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ABSTRACT

This paper describes a way to adapt the recognizer to pronuncia-
tion variability by dynamically sharing Gaussian densities across
phonetic models. The method is divided in three steps. First, a
HMM recognizer outputs a lattice of the most likely word hypothe-
ses given an input utterance. Then, the canonical pronunciation of
each hypothesis is checked by comparing its theoretical phonetic
features to those automatically extracted from speech. If the com-
parisons show that a phoneme of a hypothesis has likely been pro-
nounced differently, its model is transformed by sharing its Gaus-
sian densities with the ones of its possible alternate phone realiza-
tion(s). Finally, the transformed models are used in a second-pass
recognition. Sharings are dynamic because they are automatically
adapted to each input speech. Experiments showed a 5.4% relative
reduction in Word Error Rate compared to the baseline and a 2.7%
compared to a static method.

1. INTRODUCTION

A given word is almost never pronounced in the same way, whether
it is uttered by two speakers or by the same speaker at different
times. Factors of this variability are numerous, for example gen-
der, age and emotional state. While these differences of pronun-
ciation do not affect much the speech understanding of a human
listener, they on the contrary deteriorate performance of speech
recognizers, especially in the case of spontaneous speech.

Explicit modeling of these phenomena proved its usefulness
and made the recognizers more robust to pronunciation variability.
The major contributions in this field were done at the lexical level,
by adding new phone transcriptions to the basic lexicon and using
various pronunciation models. An overview of existing methods is
given in [1].

Modeling pronunciation variation is also possible at other parts
of ASR systems, for example at the level of acoustic models. In
this paper, we investigate the possibility of modeling it dynami-
cally at the level of HMM states, with the hope of further increas-
ing the recognition rate compared to a static method. The paper
is structured as follows. Section 2 describes the concept used to
model pronunciation variability at the level of acoustic models.
Section 3 explains how this concept was used to model pronuncia-
tion variation in a static manner. Section 4 describes the extension
brought to this method to make the modeling dynamic. Section
5 illustrates the experiments carried out to put these methods into
practice, and is finally followed by a conclusion in section 6.
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Fig. 1. Phone- vs. State-Level Pron. Modeling (from [2])

2. STATE-LEVEL PRONUNCIATION MODELING

We present in this section the concept used to model pronuncia-
tion variability at the level of acoustic models. Our work is mainly
based on State-Level Pronunciation Modeling (SLPM) proposed
by Saracglar et al. [2]. The key idea is to model pronunciation
variation by allowing sharings of Gaussian densities between pho-
netic models. Namely, if a phoneme may be realized into distinct
phones, it can share their Gaussian mixtures with them so that
it can inherit some of their acoustical properties as well. This is
in contrast with the classical phone-level pronunciation modeling
which supposesthat only one of the distinct phonetic models may
be used for a given case. The concept is illustrated in Figure 1
for the context independent case, where the word “had” may be
pronounced canonically as “hh ae d”, but also differently as “hh
eh d”. Consequently, the phonemes “ae” and “eh” may share their
Gaussian densities state-by-state. When using context-dependent
phones, the neighbouring phones follow the same rule, namely
“hh” and “d” in their own right and left contexts.

3. STATIC SLPM

In order to see if a dynamic framework can bring better results than
a static one, similar steps to those reported in [2] were followed to
first build a static SLPM-based pronunciation model. It is assumed
here that Gaussian mixtures are used as emission densities, and
each density in the original system is supposed to belong only to a
single state. The following steps are applied in the training phase :

1. Align the phonemic transcription of a sentence built from
the lexicon with the hand-labeled phonetic transcription of
the same sentence. We used a phoneme-to-phonealignment
based on phonetic feature distances, then directly deduced
the state-to-state correspondences.



2. From the alignment above, estimate the probability of a
state b in the canonical transcription to be aligned to a state

s in the surfacial transcription : P(s | b) = %(—b’)’l

3. Prune any pair (s,b) with Count(s, b) less than a threshold
Teount OF P(s | b) less than a threshold T}, Probabilities
of the remaining pairs are renormalized.

