds the graph and the training corpus. In the graph con-
struction step (detailed in Section 3.2), GRIMP constructs a het-
erogeneous graph that encodes the table by generating a node
for every row and every value, with typed edges linking such
nodes. The training corpus is composed of copies of the table

tuples with synthetically injected missing values that are split by
attribute among the various tasks (Section 3.3).

Training. During the training procedure, GRIMP uses a GNN
[27, 33] to refine the pre-trained node features by leveraging the
structure of the graph. Given a node, its features are modified by
combining themwith those of its neighbors. Correspondingly, the
features of the node’s neighbors are also modified (Section 3.4).
The computed embeddings are forwarded to the multi-task [49,
57] component that is responsible for the data imputation. This
consists of two parts.

The first part uses hard-parameter sharing wherein the pa-
rameters of the GNN model are shared by all tasks. The second
part focuses on imputing individual attributes. This contains
“sub-models” whose weights are kept hidden from each other
(Section 3.5). In other words, the learned parameter values are
specific to the imputation of a given attribute. We dub these sub-
models “tasks” and create one such task for each table attribute.
Depending on the datatype, tasks are built as multi-class classi-
fiers, or as regressors. We implement an attention structure in the
tasks, which combines the vectors generated by the GNN with
attribute-level information. Each task has its own loss function,
depending on whether it is categorical or numerical, which is
aggregated with that of other tasks to find the overall loss of the
model (Section 3.6).

Imputation. After the training is complete, GRIMP performs
imputation on the dirty data by selecting the appropriate value
for the missing entries in the input table (Section 3.7).

3.2 Graph Construction

The first step is to construct a graph using the given dirty rela-
tional table D. The graph is created by iterating over the dirty
dataset row by row. A new node is added for each tuple and for
each unique value in the tuple. A typed edge connects the tuple
node to the value for that attribute. If a cell contains a missing
value, no edges are added to the graph and the empty cell is
ignored at this stage. Values that appear in multiple attributes
are disambiguated so that each occurrence is connected exclu-
sively to its attribute. If the same value 𝑣 occurs in two separate
attributes, the two occurrences are disambiguated by creating
two nodes for 𝑣 .

After graph creation, the node features are initialized. GRIMP
represents each node as a low dimensional vector that can be
used for various downstream tasks, including imputation. While



Figure 4: Example of training samples generated for two

tuples with null values. Each tuple leads to a training sam-

ple with a new null (yellow cell) for each non-null value.

Names (in parenthesis) denote that the object is an embed-

ded representation of the original cell value.

Figure 5: Example of a null value distribution that leads to

the production of the same training vector.

we learn representations, it is possible to accelerate the learning
through appropriate initialization. Numerical values are treated
as strings and represented as nodes. To handle real numbers,
we round them to a pre-defined number of decimal places (8
places by default). To avoid scale issues in the loss computations,
numerical values are normalized before training the model, and
then de-normalized before measuring the imputation accuracy.

3.3 Building the Training Corpus

GRIMP employs a representation of the tuples that is efficient and
robust to noise. Every non-missing value is used for training the
model by creating copies of the original tuple. Since the correct
imputation for an injected missing value is known, we can use the
model to do the imputation andmeasure a loss during the training.
Each tuple is replicated as many times as there are attributes
without missing values, with each copy being a different training
sample.

For example, looking at Figure 4, tuple R1 is replicated three
times, one time for each column with no missing values – first,
by removing the value “2015” (𝑅1 (𝑌𝑒𝑎𝑟 ) = [∅, ∅, (The Martian),
(R. Scott), ∅]), then by removing “The Martian” (𝑅1 (𝑇𝑖𝑡𝑙𝑒) =
[2015, ∅, ∅, (R. Scott), ∅]), and finally by removing “R. Scott”
(𝑅1 (𝐷𝑖𝑟𝑒𝑐𝑡𝑜𝑟 ) = [2015, ∅, (The Martian), ∅, ∅]).

This approach allows GRIMP to leverage every tuple (even if it
contains a large fraction of “true” missing values) for generating
training samples. As we describe later, each training vector is fed
to a separate attribute specific imputation model. As a result, the
same input fed to different tasks leads to different imputations.
In general, if a tuple has K non missing attributes, it generates K
synthetic tuples. Figure 4 shows the cases for K=2 (𝑅1) and K=3
(𝑅2). K does not depend on the size of the attribute domain and
is bounded by the number of attributes.

The example in Figure 5 reports training samples for column
“City” in row R1 and “Cntr” in row R2 (yellow background); both
lead to the same training vector (middle part of the figure). If the

model used a single classifier, such classifier would produce only
one output, choosing either “France” or “Paris” as its imputation.
Instead, by using multiple independent tasks, it feeds the same
vector to different classifiers and obtain different guesses. The
model has to handle this case with every tuple that contains more
than one missing value. By designing the system in such a way
that the occurrence is accounted for during training, we ensure
resilience even in scenarios with high error fractions.

3.4 Graph Representation Learning

Once the graph and the training corpus are constructed, they can
be used to learn node representations. The node features can be
initialized randomly, with some pre-trained corpus, or with a lo-
cal embedding model. However, it is possible to refine them so as
to achieve accurate results in the downstream task of imputation.
While there are many approaches for learning such represen-
tations, GRIMP uses Graph Neural Networks (GNNs) [25, 53].
GNN based representations are inductive, i.e., try to learn generic
patterns from the observed training data (such as relationships
between nodes or based on a neighborhood), which allows them
to be used for imputing tuples that were unseen during training.

GNN takes the graph as input along with a set of node fea-
tures 𝑋 , then aggregates the features of each node with its neigh-
bors via a message passing operation [22]. The features are then
transformed by a non-linear function. Intuitively, every node
representation encodes information relative to the node itself
and to its direct neighbors. Similar nodes (either in features or
neighborhoods) are then placed close to each other in the vec-
tor space of the embeddings. By adding more layers on top of
each other, it becomes possible to propagate a node’s features
to longer distances. The output of the stack of layers contains
the distributed representations of the graph nodes, which is then
used to perform tasks such as imputation. GRIMP implements
a heterogeneous spatial-based convolutional GNN that enables
the use of different GNN models with different edge types. The
architecture is described in Section 3.5.

