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ABSTRACT
The success of deep learning in speaker recognition relies heavily on
the use of large datasets. However, the data-hungry nature of deep
learning methods has already being questioned on account the eth-
ical, privacy, and legal concerns that arise when using large-scale
datasets of natural speech collected from real human speakers. For
example, the widely-used VoxCeleb2 dataset for speaker recogni-
tion is no longer accessible from the official website. To mitigate
these concerns, this work presents an initiative to generate a privacy-
friendly synthetic VoxCeleb2 dataset that ensures the quality of the
generated speech in terms of privacy, utility, and fairness. We also
discuss the challenges of using synthetic data for the downstream
task of speaker verification.

Index Terms— Privacy-friendly data, speaker anonymization,
language-robust orthogonal Householder neural network

1. INTRODUCTION

Large-scale speech data and powerful computing resources are key
to the success of deep learning methods in automatic speaker veri-
fication (ASV). However, the use of speech as a form of biometric
data is governed by a set of legal restrictions, such as the General
Data Protection Regulation (GDPR) [1].

Related legal and ethical issues have already led to the with-
drawal of well-known large-scale datasets used for face recogni-
tion research, namely the VGGFace2 [2] and MS-Celeb-1M [3]
databases both of which were constructed by crawling facial images
from the web. Researchers have hence begun to explore the potential
of using synthetic images for face recognition research [4, 5, 6]. The
ASV field has faced similar problems due to privacy issues. For
instance, the widely-used large-scale VoxCeleb2 dataset [7], which
contains speech data collected from 5,994 speakers, has become a
standard ASV benchmark, though the database is no longer avail-
able from the official website1. The withdrawal of other popular
biometric databases will likely soon follow. It is then inevitable that
the community will have no choice but to consider alternatives.

As synthetic data is a promising option, this work aims to ex-
plore the creation and utilization of a privacy-friendly synthetic Vox-
Celeb2 dataset for ASV model training. Figure 1 illustrates the gen-
eral idea of the synthetic VoxCeleb2 called SynVox2. The origi-
nal VoxCeleb2, which is also referred to as authentic VoxCeleb2, is
fed to a speech generator to create a synthetic VoxCeleb2 database,
which can meet two primary criteria: adequately protect speaker pri-
vacy while maintaining utility comparable to the authentic database.
One sub-criteria is to mitigate data bias and increase fairness. The

1https://www.robots.ox.ac.uk/˜vgg/data/voxceleb/
vox2.html

Fig. 1. Overview of the creation of the synthetic Voxceleb2 dataset.
The scenario assumes a reliable party holds authentic data for gen-
erating and evaluating shareable synthetic data, with the assurance
that the authentic data will not be released.

synthetic VoxCeleb2 dataset is subsequently used to train ASV mod-
els, with the goal of achieving comparable results to the same models
trained with the authentic VoxCeleb2.

One possible solution to protect speaker privacy while still al-
lowing the sharing of speech data is through speaker anonymization
[8, 9, 10, 11, 12, 13]. This method hides the speaker’s identity (pri-
vacy) while preserving other speech characteristics, such as content
and emotion. Anonymization techniques could also be used to gen-
erate synthetic speaker voices and data. By using speaker anonymi-
sation for this purpose, we aim to generate privacy-friendly synthetic
dataset, which can strike a balance between protecting privacy and
supporting research.

In this work, we employ the recently proposed language-robust
orthogonal Householder neural network (OHNN)-based speaker
anonymization technique [12] to create a privacy-friendly Vox-
Celeb2 dataset called SynVox2. With the same number of speakers
as the authentic VoxCeleb2 dataset, SynVox2 can be shared with
far fewer privacy concerns compared to the sharing of the authentic
VoxCeleb2 database. In addition, we define several metrics for eval-
uating the use of SynVox2 in terms of privacy, utility, and fairness.
These metrics may serve as a protocol for future research, enabling
researchers to assess whether a synthetic dataset is suitable for their
ASV research. Furthermore, we conduct an in-depth analysis of
intra-/inter-speaker variations in SynVox2, aiming to improve the
utility of SynVox2. Specifically, we propose methods for increasing
intra-/inter-speaker variations, such as modeling background noise
from authentic speech and incorporating it into the generated speech.

2. REQUIREMENTS FOR A PRIVACY-FRIENDLY
SYNTHETIC SPEECH DATABASE

This section describes the three requirements a privacy-friendly syn-
thetic speech database should satisfy: privacy, utility, and fairness.
It also introduces the evaluation metrics used to assess the degree to



Fig. 2. Flowchart of OHNN-based synthetic VoxCeleb2 generation
and evaluation.

which these requirements are fulfilled.