4. Compute the new output distribution of state b. This is a
sum of all the mixtures of states s remained after pruning,
with P(s | b) used to compute the new mixture weights :
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P'(o | b) is the new output distribution of state b, and
N., wi,s and N (o; ui, &) are the number of mixtures, the
i-th mixture weight and the i-th distribution of state s in
the original system, respectively. Note that as state-to-state
alignments are inferred from phoneme-to-phone alignments,
P(s | b) is the same for all states of the same model.

The steps above were applied to all training sentences and the
modified phonetic models were used for recognition (see section
5). The number of parameters does not increase much since Gaus-
sian mixtures are shared and. However the average humber of
Gaussians per state increases.

4. DYNAMIC SLPM USING PHONETIC FEATURES

4.1. Overview

With the objective of further decreasing the Word Error Rate, we
propose in this section a method to dynamically modify the pho-
netic models. The whole process enumerated below has been called
dynamic in the sense that sharings of Gaussian densities are pro-
cessed during recognition and they vary from one utterance to the
next, while they are still governed by a pronunciation model. The
following steps are therefore respected for each test utterance :

1. Some phonetic features are first extracted from the input
speech on a frame-by-frame basis by a neural network.

2. At the same time, a baseline HMM system is used to ap-
ply a first recognition pass on the same input speech and to
generate a lattice of the most likely word hypotheses with
their time boundaries.

3. For each hypothesis, a procedure (explained later in this
section) maps the word to a graph of phonetic features.

4. The graph in step 3 is compared to the phonetic features re-
turned by the neural network in step 1 over the given word’s
time interval. Depending on how much the features differ
(explained later in this section), some Gaussian mixtures
are eventually shared between HMM models.

5. The new HMM models are used instead of the original ones
for a second pass recognition.

The steps above are depicted in Figure 2 and will be explained
thoroughly in the next subsections.
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Fig. 2. Dynamic SLPM

4.2. Extraction of phonetic features

In this work we decided to rely on phonetic features to measure
how far a pronunciation differs from its baseform. Phonetic fea-
tures are more fundamental units than phones and cover the most
relevant and controllable characteristics in speech. Our motivation
in this direction was influenced by papers (e.g. [3]) mentioning
that use of phonetic features provides a simple framework to un-
derstand and capture pronunciation phenomena in speech. More-
over, it was shown through experiments ([4]) that accurate classi-
fication of phonetic features is one of the most important factors to
obtain better recognition performance in spontaneous speech.

Among the different existing classes of phonetic features, the
SPE system (Sound Pattern of English [5]) kept our attention be-
cause of its popularity and the possibility of its representation in
binary forms. A single neural network was trained to map a set of
acoustic parameters presented at the inputs to a group of phonetic
features (one output node per feature). The mapping is done on a
frame-by-frame basis. Features are considered as independent, so
that the network performs a M-from-N classification and therefore
several output nodes may be activated simultaneously.

4.3. First recognition pass

A baseline HMM system (described in 5.2) applies a first recog-
nition pass on the input speech and generates a lattice of the most
likely word hypotheses, in order to reduce the search space. Con-
sequently, only phonetic models related to these words may be
subject to Gaussian sharings. Start and end times of each word
are retained for later steps. To reduce computation time, if a word
is present at several places in the lattice, the time interval of the
hypothesis with the highest acoustic likelihood is selected.

4.4. From word hypothesisto phonetic features

Each word hypothesis must be mapped to a graph of phonetic fea-
tures, which will later help to decide whether models representing
this word should be transformed or not, and if so which ones. The
graph is constructed thanks to the following steps (an example is
given for the word “had” in Figure 3) :

1. The word’s canonical pronunciation is extracted from the
lexicon.

2. A forced alignment is applied on the transcription over the
given word’s time interval in order to get segmentation points
of its phoneme constituents.

