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Abstract

Improving the precision of static application security testing (SAST) is cru-
cial in the battle against critical vulnerabilities and to boost the security of
the Web. Nevertheless, modern code poses a challenge for even the most
advanced commercial tools, as they have several blind spots that limit their
ability to conduct a thorough analysis and detect intricate vulnerabilities.
Furthermore, despite the well-known limitations of static application secu-
rity testing tools (SAST), the e�ect of coding style on their vulnerability
detection capability has yet to be thoroughly examined.

The goal of this thesis is to evaluate the e�ectiveness of a combination of
commercial and open source security scanners. Through experimentation,
we identi�ed various code patterns that hinder the ability of state-of-the-art
tools to analyze projects. By detecting these patterns during the software
development lifecycle, our approach can o�er valuable feedback to devel-
opers regarding the testability of their code. Additionally, it enables them
to more accurately evaluate the residual risk that their code might still
contain vulnerabilities, even if static analyzers report no �ndings. Our ap-
proach also suggests alternative methods to transform the code and enhance
its testability for SAST.

Based on our experiments, it is evident that testability tarpits are preva-
lent. To address this issue, we introduceWhip, the �rst approach that pro-
motes collaboration among SAST tools by sharing information to overcome
their individual limitations. Our technique operates solely on the applica-
tion source code, leveraging various tools as an oracle to detect indications
of disrupted data �ows. When we identify such barriers, we insert alter-
native pathways that bypass the problematic code section, allowing SAST
tools to e�ectively handle it.

Our �nal investigation focused on evaluating the performance of SAST
tools when analyzing applications built using frameworks with speci�c de-
sign patterns, such as Model View Controller (MVC). In this study, we ex-
plored the interaction between MVC frameworks and the application source



code. We discovered the obstacles that SAST tools encounter in compre-
hending this relationship, and devised a solution to "disconnect" the ap-
plication from the framework. Our novel approach operates exclusively on
the application source code, converting the highly dynamic interaction chal-
lenges into static code that SAST tools can test. This approach facilitates
the SAST of MVC-based web applications without necessitating any modi-
�cations to the SAST tools themselves.
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Introduction
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1.1 Problem Statement

According to an article in Nasdaq [26], it is estimated that 95% of pur-
chases will be made online by 2040. Currently, besides the big e-commerce
enterprises, there are 400 million small businesses worldwide [22], and 71%
of these businesses have their own websites [9]. Unfortunately, The rapid
growth and evolution of the web have been accompanied by a corresponding
increase in the frequency and severity of web-based vulnerabilities, which
ranked as the second leading cause of data breaches in 2019 [148]. The high
number of vulnerabilities in the web has severe consequences for society,
as attackers can exploit these weaknesses to routinely compromise millions
of websites, steal personal and �nancial information, and penetrate private
infrastructure. For example, CVE-2021-44228 [14] is a recent and widely
known vulnerability (remote code execution) in log4j framework that has
a signi�cant impact on enterprise applications. Although the exact mar-
ket impact of this vulnerability is unclear, the Google security team [27]
mentions The ecosystem impact numbers for just log4j-core, as

of 19th December are over 17,000 packages affected, which is

roughly 4% of the ecosystem.

Software security testing is crucial in addressing security concerns. De-
velopers frequently utilize static code analysis and automated testing tools
to examine their applications and uncover vulnerabilities prior to deploy-
ment. However, current solutions often have limitations in fully identifying
security issues automatically. With the pressure of development costs and
time-to-market constraints, companies face challenges in allocating su�cient
resources to improve security and ensure proper security measures during
the software development phase.

Current methods fail to o�er a clear feedback to developers on how to
interpret their results. This is especially true for components of the appli-
cation that are di�cult to test or are beyond the scope of the testing tool
being used, leaving developers with no insight into the issues encountered
or possible solutions to achieve more resilient testing.

The central idea of this thesis is to restructure the traditional secure
development life-cycle by prioritizing testability. As web applications grow
in size and complexity, there is a need for automated testing techniques to
analyze them, but these techniques may struggle to handle the intricacies of
complex applications. To break this cycle, the thesis proposes incorporat-
ing testability as a key aspect of software development, along with a set of
testability patterns. This shift will provide developers and managers with a
�exible tool to evaluate the security of complex web applications and deter-
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mine the most suitable strategy for mitigating vulnerabilities. For instance,
while using a framework to develop an application may appear to reduce
the likelihood of vulnerabilities, it may also make the rest of the code harder
to test, potentially undermining the security of the entire web application.
By assessing the risk associated with introducing the framework, developers
and managers can make informed decisions on the best solution for their
speci�c situation.

Our testability-driven development process o�ers testing tools providers
a scienti�c and measurable approach to evaluating the e�cacy of their tools
across various technologies, code patterns, and application architectures.
This feedback is crucial in identifying the limitations of a given technique
and �nding ways to enhance it to handle modern technologies. Addition-
ally, it can be used to leverage the strengths of one tool to overcome the
weaknesses of another, such as utilizing a static analysis tool in collabora-
tion with another static tool. Finally, by understanding the e�ectiveness
of tools and techniques for a particular application, our methodology can
help developers choose the most suitable testing tool that aligns with the
application's characteristics, thereby optimizing the e�ectiveness of security
testing.

1.2 Contributions

This thesis makes three separate contributions to addressing testability
tarpits in SAST tools. For each contribution, we investigate the limitations
of static tools and propose solutions to resolve them and increase source
code coverage.

1.2.1 Testability Tarpits

In the �rst contribution, we address the residual risk posed by challenges
encountered by Static Application Security Testing (SAST) tools. Our ap-
proach is novel and is based on the concept of "testability tarpits". A tarpit
is a code pattern that is known to cause problems for a certain class of SAST
tools. The idea is that if an application was easy to analyze, the residual
risk of undetected vulnerabilities would be lower, while if it presented many
challenges to the analysis tool, the residual risk would be higher.

Our proposed framework, based on a comprehensive library of testability
tarpits, enhances our understanding of the results from one or multiple
SAST tools. It not only assesses the con�dence of the reported results,
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but also pinpoint the speci�c code that diminishes that con�dence. This
information empowers an analyst to make informed choices, such as adding
more tools to overcome the e�ect of tarpits, manually reviewing code that
is hard to test, or restructuring the application to increase its testability.

We analyze PHP and Javascript code using static analysis tools, as they
are the two most commonly used languages for web application develop-
ment. Our methodology is general and applies to any language or class of
analysis tools. We have created a library of 122 testability tarpits for PHP
and 153 tarpits for JS, covering various language features. We tested several
commercial and open-source SAST tools with these tarpits. Although some
of the best commercial tools have high accuracy, they could only process
50% of the tarpits, revealing possible gaps in analysis. To determine the
impact of unsupported tarpits, we created automated discovery rules for all
PHP patterns and scanned 3341 open-source PHP applications. Our ex-
periments showed that these tarpits are widespread in the real world - the
average project had 21 di�erent tarpits and even the best SAST tool could
not analyze more than 20 consecutive instructions without encountering a
pattern that impeded its analysis.

The automated discovery of tarpits o�ers numerous advantages. One of
the most signi�cant bene�ts is that it gives developers prompt and accurate
feedback regarding the tarpits in their code by integrating discovery rules
into an IDE. This information can be utilized to determine the most suitable
combination of SAST tools for analyzing the code, identify areas that may
require a thorough code review, and recognize regions of code that could be
restructured for better testability.

This contribution concludes by conducting two experiments to assess the
impact of code refactoring on the testability of applications for SAST tools.
In the �rst experiment, we manually examined 10 PHP and JS applications
where SAST tools failed to detect known vulnerabilities. By addressing
the testability obstacles, the tools were able to identify the vulnerabilities,
leading to the discovery of over 200 additional bugs, including 71 con�rmed
vulnerabilities. In the second experiment, we utilized an automated tool to
apply �ve tarpit transformations to thousands of popular real-world appli-
cations. The tool modi�ed 1170 applications, transforming 32,192 instances
of the �ve tarpits. Comparison of the results of SAST scans before and after
the transformations revealed a signi�cant improvement in overall testability,
with hundreds of previously unknown vulnerabilities detected. We discov-
ered 370 zero-day vulnerabilities in 43 di�erent applications, 55 of which
a�ected popular projects with over 1000 Github stars. All �ndings were
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responsibly disclosed. These results demonstrate the value of our approach
and the positive impact of removing tarpits on the testability of SAST tools.

Thus, we assist the open source community in detecting 441 high severity
vulnerabilities and publish our �ndings in a research paper titled "Testabil-
ity Tarpits: the Impact of Code Patterns on the Security Testing of Web
Applications."

1.2.2 Tools collaboration

In the �rst contribution, we addressed the challenges and limitations of
static analysis tools. In the second part of this thesis, we introduce the �rst
approach to facilitate collaboration between SAST tools. Our novel tech-
nique only operates on the application source code, making it compatible
with both research and commercial SAST tools without requiring access to
their internal data structures. Our approach entails searching for evidence
of disrupted data �ows by utilizing the tools as oracles and then creating a
bypass to circumvent the code that the tools were unable to handle correctly.

Our approach is universally applicable and can be used with any pro-
gramming language. To demonstrate this, we created a fully automated
prototype called Whip, which is speci�cally designed for the PHP lan-
guage. PHP remains the most widely used language for web application
development today.

We conducted experiments to demonstrate the e�ectiveness of Whip in
improving the performance of two popular commercial SAST tools, Comm_2
and Comm_1. Our results showed that Comm_1 and Comm_2 reported
25% and 10% more security alerts respectively, when Whip was used. This
resulted in the discovery of 9, 226 new high-severity alerts, 35 of which were
con�rmed as zero-day vulnerabilities across 14 applications. Our manual
investigation of 30% of the new alerts con�rmed the validity of 24 of these
vulnerabilities, which were acknowledged by the respective developers.

Finally, we compared the complexity of the new vulnerabilities found by
Whip with a dataset of 100 previous CVEs. Our analysis reveals that using
a tool to supplement the limitations of another tool allows both to delve
deeper into the target data �ow. For example, while previous CVEs had an
average vulnerability path of only 7.8 lines of code (LOC), the shortest path
among our 35 new discoveries was 12 LOC, with an average of 25 LOC.

This work was published in a paper entitled "Whip: Improving Static
Vulnerability Detection in Web Applications by Forcing Tools to Collabo-
rate". In addition to that, this research led to a new OWASP project to
build a community around testability tarpits [19].
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1.2.3 Testability Tarpits in MVC design pattern

The third contribution focuses on addressing the trend of widespread usage
of model-view-controller (MVC) frameworks in modern web applications,
which makes the SAST tasks even more di�cult. Despite the advantages
that MVC provides in terms of simplifying development and maintenance,
it also introduces a signi�cant degree of dynamic interaction between the
application code and the framework code, making SAST infeasible.

We propose a novel solution to disconnect an application's source code
from its MVC framework, making it easier for SAST tools to analyze. Our
approach focuses solely on the application source code, making it applica-
ble to both research and commercial SAST tools without needing access to
their internal implementations. Our approach consists of two phases: �rst,
identifying problematic �ows between the application and the MVC frame-
work, then transforming these dynamic �ows into static ones between the
application and a transformed version of itself, thereby making them more
suitable for SAST analysis.

We conducted two experiments to demonstrate the e�cacy of our ap-
proach in enhancing the source code coverage analyzed by SAST tools. In
both experiments, SAST tools reported a signi�cantly higher number of se-
curity alerts. In the �rst experiment, we applied our approach to 10 known-
to-be-vulnerable applications built on popular PHP MVC frameworks (Lar-
avel and CodeIgniter). Our manual transformations enabled SAST to de-
tect the known vulnerabilities. In the second experiment, we automated the
transformation process for 20 CodeIgniter projects from Github and Source-
codester. SAST reported over 2,000 new �ndings, including 826 previously
unknown stored XSS vulnerabilities and 103 re�ected XSS vulnerabilities
a�ecting 18 out of 20 projects analyzed. All impacted projects acknowl-
edged our �ndings through responsible disclosure, and CVEs were released.
Finally, we explore this subject in the research paper "Mitigating the Impact
of the MVC Design Pattern on Web Application Static Security Testing".

1.2.4 Vulnerabilities Discoveries

With the three contributions, we improve the security of open-source projects
by detecting 1,404 high-severity vulnerabilities in 82 projects. Each time
we con�rmed that an alert was a true positive, we contacted the develop-
ers to initiate a responsible disclosure process. In each communication, we
described the issue and provided feedback on how to �x the vulnerability.
In some cases, we even submitted pull requests on Github containing the
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patch. When a project had multiple vulnerabilities, we only requested one
CVE to cover all the corresponding cases, resulting in 55 CVEs for our
discoveries.

Table 1.1: Our CVEs discoveries

Cont. Project Vul. CVE
Cont. 1 Lychee-v3 XSS CVE-2021-43675
Cont. 1 Librenms XSS CVE-2021-44279
Cont. 1 MantisBT XSS CVE-2021-33557
Cont. 1 Matyhtf framework Path M. CVE-2021-43676
Cont. 1 Dzzo�ce XSS CVE-2021-43673
Cont. 1 Vesta File I. CVE-2021-43693
Cont. 1 ThinkUp Path M. CVE-2021-43674
Cont. 1 Wechat-php-sdk XSS CVE-2021-43678
Cont. 1 SakuraPanel XSS CVE-2021-43681
Cont. 1 nZEDb XSS CVE-2021-43686
Cont. 1 Thinkphp-bjyblog XSS CVE-2021-43682
Cont. 1 Pictshare XSS CVE-2021-43683
Cont. 1 Chamilo-lms XSS CVE-2021-43687
Cont. 1 Fluxbb XSS CVE-2021-43677
Cont. 1 Libretime Path M. CVE-2021-43685
Cont. 1 IssabelPBX XSS CVE-2021-43695
Cont. 1 Twmap XSS CVE-2021-43696
Cont. 1 Tripexpress Path M. CVE-2021-43691
Cont. 1 YurunProxy XSS CVE-2021-43690
Cont. 1 Manage XSS CVE-2021-43689
Cont. 1 Youtube-php-mirroring XSS CVE-2021-43692
Cont. 1 Workerman-ThinkPHP-Redis XSS CVE-2021-43697
Cont. 1 PhpWhois XSS CVE-2021-43698
Cont. 1 Attendance management system SQLI CVE-2021-44280
Cont. 1 Docsify XSS CVE-2021-23342
Cont. 2 Vesta XSS CVE-2022-36305
Cont. 2 Jukebox-RFID XSS CVE-2022-36749
Cont. 2 ICEcoder Path M. CVE-2022-34026
Cont. 2 Dokuwiki XSS CVE-2022-28919
Cont. 2 PicUploader XSS CVE-2022-41442
Cont. 2 Phoronix XSS CVE-2022-40704
Cont. 2 Librenms XSS CVE-2022-36746
Cont. 2 Phpipam XSS CVE-2022-41443
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Cont. 2 Razor XSS CVE-2022-36747
Cont. 2 Pfsense XSS CVE-2022-42247
Cont. 3 Wscats-cms XSS CVE-2023-23016
Cont. 3 Corn-manager XSS CVE-2023-23017
Cont. 3 Kalkun XSS CVE-2023-23015
Cont. 3 InventorySystem XSS CVE-2023-23014
Cont. 3 Hr-payroll XSS CVE-2023-23013
Cont. 3 Classroombookings XSS CVE-2023-23012
Cont. 3 InvoicePlane XSS CVE-2023-23011
Cont. 3 Ecommerce Bootstrap XSS CVE-2023-23010
Cont. 3 Sales Management System XSS CVE-2023-23018
Cont. 3 Book Store XSS CVE-2023-23024
Cont. 3 Expense Management System XSS CVE-2023-23027
Cont. 3 Sales Management System XSS CVE-2023-23026
Cont. 3 Hotel System XSS CVE-2023-23025
Cont. 3 Laundry System XSS CVE-2023-23023
Cont. 3 Employees Payroll XSS CVE-2023-23022
Cont. 3 Point Of Sale XSS CVE-2023-23021
Cont. 3 Blog Site XSS CVE-2023-23019

1.3 Thesis Outline

The thesis is structured as follows:
Chapter 2 provides the background information and key concepts nec-

essary to understand the thesis contributions.
Chapter 3, based on the paper "Testability Tarpits: the Impact of Code

Patterns on the Security Testing of Web Applications" presented at the
Network and Distributed Systems Security Symposium (NDSS 2022), de-
�nes a list of testability tarpits, assesses their prevalence in open-source
projects, and outlines approaches to eliminate these tarpits and enhance
the testability of the projects.