Pre-Trained Features. GNNs combine the features a node’s
neighbors with the node’s own features to produce a merged rep-
resentation of the node itself. Initial feature representations for
tuples and cell values can either be randomly generated, or pre-
pared by relying on external methods. We propose two strategies
for initialization.

The first solution relies on pre-trained embeddings [7]. Cell
values are passed to the pre-trained embeddings algorithm, which
returns a vector representation for each value. Then, the vector
representation of a tuple is prepared by averaging the vector
representations of the cell values in it. The vector representation
of each attribute is prepared by averaging the vectors of the
values in the attribute. These vectors are used in matrix Q in the
attention layer.

Alternatively, one could use a framework for learning rela-
tional embeddings, such as EmbDI, to generate local embeddings
from the original table [11]. We extend the EmbDI graph to better
model null values by introducing a new edge type which repre-
sents “possible” imputation values. For example, given a missing
value 𝑡𝑖 [𝐴 𝑗 ] in tuple 𝑡𝑖 and attribute𝐴 𝑗 , the graph has new edges
connecting 𝑡𝑖 ’s node to every value in the domain of𝐴 𝑗 . By intro-
ducing these edges, the graph is aware that a missing value can
take any of the values in the attribute domain. To model the fact
that these edges are “possible”, each edge 𝑒𝑖𝑥 connecting tuple
𝑡𝑖 to cell value 𝑥 = 𝑡𝑖 [𝐴 𝑗 ] is weighted proportionally to the



frequency of 𝑥 in attribute 𝐴 𝑗 , with more frequent values having
higher weight.

3.5 Multi-Task Learning Component

The goal of graph representation learning to is to learn node
representations to be used for some downstream task. The down-
stream task for GRIMP is data imputation.

One approach is to use a single classifier for all attributes.
However, this directions leads to several problems. First, it has a
very large label space, thus the classifier is error prone. Second,
it is expensive as it requires more parameters and thereby more
training data. Finally, this might often not be necessary in the
case of well designed schemas where leakage of values from one
attribute to other is uncommon.

A natural alternative is to have one classifier for each attribute.
Consider a naïve translation of this idea. Given a tuple 𝑡 , let
the cell values be {𝑡 [𝐴1], 𝑡 [𝐴2], . . . , 𝑡 [𝐴𝑚]}}. Of course, some
of these values could be missing. We could train an imputation
modelC𝑖 that takes values {𝑡 [𝐴1], 𝑡 [𝐴2], . . . , 𝑡 [𝐴𝑖−1], 𝑡 [𝐴𝑖+1], . . . ,
𝑡 [𝐴𝑚]}} and seeks to predict 𝑡 [𝐴𝑖 ]. There are two issues with
this approach. First, learning representations for each classifier
𝐶𝑖 is wasteful. We tackle this through the multi-task learning
wherein GRIMP learns a representation that simultaneously al-
lows all imputation models {C1, . . . , C𝑚} to have high accuracy.
Second, it seems wasteful to independently learn the imputation
models. Intuitively, every imputation model learns a pattern in
the data that can be useful to other models. For example, it is
possible that the imputation models for two attributes 𝐴𝑖 and 𝐴 𝑗
could use some common information. Naively training models
C𝑖 and C𝑗 without leveraging this commonality results in an
increase of model parameters, thus an increase in training time
and potentially lower accuracy.

GRIMP’s imputation module employs a multi-task learning
(MTL) architecture for performing imputation over each attribute
in the dirty dataset. This is achieved through two sections –
shared and task-specific. In the shared section, the parameters
are shared among all tasks through hard parameter sharing [57].
Intuitively, hard parameter sharing learns a common representa-
tion space for all tasks. In the task-specific section, each specific
imputation task corresponds to an attribute. This architecture
has a number of advantages over a simpler model that is trained
on the full domain of the table. As discussed above, each task
is trained on its attribute domain, which is much smaller com-
pared to the full domain of the table, thus increasing imputation
accuracy and reducing training time. Moreover, the same input
vector can be used by different imputation tasks. Each task can
produce different outputs given the same input based on the
target attribute to be imputed. This is useful when a tuple con-
tains multiple missing values, and therefore receives the same
vector in the testing step. Finally, each task can use a different
loss function and it allows us to transparently support different
attribute types, such as categorical and numerical.

The structure of the GRIMP’s MTL method is illustrated in Fig-
ure 2. It takes as input the graph and the set of training samples
(Section 3.3). The shared section includes the GNN and an addi-
tional linear layer, which recombines the vectors produced by the
GNN. The task-specific section has one task for each attribute.
Depending on the attribute datatype, the output of the task varies
accordingly. We describe the individual sub-components of the
MTL next.

Shared Layer and GNN. The shared layer is composed of a
Heterogeneous GNN and a merging step (depicted in orange
in Figure 2). The Heterogeneous GNN is a data structure that
can combine multiple GNN models in each layer, before for-
warding them to then next layer. Our HeteroGNN block is com-
posed of two layers, each layer 𝑙𝑖 𝑗 being a GNN that handles
a single column. Each submodule can use a different GNN ar-
chitecture (e.g., 𝑙11 using GCN, 𝑙12 uses GraphSAGE and so on),
however in this work we employ GraphSAGE [27] for all sub-
modules. Additionally, it is also possible to use a different opera-
tor in each sub-module by leveraging the typed edges. A layer
𝐿𝑖 ∈ {1, 2} comprises 𝑁 sub-modules (where 𝑁 is the number
of columns in the original dataset), where a sub-module is de-
fined as 𝑙𝑖 𝑗 ∀𝑖 ∈ {1, 2} ∧ ∀𝑗 ∈ [1, 2, . . . , 𝑁 ] and each column in
the starting dataset is assigned a sub-module. Each sub-module
𝑙𝑖 𝑗 performs its convolution exclusively on nodes connected by
edges of the type it pertains to (e.g., values belonging to column 2
are described by sub-modules 𝑙12, 𝑙22, . . . , 𝑙𝑛𝑙𝑎𝑦𝑒𝑟𝑠2). As the final
parameters are shared among all tasks, this set of operations is
part of the “shared layer” in the GRIMP system.