3. Each phoneme is mapped to a set of phones. The allowed
set for a given phoneme is the one computed in section 3.
A graph of possible phones is therefore generated. To sim-
plify the process, phones are assumed to share the same
segmentation points as their corresponding phoneme.
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Fig. 3. Procedure to map a word to a graph of phonetic features

4. Map each phone in the graph to its corresponding vector
of phonetic features using a lookup table. The vector is
duplicated (not represented in Fig. 3) as many times as there
are frames attributed to this phone.

4.5. Comparisonsof phonetic features

The graph of features generated in the previous subsection is com-
pared to the sequence of features returned by the neural network
(cf. section 4.2). Comparisons are done phone-by-phone over the
time intervals given by their segmentation points. Each compari-
son consists of evaluating a Measureof Smilarity (MoS). Suppose
that a sequence of theoretical feature vectors F' = {7, -
(N times to cover N frames) associated to a phone and a sequence
G = {91,3%,...,gx} returned by the neural network over N
(independent) frames. The MoS is evaluated as :

log S(F = G) = ZlogS T -7 @

Assuming phonetic features also as independent and suppos-
ing there are K features per vector, each term on right hand side of
equation 2 is given by :
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where targ(f’) is the target value (0 or 1) of the j-th feature
of the considering phone, while act(g? ) is the activation value (in
the range [0..1]) returned by the neural network for the j-th feature
of the i-th frame.

For each phoneme (represented by a set of phonesin the graph),

the related phone p with the maximum log S(F, — Gj) is re-
tained. Once this is done for all phonemes, a path going through
each of these retained phones represents the best path P. Its MoS
is given by :

log Smaz = % > Nplog S(F, — Gy) 4
pEP
where Ny, (3, Np = N) is the number of frames covering the

phone p. Gaussian sharings are allowed for a word only if the MoS
Smaz 1S above a threshold T5,q:cn (fixed to 0.5 in experiments).
Moreover, a phoneme’s model may share Gaussians of an alternate
distinct phone only if the MoS of this phone is higher than both the
threshold 7},q:cr and the self MoS of the phoneme (i.e. the MoS
of a phoneme to be mapped to itself). By default, a phoneme is at
least always mapped to itself. The output distributions follow the
same shapeas in equation 1 (cf. section 3), except that sharings are
further limited to states whose phones match these two conditions.

As an example, suppose that a phoneme “aa” may be mapped
to the following phones with their MoS (cf. equation 2) : “aa”(0.26),
“ah”(0.13), “a0”(0.40) and “ax”(0.64). The phone “ah” is not a
candidate for sharing because its MoS (0.13) is both lower than
the self MoS (“aa”, 0.26) and Tyq:cr (0.50). “a0” is not a good
candidate either because its value is still lower than T3y, q:cr. Only
“ax” satisfy both conditions (0.64 > 0.26 and 0.64 > 0.50) and
shares its Gaussian mixtures with “aa”. Probabilities of associa-
tions P(s | b) used to compute the new mixture weights in equa-
tion 1 are therefore (z = 1,2, 3) :

P(Statei(aa) | State;(aa)) = 0.26/(0.26 + 0.64) = 0.29
P(Statei(az) | State;(aa)) = 0.64/(0.26 + 0.64) = 0.71

4.6. Second recognition pass

Once all hypothesesare processed and the appropriate transforma-
tions done, the new HMM models are used instead of the original
ones for a second recognition pass. The lexicon is also updated to
take account of changes. Note that two identical phonemes found
in the new lexicon may now refer to different models (for example,
“bar — b aal r” and “car — k aa2 r” refers to 2 different models
of the phoneme “aa”).

5. EXPERIMENTS

5.1. Database and tools

All experiments were carried out on the TIMIT database [6]. All
training sentences except SA files were used, as well as the core
test set for evaluation. The HMM system used to build the base-
line recognizer and to evaluate the different lexicons is HTK [7].
The neural network used to map from acoustic vectors to phonetic
features is the NICO toolkit [8].