Chapter 4, based on the paper "Whip: Improving Static Vulnerability
Detection in Web Applications by Forcing Tools to Collaborate" presented
at the Usenix Security Symposium 2023, presents a novel method to en-
courage collaboration between static tools by sharing information that can
help them overcome each other's limitations.

Chapter 5, based on the paper "Mitigating the Impact of the MVC
Design Pattern on Web Application Static Security Testing" and under
submission to The ACM Joint European Software Engineering Conference
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and Symposium on the Foundations of Software Engineering (ESEC/FSE),
investigates MVC frameworks and their interaction with application source
code. This chapter identi�es the challenges faced by SAST in understand-
ing the interactions between the application and framework and provides a
solution to "disconnect" the application from the framework.

Finally, Chapter 6 concludes the thesis and suggests potential future
research directions.
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Background
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This Chapter provides background information to contextualize the the-
sis. An overview of Web Application Security Testing and solutions for
white-box, black-box and test case generation is presented in Section 2.1.
Section 2.2 focuses on previous studies that developed static tools, and the
selection of tools for our study. In Section 2.3, we discuss di�erent types
of injection vulnerabilities, the methods used by attackers to exploit them,
and how developers can defend the system.

2.1 Web Application Security Testing

The detection of vulnerabilities in web applications has been a major focus
of previous research, leading to various proposed solutions. The chosen
technique depends on the information available to the tester and the type
of vulnerability being investigated.

In the one hand, white-box solutions rely on source code analysis and
examine the data �ow between a source (a location where user data is
inputted) and a sink (a security-sensitive operation, such as an SQL query)
to identify input validation vulnerabilities [104, 94, 152, 66]. White-box
solutions can also use model checking (e.g.,[92, 156, 112]) or custom models
of application behavior to detect logic �aws (e.g., [71, 51]). Previously,
server-side source code analysis was more prevalent, but with the rise of
modern web applications, the focus has shifted to the analysis of client-side
JavaScript. Various JavaScript analysis techniques have been proposed,
including static analysis [55, 79, 80, 81, 109], dynamic analysis [134, 140],
hybrid analysis [62, 70, 145, 154], taint analysis [135], and string analysis [41,
42, 54].

On the other hand, black-box solutions for web application security
probe the target application without knowledge of its source code. These
techniques can discover various classes of vulnerabilities, including tradi-
tional input validation threats (e.g., [67, 96, 113, 49]) and more recently,
logic vulnerabilities (e.g., [78, 128, 150]). Whereas a classi�cation of black-
box testing techniques is still missing, two dominant groups can be dis-
tinguished: vulnerability scanners (e.g., Nikto [119] and Nessus [136]) and
web application scanners (e.g., [96, 67, 129]). Vulnerability scanners can
only detect instances of vulnerabilities (e.g., Nikto [119] and Nessus [136]),
while web application scanners detect classes of vulnerabilities by looking
for general vulnerable behavior in a web application-agnostic manner [96].
A typical web application scanner has three components: a crawler, a test
case generator, and an analysis module. The crawler covers the entire ap-
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plication, the test case generator probes the target with specially crafted
inputs, and the analysis module processes the result pages to detect vulner-
abilities. The precision of these components is crucial for the e�ectiveness
of the black-box solution. However, web scanners are limited in their per-
formance with dynamic URLs and the classes of vulnerabilities they can
discover [68, 53]. Recent research has focused on the shortcomings of web
scanners but only in the crawler module(e.g., [67, 129]), leaving the detec-
tion components out of scope.

The generation of test cases and analysis has been studied in a separate
�eld of research. This line of work has centered on detecting more serious
vulnerabilities such as faults in the web application's logic [128, 141] and the
user authentication and authorization components [78]. These techniques
combined concepts from other areas, including model inference [128, 78],
model-based testing [57], and generation of test cases based on attack pat-
terns [128]. Although these approaches have demonstrated that black-box
analysis can detect deeper vulnerabilities, they are largely specialized to
only a few vulnerability types, so their impact is limited.

Existing security testing techniques are not always e�ective in detecting
vulnerabilities in modern web applications. Code-based techniques struggle
with the complexities of popular programming languages such as PHP and
JavaScript, leading to unsound analyses that leave some execution paths
unexplored [106]. Black-box techniques, meanwhile, lack the ability to de-
tect deeper vulnerabilities in complex applications [68, 53]. This results
in limited impact and di�culty in quantifying the e�ectiveness of current
security testing methods.

In this thesis, we address the challenge of limited e�ectiveness of exist-
ing security testing techniques for modern web applications by introducing
a collection of "web testability patterns" for static analysis. These pat-
terns have two signi�cant outcomes. Firstly, they accurately identify which
features and parts of a web application contribute to the limitations of a
testing methodology, providing a quanti�able measure of the testing tool's
e�ectiveness. Secondly, the pattern library acts as a test suite to evaluate
various tools and assist their developers in improving their ability to handle
current web technologies. The cycle introduced in this thesis will lead to
more advanced web application testing techniques and quanti�able results
in testing experiments.
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2.2 Static Tools

In this section, we will review tools and techniques that can be utilized when
the source code of the program being tested is available. These approaches
take advantage of the source code artifacts to examine the di�erent behav-
iors of the component under examination. Thus, we present a list of static
tools in di�erent programming languages.

CodeQL. CodeQL [76] is a static semantic code analysis engine that
enables analysts to query code as if it were data. It is capable of performing
variant analysis and discovering vulnerabilities in codebases. CodeQL is free
for research and open-source projects and can be run locally or on projects
hosted on GitHub. It comes with a set of standard queries that can be
augmented with custom-written ones. Additionally, CodeQL provides data
�ow analysis for a subset of supported programming languages (C, C++,
C#, Go, Java, JavaScript, Python, Ruby and TypeScript).

CPG in binary PHP. The Control-Flow Graph (CPG) as a data
structure was introduced by Yamaguchi et al. [158] and is a combination of
multiple static analysis graphs, including the Abstract Syntax Tree, Con-
trol Flow Graph, and Data Flow Graph. These graphs are extracted from
the source code of a program and then combined into one graph by using
the nodes that all graphs share, i.e., the CFG nodes. The resulting graph
can be used to describe patterns representing vulnerabilities by formulating
traversals across di�erent edges in the graph. The CPG generator for PHP
converts a given project folder's individual source �les into their bytecode
representation, which is then translated into CPG form. This resulting CPG
is compatible with the ShiftLeft framework, which allows interaction and
storage of CPGs in any language [5].

CPG in binary JAVA. Plume is a code property graph generator for
Java projects [21]. It transforms individual source �les in a given project
folder into their bytecode representation or directly analyzes a Java Archive
(JAR) that contains class �les in bytecode form. This bytecode is then
translated into a code property graph (CPG) format. The resulting CPG
is compatible with the ShiftLeft framework, which allows interaction and
storage of CPGs for any programming language [5].

Joern. Code property graphs (CPGs) can be generated directly from
source code instead of binary code, providing access to syntax trees that
more accurately re�ect the original program code as viewed by developers.
The Joern project [143] o�ers early versions of CPG generators for Java and
JavaScript source code, with plans to include support for Python and PHP
source code throughout 2022. One of the key bene�ts of these frontends
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is that they can generate CPGs without the need for a con�gured build
environment, enabling the scanning of a large number of projects without
the need for manual setup of build systems.

LGTM. LGTM [33] is a commercial code analysis platform that aims
to detect zero-day vulnerabilities in source code through the use of Cod-
eQL queries. The vendor provides a free service for scanning open-source
projects hosted on public repositories such as Bitbucket Cloud, GitHub.com,
and GitLab.com. LGTM supports programming languages including Java,
Python, JavaScript, TypeScript, C#, Go, C, and C++. It utilizes a set of
standard CodeQL queries, which have been manually curated to minimize
false positive results. If a developer detects and �xes a reported issue, they
can also extend the query to identify code patterns similar to the original
bug. Additionally, LGTM can be con�gured to perform automated code
review on each pull request.

NodeJsScan. NodeJsScan [35] is a static security code scanner for
Node.js applications. It o�ers a user-friendly interface with various secu-
rity status dashboards. It can be easily utilized through a Docker image
and a web page, and the source code to be scanned can be provided as
a zip archive. Alternatively, it can be integrated with GitHub, GitLab,
and/or Travis projects. The analysis results are displayed in a report win-
dow, organized by priority according to the OWASP ranking. Each �nding
includes information on the �le and line where the issue is located. Node-
JsScan claims to be more e�ective in detecting SQL injection vulnerabilities
than cross-site scripting vulnerabilities. It supports JavaScript code writ-
ten for Node.js and can be integrated with GitHub, GitLab, and/or Travis
projects. NodeJsScan is designed for detecting vulnerabilities, particularly
injection-related, in Node.js applications.

phpSAFE. phpSAFE [123] is an open-source static code analyzer that
can identify vulnerabilities in PHP applications. The tool detects the pres-
ence of unsanitized data-�ow paths between sources and sinks, which are
related to both SQL injection (DB query) and XSS (echo and print state-
ment) vulnerabilities. It is speci�cally designed for the PHP language and
can analyze OOP constructs. phpSAFE can also analyze WordPress plug-
ins without the need for a WordPress installation. It is a web application
that accepts a PHP �le as input and generates a report listing the potential
vulnerabilities in the �le.

Progpilot. Progpilot [130] is an open-source static analyzer aimed at
identifying security issues in PHP applications. It is an actively maintained
tool, with its latest version released in March 2020, making it the most
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current open-source PHP analysis tool. Progpilot can be installed using a
standalone phar, by building from source code, or through the composer.
It supports PHP 7.2.5 and can be con�gured by editing a con�guration
�le that de�nes sources, sinks, sanitizers, and validators. Progpilot can be
run from the command-line or used as a library within a PHP project and
supports OOP constructs.

RIPS. RIPS [65] is a popular static code analysis tool designed to detect
vulnerabilities automatically in PHP applications. It works by transform-
ing the application source code into a model, which is later analyzed by a
taint engine to identify data �ows between sensitive sinks and user-input.
The open-source version of RIPS supports only PHP, while the commercial
version, branded as SonarSource, supports 27 languages. RIPS is a web
application where the analyst speci�es the path of the PHP project to be
analyzed. The tool provides a structured output of discovered vulnerabil-
ities and also o�ers an integrated code audit interface for reviewing PHP
projects and grouping vulnerable code.

WAP.Web Application Protection [151] (WAP) is an open-source project
that performs static analysis of PHP applications to detect input validation
vulnerabilities. WAP uses taint analysis to identify possible paths between
un-sanitized inputs and sensitive sinks, followed by a data mining phase to
con�rm the generated alerts and reduce false alarms. The last update to the
project was in 2017. WAP supports PHP and can detect 8 types of vulner-
abilities, including SQL Injection (SQLI), Cross-Site Scripting (XSS), and
others. Written in JAVA, WAP consists of three separate modules: a code
analyzer that detects vulnerabilities, a classi�er that reduces false positives,
and a module that provides source code patches to mitigate discovered bugs.

Selected tools. In this thesis, we address challenges and ways to en-
hance the coverage of static tools for two programming languages: PHP and
Javascript. The tools studied include RIPS, phpSAFE, WAP, Progpilot,
LGTM, NodeJsScan, and Shiftleft, as well as four anonymous commercial
tools.

2.3 Injection vulnerabilities

Fabian Yamaguchi used the de�nition of a vulnerability from The Internet
Security Glossary (IETF RFC 4949) [136, page 333] in his thesis [157]. Ac-
cording to this de�nition, a vulnerability is a �aw or weakness in a system's
design, implementation, or operation and management that could be ex-
ploited to violate the system's security policy, and goes on to state that a
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system can have three types of vulnerabilities: (a) vulnerabilities in design
or speci�cation; (b) vulnerabilities in implementation; (c) vulnerabilities in
operation and management.

OWASP provides a regular list of the top 10 vulnerabilities that repre-
sent a broad consensus on the most critical risks in web applications. This
list discusses di�erent types of attacks that systems can face, including au-
thentication, privileges, data encryption, injection, con�guration, design,
and others. Over the past 20 years, injection vulnerabilities have consis-
tently remained among the top three types of vulnerabilities. Injection
vulnerabilities occur when an attacker can inject harmful values into an ap-
plication, which can lead to unexpected results when interpreted by other
parts of the system.

To detect these bugs, SAST tools need to reason about the �ow of
user-provided information through the program, starting from the points
where attackers can inject their input (called �sources�) until the points in
the program where this input is consumed and interpreted (called �sinks�).
The variables which carry the data between sources and sinks are called
�tainted variables�. Thus, detecting injection vulnerabilities boils down to
discovering a data-�ow path that connects a source to a sink, along which
the data is not properly sanitized.

SAST tools require the ability to analyze the �ow of user-provided in-
formation through a program in order to detect bugs. This analysis must
start from the points where attackers can inject their input, also known as
"sources," and continue until the input is consumed and interpreted, known
as "sinks." The variables that transport the data between sources and sinks
are known as "tainted variables". Detection of injection vulnerabilities boils
down to discovering a data-�ow path that connects a source to a sink, along
which the data is not properly sanitized.

We refer to vulnerabilities that have a direct path from source to sink
as �rst-order vulnerabilities. Second-order vulnerabilities (also known as
"stored vulnerabilities") are a type of injection vulnerability that occurs
when an application stores user input (such as in a database) and later uses
that input in a dangerous way without properly sanitizing or validating it.
Unlike a traditional injection vulnerability, where an attacker can imme-
diately exploit the vulnerability, a second-order vulnerability requires the
attacker to �rst input malicious code or data into the application and then
wait for it to be retrieved and processed in the future, possibly by a di�erent
user or a di�erent part of the system. This delay in the attack can make
second-order vulnerabilities more di�cult to detect and mitigate.
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In this section, we will list the most common injection vulnerabilities
and provide code examples in PHP. We will also discuss sanitizers that can
be used to protect applications from these vulnerabilities.

2.3.1 SQL Injection

SQL injection is a security vulnerability that arises when an attacker is
able to inject malicious SQL code into an application that interacts with a
database. This can occur when an application incorporates user input into
a SQL statement without proper sanitization or validation.

If a victim user submits the compromised input, the malicious SQL code
is executed by the application, enabling the attacker to carry out a range
of activities. For example, an attacker may be able to retrieve, modify, or
delete data from the database.