This module takes as input the graph and combines it with a
set of pre-trained features for each node in each of the two con-
volutional layers. Each layer combines the pre-trained features
with the locality features given by the graph’s adjacency ma-
trix. The output of the overall network is the output of the final
layer, which corresponds to the updated representation for each
node. Between the convolutional layers, a pooling component
combines the node representations. These vectors are produced
by the final layer and used in the vector generation procedure.
These could be then be used in the next steps of the procedure
for updating the representation. The representation of a vector 𝑣
after layer 𝑘 is modeled as follows:

ℎ
(𝑘)
𝑣 = 𝜎 (𝛾 (W(𝑘,𝑖) ·𝑓 (𝑖)

𝑘
(ℎ (𝑘−1)𝑣 , {ℎ (𝑘−1)𝑢 ,∀𝑢 ∈ 𝑆N(𝑣) }) ∀𝑖 ∈ [1, 𝑁 ]))

(1)
The formula describes the output of each layer of the GNN.

Specifically, function 𝑓 (𝑖)
𝑘

(·) combines the features of vector 𝑣
generated in the previous epochwith those of all its neighbors𝑢 ∈
𝑆N(𝑣) ;W(𝑘,𝑖) is the matrix of learnable weights which is updated
during each training epoch; 𝛾 is a function that aggregates the
modified weights produced by each sub-module 𝐺𝑁𝑁𝑖 , and 𝜎 is
a nonlinearity.

By default, GRIMP uses two layers for the GNN. The train-
able weights are not shared among sub-modules, which allows
some independence between each column while modeling each
node’s feature representation. The “merging step” box shown
in Figure 2 is implemented with two linear layers as a further
pooling step. The intuition is to not use GNN embeddings di-
rectly, but further aggregate them using an intermediate step
before the downstream task. Once the representation of each
node is available, the training samples from the previous step
are converted into training vectors. For each training sample, its
values are replaced by their GNN-generated vector. Finally, the
training vectors are forwarded to the task-specific layer for the
imputation operation.

MTL Task-specific Layers. The task-specific layer is where
the imputation operation is carried out. Each attribute in the
dataset is assigned a task, whose characteristics depend on the
type of attribute. A categorical attribute gets as task a multi-class
classifier whose domain is the same as the domain of the attribute.
A numeric attribute gets a regressor with a single output as task.
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Figure 6: Classification task in the multi-task model.

During training, each task takes as input a subset of the train-
ing vectors relative to its attribute. From Figure 3, the training
samples for tuple 𝑅1 are based on attributes Country and Year :
the task for Country gets access to sample 𝑡11 = [∅,∅, 2014],
while the task for Year uses sample 𝑡12 = [∅, 𝐹𝑟𝑎𝑛𝑐𝑒,∅]. Ma-
trix 𝑉 is the collection of all training vectors for all tuples and
all attributes: this matrix is used later in the attention step. As
different attributes have different numbers of missing values,
each task might take a different number of training vectors. For
example, in Figure 3, attribute Title has two vectors, while both
the other attributes have three. The additional information con-
tained therein can be employed by the attributes that have fewer
training vectors to work with.

In GRIMP, tasks can be implemented using linear layers that
rely exclusively on the training vectors, or through an attention
layer that combines attribute-level information with the train-
ing vectors. While the first solution is faster to train, the latter
has better results. Linear tasks provide a simple architecture for
keeping some parameters isolated from all other tasks, so that
the classification (or regression) objective in each task is not as
influenced by the other tasks. Shallow architectures (up to three
linear layers) are enough to obtain good classification results.

Attention Structures. Inspired by the extensive work on at-
tention mechanisms, we extend GRIMP’s classifier architecture
with an attention structure. We optimize for our scenario the
architecture introduced in AimNet [52]. This attention structure
is reserved to the task-specific layer, and is not used in the shared
layer. Empirically, we observed that this approach outperforms an
architecture that includes the attention structure on both shared
and task-specific layers. Intuitively, this improvement can be ex-
plained based on relationships between attributes. For example,
two attributes 𝐴𝑖 and 𝐴 𝑗 could have a functional dependency
(FD) wherein the value of 𝐴𝑖 completely determines the value
of 𝐴 𝑗 . Hence, using an attention structure in the task for 𝐴 𝑗 al-
lows it to give higher weight to the value of 𝐴𝑖 . This approach is
extensible to more complex relationships such as FDs involving
multiple attributes.

GRIMP’s task attention structure is shown in Figure 6. The
attention matrices 𝑄 , 𝐾 , and 𝑉𝐴 are shown in light blue, along
with the pooling vector m. For this example, we focus on the
input to a single task 𝐻𝐴 for attribute 𝐴. Each task receives a
set of specific parameters with the same suffix as the task; for
example, 𝐾𝐴 refers to the matrix 𝐾 that is built for task 𝐻𝐴 .

Given the collection of node vectors prepared by the GNN 𝑉
(with dimensions 𝑁 ×𝐶 × 𝐷), and the index vectors prepared as
shown in Section 3.3 (“GNN Features” in Figure 6), matrix𝑉𝐴 is a

Figure 7: Different variants of matrix 𝐾 in the task for

attribute 2, with an FD between attribute 2 and 3.

subset of 𝑉 which contains only the 𝑁𝐴 training vectors relative
to task 𝐴. It has shape 𝑁𝐴 ×𝐶 × 𝐷 where 𝑁𝐴 is the number of
training vectors for attribute 𝐴, 𝐶 is the number of columns, and
𝐷 is the number of dimensions of the vector for each node, i.e.,
the number of output dimensions of the shared layer.

Matrix 𝑄𝐴 has shape 𝐶 × 𝐷 and contains the pre-trained vec-
tors of each column in the dataset; matrix 𝑄𝐴 holds the attribute
information that must be combined with the information pro-
duced in the shared layer. The content of the matrix 𝑄𝑖 is the
same for all attributes 𝑖 ∈ [1, . . . ,𝐶] when the tasks are built,
but each task 𝐻𝑖 modifies its own 𝑄𝑖 independently. 𝐾𝐴 is a bi-
nary matrix that is used for selecting only a set of the columns
that each task should work with, assigning each column a given
weight. 𝐾 can be used to encode additional, external information
by modifying the weight that is assigned to each column. If, for
example, functional dependencies that link multiple columns are
known, it is possible to “highlight” those columns in the matrix
so that the model give them a higher weight during training.