2.1. Ensuring Privacy through Unlinkability

Privacy-sensitive information in speech extends beyond that related
to speaker identity. Nonetheless, privacy can still be preserved to a
great extent by obfuscating the speaker identity since any remaining
privacy-sensitive content cannot be linked to the original speaker.
We hence consider a privacy-friendly synthetic speech database to
be able to protect the speaker’s identity. The privacy of a speaker’s
identity in a synthetic database is protected if it is unlinkable to its
original identity in the authentic database [14]2. Given two speech
samples of a speaker from the synthetic and the authentic databases,
respectively, privacy is protected if it is difficult to determine that the
two samples have been uttered by the same speaker.

This study evaluates privacy protection performance using an
ASV evaluation model. The enrollment data is from the authentic
VoxCeleb2 database, while the test trial is from SynVox2, as shown
in Figure 2. A privacy-friendly speech database should achieve a as
high as possible ASV equal error rate (EER), which indicates that the
ASV evaluation model has difficulty linking an authentic enrollment
utterance and a protect test utterance.

2.2. Maintaining Data Utility

Downstream models trained on a privacy-friendly synthetic database
with high utility are expected to perform similarly to models trained
using authentic data. This study considers ASV as a downstream
task, shown to the bottom part of Figure 2. Utility is assessed in
terms of the ASV EER which is estimated from experiments per-
formed on authentic test sets. ASV models trained using either au-
thentic VoxCeleb2 or SynVox2 should exhibit similar performance.

2.3. Reducing Data Bias and Increasing Fairness

While data utility mainly measures the overall downstream perfor-
mance on test sets, it is essential to ensure that downstream models
trained on a privacy-friendly synthetic database do not disfavor any
particular group in the test set, e.g., genders, dialects, and ethnicities.

2Again, the authentic database will not be released in our assumed sce-
nario, shown in Figure 1

Fig. 3. Architecture of OHNN-based anonymized speech generator.

With ASV as the downstream task, this study uses the Fairness
Disrepancy Rate (FDR) [15, 16] to assess the fairness. Given de-
cision threshold τ , the FDR considers the largest distance between
false alarm rates FAR (i.e., non-target speaker trials being classified
as target) and false reject rates FRR (i.e., target trials being clas-
sified as non-target) over multiple groups. Given a set of groups
D = {d1, d2, ..., dn}, the FDR is defined as:

FDR = 1−
(
α×max(|FARdi(τ)− FARdj (τ)|)

+ (1− α)×max(|FRRdi(τ)− FRRdj (τ)|)
)
.

(1)

where FARdi and FARdj are the false alarm rates for groups di and
dj , ∀di, dj ∈ D, respectively. FRRdi and FRRdj are the false re-
ject rates of groups di and dj , respectively. α ∈ [0, 1] is a design
choice and set to 0.95 so as to give greater importance to disparities
in the rate of more costly false alarms than to the rate of false re-
jects. FDR = 1 means the system is perfectly fair. FARdi , FARdj ,
FRRdi , and FRRdj of each subgroup are calculated using a fixed
decision threshold τ = 10e − 1, when considering trials of all the
groups together.

We study fairness across gender and accent groups. The gen-
der group consists of female and male speakers. The accent group
includes English speakers haling from Austria, Canada, France, Ger-
many, India, Italy, the Netherlands, Spain, the UK and the USA.

3. SYNVOX2 GENERATION METHODS

This section presents the process to create a privacy-friendly syn-
thetic version of the VoxCeleb2 database that satisfies the constraints
and criteria presented in section 2.

3.1. Language-robust OHNN-based speaker anonymization

Speaker anonymization is one approach to create privacy-friendly
synthetic datasets. Because VoxCeleb2 is a multilingual dataset, we
use a recently proposed language-robust OHNN-based anonymiza-
tion method [12] to generate different speaker-anonymised versions
of VoxCeleb2. It uses a self-supervised learning (SSL)-based content
encoder and an OHNN-based anonymizer, which supports the gen-
eration of speaker-distinctive anonymized speech even in languages
unseen in training. The generation process involves three steps, as
shown to the top of Figure 3:

1) Disentanglement: The YAAPT algorithm [17] is used to ex-
tract F0. The ECAPA-TDNN speaker encoder is trained on the Vox-
Celeb2 [7] datasets and provides 192-dimensional speaker identity



representations. The HuBERT-based soft content encoder is fine-
tuned on LibriTTS-train-clean-100 [18] from a pre-trained HuBERT
Base model3 to capture the speech contents.

2) Anonymization: The OHNN-based anonymizer [12] rotates
the original speaker embeddings to corresponding anonymized
speaker embeddings using multiple orthogonal Householder trans-
formation [19] layers. The weights of the OHNN are randomly
initialized and trained with classification and distance losses that
prevent anonymized speakers from overlapping with other original
and anonymized speakers. Hence, the anonymized speaker em-
beddings generated by the trained OHNN-based anonymizer are
expected to have distinctive pseudo-speaker identities.