In this PHP code snippet, the user inserts their user ID, which is used
to fetch data related to that ID from the database. For instance, if the
user inputs the value 5 as their ID, the resulting query will be "SELECT
* FROM users WHERE id=5". However, if attackers insert input like "5
OR 1=1", they can manipulate the SQL query and retrieve data for all
users instead of just one, resulting in a query like "SELECT * FROM users
WHERE id=5 OR 1=1".

$mysqli = new mysqli("localhost", "user", "password", "database");
$user_id = $_GET["p1"];
$query = "SELECT * FROM users WHERE id=$x";
$result = $mysqli=>query($query);
var_dump($result);

To prevent SQL injection attacks, applications need to properly sanitize
and validate user input (e.g. mysqli_real_escape_string in PHP), and
use parameterized queries or prepared statements to separate the SQL code
from the user input.

2.3.2 Cross Site Scripting (XSS)

Cross-site scripting (XSS) is a type of security vulnerability that arises when
an attacker is able to inject malicious code, often in the form of a script,
into a web page that will be viewed by other users. This type of attack can
occur when an application allows user input to be included in a web page
without proper sanitization or encoding.

Once the victim user visits the compromised web page, the malicious
script is executed by their browser, enabling the attacker to carry out a
variety of actions. For example, an attacker may be able to steal the user's
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session tokens, gain access to sensitive information, or manipulate the con-
tent of the web page in unauthorized ways.

In this example, we receive a request parameter from the GET method
that the user inputs, and then we print this input without sanitizing it. This
input may include a script that will be executed on the client side, such as
a script that reads the cookie and forwards it to another server.

$x = $_GET["p1"];
echo $x;

In order to prevent cross-site scripting (XSS) attacks, it is important for
applications to sanitize and validate user input appropriately (for example,
using functions like htmlspecialchars in PHP), and to encode any user-
generated content before displaying it on a web page. In addition to these
measures, web developers can also implement various security measures,
including Content Security Policy (CSP), to further protect against XSS
attacks. CSP enables website administrators to de�ne which sources of
content can be executed on a website, thus providing an additional layer of
defense against potential attacks.

2.3.3 Path Manipulation

A path manipulation vulnerability is a type of security vulnerability that
arises when an attacker is able to access or manipulate �les on a system
in unauthorized ways. This can occur due to �aws in the design or imple-
mentation of an application, such as insecure �le permissions or insu�cient
input validation, which can allow an attacker to perform actions on �les
that they should not be able to access or modify.

This type of vulnerability can enable an attacker to read, write, or delete
�les on a system, potentially leading to data theft, loss of critical data, or
even complete system compromise. Examples of path manipulation vul-
nerabilities include directory traversal attacks, �le inclusion vulnerabilities,
and �le upload vulnerabilities.

In this PHP code, the user inputs a �le name, and the corresponding
�le in the directory "/var/www/�les/" is included. For example, if the
user inputs "home.php", the resulting �le inclusion will be "/var/www/-
�les/home.php". However, attackers can insert "../../../etc/passwd" to ac-
cess the password �le on the system, resulting in a directory traversal attack
where the resulting �le inclusion would be "/var/www/�les/../../../etc/passwd".

But the attacker can access others �les in the system

$x = $_GET["p1"];
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include "/var/www/�les/".$x;

To prevent �le manipulation vulnerabilities, applications should imple-
ment appropriate access controls, input validation, and �le permissions. In
PHP, the built-in function realpath can be used to return a canonicalized
absolute pathname, which can help prevent path traversal attacks. For ex-
ample, if the input is "../../etc/passwd", the output of realpath("./../../etc/passwd")
would be "/etc/passwd".

2.3.4 Command Injection

A command injection vulnerability is a security �aw that occurs when an
attacker is able to run arbitrary commands on a system by injecting ma-
licious code into an application that interacts with the operating system.
This vulnerability can arise when an application allows user input to be
included in a command without properly validating or sanitizing it.

Once a victim user submits the compromised input, the operating system
executes the malicious code, enabling the attacker to perform a range of
actions, including accessing, modifying, or deleting data on the system. As
a result, this vulnerability can result in unauthorized access, data theft, or
even a complete system compromise.

In PHP, commands can be executed using the built-in function exec.
For example, the user can insert the argument "-l" to list the directory
contents with a long listing format using the command "ls -l". However, an
attacker can inject another command by providing the input "-l; rm -rf *",
which would execute the command "ls -l; rm -rf *", resulting in the deletion
of all �les in the current directory.

$x = $_GET["p1"];
$output = exec("ls ".$x);

Preventing command injection vulnerabilities requires checking for spe-
cial characters, such as ';', which can allow multiple commands to be ex-
ecuted on the same line. For better security, it is recommended to use a
whitelist approach that checks the input under speci�c conditions. For ex-
ample, the parameters for the 'ls' command can be limited to '-c', '-g', '-l',
and '�version' to prevent unauthorized execution of other commands.

$arr = array("=c", "=g", "=l", "==version");
$x = $_GET["p1"];
if($x in $arr){

$output = exec("ls ".$x);
}
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Preamble

While static application security testing tools (SAST) have many known
limitations, the impact of coding style on their ability to discover vulner-
abilities remained largely unexplored. To �ll this gap, in this study we
experimented with a combination of commercial and open source security
scanners, and compiled a list of over 270 di�erent code patterns that, when
present, impede the ability of state-of-the-art tools to analyze PHP and
JavaScript code. By discovering the presence of these patterns during the
software development lifecycle, our approach can provide important feed-
back to developers about the testability of their code. It can also help them
to better assess the residual risk that the code could still contain vulnera-
bilities even when static analyzers report no �ndings. Finally, our approach
can also point to alternative ways to transform the code to increase its
testability for SAST.

Our experiments show that testability tarpits are very common. For
instance, an average PHP application contains over 21 of them and even
the best state of art static analysis tools fail to analyze more than 20 con-
secutive instructions before encountering one of them. To assess the impact
of pattern transformations over static analysis �ndings, we experimented
with both manual and automated code transformations designed to replace
a subset of patterns with equivalent, but more testable, code. These trans-
formations allowed existing tools to better understand and analyze the ap-
plications, and lead to the detection of 440 new potential vulnerabilities in
48 projects. We responsibly disclosed all these issues: 31 projects already
answered con�rming 182 vulnerabilities. Out of these con�rmed issues� that
remained previously unknown due to the poor testability of the applications
code� there are 38 impacting popular Github projects (>1k stars), such as
PHP Dzzo�ce (3.3k), JS Docsify (19k), and JS Apexcharts (11k). 25 CVEs
have been already published and we have others in-process.

3.1 Introduction

According to the 2020 Edgescan Security Report, �Web application security
is where the majority of risk still resides� [69]. This is con�rmed by the fact
that most of the recent data breaches took advantage of the poor security
of web applications. From a defensive point of view, there are two main
options to detect vulnerabilities in web applications: static application se-
curity testing (SAST) and dynamic application security testing (DAST).
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Dynamic approaches are sound, but often treat the application as a black
box and are therefore severely limited in the number of vulnerabilities they
can detect. Static tools can instead reason about the entire behavior of
the application, thus potentially detecting more vulnerabilities. However,
in practice, they are neither sound nor complete, and often result in very
large amounts of false positives.

To mitigate this problem, a large amount of research has been conducted
to improve these two numbers, by either proposing techniques to increase
the ability of static analysis to discover more vulnerabilities or to reduce
the number of false alarms. Despite the progress done in both directions, it
is undeniable that SAST tools still struggle to cope with the complexity of
real-world code � which is one of the reasons for the poor security of today's
web applications.

In this chapter, we look at the problem from a di�erent angle. In par-
ticular, we focus on another limitation of these tools that is often neglected:
the fact that it is very di�cult (independently from the tool's precision)
for an analyst to interpret their results. In the example above, how can we
translate the lack of vulnerabilities reported by a SAST tool into an action-
able insight on the security of the application?
A key observation that motivates our work is that while the precision of
the results depends on the tool, the level of �con�dence� largely depends on
the application. For instance, if zero vulnerabilities are reported in a small
application with only a handful of untrusted input, the analyst might be
con�dent that the tool was right and the codebase could not contain many
undetected vulnerabilities. In contrast, if the same result is returned on a
very large and complex application, that con�dence might be much lower,
therefore resulting in a higher residual risk that the code could still contain
vulnerabilities.

Our goal is to �nd a way to capture this residual risk by proposing a
novel approach based on the concept of testability tarpits. A tarpit is a
speci�c pattern of code that is known to cause problems for a class of static
analysis tools. Other researchers have reported such patterns as a way to
point out the current limitations (and possible venues for improvement) of
static analysis tools. We propose instead to use them as a metric to capture
how testable an application is. The intuition is that the residual risk of
undiscovered vulnerabilities is lower if the application was easy to analyze,
and higher if it presented many challenges for the analysis tool.

By building upon a comprehensive library of testability tarpits, we pro-
pose a general framework that can support a more principled understanding
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of the results of one (or a composition of) SAST tool(s). Our approach does
not only provide a way to assess the con�dence of the reported results, but
it also points to the precise nature and location of the code that reduces this
con�dence. As a result, an analyst can decide to add more tools to reduce
the impact of the existing tarpits, to perform a manual audit of a poorly
testable part of the code, or to refactor part of the application to increase
its testability.

While the methodology we present is general and independent of the
language of the application and the class of tools used to analyze it, in
this paper we focus on static analysis tools for PHP and Javascript (JS,
in short) code, the two most common languages for web application de-
velopment. In particular, we create a library of 122 testability tarpits for
PHP and 153 tarpits for JS (cf. 3.3.1), covering language features, built-in
APIs, security-related functionalities, and static and dynamic operations.
We then selected an arsenal of 11 commercial and open-source SAST tools
(6 for PHP and 5 for JS) and we assessed them against our tarpits' libraries
(cf. Section 3.3.2). The best commercial tools were only able to handle
50% of the PHP and 60% of the JS tarpits, thus potentially leaving large
parts of an application code unexplored. To measure the impact on those
unsupported tarpits, we implemented automated discovery rules (cf. Sec-
tion 3.4) for all our PHP patterns and used them to scan 3341 open-source
PHP applications. Our experiments (cf. Section 3.5) demonstrate that these
tarpits are very common in the real world: the average project contains 21
di�erent tarpits and even the best SAST tool cannot process more than
20 consecutive instructions without encountering a pattern that prevents it
from correctly analyzing the code.

The ability to automatically discover each tarpit brings many bene�ts.
First, it can provide immediate and precise feedback to the developers about
the tarpits in their code (e.g., by integrating the discovery rules into an
IDE). This information can then be used to make an informed decision
about which combination of SAST tools are better suited to analyze the
code, which parts of the application are blind spots for a static analyzer and
thus may require a more extensive code review process, and which region
of code could be refactored into more testable alternatives.

We conclude our study by performing two experiments to assess the
use of code refactoring as a mean to make an application more testable for
SAST tools. In the �rst (Section 3.6), we manually investigate �ve PHP
and �ve JS applications, for which SAST tools were unable to discover the
presence of known vulnerabilities. By transforming the testability tarpits
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1 // FILE: core/gpc_api.php
2 function gpc_get( $name, ..) {
3 if( isset( $_POST[$name] ) ) {
4 $r = gpc_strip_slashes( $_POST[$name] );
5 }
6 ...
7 return $r;
8 }
9

10 function gpc_get_string($name, ..) {
11 $args = func_get_args();
12 $r = call_user_func_array('gpc_get', $args);
13 ...
14 return $r;
15 }
16

17 // FILE: bug_actiongroup_ext.php
18 $act = gpc_get_string('action');
19 $act_�le = 'bug_actiongroup_' . $act . '_inc.php';
20 require_once(.. . $act_�le);

Listing 3.1: Example of a �le injection vulnerability in MantisBT

we enabled the tools to detect the vulnerabilities. Moreover, over 200 ad-
ditional bugs were reported, leading us to the disclosure of 71 con�rmed
vulnerabilities, as some of the discovered issues still applied to the latest
version of the tested projects. In the second experiment (Section 3.7), we
target instead thousands of popular real-world applications (the same we
used for the prevalence experiment), to which we apply �ve pattern transfor-
mations in a fully automated fashion. Our tool modi�ed 1170 applications,
by transforming 32,192 occurrences of the �ve tarpits. By running SAST
tools both before and after the transformations we could observe the im-
provement in the overall testability, supported by the detection of hundreds
of previously unknown vulnerabilities. In particular, we discovered 370 vul-
nerabilities in 43 di�erent applications, 55 of which a�ected very popular
projects with more than 1000 stars in Github. We responsibly disclosed all
issues, and we have received 111 con�rmation from the development teams
(36 con�rmations for the popular projects). These outcomes con�rm the
added-value of our approach and the impact of removing tarpits to increase
testability for SAST tools.

All the testability patterns and the resources of this research (for both
PHP and JS) are available in our repository [34].

The source-code excerpt shown in Listing 3.1, simpli�ed for presenta-
tion, highlights a �le injection vulnerability (CVE-2011-3357) in the popular



26 26

Mantis Bug Tracker. The code uses the function require_once to include
and evaluate code from an external �le (line 20). Care must be taken to en-
sure that users cannot freely choose the name of the �le as this would permit
them to execute arbitrary code. Unfortunately, in the example, the �le name
ultimately depends on the value of an unsanitized POST request-parameter,
a value that an attacker fully controls. The example illustrates the com-
plex interprocedural assignment chains that a static analyzer must correctly
handle in order to identify the vulnerability: the �le name depends on the
variable $act that is initialized via a call to the application-de�ned utility
function gpc_get_string (line 18-19). This function internally makes use
of the PHP functions func_get_args and call_user_func_array to dy-
namically invoke the variadic function gpc_get (line 12). Finally, gpc_get
accesses the attacker-controlled POST parameter (line 3-5).

The majority of SAST tools in our selection (see Section 3.3) are not able
to detect this vulnerability. Through a manual investigation, we discovered
that the dynamic function invocation (call_user_func_array) prevented
them to connect the user-provided parameter to the name of the included
�le. In addition, some tools are also unable to handle the func_get_args

function, which again a�ects the data-�ow of the application.1 Our �nding is
con�rmed by the fact that a simple refactoring of line 12 into the equivalent
$r = gpc_get($args) is su�cient to enable the tools to report the �le
injection vulnerability.

3.2 Approach Overview

The main goal of our research is to build upon this observation and use the
concepts of testability tarpits to build a new framework to assess the security
of web applications. Our approach, outlined in Figure 3.1, is composed of
three phases.

Pattern creation. The �rst objective of our work is to compile a com-
prehensive list of testability tarpits, that is, code patterns that impede the
ability of SAST tools to reason about the code and identify vulnerabili-
ties. The creation and selection process, which we describe in detail in
Section 3.3, involved an extensive manual e�ort. To show the applicabil-
ity of our approach to di�erent programming languages, we reviewed the
documentation, the internal speci�cations, and the APIs of both PHP and
JS and distilled this information into a number of code snippets that em-
phasize di�erent functionalities. We then embedded these patterns in small

1Note that both functions are not library APIs, but core features of PHP.
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Figure 3.1: Approach outline

test cases, which we tested on a set of commercial and open sources SAST
tools (5 for JS and 6 for PHP) to identify the tarpits that could impede the
testability of an application.