For building 𝐾 , we test four strategies, which differ in the
values found on the diagonal of the matrix, as depicted in Figure 7.
In the Diagonal variant, all columns have equal weight; with
Target column all columns except the task’s column are ignored;
with Weak diagonal the target column has the highest weight,
but other columns are still considered with a lower importance;
Weak diagonal + FD implements the Weak diagonal strategy,
but assigns columns involved in an FD a higher weight. Finally,
m is a vector of size 1 ×𝐶 which contains 1 values. This vector
pools the result of the multiplication of 𝐾𝐴 and 𝑄𝐴; this step is
done to select the attributes that should be attended to the most
by the current task.

Each task 𝐻𝑖 is trained by passing 𝑉𝑖 , a subset of the training
vectors 𝑉 , which is passed to the attention layer. In each task 𝐻𝑖 ,
matrix 𝑄𝑖 and 𝐾𝑖 are multiplied before being pooled by vector
m. After multiplying the result with matrix 𝑉𝑖 , the final matrix
passes through a linear layer whose output size is either equal to
the cardinality of the domain of the task’s attribute if the column
is categorical, or one-dimensional if the column is numerical.

3.6 Training Procedure

The training procedure of GRIMP is summarized in Algorithm 1.
The first step of our training revolves around the construction of
the graph and of the training samples. Once the training samples
are prepared, the model is trained iteratively over a given number
of epochs. The training duration, expressed as number of epochs
required, varies dataset by dataset, so 20% of the training sam-
ples is held out in a validation step to implement early stopping
policies. We remove all edges incident in the validation step from
the graph representation before training.



Algorithm 1 Pseudocode of the GRIMP pipeline.
Input: Table D
NormalizeNumericalAttributes (table D)
𝐺 = GenerateGraph (table 𝑇 )
𝑆 = GenerateTrainingSamples (table D)
H = BuildMultiTasks (table D)
for epoch 𝐸 in 𝑛𝑒𝑝𝑜𝑐ℎ𝑠 do
ℎ = GNN(G) {Generate node embedding using the GNN.}
𝑉 = BuildTrainingVectors(ℎ, 𝑆)
ℎ𝑠ℎ𝑎𝑟𝑒𝑑 = SharedLayer(ℎ, 𝑉 ) {Feed the node embeddings to
the shared layer of the multitask classifier.}
for task 𝐻𝑖 inH do

ℎ𝑖 = TaskLayer(𝐻𝑖 , 𝑉 , ℎ𝑠ℎ𝑎𝑟𝑒𝑑 )
if type(𝐻𝑖 ) is numerical then
𝑙𝑜𝑠𝑠𝑖 = RMSE(ℎ𝑖 , 𝑆)

else

if type(𝐻𝑖 ) is categorical then
𝑙𝑜𝑠𝑠𝑖 = CrossEntropy(ℎ𝑖 , 𝑆)

𝑙𝑜𝑠𝑠𝐸 =
∑𝑛𝑡𝑎𝑠𝑘𝑠
𝑖

𝑙𝑜𝑠𝑠𝑖

Loss Function. In each epoch, all tasks measure their own loss
independently of the others and according to their type: categori-
cal attributes use Cross Entropy loss or Focal loss, while numerical
attributes use MSE. Numerical values are normalized before the
training starts, so that their MSE is comparable in magnitude to
the Cross Entropy loss measured for categorical variables. This
step allows to combine the loss of each task in a total loss (for
the multi-task setting) with a simple summation.

3.7 Imputing the Missing Values

Imputation is done by preparing the vector representation of each
dirty tuple in the table that are fed to the trainedmodel. In our run-
ning example, tuple 𝑅1 becomes vector 𝑡1 = [∅, 𝐹𝑟𝑎𝑛𝑐𝑒, 2014],
and imputation is carried out by task 𝐻𝐴 . For categorical values,
imputed values are chosen by selecting the value with the highest
likelihood, while numerical variables are imputed by taking the
output of the numeric task, then de-normalizing it to generate
the imputation. When imputing a tuple with a missing value for
attribute 𝐴𝑖 , GRIMP only considers the candidate values from
𝐷𝑜𝑚(𝐴𝑖 ) which is the set of all values from attribute 𝐴𝑖 .

4 EXPERIMENTS

We test GRIMP against seven baselines across ten datasets. In
all experiments, we start from the assumption that we do not
have access to the ground truth during the training procedure.
To test the final imputation accuracy, we introduce errors in
datasets that contain no missing values, thus producing “dirty
datasets” for which we have the ground truth. Code and datasets
are available online [10]. More experimental results and details
are in the technical report [12].

4.1 Experimental Setup

Datasets.We employmixed-type datasets to evaluate imputation
methods for categorical data. Adult, Australian, Contracep-
tive, Credit, Flare, Mammogram, Thoracic, and Tic-Tac-Toe

are from the UCI repository [20], IMDB is a popular dataset [11],
Tax is a synthetic dataset for testing data repair algorithms based
on FDs [6] and denial constraints [14]. The datasets show a large
variety of setting, with the size of the dataset domain varying

between 5 and 9829 distinct values and the number of columns
between 6 and 17.

Table 1 reports statistics about the datasets and our model.
We divide the statistics in three main parts. The first one reports
traditional measures (number of rows, categorical and numerical
columns, unique values, FDs). The second part includes several
metrics that we use for our error analysis in the next section.
Finally, the last part reports information about GRIMP’s parame-
ters. We describe GRIMP’s parameters next and the metrics in
Section 5.

Algorithms.We use as baselines MissForest [46] (MISF), Holo-
clean/AimNet [52] (HOLO), TURL [19], EmbDI [11] (EMBDI-MC),
and DataWig [5] (DWIG). We also tested a baseline based on
link prediction that is not reported because of sub-par results. It
uses link prediction within the graph, i.e., for a missing value,
we predict if there is an edge between its node (attribute/row
pair) and every value in the active domain. However, the graph
topology is not rich enough to lead to acceptable results with
this approach. We use the default parameters for all systems. We
tested different combinations of parameters to set the default for
GRIMP and fixed it across all experiments (i.e., attention with
weak diagonal for matrix 𝐾 , 300 epochs with early termination
if validation error increases).