5.2. Baselinesystem

The baseline HMM system was built using the set of 40 phones
proposed in [9] in order to associate each phone to a unique set
of SPE features used in the experiments. A “silence” and a “short
pause” model were added to it. All models have three “left-to-
right” states (no skips), except for “short pause” that has only one
state tied to the center state of “silence” and for which skip of the
model is allowed. The system was trained using 39 MFCC coef-
ficients (12 static + 1 energy, 13 A, 13 AA) and the hand tran-
scriptions of TIMIT. The resulting models are monophones with
10 Gaussian mixtures per state. Evaluated on the core test set
of TIMIT, the system achieved a 14.8% Word Error Rate (WER)
(85.2% accuracy).

5.3. Recognition results on phonetic features

For sake of compatibility with the trained HMM system, the neural
network was also trained using the same set of phones found in [9]
as well astheir corresponding sets of SPE features (14 + 1 silence).
The chosen topology and training method are almost identical to
those reported in [10]. Comparisons between recognized features
and those derived from the hand phone transcriptions of TIMIT led
to the results in Table 1, given in percentage of frames correct on
the cross-validation set.

The results show that each feature taken separately can be re-
liably recognized. The "all correct” shows how frequently all fea-
tures are simultaneously correct for a given frame. We see that



| Feature | Correct (%) || Feature | Correct (%) ]
sonorant 95 round 92
syllabic 90 anterior 90
consonantal 91 coronal 88
high 88 voice 89
back 92 continuant 91
front 93 nasal 98
low 92 strident 97
silence 98

[ Average | 92 || All correct | 53 |

Table 1. Frame recognition results on SPE features

in average more than one frame out of two is phonetically well-
identified, reminded that feature outputs are set as independentand
s0 2'® — 1 = 32767 combinations lead to an error.

5.4. Resultsusingthe static SL PM

The sequence of steps described in section 3 was applied to the
training sentences of TIMIT. At the end of the procedure, we ob-
tained all possible pairs of states (s,b) with their probabilities of
alignments P(s | b). Instead of fixing thresholds Tcount, Tprob
(used to prune unreliable pairs), we preferred to set Teoun: t0 zero
(no “count” threshold), and let the probability threshold 750, be
variable, in order to see the evolution of WER with respect to the
number of sharings. Namely, sharings were progressively added
one after another, starting with the pair with the highest probabil-
ity of association. The graphic in Figure 4 shows the results ob-
tained for the 20 first sharings. We notice that the new Word Error
Rates constantly vary around the baseline WER. Another experi-
ment showed the same kind of behaviour when each sharing is ap-
plied separately, one at a time. From the results, it seems that any
improvement brought by sharing Gaussian densities for the correct
words in the test set may be counterbalanced by its influence to the
wrong words as well. The best WER obtained among the 20 first
sharings is 14.4% WER (85.6% accuracy). We did not get any
more improvement by further increasing the number of sharings.
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Fig. 4. Evolution of the WER in static SLPM

5.5. Resultsusing the dynamic SL PM

HTK uses the Token Passing Model [7] to perform a N-best recog-
nition and to generate a lattice of word hypotheses. 3 tokens in
each state were used in these experiments. Thresholds Tcount,
Torob and Trmascr Were fixed to 10, 0.01 and 0.5 respectively.

Short words (such as “a”, “or”, ...) were excluded from sharings
because the corresponding time intervals returned by the HMM
system at the first pass were often wrong. Results are given in
Table 2.

| Lexicon | WER (%) |
Baseline 14.8
Static SLPM 14.4

Dynamic SLPM 14.0

Table 2. Recognition results with static and dynamic SLPM

Results show that a dynamic approach helps to further improve
performance. Namely, we achieved a 5.4% relative reduction in
WER compared to the baseline system and 2.7% compared to the
static method.

6. CONCLUSION

We showed in this paper that by dynamically sharing Gaussian
densities across phonetic models, it was possible to make the sys-
tem more robust to pronunciation variability. A dynamic approach,
based on comparisons of phonetic features, seems to better adapt
the system to speech than a static method. Future experiments will
also include application of this method to spontaneous speech.
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