Pattern discovery and developer awareness. In the second phase of
our approach, we implemented a tool to identify instances of our patterns
in the source code of a program. As we strongly believe that extending ex-
isting production-quality tools trumps re-implementing basic code analysis
from scratch, we base our tool on the code analysis platform Joern [143].
The platform allows code patterns to be formulated in a domain-speci�c
query language that provides access to syntax, control �ow, and data �ow
properties. While the platform o�ers built-in patterns for the discovery
of vulnerabilities in C/C++ code, patterns for Web applications are only
scarcely available and focus entirely on the discovery of vulnerabilities. Our
work performed several improvements to Joern's core analysis engine and
PHP support and we developed queries to allow the discovery of testability
problems. Both queries and improvements were contributed back to the
project, enabling Joern to discover not only vulnerabilities but also testa-
bility problems.

Our tool can discover the presence of testability tarpits and make devel-
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opers aware of the exact snippets of code that will confuse the SAST tools
in their arsenal. While until today developers were only aware that a given
SAST tool did not discover any vulnerability in their code, our approach
provides additional information that can be integrated into a risk assess-
ment methodology or used, for instance, to select other SAST tools that are
more suitable for a speci�c application. To evaluate our tool and measure
the overall prevalence of our library of tarpits in real world applications, in
Section 3.4 we present the results of the experiments we conducted on 3341
PHP applications.

Pattern transformation and impact on vulnerability discovery.
While awareness is very important, in the �nal phase of our process we
discuss how the identi�ed tarpits can be removed by transforming the cor-
responding code. Our goal is to show that by transforming the code, the
testability improves and SAST tools become capable to uncover more vul-
nerabilities. We evaluate this idea by applying di�erent types of transfor-
mation rules in two separate experiments. In the �rst (Section 3.6), we
manually investigated ten applications (�ve PHP and �ve JS) for which
SAST tools were unable to discover known vulnerabilities. In this case,
we progressively refactored all testability tarpits until the tools were able
to detect the bugs. By making the applications more testable, this also
allowed the tools to discover new, previously-unknown vulnerabilities. In
fact, on the refactored code of the ten projects, the SAST tools in our ar-
senal reported 503 new alerts, 224 of which corresponded to true-positive
vulnerabilities. In the second experiment (Section 3.7), we targeted instead
thousands of popular real-world PHP applications, to which we apply �ve
pattern transformations in a fully automated fashion. By running SAST
tools both before and after the refactoring we could observe the improve-
ment in the overall testability, supported by the detection of hundreds of
previously unknown vulnerabilities. In particular, we discovered 370 se-
curity issues in 43 di�erent applications, with 55 of these vulnerabilities
a�ecting popular projects with more than 1000 stars in Github.

3.3 Pattern creation and selection

The �rst step of our approach consists of identifying those code patterns
that prevent SAST tools from properly analyzing an application code. It
is important to stress that in this chapter we are only interested in code-
related patterns, and not in other forms of architectural or deployment
aspects that can a�ect testability. For instance, plugin-based infrastructures
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are often di�cult to analyze statically, and tools often struggle to deal with
application state maintained across requests (which could, for instance, lead
to stored vulnerabilities). While these are also very important aspects,
and they constitute possible venues to extend our work, in the rest of the
chapter we restrict our focus to source code patterns only. Because of this,
while the approach we present is completely generic, the actual patterns
we identify vary from one programming language to another. To show the
generality of our approach, we performed our study on the two most popular
programming languages for web application development: JS (ES11) and
PHP (v7.4.9).

On top of their speci�city for di�erent languages, testability tarpits may
also di�er from one SAST tool to another. In fact, what constitutes a
problem for a testing tool may be handled correctly by a di�erent product,
and vice versa. Moreover, developers often use a combination of tools to
test their applications, thus making the �nal selection of patterns speci�c
to each development and testing environment.

Therefore, we �rst selected a representative set of SAST tools that in-
cludes both commercial and open source solutions. In particular, based on
the results reported by other studies that compared existing tools [48, 38],
for PHP we selected RIPS [65], PHPsafe [123], WAP [151], and Progpi-
lot [130] as representative of open-source solutions, and two leading commer-
cial products referred here as Comm_1 and Comm_2.2 For JS we selected
instead three commercial tools (Comm_1, Comm_2, and Comm_3)3, and
NodeJsScan [35] and LGTM [33] as open source alternatives.4 While this
choice re�ects the current state-of-the-art techniques used to analyze PHP
and JS applications, our approach can be easily applied as-is to any other
set of static analysis tools.

In the rest of this section, we discuss how we built our library of testa-
bility patterns (Section 3.3.1) and present the experiments we conducted to
validate them on our SAST toolset (Section 3.3.2).

3.3.1 Pattern Creation

Given a programming language, we want to identify code patterns that can
a�ect the ability of SAST tools to detect vulnerabilities. To this end, it is

2For legal reasons, we have to anonymize commercial products.
3Comm_1 and Comm_2 are the same commercial tools used for PHP.
4Notice that LGTM is subject to a commercial license when used on projects that are

not open source. This was not the case for our study.
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important to understand how static analyzers detect web vulnerabilities in
the �rst place.

While many techniques exist, a common requirement is the ability to
identify how user-provided input is propagated and processed by the ap-
plication. Static taint analysis provides this capability and is employed in
particular to uncover injection vulnerabilities such as SQL injections (SQLi),
cross-site scripting (XSS), and code injections (CODEi). While the actual
mechanism used for vulnerability detection is orthogonal to our approach,
this observation provides us with a simple way to identify patterns.

The idea is to use a small fragment of code, hereinafter the stub, designed
to receive an input value from the user (in the form of a GET parameter)
and simply write it back to the output.

1 $a = $_GET["p1"];

2 echo $a;

1 const parsed = route.parse(req.url);

2 const query = querystring.parse(parsed.query);

3 var c = query.name;

4 r.writeHead(200,{"Content-Type":"text/html"});

5 r.write(c);

6 r.end();

These two snippets (respectively for PHP and JS) contain a very simple form
of re�ected XSS that is correctly identi�ed as vulnerable by every SAST tool
on the market. To create our patterns we routinely customized these stubs
by adding new operations � which represent our candidate tarpits � as part
of the data �ow between the source (the GET parameter) and the sink (the
echo and write invocations).

For pattern creation, we systematically inspected all the chapters of
the PHP and JS language documentations. We also analyzed comments
describing special examples and corner cases and reviewed all the internal
language APIs. For PHP, we also went through the entire instruction set
of its intermediate language and veri�ed that there was not a single opcode
that was not covered by one of our patterns. By following this procedure,
we manually created hundreds of test cases, each one dedicated to showcase
a di�erent aspect of the language. However, most of these snippets have
no impact on the analysis performed by SAST tools. Therefore, we �ltered
the list by retaining only the problematic examples. For this purpose, we
used our selection of SAST tools as oracles. Each tool was used to scan
all candidate snippets, and for each test we veri�ed whether the tool was
still able to detect the re�ected XSS vulnerability. To be conservative,
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if at least one of the tools failed to report the vulnerability, we saved the
corresponding test case in our testability tarpits library. Hereafter we detail
the �ve main dimensions we used to categorize our patterns and to guide
our pattern-generation process.

Core language features vs built-in internal APIs

We started our investigation by studying the language documentation and,
for PHP, the (often undocumented) list of internal opcodes (i.e., the low-
level instructions that are processed by the Zend engine). For example, while
references are a common concept present in most programming languages,
under the hood PHP operates on them by using seven di�erent opcodes
(e.g., ASSIGN_REF creates a reference to a scalar variable and RETURN_BY_REF
returns a reference from a function).

For instance, we integrated the RETURN_BY_REF opcode 5 in our stub by
producing the following snippet:

1 class foo {

2 public $v = 42;

3 public function &getV() {return $this->v;}

4 }

5 $a = $_GET["p1"]; $obj = new foo;

6 $myV = &$obj->getV(); $obj->v = $a;

7 echo $myV;

In line 7, variable $myV$ gets bound to the variable obj->v returned from
getV. As a consequence, setting obj->v to the source $a in line 8 makes
also $myV$ changing, leading to a XSS in line 9.

In total we identi�ed 96 challenging patterns for PHP and 153 for JS.
However not all of our patterns are related to features of the language,
some are instead associated with the use of core library functions. In fact,
internal API functions are typically written in C for better performance,
and therefore it is di�cult for SAST tools to check their code during the
analysis. To mitigate this problem SAST tools often maintain a set of
models that describe the relationship (in terms of taint propagation) among
the input and output parameters of these functions [65]. For instance, the
code snippet below captures the testability pattern created for extract, an
internal PHP API generating variables dynamically from an array:

1 $aaa = $_GET["p1"];

2 $arr = array("A"=>$aaa,"B"=>"BBB");

5PHP documentation - Return By Reference: https://www.php.net/manual/en/la

nguage.references.return.php
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3 extract($arr); echo $A . $B;

In this speci�c case, variables $A and $B are created and assigned to $aaa

and to "BBB", respectively. This pattern enables evaluating whether a SAST
tool models the extract function and properly propagates the user-controlled
input $aaa into the variable $A. In total, we identi�ed 26 patterns in PHP
and 22 patterns in JS that target challenging internal APIs.

Security related

We already mentioned that SAST tools often employ taint-based data�ow
analysis to detect vulnerabilities: when a user-controlled input (referred to
as source) �ows into a sensitive operation (referred to as sink), without
being processed by a sanitizer, that data�ow is reported as a vulnerability.
We thus created some testability patterns to probe how good the SAST tool
is in recognizing sources, sinks, and sanitizers. For instance, the following
code snipped captures a pattern instance evaluating whether a SAST tool
supports the sink PHP operation exit, which terminates the application
execution and passes a message to the user:

1 $a = $_GET["p1"];

2 exit($a);

Similarly to the echo sink, exit can lead to XSS vulnerabilities. In total,
we identi�ed 16 patterns in PHP and 22 in JS in this category.

Static vs Dynamic features

Developers often rely on code constructs that cannot be fully analyzed stat-
ically, because their exact behavior can only be determined at runtime. In
some cases, this might be required by the application and therefore it might
be di�cult to rewrite the code in a di�erent way. But in other cases, these
are used just for convenience, as the result of cut&paste operations, or to
support functionalities that have already been removed from the code long
before. For instance, the motivating example we discussed in the previ-
ous section uses the dynamic operation call_user_func_array, a form of
dynamic dispatching. However, the MantisBT developers hardcoded a con-
stant parameter, thus making the target function resolvable from a static
analysis perspective.

To capture these di�erences, we de�ne four dynamic categories for our
code snippets targeting dynamic operations:
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D1: the core parameter of the dynamic operation (e.g., the �rst parameter
in call_user_func_array) is an hardcoded constant.

1 /* D1 */ call_user_func_array("Func", $b);

D2: the parameter is an expression whose value can be univocally computed
statically via constant propagation.

1 $a = "FuncA";

2 /* D2 */ call_user_func_array($a, $b);

D3: the parameter is an expression whose value can only be partially com-
puted statically. E.g., in the following example, only functions starting
with "Func" can be called. This could be used by SAST to reduce the
over-approximation needed to cover all the possible execution paths.

1 /* D3 */ call_user_func_array("Func" . $v, $b);

D4: the parameter is an expression whose value cannot be computed stat-
ically. While in the general case it is not possible to handle code belonging
to this category statically, it is still important to measure the prevalence of
these patterns to assess the testability of the code.

1 /* D4 */ call_user_func_array($f, $b);

Evaluating SAST tools against these four dynamic categories of increas-
ing complexity allows us to measure more precisely their behavior against
these challenging dynamic operations. 52 of our PHP patterns and 52 of
our JS patterns involves dynamic features.

Positive vs Negative Test Cases

To deal with dynamic features that cannot be computed statically, SAST
tools need to choose between two possible approaches: over-approximate
(e.g., by assuming all elements in an array are tainted when one of them
is), or under-approximate (e.g., by ignoring all elements altogether). The
�rst can increase the number of false positives, while the second solution
can miss real vulnerabilities. To better distinguish among the two cases,
we complemented the tests we developed for dynamic features with special
tests that used the same dynamic functionality but without a vulnerability.

For instance, the following JS pattern (related to arithmetic operations
on an array index) was reported as vulnerable by Comm_2 but not by
Comm_1.
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1 const parsed = route.parse(req.url);

2 const query = querystring.parse(parsed.query);

3 var c = query.name;

4 array = ['a', 'b', c, 'd'];

5 index = 3; index = index -1 ;

6 r.writeHead(200,{"Content-Type":"text/html"});

7 r.write(array[index]); // print c variable

8 r.end();

This could be due to the fact that Comm_2 can compute the index
value statically, or it could simply be the consequence of the fact that the
two SAST tools might adopt di�erent strategies to deal with arrays (over-
approximating the �rst and under-approximating the other). To answer this
question, we created a negative version of the same pattern, where line 7 is
replaced by:

7 res.write(array[index-1]); // print 'b' char

Since Comm_2 reports a vulnerability also for the negative version of the
pattern, we can conclude that it was indeed applying an over-approximation
to deal with the array. In total, we retained 7 negative pattern instances
for PHP and 20 for JS, for which the negative version was still reported
as vulnerable by some of the SAST tools, indicating an excessive over-
approximation.

Functional vs Object-Oriented

As we discuss in the related work (Section 5.8) several studies conducted by
the software engineering community have discussed the poor testability of
object-oriented code. In general, researchers have found that when develop-
ers use more object-oriented features, projects become harder to test (even
though this in the literature normally refers to dynamic testing). Therefore
we included 39 PHP and 40 JS patterns related to classes, methods, static
methods, and properties. These patterns cover di�erent OO aspects, such
as object constructors, encapsulation, overriding, and inheritance.

3.3.2 Pattern Selection

Figure 3.2 and 3.3 summarize the results of our SAST tools against our
libraries of 122 PHP and 153 JS tarpits. Due to space limitation, the com-
plete list of patterns is presented in Appendix and is detailed in our public
repository [34].
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Figure 3.2: SAST measurement over pattern dimensions (PHP)

Figure 3.3: SAST measurement over pattern dimensions (JS)

In the graphs, the bars show the percentage of all patterns on which each
tool reported the correct answer. First of all, it is interesting to observe that
for PHP, none of the tools reaches 50% coverage of our patterns. Comm_1
is the best in terms of overall results, driven by its extensive coverage of
PHP static features. However, other tools take the lead in other categories.
For instance, Progpilot has the best support for the D1-D2 tests (where
more sophisticated static analysis algorithms might be required to propagate
constant and determines the values of program variables), and Comm_2 has
the highest coverage of the PHP APIs. RIPS is the best tool among the
research tools for the supported APIs, con�rmed by the fact that its authors
mentioned in the corresponding paper [65] that they performed an extensive
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work to model the built-in function of PHP. On the other hand, Progpilot
is the only research tool that supports object-oriented code, and it achieves
the best results on static features between the open-source tools.

Results are a bit better for JS, where three tools are able to cover more
than 50% of the patterns. However, in this case, the higher success rate
is in part due to the extremely poor performance of NodeJsScan. Indeed,
24 patterns are supported by all tools but NodeJsScan, and therefore they
would have been discarded if this tool was not part of our arsenal. As for
PHP, commercial tools are still dominating, featuring similar performances
and emerging as the best tool for the security dimension. If Comm_1 per-
forms better on static features, Comm_2 outperforms it on the internal API
support. With respect to dynamic patterns, we observe the same behavior
as for PHP: tools supports some D1-D2 patterns, but have more troubles
against D3-D4 patterns. Only Comm_2 is able to correctly analyze beyond
40% of those D3-D4 instances, though it seems to apply over-approximation
in most of those cases.

Another interesting aspect of our experiments is the fact that the tarpits
are very di�erent among the di�erent tools. In fact, while tools taken indi-
vidually have many limitations, their combination is able to handle around
66% of the PHP and even 85% of the JS patterns in our library. Moreover,
none of the tools is a superset of any other in terms of tarpits. Thus, using
a combination of SAST tools to test a web application is, from a testability
point of view, always better than relying on a single product.