We report two GRIMP configurations, GRIMP-FT and GRIMP-
E, which use fastText and EmbDI embeddings as pre-trained
features, respectively. The number of GNN layers L𝐺𝑁𝑁 , shared
merge layers L𝑆ℎ𝑎𝑟𝑒𝑑 , task-specific linear layers L𝐿𝑖𝑛 is 2; the
number of parameters in each GNN layer #𝑃𝐺𝑁𝑁 is 64, the num-
ber of parameters in linear layers #𝑃𝐿𝑖𝑛 is 128. The size of matrices
𝑄 and 𝐾 is ( |C|)3 and ( |C|)2 respectively. Weight matrices𝑊𝑄
and𝑊𝐾 have #𝑃𝑊 = #𝑃𝐿𝑖𝑛 · |C| parameters. Finally, the number of
shared parameters is #𝑃𝑠 = L𝐺𝑁𝑁 · |C| ·#𝑃𝐺𝑁𝑁 +L𝑆ℎ𝑎𝑟𝑒𝑑 ·#𝑃𝐿𝑖𝑛 ;
the total number (including shared parameters) of parameters
in linear models is Σ𝑃𝑙 = #𝑃𝑠 + |C| · #𝑃𝐿𝑖𝑛 · L𝐿𝑖𝑛 , while the to-
tal number of parameters of attention-based models is Σ𝑃𝑎 =

#𝑃𝑠 + (|C|)3 + (|C|)2 + 2 · #𝑃𝑊 . Values for #𝑃𝑆 , Σ𝑃𝑙 , and Σ𝑃𝑎 are
reported in Table 1.

Experiments have been conducted on a laptop with a CPU
Intel i7-8550U, 8x1.8GHz cores and 32GB RAM.

4.2 Data Imputation Results

We test the imputation algorithms on ten clean datasets, which
we corrupt by injecting increasing amounts of errors (5%, 20%,
50%). While our method is not designed assuming a specific
missing data distributions, we inject missing values completely
at random (MCAR) over the entire table, as it is the best practice
to evaluate imputation [5, 45, 46, 52, 55]. The same dirty datasets
are presented to every algorithm. The imputation accuracy is
measured by comparing the dataset version imputed by each
algorithm with the ground truth. Every injected missing value is
used as test data. Edges for these test nodes are removed from
the graph before training.

Comparison with Baselines.We report the imputation accu-
racy and training time in Figures 8 and 9, respectively. From the
results in Figure 8,GRIMP is always among the top 3methods and
has an average rank of 1.6 (full ranking details in the extended ver-
sion [12] Overall, EMBDI-MC is the worst performing algorithm.
This is expected, as it uses EmbDI embeddings and a multiclass
classifier, i.e., no multi task learning. EmbDI embeddings for cell
values do not capture the complex data relationships that are



Dataset Abbr. # rows # columns |C| |N | Distinct #FD 𝑆𝑎𝑣𝑔 𝐾𝑎𝑣𝑔 𝐹+𝑎𝑣𝑔 𝑁 +
𝑎𝑣𝑔 #𝑃𝑠 Σ𝑃𝑙 Σ𝑃𝑎

Adult AD 3016 14 9 5 289 2 2.6 13.3 0.7 2.9 2048 5632 8572
Australian AU 690 15 9 6 957 0 2.7 24.0 0.6 7.5 2176 6016 9616

Contraceptive CO 1473 10 8 2 65 0 0.0 -1.3 0.5 1.4 1536 4096 5196
Credit CR 653 16 10 6 918 0 2.5 20.9 0.6 7.0 2304 6400 10752
Flare FL 1066 13 10 3 34 0 0.4 -1.1 0.7 0.9 1920 5248 7614
IMDB IM 4529 11 9 2 9829 0 7.2 220.2 0.5 83.2 1664 4480 5932

Mammogram MM 830 6 5 1 93 0 0.6 -1.2 0.4 1.8 1024 2560 2812
Tax TA 5000 12 5 7 910 6 2.1 12.1 0.5 7.5 1792 4864 6736

Thoracic TH 470 17 14 3 255 0 0.3 -1.3 0.7 2.5 2432 6784 11986
Tic-Tac-Toe TT 958 9 9 0 5 0 -0.2 -1.6 0.4 1.0 1408 3712 4522

Table 1: Statistics for all datasets. Abbreviation (Abbr.) is used instead of the full dataset name. |C| and |N | state the number

of categorical and numerical columns, respectively. Distinct is the number of unique values in the entire dataset. # FD is

the number of FDs in a dataset. 𝑆𝑎𝑣𝑔 and 𝐾𝑎𝑣𝑔 are the coefficients of skewness and Kurtosis over the value distributions

averaged over all columns, respectively. 𝐹+𝑎𝑣𝑔 denotes the average fraction of rows that contain frequent values and 𝑁 +
𝑎𝑣𝑔 is

the average of the number of unique frequent values in every column. #𝑃𝑠 is the total number of parameters in the shared

layer, Σ𝑃𝑙 and Σ𝑃𝑎 are the total number of task-specific parameters with linear tasks and attention tasks, respectively.

Figure 8: Imputation accuracy achieved by different baselines for all datasets.

needed for the imputation task. Interestingly, MissForest is com-
petitive w.r.t. the best solutions in most cases. For numerical
attributes and RMSE, Holoclean is the best performing method,
GRIMP is comparable to MissForest, while TURL and Datawig
report the worst results.

We also compute the overall average imputation accuracy by
measuring the average imputation over all datasets for an algo-
rithm. With 5% missing values, GRIMP with EmbDI obtains an
average accuracy of 0.684, at least an 2% absolute increase over
the state of the art methods Holoclean (0.665), TURL (0.608), and
MissForest (0.648). Interestingly, even GRIMP linear, not reported
in the plots, outperforms the baselines with an average accuracy
of 0.676. All variants of GRIMP perform better than the state of
the art solutions.

While both GRIMP and DataWig use the concept of embed-
dings, GRIMP routinely outperforms DataWig. This is due to
three key factors. First, DataWig learns the embeddings of at-
tributes in an independent manner: the embedding of the one
attribute does not affect that of another. In contrast, GRIMP rep-
resents the entire relation as a graph and the embedding of every
cell value is influenced by other cell values from the same tu-
ple/attribute and those in the graph neighborhood. Second, the
embedding learner of DataWig is relatively simple as it uses
LSTM or n-gram hashing for strings. The learned embeddings
are also not task specific, this applies also for EMBDI-MC. In
contrast, our embeddings are learned in an imputation specific
manner and are influenced by the embeddings of similar cell val-
ues through the process of message processing. Finally, DataWig
does not use multi task learning, as it trains different classifiers

for imputing each output attribute. Furthermore, each classifier
uses a single loss as it only seeks to impute a single attribute. In
contrast, GRIMP uses multi-task paradigm where multiple classi-
fiers are learned using a two step process involving the learning
of both shared and task specific embeddings.