3) Generation: Finally, the content features, F0, and anonymized
speaker embeddings are passed to a HiFi-GAN model [20] for audio
waveform generation. The HiFi-GAN model is trained using the
LibriTTS-train-clean-100 database [18].

3.2. Synthetic Datasets

The dataset generated directly by the OHNN-based speech generator
is referred to as SynVox2-OHNN, as illustrated at the top of Figure 3.

Because VoxCeleb2 was collected under diverse real-world con-
ditions and contains various types of background noise, the OHNN-
based speech generator pre-trained solely on clean data may not re-
produce the background noise of the authentic VoxCeleb2 database.
This would reduce the variations among utterances in SynVox2-
OHNN. To alleviate the reduced intra/inter-speaker variation, we
generate different versions of SynVox2 using the post-processing
methods shown at the bottom of Figure 3.
1) SynVox2-OHNN-aug: One straightforward approach is directly
adding noise, reverberation to SynVox2-OHNN. Similar to the stan-
dard speech data augmentation method [21], we use room im-
pulse responses and background noise from [21] and the MUSAN
database [22]. Although this seems to be redundant to the data aug-
mentation in downstream ASV training, our experiments demon-
strated that ASV downstream models benefited from the double
augmentation.
2) SynVox2-OHNN-bkg: Inspired by techniques used for preserving
background sound in voice conversion [23], we use a pre-trained
DeepFilter-inspired model [24] to separate background sound and
clean speech from authentic speech. The background sound is then
added to SynVox2-OHNN to ensure consistent ambient character-
istics. DeepFilterNet-inspired model was developed in-house and
trained on a large-scale dataset comprising noise extracted from
YouTube videos and clean speech.

Another factor affecting the intra-speaker variations stems from
the manner in which we extract speaker embeddings. One strategy
involves extraction of embeddings by grouping together the set of all
utterances corresponding to each speaker (denote -spk in Figure 3).
Although this strategy ensures a consistent pseudo speaker identity,
it results in the reduced intra-speaker variations. We hence explore
an alternative utterance-level approach (denote -utt in Figure 3), in
which anonymized speaker embeddings are extracted individually
from each authentic input utterance. The anonymized embeddings
extracted from utterances corresponding to the same speaker may
then differ and better capture intra-speaker variability. We explored
both approaches each combined with the two post-processing ap-
proaches.

3https://github.com/pytorch/fairseq/tree/main/
examples/hubert

Table 1. EERs (%) achieved by the ASV evaluation model in cross-
dataset evaluation. EER in first row is calculated on authentic Vox-
Celeb2 dataset for reference. Other rows are results in various cross-
dataset conditions. Higher EERs in cross-dataset conditions indicate
that the synthetic and authentic speakers are hardly associated.

Cross datasets EER(%)

Authentic vs Authentic 2.07

Authentic vs. SynVox2-OHNN-spk 32.66
Authentic vs. SynVox2-OHNN-aug-spk 34.43
Authentic vs. SynVox2-OHNN-bkg-spk 27.84

Authentic vs. SynVox2-OHNN-utt 32.81
Authentic vs. SynVox2-OHNN-aug-utt 34.76
Authentic vs. SynVox2-OHNN-bkg-utt 27.81

Fig. 4. EERs (%) and score distribution achieved by ASV evalua-
tion model in cross-dataset evaluation for authentic VoxCeleb2 and
SynVox2-OHNN-bkg-utt datasets.

4. EXPERIMENTS

4.1. Setup

OHNN Training: The language-robust OHNN-based anonymized
speech generator is trained on authentic VoxCeleb2 used random
orthogonal Householder reflections, with a random seed of 50 for
parameter initialization. We used an additive loss function which
combines weighted angular margin softmax and cosine similarity.
Full details of the training procedure can be found in [12].
SynVox2 Evaluation: Unlinkability: We generate enrollment-test
pairs, where enrollment utterances are sourced from the authentic
VoxCeleb2 database, whereas test utterances are selected from the
SynVox2 database. Specifically, for each speaker, we randomly
selected four utterances to form two same-speaker trials. For each
speaker, we also generated 100 different-speaker trials by pairing
one of the 4 utterances with 100 utterances of different speakers.
This resulted in a total of 611388 = (2 + 100) ∗ 5994 trials. We
used a publicly available ECAPA-TDNN4 ASV system designed
using the SpeechBrain toolkit [25] to compute the EER. Utility:
First, to establish a benchmark, we trained a downstream ASV
model (ECAPA-TDNN with 512 channels in the convolution frame
layers [26]) using the SpeechBrain recipe with data augmentation.
Then, we trained multiple alternative downstream ASV models us-
ing the same recipe as the benchmark ASV model, but with each
of the SynVox2 databases The utility of each model was then esti-
mated in terms of the EER using the test partition of the VoxCeleb1
database [27]. Fairness: We built gender and accent test sets from
the VoxAccent dataset [16] to further assess fairness. VoxAccent is
a subset of the VoxCeleb2 training set and include utterances col-
lected from 157 male and 112 female speakers who together cover
10 different English accents. The number of trials for each accent

4https://huggingface.co/speechbrain/
spkrec-ecapa-voxceleb



Fig. 5. EER and FDR for accent (left two plots) and gender (right two plots) groups, respectively.