3.4 Pattern discovery

In the previous section, we described how we built our library contain-
ing hundreds of testability tarpits. While this list can already be used to
compare SAST tools and �nd a suitable combination that minimizes their
limitations, this is not the main goal of our paper. Our objective is to sup-
port developers to assess which parts of their code can be e�ectively tested
by SAST tools and which are not, and provide guidelines to improve the
overall testability by avoiding particular patterns.

For this purpose, we decided to extend each tarpit in our library with a
corresponding discovery rule that can be executed to discover its presence
in the code of a Web application. While grep-like regular expressions can
be su�cient to identify simple patterns, others require a more sophisticated
taint-based analysis that takes into account the interplay of multiple pro-
gram statements, e.g., to identify where a variable that is used in an inter-
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esting operation is previously de�ned. Designing a complete static analysis
framework is beyond the scope of this Chapter, and therefore we decided to
build our solution by extending the Joern code querying framework [143].
Joern constructs code property graphs (CPG, [158]) that combine the pro-
gram's syntax tree, control �ow, data dependencies, and calling relations
in a joint representation � thus already providing most of the information
needed for our analysis. While initially developed for the analysis of C/C++
code, the framework has recently been extended to handle PHP opcodes.6

However, at the time of writing there was no public CPG generator for
Node.js compatible with Joern, and this prevented us from performing a
complete analysis of the prevalence of our JS patterns. Nevertheless, we
scripted some ad-hoc routines to discover 54 of our JS patterns from the
Abstract Syntax Tree (AST) of a JS application. Though these routines
are not as precise as CPG queries and su�er from false positives, they have
proved to be very helpful in pursuing initial experiments on real applications
(e.g., to identify patterns before the manual transformation in Section 3.6).

Our Joern-based discovery rules have di�erent complexities, ranging
from a simple search for a given instruction to complex queries where we
use the control, data, and call graph dependency. For instance, we use
the following query to count the occurrences of the feature simple reference
(ASSIGN_REF) in the CPG of a target application.

cpg.call(".*ASSIGN_REF.*").size

To �nd instead the use of objects in which the developer rede�nes the __set
function, we can use Joern to search for the NEW opcode used on a class that
has the method __set de�ned:

def hasSet = cpg.typeDecl

.filter(_.method.name.contains("__set"))

.name.l

cpg.call("NEW")

.argument

.filter{ x => hasSet.contains(x.code.toLowerCase)}.size

The ability to automatically discover each tarpit brings many bene�ts.
For instance, these rules can be integrated into an IDE to provide immediate
and precise feedback to the developers about the impact of the code they
are writing on the static testability of the application. This information can
be used to make an informed decision about which parts of the application

6The extension is in an early development phase and yet to be released publicly. It
was kindly made available to us by its developer�name removed for anonymity.
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are blind spots for a static analyzer and thus may require a more exten-
sive code review process, and which code patterns could be refactored into
more analyzable alternatives. For instance, for security-critical services, de-
velopers may decide to limit the use of patterns that are not supported
by SAST tools (e.g., those in the category D3-D4) to minimize the risk of
undiscovered vulnerabilities.

3.5 Prevalence

We now estimate how prevalent our tarpits are in real-world applications.
For this purpose, we use our CPG queries for PHP against four di�erent
datasets. The �rst three are composed of PHP projects hosted on GitHub,
chosen according to their popularity (measured by the number of stars they
received). In particular, we cloned 1000 applications of low popularity (be-
tween 20 and 70 stars), 1000 of medium popularity (between 200 and 700
stars), and 1000 with high popularity (more than 1000 stars).7 We refer
to the three datasets as GL, GM , GH respectively. The detailed list of
the cloned projects is available in our repository [34]. Finally, the fourth
dataset consists of all applications from the Sourcecodester website (SC in
brief), which hosts open-source PHP projects [153] that serve as references
to other developers that want to implement their websites.

Due to space limitation, the complete results of our prevalence measure-
ment are reported in Appendix (Table 1). The whole experiment required
1 week on a 16-cores machine with 64 GB of memory. On average, for 1000
lines of code (LOC), generating the CPG took 4.03 seconds, while traversing
the CPG with our pattern discovery queries took 7.82 seconds.

The scatter plots in Figures 3.4 and 3.5 compactly present our results.
In these plots, each dot represents a PHP application and its coordinates
show the number of unique tarpits it contains (Y-axis) and the cumulative
number of instances of such patterns normalized by the number of opcodes in
the application (X-axis, plotted in log scale). We use the number of opcodes
instead of the number of lines of code because it is more accurate as a line of
code can contain multiple instructions and because opcodes represent only
PHP code without considering other embedded elements such as HTML and
JS. It is also important to note that Figure 3.4 does not show four tarpits:
simple object (P21), simple array (P58), conditional assignment (P4) and
combined operator (P5). In fact, these patterns occur with a very high
frequency but only a�ects a few of our SAST tools.

7We used Github-clone-all tool [11] to clone all these projects.
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Figure 3.4: Patterns distribution considering all patterns

Figure 3.4 shows the breakdown of the results by datasets. Here we
can notice two important points. First, the prevalence of our patterns is
very high: the average project contains 21.15 unique tarpits with an aggre-
gated frequency of one tarpit every 8-to-50 opcode (the + sign in the �gure
represents the average point). Second, the more popular a project is, the
more tarpits it tends to contain. The main reason is the size of the project
that is higher for more popular projects: by counting the average number
of opcodes in GH , GM , GL, and, SC we have 62, 303, 43, 782, 21, 066, and
17, 141, respectively.

If we restrict our analysis to only those patterns that a�ect a given
SAST tool, we observe marginal improvements. For instance, Figure 3.5
shows the results restricted to patterns that a�ect Comm_2 and Comm_1
for the three Github datasets. It is interesting to observe how the dots
clearly follow di�erent distributions, with blue dots closer to the upper-left
corner and red dots closer to the bottom-right. This shows that real-world
PHP applications are more di�cult to test with the �rst tool than with the
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Figure 3.5: Patterns distribution considering only patterns hard for
Comm_1 and Comm_2

second: the average application contains 13.3 unique tarpits for Comm_2
(one every 47 opcodes) and 8.5 unique tarpits for Comm_1 (one every 203
opcodes).

Another interesting point is related to the scale of the Y-axis. For over
83% of the applications, the number of tarpits falls between one every 10
and one every 1000 opcodes � with an average of only 21. In other words,
on real-world PHP applications even state-of-the-art SAST tools cannot
process more than 20 consecutive opcodes without encountering a pattern
that prevents them from correctly analyzing the code.

In the rest of this section we will discuss the prevalence of di�erent types
of patterns. To streamline the discussion, we only report numbers for the
GH dataset, but all values are available in the appendix for further analysis.

Object Oriented Code - 97% of the projects in the GH dataset use
objects. However, only one out of four of the open source SAST tools
we tested supports object oriented code � showing a clear disconnection
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between research prototypes and real-world applications. By looking at
OOP features that are not supported also by commercial tools, the magic
methods __set (P32), __get (P33), and __call (P36) are used respectively
by 6.1%, 8.1%, and 6.8% of the projects. This con�rms that object oriented
code still presents challenges also for the best SAST tools on the market.

PHP Features and APIs - If we exclude OOP, among all our tarpits the
most prevalent language feature is the use of combined operators, which is
present in 93.4% of the projects. However, this only causes problems to
PHPSafe and is correctly handled by all other tools. If we look instead at
those features that are causing problems for all our SAST tools, the most
common are the use of static variables (71.2% of the projects) and raised
exceptions (81%).

Regarding the built-in API functions, array_map, which is not supported
by any of our SAST tools, is present in 28% of the projects. Among the
security critical sources and sinks, the use of superglobals (P66) and the
exit function (P56) are the most common, with a prevalence of respectively
41.3% and 22.6% projects.

Dynamic Features - the dynamic features of a language are one of the
biggest challenges for static analysis tools but also one of the most commonly
used by developers. The simple case of storing and retrieving variables
from dictionaries (P83), which often requires over-approximation from a
static perspective, is used in 88.3% of the projects with a median of 32
occurrences each.

Features related to dynamic functions invocation are also among the
most frequently used in our datasets. For instance, storing the function
name in a variable (P82) is used in 448 projects, dynamic callbacks (P80)
in 269 projects, and dynamic function call (P76) in 602 projects. All these
examples belong to the D4 category � and therefore there is little a static
tool can do to properly resolve these calls statically.

However, some of the dynamic patterns can be trivially handled by a
SAST tool. For instance, the D1 instance of a dynamic call (P80), which
hard-codes the name of the target to invoke, is present in 20.8% of the
projects with a median of 2.5 instances each. Another simple example comes
from �le inclusion. In PHP, when �le A includes �le B, it can access the
variables of B without de�ning them as global variables. The corresponding
D1 pattern (P79) causes problems for three of our SAST tools (phpSAFE,
WAP, and Comm_2) and it is present in 63.6% of the projects. The related
and more complicated case where the �le name is stored in a variable (D4),
is even more common, with a prevalence of over 75%.
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Table 3.1: In-depth analysis on PHP real cases
Patterns SAST After (TP/FP)

Project CVE Vuln. XSS SQLi FILEi CODEi SUM

MantisBT CVE-2011-3357 FILEi callback_functions D1 (P80,
T1)

28/88 0/0 18/14 3/0 49/102

Osclass CVE-2012-0974 XSS dynamic include D2 (P79, T1),
array variable key D2 (P83,
T2), static instance of a class
(P49, T2)

14/0 0/0 0/0 0/0 14/0

Bakeshop
Ordering

CVE-2020-35272 XSS JS redirect (P57, T2) 15/0 0/0 0/0 0/0 15/0

Bus Booking CVE-2020-25273 SQLi Extract function (P70, T3) 0/0 49/0 0/0 0/0 49/0
Domainmod CVE-2018-11404 XSS Dirname function (P74, T1),

Dynamic include D1 (P79, T1),
bu�er (P75, T1)

77/118 0/0 0/0 0/0 77/118

9 patterns 134/206 49/0 18/14 3/0 204/220

3.6 Experiment: Manual pattern transformation

In this section, we will demonstrate the usage of our patterns on �ve PHP
and �ve JS open-source projects selected according to these criteria: (i)
the project is mainly based on PHP or JS, (ii) an injection vulnerability
has been reported in the past for the project as a CVE precisely pointing
to the latest vulnerable codebase version (VulCode, in short), (iii) some
testability patterns occur in the path connecting the source and the sink of
the vulnerability in VulCode, and (iv) one of the SAST commercial tools
fails to report the CVE vulnerability on VulCode.

We gathered �ve projects for each language satisfying these criteria from
the CVE Mitre website [117]. For each project, we carefully review the
CVE and the testability patterns preventing the SAST tool from detecting
the expected vulnerability. We then manually transformed these patterns
and run again the tool to check if the vulnerability was detected on the
transformed project code. Table 3.1 and Table 3.2 present the results of our
experiments. For each project, we specify the CVE, the vulnerability class,
the SAST tool used8, the testability patterns identi�ed and preventing the
SAST tool from reporting the vulnerability, and the new injections (alerts)
from the tool on the transformed code.

After refactoring the testability patterns, all the CVEs' vulnerabilities
were detected and many more true positives were reported by the tools.
Some of these true positives still applied to the latest versions of the projects
and our responsible disclosure lead to three new CVEs9.

In the rest of this section, we present some of the transformations that

8For PHP projects, Comm_1 is the only tool that we used in this experiment and
thus we avoid adding the Tool column.

9CVE-2021-33557, CVE-2021-33300, and CVE-2021-23342
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Table 3.2: In-depth analysis on JS real cases
SAST After (TP/FP)

Project CVE Vuln. Tool Patterns XSS CODEi SUM

Docsify CVE-2020-7680 XSS Comm_1 (P87, T1), (P49, T1), (P55,
T1), (P79, T1), (P7, T1, T3),
(P99, T2), (P78, T2), (P101,
T2), (P21, T1)

5/24 0 5/24

Apexcharts CVE-2021-23327 XSS Comm_2 (P87, T1), (P101, T2) 6/3 0 6/3
Hello.JS CVE-2020-7741 XSS Comm_1 (P24, T1), (P82, T2), (P21,

T1)
3/24 0 0

Lazysizes CVE-2020-7642 XSS/
CODEi

Comm_2 (P14, T1), (P7, T1), (P83, T1),
(P78, T2)

4/0 1/8 5/8

Angular
Exp.

CVE-2021-21277 CODEi Comm_2 (P87, T1), (P36, T2), (P86,
T3), (P90, T2), (P75, T2),
(P21, T1)

1/0 0 1/0

17 patterns 19/51 1/8 20/59

we applied and we discuss the new alerts reported by SAST tools. More
details about the case study projects and their results are available in our
repository [34].

3.6.1 Transformations

During these experiments, we encountered a combination of 9 unique PHP
and 17 unique JS tarpits that prevented our tools (Comm_1 and/or Comm_2)
from discovering the known vulnerabilities. To refactor the corresponding
code patterns, we applied three types of transformations. We present here-
after one example from each type. The details for all transformations are
available in our repository.

T1 - Semantic-preserving Transformations. This type of transfor-
mation can be applied automatically while preserving the semantic of the
code. An example of this category is the refactoring of the D1 variant of
callback_functions pattern (P78 in Table 1) presented in Section 3.1 for
the MantisBT PHP project. By replacing line 12 in Listing 3.1 with the
equivalent $r = gpc_get($args), the tarpit disappears, the code semantic
is preserved, and the SAST tool becomes able to understand the code and
detect the vulnerability. Overall, �ve out of nine (for PHP) and nine out of
17 (for JS) of our transformations belong to this category.

T2 - Over-approximations. Transformations in this category aim at
reducing FNs by increasing the amount of code that can be analyzed by
the SAST tool. However, they achieve this goal at the price of breaking the
semantic of the program, as the removal of the tarpit requires to introduce
an over-approximation. We experience this case in the Bakeshop Online
Ordering PHP project where the pattern JS redirect (P57) is used to redirect
the user to index.php:
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1 function redirect($lc=Null){
2 echo"<script>window.location='{$lc}'</script>";
3 } redirect("index.php");

This pattern is not supported by any of the SAST PHP tools in our
arsenal. To enable the SAST tool to understand the redirection we rewrote
line 2 as include($lc), thus removing the JS code altogether. However,
this modi�cation changes the semantics of the code as the redirection via
window.location provides to the new page access only to the session vari-
ables of the previous page, while include provides access to all variables.
For example, if there is a variable v controlled by the attacker in page A, v
will be fully accessible to page B included in the context of page A. It is in-
teresting to observe that this transformation introduces a new tarpit in the
code: the dynamic include D2 (P79) is occurring after the transformation
as the location of the PHP �le to be included is captured in a variable ($lc).
However, this pattern instance is easily refactored via a T1 transformation.
This shows that the refactoring cannot be performed in one single shot, but
it needs to be repeated until no pattern instances are left in the code.