While TURL is competitive in some cases, GRIMP leads to
better accuracy in others and is better on average. TURL does
worse for numerical attributes, as those are not considered in
the original design. Indeed, TURL has been proposed for entity-
focused tables and pretrained to learn factual knowledge using
Wikipedia tables.

From the point of view of the execution time (reported in
Figure 9), GRIMP with attention is often (but not always) the
slowest algorithm, although Datawig is sometimes slower. Miss-
Forest is always among the fastest systems. TURL, which has
been executed by its authors, took between 10 and 20 minutes
to train for any dataset. GRIMP with linear tasks is comparable
in execution time to the faster algorithms. The execution time
of GRIMP and Holoclean decreases as the fraction of missing
values increases. With a larger fraction of missing values, fewer
viable cells remain, thus both algorithms work over a smaller
quantity of data and terminate earlier. This is mirrored by the
other baselines, MissForest and Datawig, whose models train
longer in high-error configurations.

GRIMP Ablation. Experimental results for GRIMP when dis-
abling different modules are reported in Figure 10. As expected
the proposed modules have a significant impact on the accuracy.



Figure 9: Training time in seconds required by the different baselines.

Figure 10: Results for GRIMP with all modules enabled (GRIMP-MT), with GNN enabled and multi task learning disabled

(GNN-MC), and with both GNN and multi task learning disabled (EmbDI-MC).

Error % Strategy Accuracy Time

5 Attention 0.707 307
Linear 0.700 26

20 Attention 0.679 294
Linear 0.671 28

50 Attention 0.637 258
Linear 0.618 27

Table 2: Comparison of attention and linear tasks.

We also analyze the results obtained by GRIMP comparing
attention and linear tasks. In the default “Attention” case, it uses
the attention structures to combine attribute embeddings with
the tuple embeddings from the GNN. In the “Linear” cases, each
task consists only of fully connected linear layers. Results over all
datasets in Table 2 show that Attention leads to higher accuracy.
On the flip side, Linear is faster. Finally, while executions based
on EmbDI features perform best on average, neither of the two
pre-trained features clearly surpass the other in all settings. Both
solutions slightly outperform the random initialization.

Impact of Noise in the Dataset. We also measure how robust
is data imputation to noise in the original dataset. In this experi-
ment, we first modify the values in the cells to have 10% of them
as typos, i.e., every cell value has 10% probability to change its
value by inserting random characters. We then run our experi-
ment by removing 5% of the values, run imputation, and compute
the final accuracy. Thanks to the inductive nature of GRIMP, its
results show limited impact with an absolute decrease in accuracy
of 0.062% with 10% of typos injected in the dataset.

4.3 Imputation with Input FDs

We evaluate our variant that consumes FDs as input, with two
more baselines. First, we use the FDs to impute the values accord-
ing to the minimality principle in data repairing [15]. For a null
value involved in the conclusion (right-hand side) of a FD, FD-
Repair imputes it with the most common value across the tuples
with the same values in the premise (left-hand side) of the FD.
For the second baseline, we extended MissForest to also use FDs.
MissForest trains a random forest classifier with decision trees
covering multiple random combinations of attributes. Because of
the random selection, a fraction of the budget may be allocated
to spurious combinations. We develop a FunForest variant by
“pointing” the decision trees at the subset of attributes involved
in FDs, thus reducing the noise introduced by unrelated columns.
We allocate part of the budget to decision trees that are trained
exclusively on FD attributes, while the rest of the trees are han-
dled as in the original algorithm. For multiple FDs, the budget is
split equally among them. Empirically, 50% of the budget for FDs
leads to the best performance.

We focus on two datasets with FDs: Adult and Tax, with two
(over two attributes) and six FDs (over ten attributes), respectively.
We increase the fraction of injected errors from 5 to 50% over all
attributes, measuring training time and imputation accuracy.

Results in Table 3 show that FD-Repair has the worst per-
formance. This is expected, as the FDs cover only a subset of
attributes, leading to imputation with high precision, but poor re-
call. FunForest is an improvement over the original MissForest
when FDs are available. It improves by up to an absolute 10% the
accuracy, whilst at the same time speeding up the convergence
time of the algorithm by at least 50%. Training GRIMP-A with at-
tention tasks on the FDs’ attributes also improves the imputation
accuracy w.r.t. the original setting. GRIMP-A outperforms FD-
Repair, MissForest, and FunForest on the Adult dataset, while
the random forest methods work better on the Tax dataset with



Training time Imputation accuracy
Data Error MISF FUNF GRI-A FD MISF FUNF GRI-A
AD 5% 13.03 2.38 496.60 0.160 0.733 0.737 0.766

AD 20% 25.70 6.05 551.22 0.115 0.727 0.732 0.756

AD 50% 22.50 15.23 537.90 0.074 0.657 0.674 0.693

TA 5% 17.47 6.00 1117.54 0.386 0.689 0.786 0.808

TA 20% 23.18 7.62 977.62 0.309 0.661 0.757 0.632
TA 50% 27.94 16.44 751.93 0.194 0.571 0.630 0.586

Table 3: Accuracy for FD-Repair (FD), MissForest (MISF),

FunForest (FUNF), and GRIMP-A (GRI-A) with input FDs.

higher error rates. The results confirm that GRIMP is indeed
able to learn more relationships, such as FDs, compared to the
baselines.

While we use FDs as external information, both GRIMP and
FunForest can use any attribute-related external information.

5 HITTING THE LIMITS OF IMPUTATION?

Inspired by the results of our experimental campaign, we study
the limits of imputation models. We observe that, while the im-
putation accuracy for all algorithms varies across the datasets,
the results are comparable across different methods. To explain
this observation, we introduce four metrics that capture the data
properties for each dataset, as reported in Table 1. The metrics are
based on value distribution. The frequency of every unique value
is measured, then every metric is computed over the distribution
of frequencies in each column. Finally, the values for a metric
obtained for each column are averaged to have a single figure for
each dataset.