Fig. 6. Visualization of speaker embeddings for samples from
authentic VoxCeleb2 and SynVox2-OHNN-bkg-utt datasets. Each
point corresponds to a distinct speaker.

varies between 204k and 871k. The numbers of trials for female and
male speakers was 12,882 and 24,806, respectively.

4.2. Results
Do SynVox2 datasets protect speaker identity information? Table
1 shows EERs for the unlinkability evaluation. The EER is 2.07%
when both enrollment and test utterances come from the authentic
VoxCeleb2 database. However, when the test utterances comes from
any one of the six anonymized SynVox2 databases, EERs increase to
levels in the order of 30%. ASV score distributions in Figure 4 con-
firm the effect of anonymization. The distributions for positive (same
speaker) and negative (different speaker) trials show greater overlap
for the “Authentic vs. SynVox2-OHNN-bkg-utt” anonymized setting
than for the “Authentic vs. Authentic” baseline. These results con-
firm improvements5 to privacy through anonymization, indicating
greater difficulty to link authentic and anonymized utterances/voices.

Can SynVox2 datasets be used to train an ASV model? The re-
sults of utility assessments are shown in Table 2. The ASV model
trained with authentic data gives an EER of 1.33%. Models trained
with anonymised data produce EERs of 7% and above, with results
for utterance-level embeddings being consistently superior to those
for speaker-level embeddings. These observations highlight the im-
portance of protecting intra-speaker variation. The introduction of
additive noise through both aug and bkg approaches is beneficial,
though EERs remain substantially higher than that of the baseline

Are the ASV models trained using SynVox2 datasets fair in terms
of gender and accent? Figure 5 shows EERs and FDRs for each
gender and accent groups. The trends are similar for SynVox2 and
VoxCeleb2 databases. For instance, EERs for speakers with Spanish,
Indian, and Australian accent are the highest. For gender groups, the
EER for female speakers is consistently higher than those for male
speakers. We nonetheless acknowledge that both the utility (EERs)
and fairness (FDRs) degrade with the use of synthetic data.

Inter-speaker variation: To shed light upon the impact of inter-
speaker variation, we selected 100 speakers at random and plotted

5Perfect anonymization corresponds to EERs of 50%, i.e. fully overlap-
ping score distributions.

Table 2. EERs (%) on official VoxCeleb1 test set achieved by
ASV downstream models (ECAPA-TDNN) trained with different
datasets. Results in first row are reported using the ASV model
trained on authetic VoxCeleb2 dataset to give an indication. Re-
maining rows were obtained using different SynVox2 datasets.

Training dataset EER(%)

Authentic 1.33

SynVox2-OHNN-spk 11.40
SynVox2-OHNN-aug-spk 10.67
SynVox2-OHNN-bkg-spk 10.64

SynVox2-OHNN-utt 7.74
SynVox2-OHNN-aug-utt 7.38
SynVox2-OHNN-bkg-utt 7.58

their corresponding embeddings using t-SNE plots [28] when extrac-
tion is performed using utterances from the Authentic or SynVox2-
OHNN-bkg-utt databases. The results shown in Figure 6 show a re-
duction in inter-speaker variation for the SynVox2 database. This is
a likely cause of the degradation to speaker verification performance

5. CONCLUSIONS

We present in this paper our attempt to create privacy-friendly syn-
thetic VoxCeleb2 datasets for ASV training. By employing the
OHNN-based speaker anonymization technique, we generate new
SynVox2 substitute. The goal is to provide a better balance between
privacy protection and utility. We also introduce metrics for eval-
uation in terms of privacy, utility, and fairness. Results show that
anonymization is reasonably successful in protecting speaker identi-
ties. However, while the use of utterance-level embeddings and the
addition of additive noise is somewhat successful in compensating
for reductions to intra-/inter-speaker variation, the EER of a down-
stream speaker verification system increases from 1.33% to 7%.
While this result might seem disappointing, the use of anonymized
datasets may be compulsory in some settings and scenarios; in-
creasing privacy legislation might mean that, one day, there is no
alternative. We hence expect research in this direction to continue
and to attract greater attention in the future. Further work should
investigate the reduction in inter-speaker variation stemming from
anonymization. Our results show that there is potential for compen-
sation strategies to reduce the gap in utility between authentic and
privacy-friendly databases.
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