T3 - Developer-Assisted Transformations. While both T1 and
T2 can be refactored in a fully-automated fashion, in some cases we noticed
that we could not remove the tarpit without some form of human assistance.
This support can be in the form of code annotations that specify the prop-
agation of data within complex code areas. For instance, we encountered
this situation in the Online Bus Booking PHP project. Here the developers
use the extract function�which we explained in Section 3.3.1�to generate
variables dynamically from an array. SAST tools have trouble computing
these variables statically. A simple annotation, added before the extract
operation, is su�cient to help:

//@sast:propagate($_POST,[$username,$password])

Notice that this annotation can be added by the developers once our pat-
tern discovery rules make them aware that SAST tools will not be able to
interpret that pattern in their code and that some annotations would be
helpful to overcome such SAST limitation. From that annotation is sim-
ple to execute a transformation that simply add to the code the following
instructions to make the extract explicit:

$username = $_POST["username"];
$password= $_POST["password"];

Some SAST tools accept in input special annotations to help them in the
analysis � and therefore this type of transformations could be implemented



3.7. Experiment: Automated pattern transformation 45

by using those annotations. However, we did not explore this direction in
the chapter as this approach would make the transformation tool-speci�c.

3.6.2 Results upon transformations

After running our SAST tools on the refactored code, we con�rmed that
they were able to correctly report all ten known vulnerabilities. Moreover,
since the transformations allowed them to better analyze the application
code, they also additionally reported 503 new potential injection vulner-
abilities. After manual veri�cation, we con�rmed 224 of them to be true
positives. In some cases, the new vulnerabilities were similar to the ones
already reported in the CVEs. In other cases, after removing the tarpits
the SAST tools were able to detect new vulnerabilities of di�erent types.
Motivated by the high number of new true positives, we moved our at-
tention to the latest versions of the applications (LatestCode, in short).
First, we used our discovery methodology (see Section 3.4) to con�rm that
the testability patterns preventing the detection of the old CVE were still
present in the current code. Second, we run the testing tool on the lat-
est versions, both before and after applying our pattern transformation to
the whole project. This allowed us to discover several previously-unknown
vulnerabilities, which received new CVEs. These include one in the Man-
tisBT project (CVE-2021-33557), four in the latest version of Domainmod
(CVE-2021-33300 in process), one in Docsify (CVE-2021-23342) and one in
Apexcharts (validated by the developers and rewarded with a bug bounty,
while a CVE will be released soon). Finally, for both Bakeshop Online
Ordering and Online Bus Booking, all true positives reported in the old
versions were still applicable as we directly worked on their latest version
for the known CVEs experiment. However, in this case, no new CVE was
assigned because the new �ndings were considered as variations of the main
CVE.

3.7 Experiment: Automated pattern transforma-

tion

In the previous section, we investigated whether known vulnerabilities could
be discovered by SAST tools once the obstacles related to our testability
patterns are removed from the corresponding applications. After their code
was manually transformed, we discovered that SAST tools were also able
to discover a number of new, previously-unknown vulnerabilities � thus
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Table 3.3: Large-scale transformation experiment
SC GL GM GH

occ. prj. occ. prj. occ. prj. occ. prj.

R1 14 9 927 128 2029 160 2116 210
R2 21 3 89 24 155 39 202 53
R3 130 9 1287 125 1929 179 2582 254
R4 130 12 3613 173 8724 263 7043 340
R5 21 7 258 89 524 113 488 149
Total 316 21 6174 281 13361 382 12341 486

Alerts 18 3 7086 19 1019 26 1297 24
TP 18 3 224 13 73 12 55 15

con�rming the negative impact that our patterns have on static analysis.
Motivated by these results, we decided to develop a number of fully

automated routines to transform the code of �ve simple PHP patterns.10

We then applied these routines to all the applications in our four datasets
(GL, GM , GH , and SC, introduced in Section 3.4) and run both the original
and the transformed code through Comm_1 (the top-performer tool in our
assessment for PHP). Finally, we manually compared the alerts reported by
the tool before and after the transformations to distinguish between false
positives and real vulnerabilities.

The �ve testability tarpits we selected to transform for this large-scale
experiments are:
[R1] Callback functions (D1), P80 � as we described in Section 3.1,
call_user_func can be used to invoke a function or an object's method
by passing its name as parameter. For the simple case in which the target
function is constant, we implemented three refactoring rules:

//Before

call_user_func("F",$x);

call_user_func($obj,"method1");

call_user_func_array("F",$args);

//After

F($x); $obj->method1(); F(...$args);

[R2] Callback functions (D3), P80 � This routine applies to a variation
of the previous pattern in which the name of the function to invoke is
obtained by concatenating a pre�x string to a variable. In this case, our
routine transforms the code by �rst retrieving all functions whose name
starts with the pre�x and then by invoking them inside if statements:

10For this experiment to be done for JS, we need to wait for a CPG generator to
automatically and precisely discover patterns, cf. Section 3.4.
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/*Before*/ call_user_func("Func_" . $x);

/* After */

if($x == "F1") {Func_F1();}

else if($x == "F2") {Func_F2();}

else if ...

[R3] Get arguments, P17: In PHP it is possible to de�ne a function to
receive an arbitrary number of arguments and then retrieve them from
the code by invoking the func_get_args function. We transform this
pattern to use the PHP variadic function instead (less problematic for
SAST tools):

/*Before*/function F(){$y=func_get_args();}

/*After*/ function F(...$x){$y = x;}

[R4] Foreach with array, P58: PHP provides an internal function called
array_keys which returns the keys of an associative array. Our routine
transforms the use of this function in foreach loops as follow:

/*Before*/foreach(array_keys($arr) as $key){}

/*After*/ foreach($arr as $key => $value){}

[R5] Exit, P55: the exit function terminates the program and prints to
the user the message it receives as a parameter. Therefore, if the message
is controlled by the user and not properly sanitized, this can result into
a XSS vulnerability. SAST tools do not take this potential sync into
account. Our routine makes this explicit by performing the following
change:

/*Before*/exit($value);

/*After*/ echo($value); exit();

Table 3.3 reports the results of our experiment. For each of the �ve
tarpits, we counted the number of occurrences (which were transformed by
our automated routines) and the number of projects that were a�ected. In
total, our tool modi�ed 1170 applications, by refactoring 32,192 occurrences
of the �ve tarpits. As a result of these transformations, Comm_1 raised
9420 additional alerts for 72 of these applications (an average of 130.8 alerts
per application). For 17 of these applications the new alerts related to more
than one vulnerability class. Speci�cally, the new alerts applied to 103 pairs
of application and vulnerability class, referred to as (app, vuln).

The veri�cation of the new alerts required an intensive manual e�ort.
If the pair (app, vuln) featured less than 50 new alerts (in total, 82 pairs),
then all were inspected and classi�ed as either true positive or false positive
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(587 alerts were classi�ed in this phase). Otherwise, we sampled 20% of the
new alerts related to the pair (app, vuln), ensuring that alerts with di�erent
source-sync combinations were included. This resulted in the manual veri�-
cation of 21 pairs and their 8833 new alerts. Finally, if any true positive was
identi�ed in this step, then the entire set of new alerts of the corresponding
pair was inspected (this resulted in three pairs for which we inspected 425
new alerts). In total, we manually inspected 2700 new alerts.

Overall, this process allowed us to con�rm 370 vulnerabilities in 43 appli-
cations, all of which were responsibly disclosed to the respective developers.
However, not all maintainers answered our messages. For instance, out of
the 55 vulnerabilities discovered in 15 popular GitHub projects, 36 (from
10 projects) were con�rmed. In the GM dataset, developers acknowledged
while we received only two answers from the low popular projects GL after
we disclose 224 vulnerabilities in 13 applications. Based on these discover-
ies, three CVEs (CVE-2021-43673, CVE-2021-43682, and CVE-2021-43687)
have already been assigned and many more have been reserved and will be
published soon.

We also discovered 18 unique vulnerabilities (CVE-2021-44280) in demo
code applications (SC dataset) used to showcase functionalities for other
developers and, thus, suitable to be copied&pasted to speed up code im-
plementation, with the subtle risk of porting the vulnerabilities in other
applications.

False Positives Discussion

Table 3.3 shows that a large fraction of the new alerts, (approximately 2300
over 2700 alerts we manually inspected) are false positives. However, it is
important to understand that this does not mean that our transformations
are the cause for those false positives. Our transformations increase the
amount of code that can be analyzed and tested by SAST tools. The more
code is analyzed, the more likely the tool is to report �ndings, most of which
are unfortunately false positives. Without our refactoring, the SAST tools
are simply blind to those code areas.

Those blind code areas may be many and their impact on false-negatives
signi�cant. For instance, by inspecting the MantisBT project�part of the
GH dataset and presented in Listing 3.1�we identi�ed other 9 functions
that, as gpc_get_string, su�er from the callback functions (P80, D1) tarpit
and invoke gpc_get in a (useless) dynamic fashion. These functions are
called 769 times in 182 �les.

A second important point is that all the �ve automated transformations
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Table 3.4: False positives experiments
Project Before (TP/FP) Transf. After (TP/FP)

MantisBT (1.4k) 0/90 73 1/207
Cloud�are-CNAME-Setup (1.3k) 42/46 16 10/10
Librenms (2.4k) 49/135 144 1/2

applied in our experiment are semantic-preserving (T1) and as such they do
not add any over-approximation. Thus, the large numbers of false-positives
emerging in that experiment is essentially due to the ability of SAST tools
to better understand the application code. To con�rm this observation,
we performed an additional experiment in which we manually inspected a
few popular projects (in GH) for which we received answers (and con�rmed
vulnerabilities) from developers. Our goal was to demonstrate that there
is no direct relation between our transformations and the false-positives
rate. Table 3.4 shows the results. For each project, we indicate the ratio
TP/FP before transformations, the number of transformations, and the
ratio TP/FP of the new alerts raised on the refactored code. We can see
that the ratio between the number of transformations and the new alerts is
very diversi�ed. Note that these results were validated with the development
teams to improve the projects' quality. For instance, we submitted a pull
request for Librenms (2.4k stars) that was promptly accepted to �x the
detected vulnerability.

While the above discussion is true for the transformations we used in
our large-scale experiments, not all possible transformations have no impact
on false-positives. For instance, T2 transformations could, as a side e�ect,
increase the number of false-positives and as such they should be used with
parsimony. We foresee the developers playing a key role in our approach
deciding whether those transformations should be applied or not.

3.8 Limitations

Pattern Discovery. In Section 3.4 we explained how our discovery rules
�rst perform a static analysis of the application code. However, since the
patterns we want to discover are by de�nition those that are problematic for
static analyzers, this might seem a contradiction. In reality, the fact that our
rules can discover the presence of a tarpit (e.g., the use of a given instruction
in a certain context) does not necessarily imply that the underlying static
analysis engine is able to correctly handle the pattern. For instance, our
rules can detect that a piece of code performs a string operation even though
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the static analysis framework the rule is built upon cannot reconstruct the
actual value of the string.

It is important to note that, while implementing su�ciently precise
static taint analysis is simpler on an intermediate language, such as PHP
opcode, some information (such as class inheritance) is lost in the compila-
tion process or optimized out by the JIT compiler. In case our rules need
access to this information (�ve patterns in total) we had to implement a
simple ad-hoc text processing script to detect the tarpits at a syntactic level.

In other cases, our queries might under-count the number of instances of
a pattern due to the di�culties of static taint analysis, in particular when
tracking taint that is not passed from function to function via a method
call. Similarly, patterns in the D3 category (where only part of a value is
constant) could be implemented in many possible ways, but we only count
when they rely on string concatenation and not, for instance, on sub-strings
substitutions.

Because of these limitations, it is important to understand that the
number of times a pattern is reported by our rules is a lower bound over
the actual number of times it can be present in the code.

New Patterns. We tried to be comprehensive in our pattern catalogs by
systematically inspecting all the Chapters of the language documentation
(for both PHP and JavaScript) and by including development community
comments about language corner cases. However, we reckon that new fea-
tures (e.g., from new widely used libraries) may emerge and result in new
patterns. For this reason, we designed our approach to be extensible towards
the addition of new patterns and we are developing an open-source frame-
work where the community can add patterns by following a well-de�ned
format. The procedure is described in detail in our repository [34].11

Once a developer has identi�ed a new challenging code fragment, adding
the corresponding pattern is a matter of a few hours of work. The most
challenging part is coding the pattern discovery rule, which requires some
knowledge in Scala and Joern. However, the developer can count on many
examples in our catalog as well as on a broad and active community [143],
which is another advantage of building our system on top of a popular
framework.

For example, if a user suspects that the use of the PHP API function
substr could be a potential tarpit for SAST tools, she will �rst adapt the
pattern stub (cf. Section 3.3.1) by adding a call to substr between the

11https://github.com/enferas/TestabilityTarpits/tree/main/Docs/AddingPat

ternProcess.md
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source and the sink:

1 $a = $_GET["p1"];

2 $b = substr($a,0,15);

3 echo $b; // XSS

Second, she would initiate the SAST tools validation scan (an operation
fully supported by our framework) to collect the impact on the new pattern.
Third, if one tool fails to discover the vulnerability on the stub, the pattern
will be added to our collection and a discovery rule will need to be created.
This can be easily done by tuning any of the discovery rule created for other
API patterns (e.g., P59-P65 in Table 1) via a simple replacement of the API
function name with substr:12

cpg.call(".*INIT_FCALL.*").argument.order(2).code("substr").size

Beyond Injection Vulnerabilities. While we focused on injection vul-
nerabilities (XSS, SQLi, Code Injection, File injection, Command Injection,
and Path Manipulation), other types of vulnerabilities can be covered as a
future work (e.g., Information leakage and/or improper error-handling at-
tacks [146]). In fact, even though our tarpits focus on data �ow-related
challenges, many of them are quite general and also impact the analysis
of the control �ow of the application. A complete set of tarpits related to
control �ow can be an interesting follow-up for our work.

3.9 Related work

Over the past two decades, researchers have developed many tools and tech-
niques see e.g., [126, 120, 75, 107, 108] to statically identify vulnerabilities in
source code. Our research does not introduce a new vulnerability discovery
techniques but rather focuses on the di�culties these tools face. The three
research areas most closely related to our work are: software testability,
studies of the limitations of static analysis, and comparisons of web SAST
tools. In the following, we discuss related work in each of the three areas.
Software Testability. While testability of software artifacts has been the
subject of a large body of research in the software engineering community,
its de�nition remains unclear. In a recent survey, Garousi et al. [74] col-
lected 33 di�erent de�nitions of testability from di�erent sources, �nding
the most common to be that given by ISO, which de�nes testability as the

12INIT_FCALL opcode is used to call internal functions and the name of the function is
the second argument.
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�attributes of software that bear on the e�ort needed to validate the software
product�. This captures a common interpretation accepted by software engi-
neers, which sees testability as a measure of the number of test cases needed
to test a program and/or of the di�culty of generating those cases.

In this chapter, we instead use the term testability to measure the ability
of static analysis tools to �understand� the code, with the goal of discover-
ing security vulnerabilities. As such, our de�nition captures not the e�ort
required to generate test cases, but the challenge of analyzing the code.

Despite the di�erence in scope, our work shares similarities with other
studies in which the authors focused on either improving ormeasuring testa-
bility. In the �rst category, researchers have mainly studied source code
transformations to improve automated test data generation [85, 84, 56, 95,
98, 46, 88].

On the measurement side, Garousi et al. [74] discuss 35 papers that
present metrics to deal with testability. For instance, Gupta et al. [82] pro-
pose three fuzzy metrics for object-oriented software testability: Depth of
Inheritance Tree, Coupling Between Objects, and Response For a Class.
More recently (in 2020), Oluwatosin et al. [124] list 20 publications that
measure testability of software design and categorize them based on whether
they were related to Encapsulation, Coupling, Cohesion, Inheritance, Poly-
morphism, or Complexity.