We compute two standard metrics, Fisher-Pearson coefficient
of skewness (𝑆𝑎𝑣𝑔) and Kurtosis (as defined by Fisher) (𝐾𝑎𝑣𝑔); we
then introduce two additional metrics that hinge on the distri-
bution of frequent values in the data: 𝐹+𝑎𝑣𝑔 and 𝑁 +

𝑎𝑣𝑔 . A value is
considered frequent if its number of occurrences is larger than the
90% quantile of all occurrence frequencies in the same attribute.
Metric 𝐹+ denotes the fraction of rows in a column that contain
frequent values, while 𝑁 + describes the number of unique fre-
quent values in a column. Intuitively, these metrics give an idea
of “how hard” it is to impute values in a dataset. Frequent values
are in general easier to impute correctly, therefore a large value
of 𝐹+𝑎𝑣𝑔 implies that most rows in the dataset contain “easier”
values. In contrast, 𝑁 + measures how many distinct “frequent”
values are present on average; in this case, a larger value means
that there are several values to be considered “frequent”, whereas
figures closer to 1 describe situations in which very unique values
are considered “frequent”.

Our goal is to identify if there is a measure, based only on
the value distribution in the dataset, that can predict the per-
formance of the imputation methods. For example, both Tho-
racic and Flare have a high 𝐹+𝑎𝑣𝑔 and a low 𝑁 +

𝑎𝑣𝑔 , suggesting
that, on average, there are few frequent values that dominate the
dataset; conversely, IMDB has a low 𝐹+𝑎𝑣𝑔 and a high 𝑁 +

𝑎𝑣𝑔 as it
contains mostly unique values (movie titles, actor, and director
names). The metrics agree with the general imputation perfor-
mance achieved by all methods, as both Thoracic and Flare are
among the datasets with the highest imputation scores, whereas
IMDB is among those with the lowest.

We start by looking at possible correlation between the metrics
and the quality results for GRIMP. Table 4 reports the Pearson

𝑆𝑎𝑣𝑔 𝐾𝑎𝑣𝑔 𝐹+𝑎𝑣𝑔 𝑁 +
𝑎𝑣𝑔

𝜌 -0.467 -0.655 0.536 -0.660
Table 4: Pearson Correlation Coefficient (𝜌) between the

metrics reported in Table 1 and the imputation accuracy

achieved by GRIMP over all datasets.

Correlation Coefficient 𝜌 measured between the different mea-
sures and GRIMP’s imputation accuracy on all datasets in the
case with 50 % of missing values. We report the higher rate of
missing values as it maximises the effect of missing values and
highlights correlations. We observe a noticeable correlation be-
tween some of the metrics (in particular, 𝐾𝑎𝑣𝑔 and 𝑁 +

𝑎𝑣𝑔) and the
imputation accuracy of the system. As the correlation is negative,
this means that higher values of 𝐾𝑎𝑣𝑔 and 𝑁 +

𝑎𝑣𝑔 lead to lower
imputation results. This agrees with our intuition: better results
are obtained when the distribution of values in the dataset is
skewed towards few, very frequent values.

Indeed, imputation algorithms are biased towards frequent
values, and thus have higher imputation accuracy for them, while
they underperform on the rare values. We model this hypothesis
by defining the “expected fraction of incorrect imputations” of a
value 𝑣 in a column 𝐴 as 𝐸𝐴𝑣 = 1 − 𝑓𝑣 , where 𝑓𝑣 is the frequency
of value 𝑣 in column 𝐴. The expectation is that a generic imputa-
tion algorithm will fail most imputations on rare values, while
performing better on “easier” (i.e., more frequent) values.

In Figures 11 and 12, we plot the results of our experiments
on the Thoracic and Contraceptive datasets, respectively. We
report attributes with a small active domain to show that the
issues arise even with in a simple setting. These two examples are
representative for the other attributes and datasets. Each subplot
contains data relative to a single attribute in the table, with the
fraction of incorrectly imputed values on the 𝑦-axis (a value of 0
on the 𝑦-axis denotes perfect imputation accuracy for that value,
thus the lower the bars, the better), and the different values in
the attribute domain on the 𝑥-axis, sorted in descending order by
frequency so that rare values in the attribute domain are on the
right side of the plot. The blue bar (labeled as “expected”) displays
the expected fraction of erroneous imputations given a value’s
frequency as defined above, while the other bars show the actual
fraction of erroneous imputations as they are produced by the
different imputation algorithms. Our hypothesis is confirmed by
the results: all algorithms tend to have a very high accuracy on
frequent values, while failing frequently on rarer values. While
different algorithmsmay exhibit different behaviors over different
columns, there is a clear trend that is common to all of them.

In this analysis, we focus on frequency and skewness and leave
the study of techniques to detect correlation across attributes to
future work. While these results are preliminary, it is interesting
to observe how algorithms that employ unrelated technologies
exhibit remarkably similar behaviors in the imputation perfor-
mance. We plan to delve deeper in this subject, with the objective
of reaching a better understanding of how these systems model
imputation and finding a heuristic that would allow to provide
advice on what algorithm to use given a dataset’s characteristics.

6 RELATEDWORK

There are a variety of missing data imputation methods [34],
ranging from imputing with the most common categorical value
(or global average for numerical variables) [26] to K-Nearest



Figure 11: Distribution of wrong imputations in four attributes of the “Thoracic” dataset. All attributes have only two

values (“f”, “t”) in the active domain. Frequent value (e.g., “f” in attribute PRE8) is correctly imputed by all methods, while

rare value (e.g., “t” is PRE8) is problematic for all methods.

Figure 12: Distribution of wrong imputations in four attributes of the “Contraceptive” dataset. All attributes have four

values in the active domain. Frequent values (“high”, “o3”) are better imputed than rarer ones by most methods.