While no previous study has systematically looked at patterns that pre-
vent static tools from discovering vulnerabilities in web applications, previ-
ous work has already covered some of the aspects that can a�ect testability
of programs written in dynamic languages. For example, Alshahwan et
al. [44] list three categories that a�ect the testability of web applications
(1) Forms, (2) Client-side validation, and (3) Server-side manipulation. Bu-
res [60] instead de�ne two types of patterns that a�ect testability, the �rst
one represents the anti-patterns, and the second represents the functional
features of the front-end application. The same author also introduced a
semi-automated framework to collect metrics for automated testability [59].

Challenges for Static Analysis. Our work also shares similarities with
research on the limitations of static code analysis. For example, Landman et
al. [101] analyzed the main challenges to perform static analysis on programs
that use Java re�ection. The authors' experiments show that for 78% of the
projects in their dataset, re�ection could not be resolved statically. They
also provided suggestions for developers to analyze re�ection code as well
as improvements for static tool builders. Sui et al. [142] compared three
tools that had di�culties in discovering vulnerabilities in JAVA applications
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because of the presence of dynamic features and re�ection. Other papers
discussed the challenges in analyzing dynamic proxy API [72].

In general, the use of dynamic features is the main challenge for static
analyzers. Kyriakakis et al. [100] de�ned a number of patterns of PHP
dynamic features and they counted their frequency in 10 projects, while
Hills et al. [90] proposed a categorization of the PHP features and counted
them in 19 projects. The authors also counted the prevalence of dynamic
features and how many times they could be resolved statically, �nding that
78% of the dynamic includes and 61% of the variable variables are statically
computable.

Medeiros and Neves [115] recently published the �rst work that looked at
the impact of coding styles on the accuracy of SAST tools (RIPS, WAP, and
phpSAFE) applied to web applications. The authors de�ne six scenarios of
coding styles, with three vulnerabilities each. In all cases, they found that
the tools identify true positives when the query source is de�ned closer to
the sink and false negatives when it is de�ned farther from the sink.

Comparison of SAST Tools. Several studies have compared the accuracy
and e�ectiveness of SAST tools. Nunes et al. [122] proposed a benchmark
to compare �ve popular tools on their ability to discover SQL injections and
XSS vulnerabilities in 149 WordPress plugins. Kupschs and Miller [99] stud-
ied the ability of two popular commercial applications, Fortify and Coverity,
to discover 15 vulnerabilities in the Condor project. Each vulnerability was
validated by hand, and classi�ed by the authors according to its di�culty
to discover (8 Di�cult, 1 Hard, 5 Easy). Finally, Spoto et al. [138] uses
object-sensitive taint analysis to build their static taint analysis for web
applications in JAVA and compare their results with ten static analyzing
tools.

Novelty. While other researchers have performed similar studies (but
limited to only a handful of patterns) to identify challenges for crawlers
and dynamic testing, to the best of our knowledge this work is the �rst to
evaluate web applications based on how easy they are to analyze for SAST
tools. By using our approach developers can get a precise indication of the
fraction of the application that a SAST tool will not be able to cover. This
helps to put the results of static testing into context and to suggest which
SAST tool is better suited to analyze the application. Finally, our study is
the �rst to show the impact of code refactoring on vulnerability discovery
for web applications.

Previous works (Kyriakakis et al. [100] and Medeiros and Neves [115])
provided inspiration for some of our tarpits, in particular for the dynamic
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patterns. On the other hand, our tarpits provide new metrics to compare
between static security tools, and provide a number of novel �ndings which
were never discussed in the state of the art. Finally, previous papers have
compared SAST tools based on their accuracy of discovering vulnerabilities
in real-world applications, while in our work we compare them based on the
types of code patterns they are able to handle correctly.

3.10 Conclusion and future work

In this chapter, we demonstrated that speci�c code patterns, which we
call testability tarpits, are a major impediment for static analysis of real
world web applications. In particular, we assembled a library of testability
tarpits for the two most used web programming languages (PHP and JS)
and we validated them by using a mix of state of the art open-source and
commercial SAST tools. By de�ning discovery rules for these tarpits and
applying them on thousands of open-source applications, we showed that
these tarpits are widely used, indicating that nowadays static analysis has
plenty of blind-spots. Finally, we performed two sets of experiments to show
that refactoring the code to remove tarpits has a signi�cant impact on the
alerts reported by SAST tools, leading to the discovery of many previously-
unknown vulnerabilities.

We believe the framework discussed in the Chapter introduces a novel
way to think about security testing. By shifting the focus from the testing
tools to the code of the application, our solution allows to better assess the
residual risk that a vulnerability is still present in the code after static test-
ing. We contributed all our discovery rules to the popular Joern community,
in the hope that other researchers and developers will extend our library
of tarpits and adopt to assess the security testing of web applications. All
other results and resources we developed about our research are available
in our public repository [34].
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Preamble

Improving the accuracy of static application security testing (SAST) is key
to �ght critical vulnerabilities and increase the security of the Web. How-
ever, as we saw in Chapter 3, even state-of-the-art commercial tools have
many blind spots that limit their ability to properly analyze modern code
and therefore to discover complex inter-procedural vulnerabilities.

In this chapter, we present Whip, the �rst approach that enables SAST
tools to `collaborate' by sharing information that can help them to overcome
each other's limitations. Our technique only operates on the application
source code by using di�erent tools as oracle to search for signs of interrupted
data �ows. When we discover such obstacles we inject alternative paths
that circumvent the piece of code that SAST tools were not able to handle
correctly.

We conducted extensive experiments by analyzing over 100 popular PHP
projects with more than 1,000 stars on Github. Our experiments show that
our approach enables two popular SAST tools to increase their coverage of
the applications' source code, resulting in an increase of up to 25% in the
number of high-severity alerts. We manually inspected 30% of the novel
9,226 new alerts obtained by Whip and responsibly disclosed 35 zero days
injection vulnerabilities over 14 applications.

4.1 Introduction

According to a survey published as part of theOWASP Code Review Guide [125],
the most common approach adopted by developers to identify injection vul-
nerabilities in Web applications is through Source Code Scanning Tools.
While these tools (also called Static Application Security Testing tools, or
SAST, in the industry) are invaluable instruments for vulnerability detec-
tion, their accuracy is still fairly limited. For instance, several comparative
studies [103, 138, 99] have found that even commercial tools struggle to
cope with the complexity of real-world applications. Chapter 3 studied one
of the reasons behind these limitations, by assembling a library of hundreds
of PHP and Javascript code snippets (called testability tarpits by the au-
thors) whose presence prevented SAST tools from inferring the data-�ow
link among two elements of a target program.

One of the main �ndings of Chapter 3 was that tarpits a�ect di�erent
tools in di�erent ways: what poses a problem from one tool may be ana-
lyzed correctly by another and vice versa. Moreover, the authors noticed
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that these code patterns are very common in today's applications, with
the average project on Github containing 21 di�erent tarpits, each present
multiple times. This translates to the fact that even the most advanced com-
mercial SAST tools on the market were unable to analyze applications in
depth, without encountering a pattern that prevented them from correctly
modeling the code [36].

These limitations are well known by practitioners, who try to mitigate
the risk of false negatives by analyzing their application with multiple static
analysis tools, in the hope that what a product misses, another can �nd.
For instance, the NIST organization published a document on static code
analysis [114] where they explicitly suggest the best practice of combining
the results of two or more tools.

This idea of combining the alarms generated by di�erent static analysis
tools is also often supported by researchers. For example, Nunes et al. [121]
performed an empirical study of combining the results of static tools. Muske
et al. [118] published instead a survey about research directions on handling
static analysis alarms. The authors cite many papers that discuss the con-
cept of alarms ranking, where the severity of an alarm is chosen based on
how many tools raise the same alert.

Unfortunately, combining the alarms of di�erent tools can reduce the
risk of false negatives only to a certain extent. In fact, any su�ciently
complex application would contain enough di�erent tarpits to impede the
analysis of all SAST tools. Thus, even if for di�erent reasons, it is very likely
that each tool would encounter a snippet of code it cannot handle correctly.
For this reason, in this chapter, we argue that it would be more bene�cial
to somehow combine the internal model reconstructed by di�erent tools,
and not just the vulnerabilities they discover. However, the collaboration
between the tools � where one tool uses its strength to overcome the weak-
nesses of another � has been rarely explored by researchers. NAVEX [40]
only mentions the collaboration between static and dynamic analysis solu-
tions, when a crawler (dynamic) can be used to retrieve the �ow between
�les that are later analyzed by a static tool.

In this chapter, we present the �rst approach to enable the collabo-
ration between SAST tools. Our novel technique only operates on the
application source code, thus allowing our approach to be applied also to
commercial tools, without the need to access their internal data structures.
Our idea is to search for signs of interrupted data �ows, by using the tools
as oracles, and then inject another path to circumvent the piece of code that
tools were not able to handle correctly.
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Our approach is general and can be applied to any programming lan-
guage. As an example, we implemented a fully-automated prototype, called
Whip, targeting the PHP language, which today is still by far the most com-
mon language to develop Web applications (78% market share in 2022 [8]).

We conducted a number of experiments to show that Whip can in-
crease the amount of source code processed by two research tools (WAP
and Progpilot) and two commercial SAST tools (Comm_1 and Comm_2)
and in turn lead to a higher number of security alerts. Over 114 popu-
lar projects (all with more than 1,000 stars on Github) Comm_2 reported
25% and Comm_1 reported 10% more alerts, corresponding to 9,226 new
high-severity alerts that none of the tools was able to discover in isolation.
By sampling and manually investigating 2,732 (30%) of these new alerts,
we con�rmed the discovery of 35 zero-day vulnerabilities across 14 applica-
tions, 24 of which have already been con�rmed by the respective developers.
However, research tools did not demonstrate clear bene�ts in comparison
to commercial tools in our approach.

Finally, we compared the complexity of the new vulnerabilities discov-
ered by Whip with a dataset of 100 CVEs. Our analysis shows that by
using a tool to overcome the limitations of another, both tools are able to
explore deeper into the target data�ow. For instance, while the average
vulnerability in previous CVE contained a path (between a source and a
sink) of only 7.8 lines of code (LOC), the shortest path among our 35 new
discoveries is 12 LOC long, and the average is 25.

The rest of the chapter is organized as follows. Section 5.2 presents
background information on the static analysis tools and their e�ciency in
detecting injection vulnerabilities. We then present a motivational example
(Section 5.3) inspired by one of our discoveries. Section 5.5 illustrates our
approach and the algorithm that we created to apply the changes to the
source code and force di�erent tools to collaborate. We discuss the impact
of false positives and false negatives in Section 4.5. Finally, we present the
design and results of our experiment in Section 4.6 and 4.7.

4.2 Background

Static analysis tools scan applications without the need of deploying the
project, by analyzing their code for signs of security issues [104]. Researchers
have proposed di�erent models to capture both the syntax and the semantics
of source code. Code property graphs [158] (CPGs) became one of the most
popular by merging in a single model the abstract syntax tree with three
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other graph-based representations: the control �ow graph to represent the
order of execution of the statements, the program dependency graph to
capture the dependency between two statements, and the call graph to
represent functions and methods invocations.

This graph-like representation is particularly suited to detect one of the
most prevalent classes of vulnerabilities, called injection vulnerabilities. In-
jection vulnerabilities occur when an attacker can inject harmful values into
an application that lead to unexpected results when interpreted by other
parts of the system. For example, an attacker-controlled snippet included
in an HTML page can lead to an XSS vulnerability, which can cause the
victim browser to execute attack-provided code.

To detect these bugs, SAST tools need to reason about the �ow of
user-provided information through the program, starting from the points
where attackers can inject their input (called �sources�) until the points in
the program where this input is consumed and interpreted (called �sinks�).
The variables which carry the data between sources and sinks are called
�tainted variables�. Thus, detecting injection vulnerabilities boils down to
discovering a data-�ow path that connects a source to a sink, along which
the data is not properly sanitized.

This process presents two main challenges. First, the static analysis tool
needs to be able to construct the path in the �rst place, by understanding
how data can propagate among di�erent variables and di�erent parts of the
code (a process normally called taint propagation). Second, the tool needs
to correctly analyze the resulting path to detect whether the user-provided
input is properly sanitized to protect against the speci�c type of injection
vulnerability that has been considered. Errors in these two steps can cause
the tool to miss vulnerabilities, but also to raise false alarms.

To capture the reason behind these errors, Chapter 3 proposed the con-
cept of the testability tarpits, i.e., speci�c code patterns that can prevent a
static tool to properly analyze its code (and therefore build a correct inter-
nal model). The authors found hundreds of these tarpits and showed that
even the best SAST tools are strongly impacted and cannot fully analyze
real-world applications.

Finally, even if the internal graph representation of a web application
is built correctly, it is often very large and very time-consuming to explore
exhaustively. Thus, static analysis tools often employ several thresholds to
limit their analysis and produce results in a reasonable time. For example, in
our experiments, we noticed that commercial tools apply thresholds (which
are often outside the control of the user) to limit the depth of the call graph,
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1 <?php
2 function func1($vars){
3 $res = "";
4 foreach ($vars as $var => $val) {
5 $res = $res . $var;
6 }
7 return $res;
8 }
9 function func2(){
10 $args = func_get_args();
11 $ret = call_user_func_array('sprintf', $args);
12 return $ret;
13 }
14

15 $vars = $_POST;
16 $x = func1($vars);
17 $y = func2($x);
18 echo $y;

Listing 4.1: Example of an XSS vulnerability

as well as the length of the data and control �ow paths they analyze.
Some testability tarpits could be mitigated by modifying the tool and

improving its code analysis engine. This can be challenging in the case of
commercial tools or when research tools are no longer supported. On top
of that, not all testability tarpits can be resolved. For instance, to handle
dynamic features (such as re�ection and dynamic function invocation) static
tools can only o�er solutions through over- and under-approximations: the
�rst increasing source code coverage at the price of higher false positives,
the second ignoring certain features at the price of increased false negatives.
Each commercial static tool is optimized to �nd the right balance between
accuracy, the number of alerts provided to developers to manually review,
and the time and resources required to scan projects. This tuning requires
static tools to carefully choose the type of code analysis they implement
and the threshold they use to control their operation.

As a result of all these limitations, even state of the art SAST tools are
often limited to the discovery of shallow vulnerabilities.

4.3 Motivation

Listing 5.1 shows a snippet of PHP code inspired by a real XSS vulnerability
we discovered in the Cacti fault management framework. The vulnerability
exists because the attacker controls the $_POST variable at line 15, whose
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Figure 4.1: The data �ow of the motivational ex-
ample

Figure 4.2: The moti-
vational example with
the solution

value can reach, without being properly sanitized, the echo statement at
line 18. Despite the fact that the code is very simple, none of the popular
commercial SAST tools we used in our experiment can detect this vulnera-
bility.

To understand the reason we can look at Figure 4.1, which shows the
data �ow graph of our motivational example. In the �gure, there are three
sets of blocks, associated respectively to the main function (in the middle)
to func1 (on the right), and to func2 (on the left). Finally, the edges
illustrate the data �ow between the di�erent lines of code.