Neighbor imputation [47] and Rule-based methods [16, 17]. Non-
interpretable models include ML-based algorithms and can be
distinguished in two categories, depending on how the impu-
tation is generated. Discriminative models select a solution in
the domain to impute missing values, e.g., MIDA [23], MICE
[48], MissForest [46], and AimNet [52] (at the core of HoloClean).
WithGenerativemodels, such as Generative Adversarial Networks
or denoising autoencoders, the imputed version of the data is
generated by the model. Generative models produce numerical
outputs, so categorical values must be coerced to values in the
active domain. Systems in this category include SVM-based im-
putation methods [30], HI-VAE [38], GAIN [54], and MIWAE
[37]. GRIMP goes beyond the existing methods in several aspects.
First, by handling mixed datasets, containing both categorical
and continuous attributes, with its multi-task learning compo-
nent [13, 57]. Second, GRIMP’s self-supervised learning does not
require a clean subset of the data for training. Third, its shared ar-
chitecture exploits global relationships and statistics across tuples
and dependencies across attributes. In our experiments, we also
tested a table representation learning (TRL) system, TURL [19],
for the missing value imputation task. In contrast with TURL
and other TRL solutions based on pre-trained models [3, 29], our

approach directly produces “metadata” embeddings for tuples
and attributes [40].

Grape is a recent method formulating imputation as a link
prediction problem [55]. Grape is close to GRIMP as they both
use bipartite graphs for learning embeddings for the imputa-
tion downstream task. However, they have three main differ-
ences. First, Grape can impute only discrete or only continuous
attributes; it cannot handle mixed data. Second, Grape formulates
imputation as a link prediction task where the two end points are
nodes corresponding to a tuple and feature, respectively. We can
see of Grape’s imputation as a regression/classification problem
where the input features are the embeddings of the correspond-
ing tuple and attribute. In contrast, the input to GRIMP is more
expressive and contextual as it consists of the embeddings of
all the cell values in that tuple. In other words, for a tuple with
𝑚 attributes, GRIMP takes concatenated embeddings of𝑚 − 1
cells while Grape takes only that of two. Finally, due to the link
prediction based formulation, Grape does not provide any mech-
anism to learn dependencies between tuples and/or attributes. In
contrast, GRIMP explicitly provides an attention based structure
that learns data dependencies.



GRIMP EmbDI DataWig AimNet Grape TURL

Mixed data Y N Y Y N Partial
Graph rep. learn Y Y N N Y N
Attention Y N N Y N Y
Multi task learn Y N N Partial N Partial
Table 5: Comparison of GRIMP and representative base-

lines.

Relational data imputation is challenging [8, 24, 32, 42]. Rela-
tional data is heterogeneous with dense numerical features and
sparse categorical features [28]; correlation between features is
weaker than semantic or spatial relationships in text or image
data [59]; variables can be correlated or independent; features
have no positional information [44]. GRIMP tackles these chal-
lenges with a graph representation of the relational data and
with a dual loss function that handles both categorical and nu-
merical attributes as first class citizens. The graph enables the
exploitation of Graph Neural Networks (GNNs), which offer an
end-to-end solution for graph analysis tasks [53]. GRIMP uses a
HeteroGNN model that combines different sub-modules, one for
each table attribute. Each sub-module can use a different graph
representation method that could be homogeneous, e.g., plain
GCN [33], GraphSAGE [27], or heterogeneous [31, 41, 51]. Miss-
ing values can be harmful when data is used for training models
[18, 21]. For this reason, data imputation is part of data cleaning
tasks, where erroneous cells are first identified [1, 36, 43] and
then imputed to repair the error [6, 35].

GRIMP is different from EmbDI [11] in a number of key di-
mensions. First, the GRIMP’s graph reports modifications (such
as self-loops) to achieve better results. Second, GRIMP does not
use tuple representations for data imputation (i.e., embedding
of tuple type nodes 𝑅𝑖 ) as in EmbDI. Instead, GRIMP relies on
the embeddings of cell values. Third, EmbDI’s embeddings are
learned in an unsupervised manner in a task agnostic fashion.
However, as we tested experimentally, the cell value embeddings
learned by EmbDI are not sufficiently accurate for data impu-
tation. In contrast, GRIMP learns embeddings for the specific
downstream task of imputation with a GNN. Finally, EmbDI’s
the random walk based corpus generation approach preclude
embeddings from incorporating data dependencies such as FDs.
In contrast, GRIMP’s attention structures explicitly learn com-
plex data dependencies. We summarize the differences between
GRIMP and existing methods in Table 5.

Finally, there has been some work to discern different ways
to interpret missing values [39]. For example, using NULL for
denoting information that is missing (i.e., unknown) versus for
encoding that someone is not married (i.e., NULL for Spouse
attribute). Existing work could be used as a pre-processing step
for GRIMP to identify legitimate missing values.

7 CONCLUSIONS AND FUTUREWORK

We explored the problem of multiple imputation over relational
data with mixed data types. GRIMP is a self-supervised impu-
tation algorithm that combines a graph representation of the
table based on GNNs and multi-task learning to produce state of
the art results over a variety of datasets. We extended the tasks
with an attention mechanism tailored to the multi-task architec-
ture. Experiments demonstrate the promise of GRIMP. While our
work shows good results, there remain a number of directions
for future research.

On one side, we look at an improved solution. First, we plan to
introduce hyperparameter tuning in the pipeline, so that GRIMP
gets the optimal configuration for each dataset. Second, the abla-
tion study shows that a GNN improves the accuracy w.r.t. simpler
solutions, but its efficiencywould benefit from optimizations such
as graph pruning [2], reducing training data [60], and alternative
message passing architectures [50]. Third, it would be interesting
to extend the graph with external information, such as semantic
annotations about the attributes [2, 56]. Fourth, as GRIMP is in-
ductive, we plan to study how, once it is trained on one dataset,
it can be reused on other datasets. Fifth, in settings where data
privacy is an issue, we see GRIMP as a step that can lead to novel
solutions for federated imputation [4, 58]. Finally, we tested miss-
ing values inserted at random (MCAR), but GRIMP’s data-driven
solution can handle systematic errors (MNAR) as demonstrated
by previous work [5, 52] - we plan to evaluate this scenario in
follow-up work.

On the other side, we are interested in a broader study of DL-
based imputationmodels. DL is not a silver bullet and suffers from
some drawbacks [24, 42]. We show that the imputation accuracy
of various algorithms is approximated by the frequency of values
in the data. While our results are preliminary, we observe how
algorithms that employ unrelated technologies tend to exhibit
similar behavior. We plan to delve deeper in this subject, as we
believe this effort will enable a better understanding of how
systems model imputation and what are the intrinsic limits to
tackle in future research.
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