In general, SAST tools identify vulnerabilities by detecting a path be-
tween a source and a sink [48, 158]. However, in our example, both tools
we tested (Comm_1 and Comm_2) encountered a speci�c testability tarpit
that prevented them from detecting the data-�ow that connects the source
to the sink. We can detect the testability tarpit that the tool couldn't "un-
derstand" by transforming the corresponding line of code and test again if
the tool can detect the vulnerability. If it detects it in the second case but
not in the original we can conclude that it is unable to infer that particular
edge. In one case, func1 uses a foreach loop to concatenate the keys of an
array, an operation that is not handled correctly by Comm_1. As a result,
the red edge in Figure 4.1 would be missing from Comm_1 internal rep-
resentation, thus breaking the path associated with the vulnerability. The
second case is due to func2, which receives its arguments through the built-
in function func_get_args and then calls the built-in function sprintf

dynamically through the PHP function call_user_func. This code poses
problems to Comm_2, resulting again in a missing edge (the green one in
the �gure) and thus in a fragmented path that prevents the tool to detect
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the vulnerability.
This example clearly shows two important aspects, which served as mo-

tivation for our research. First, the fact that the reasons why SAST tools
fail to discover vulnerabilities are di�erent [72, 101, 142]. Second, the fact
that existing tools cannot be combined to overcome each other's limitations.
Today, all an analyst can do is run both tools in isolation, in both cases
failing to discover the aforementioned vulnerability.

Thus, the main goal of our research is to propose a new way to allow
a tool to help another. Our intuition is that if we could transfer somehow
the part of the data�ow graph of func1 from Comm_2 to Comm_1, then
Comm_1 would have a complete picture of the program and could detect the
unsanitized data-�ow path associated to the XSS vulnerability. Similarly,
transferring the missing red edge from Comm_1 to Comm_2 would achieve
the same result, this time helping Comm_2 to detect the vulnerability.

In other words, while di�erent tools use di�erent strategies and are af-
fected by di�erent limitations, their combined model of the program is more
complete, and therefore more e�ective at �nding bugs, than their two models
in isolation.

4.4 Approach

As we explained in the previous section, our goal is to share information
about the internal models of two or more tools. However, many popular
SAST tools are commercial applications that do not provide access to their
code or data structures. Therefore, we need to �nd a general solution that
considers each tool as a black box, which poses a serious constraint to the
design of our system.

Our solution is to operate only on the source code of the target ap-
plication, by using an approach based on two main operations: infer and
stitch. The infer operation extracts security-relevant data-�ow paths (i.e.,
those that originate from a source that can contain user-controlled input
values) from one SAST tool. To achieve this, we �rst inject fake sink in-
structions related to one type of vulnerability (e.g., echo for XSS) into the
target application. Then, we scan the modi�ed application with each SAST
tool and we process all the reported alerts related to the fake sinks. If the
path between a source and the fake sink is reported as vulnerable by tool
A, it means that the tool was able to build an uninterrupted data-�ow path
between the two statements. Then, if the same path is NOT reported as
vulnerable by another SAST tool B, we can deduce that its code likely con-
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tained some testability tarpits that prevented B to reconstruct the same
data-�ow. Thus, we can use what we learned from A to �stitch� (the second
building-block of our approach) the two ends of the data-�ow together, by
creating a new edge in the data-�ow graph that can help B to conduct its
analysis.

It is important to note that we do not permanently modify the appli-
cation. Instead, our technique only creates a temporary variant for the
purpose of SAST testing. While the variant does not preserve the original
semantic of the code, it does not need to be executed and its only purpose
is to increase the code coverage of SAST tools and their ability to discover
vulnerabilities.

In summary, our technique modi�es the application by using a set of
SAST tools as oracles to infer which variables are connected to a given
source without being properly sanitized. If a tool detects these connections,
we forcefully add new data-�ow edges to the application (through new vari-
able assignments) to help other tools discover the same connections. The
implementation of our prototype is available in our repository [29].

In order to implement this idea, we �rst need to decide at which gran-
ularity we want to perform our �infer and stitch� operations. For instance,
one could implement this approach at the variable assignment level, adding
a fake sink every time a variable assignment takes place. However, such
a �ne-grained solution would require the introduction of a huge number
of fake sinks and, as a consequence, a very long post-processing phase to
analyze the SAST �ndings.

Therefore, we decided to implement our solution at the function level,
where information can only �ow between parameters or from a parameter to
a return value, thus limiting the number of fake sinks we need to introduce
and the required SAST processing time.

The complete approach is presented in Algorithm 1. It takes as input
a web application A, a class of vulnerabilities V , and a set of SAST tools
Ts. It then outputs any new alert (of the selected vulnerability class) gen-
erated from the SAST tools after our transformation. We now explain our
approach in more detail, by using again our motivational example presented
in Listing 5.1 and two commercial tools (Comm_2 and Comm_1).

4.4.1 Phase I: Prepare

In this phase (cf. lines 7-10 of Algorithm 1), we simply init two variables
(i.e., the iteration step i is set to 0, the initial set of stitches ST 0 is set to
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Algorithm 1 Approach
1: Input
2: A web application
3: Ts set of SAST tools
4: V vulnerability type

5: Output

6: Ns new �ndings of type V

7: Prepare
8: i← 0
9: ST i ← ∅
10: Fsi ← scan(Ts,A, V )

11: InferStitch
12: Ai ← inject(A, V )
13: repeat

14: i← i+ 1
15: Fsi ← scan(Ts,Ai−1, V )
16: ST i ← infer(Ai−1, F si)
17: Ai ← stitch(ST i, Ai−1)
18: until ST i ≡ ∅
19: Evaluate
20: Ai ← clean(Ai−1)
21: Fsi+1 ← scan(Ts,Ai, V )
22: Ns← diff(Fsi+1, F s0)

the empty set) and we run the SAST tools against the original application
to collect the set of �ndings Fs0 of type V (e.g., XSS). These �ndings will
serve as a baseline to evaluate the e�ectiveness of our approach in detecting
novel �ndings. When running Comm_2 and Comm_1 on our motivational
vulnerable example, Fs0 is empty as both tools are unable to discover the
XSS vulnerability when used in isolation.

4.4.2 Phase II: Infer and Stitch

In this phase (cf. lines 11-18 of Algorithm 1), our �rst objective is to use a set
of SAST tools to determine if there is propagation of tainted values between
the input and output of functions. To do this, we modify the application
source code by �injecting� (cf. line 12) fake sinks that are related to the
chosen vulnerability type after each function call. These sinks should be
recognizable by all the static tools in the approach. For example, we choose
to use the echo statement to write a code snippet that directly prints the
user-provided input. We then scan this code using our tools and if they
all detect the presence of an XSS vulnerability in the code, we consider the
sink to be suitable for our approach.
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Our tool uses this technique to print both the inputs and output values
of each function (No fake sinks are added for functions that neither return
a value nor get input parameters). Since printing a variable can lead to an
XSS vulnerability we expect SAST tools to raise an alert if the variable is
tainted (i.e., it can contain unsanitized user input).

For instance, in our motivational example our approach would modify
the call to func1, by adding two fake sinks, as follows:

// ...

$x = func1($vars);

/*E1-16*/ echo $vars;

/*E2-16*/ echo $x;

// ...

These added instructions are labeled with E1-16 and E2-16 to indicate they
are fake sinks generated for the function call at line 16 of listing 5.1.

The approach is now ready to iterate over the infer and stitch operations
(cf. repeat-until loop). Once the iteration step is increased (cf. line 14),
the SAST tools are run against the modi�ed application (cf. line 15) and
the infer operation (cf. line 16) is then used to process the SAST �nd-
ings. In particular, the SAST �ndings related to the injected fake sinks are
automatically inspected and the following conditions evaluated:
[C1] at least one SAST tool (say A) detects that tainted data can �ow from
one function parameter (say $in) to the return value of the function (say
$out); and
[C2] another SAST tool (say B) reports that tainted data can only �ow
into $in, but not to $out.

If both [C1] and [C2] are true, our approach uses the �ndings of tool
A to help tool B by introducing a new �stitch� in the data�ow to enforce
the data-�ow connection between $in and $out. The inferred stitches are
concretized in our approach again as a modi�cation at the source code of the
application, this time through the use of a conditional assignment for each
stitch. This is done by the stitch operation at line 17 of our algorithm.
For instance, for the stitch ST1 capturing the data-�ow connection between
$in and $out, the conditional assignment hereafter would be added just
after the function:

// ...

$out = func($in);

/* STITCH_BEGIN: ST1 */

if(round(rand(0,1))){

$out = $in;

}
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/* STITCH_END */

// ...

Listing 4.2: Simple stitch

We wrap the assignment inside an if statement to create an alternative
edge in the data-�ow, without completely replacing the path through the
function. This, as we will explain in Section 4.5, is important to prevent our
transformation to introduce new false negatives. As a condition we chose
an expression that is randomly computed as true or false at runtime.

In the general case in which a function has more than one parameter,
they are all individually tested and, if more than one argument is part of
taint propagation, multiple edges (stitches) will be introduced in separate
conditional blocks � like in the following example:

// ...

$out = func($in1,$in2);

/* STITCH_BEGIN: ST1 */

if(round(rand(0,1))){

$out = $in1;

}

/* STITCH_END */

/* STITCH_BEGIN: ST2 */

else if(round(rand(0,1))){

$out = $in2;

}

/* STITCH_END */

// ...

Note that while adding stitches, the fake sinks of the input parameters
that were used to infer these stitches are removed, as they are not needed
anymore. If the fake sinks of all the input parameters of a function are
removed, then also the fake sink of the function return variable is removed.

We now describe the whole iterative approach against our motivational
example. In the �rst iteration, Comm_2 raised an alert for both E1-16

and E2-16, a sign that its static analysis algorithm correctly concluded that
func1 propagated tainted information from its parameter to its return value.
However, while Comm_2 succeeded, other tools might miss this connection.
In fact, in this case Comm_1 raised an alert for E1-16 but NOT for E2-16,
due to its inability to process correctly the foreach loop in the function
body.

To sum up, from this �rst iteration our approach learned that, through
the function func1, tainted data propagates from the $vars variable to the
$x variable. Since not all SAST tools in our set detected it, our approach
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forcefully add this dependency in the program.
To make the relationship between the $vars and $x variables explicit,

our approach modi�es again the source code of the application, this time by
adding a simple conditional assignment as in Listing 4.2 where $vars and
$x replace $in and $out, respectively.

In summary, with the stitch operation of our approach, we modify the
application to add new instructions that explicitly connect two variables,
when at least one tool detects that tainted data can �ow from one to the
other.

It shall be noted that one iteration of the infer and stitch operations is
not su�cient to discover the vulnerability of our motivational example. In
fact, if we consider the whole code of our example, during the �rst iteration
Comm_2 raises alert for both the input and the output of the �rst function
(func1), while Comm_1 only raises an alert about its input, as it is unable
to properly process the function (because of the missing red edge in the
�rst function, cf. Figure 4.1). On the other hand, Comm_2 reports only
the input for the second function (func2), because of the missing green edge
in its model (cf. Figure 4.1), while Comm_1 does not raise any alert, as its
analysis is still blocked by the �rst function.

In other words, the interplay between di�erent tarpits that a�ect di�er-
ent tools result in the fact that none are able to process the entire chain
during the �rst iteration. Therefore, our infer and stitch operations need
to be repeated in an iterative fashion until an equilibrium is reached, i.e.,
until no new edges (new stitches) are discovered in the graph.

This way, the �rst iteration our approach helps Comm_1 to understand
that $x is tainted, and thanks to this information during the second iteration
Comm_1 detects that $y is tainted as well � a piece of information that
helps Comm_2, which previously missed this connection.

Figure 4.2 shows the data-�ow graph of the modi�ed application after
two iterations of our approach. The new edges, marked in blue, are the
stitches introduced by our approach. In the third iteration no new stitches
are inferred and our approach moves to the evaluation phase.

4.4.3 Phase III: Evaluate

In this �nal phase (cf. lines 19-22 of Algorithm 1), our approach �rst cleans
the application code from any remaining fake sinks (cf. clean instruction at
line 20) and then scans it with all SAST tools in the arsenal. By removing
from these SAST �ndings for vulnerability class V those already reported
on the original application (cf. diff at line 22), our approach can output
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the novel SAST �ndings emerging because of the stitches added in the
previous phase. In order to remove already reported SAST �ndings, our
diff instruction compares �ndings as follows. Two �ndings F1 and F2 are
considered identical if and only if the sink line of F1 is identical to the sink
line of F2.

For our motivational example, the comparison is trivial as there were no
�ndings reported on the original application. By running our infer and stitch
operations, new stitches were added in the �rst two iterations and none were
uncovered during the third iteration. When scanning the �nal code, both
SAST tools in our arsenal were correctly reporting the XSS vulnerability,
indicating that two new �ndings emerged as a direct consequence of our
approach that forced the SAST tools to collaborate.

4.5 False Positives and False Negatives

SAST tools employ various techniques to analyze the source code of an
application. In particular, to handle dynamic code constructs that cannot
be resolved statically, all SAST tools use some form of over- and under-
approximation. The two are often combined to �nd a balance between the
amount of code that can be analyzed and the number of false alerts gen-
erated [32]. Additionally, SAST tools also incorporate heuristics to halt
the analysis of a particular path when speci�c thresholds are reached (e.g.
if the path involves over 500 variables or more than 5 nested functions).
The aim is to improve performance and keep the running time in a reason-
able range, but this approach can decrease the ability of the tool to detect
vulnerabilities.

Our approach reduces false negatives by allowing all tools to access data-
�ow connections that emerge by combining and complementing the models
of each individual tool. As an additional bene�t, our approach also reduces
the impact of performance-related thresholds since, by adding stitches, we
introduce shortcuts that bypass functions and make data-�ow paths shorter.
This again helps in reducing false negatives. It is also important to note
that, by construction, our approach cannot increase false negatives as it
cannot miss what individual tools would already detect in isolation. This is
also con�rmed experimentally in our results, where we never encountered a
target application for which our approach was not detecting a �nding that
was previously detected by one of the SAST tools.

In the majority of cases (around 80% of the applications analyzed in our
experiments), our approach is returning novel SAST �ndings. Although
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the majority of these �ndings are false positives, which is a common oc-
currence with most SAST alerts, they all result from the examination of
novel security-related data-�ow paths. In fact, our approach only requires
SAST tools to analyze a path if it can be decomposed into a sequence of
sub-paths, each of which was already analyzed by at least one SAST tool
because the tool believed it may transfer unsanitized user input. Therefore,
our algorithm does not introduce more false positives unless one of the tools
already introduced them because of an over-approximation. In this case,
the infer-and-stitch approach enforces the same over-approximation on the
other tools, causing all of them to consider the corresponding, potentially
erroneous, path.

4.6 Experiments: methodology

We implemented our approach in a prototype tool named Whip. Whip

takes as input a web application and one or more types of sinks (which
depend on the class of vulnerabilities the analyst wants to discover) and
then orchestrates the insertion of sinks, the execution of SAST tools and
the collection of the corresponding alerts, and the injection of conditional
assignments instruction to create the new edges in the data�ow graph. The
tool automatically performs multiple iterations until the data-�ow graph
converges and no new edges are inserted.

The tools currently support the PHP language, chosen because it is
still by far the most common language to develop Web applications, with
a 78% market share in 2022[8]. On the other hand, since we are building
our stitches at the function call level and Whip does not require any static
analysis, our approach can be applied to any programming language sup-
ported by SAST tools. To support a new language, the analyst just needs
to list the sinks statements used by the language and the syntax required
to assign variables. In the rest of this section, we discuss the selection of
SAST tools we used in our experiments, their integration into Whip, and
the dataset of Web applications we tested withWhip. The results obtained
are presented in Section 4.7.

4.6.1 SAST Tools Selection

While our solution is generic and it can be applied to any SAST tool, it is
particularly useful in the presence of commercial, closed-source tools whose
source code cannot be modi�ed to take into account other complemen-
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tary solutions. For this reason, for our experiments we selected two of
the most widely used commercial SAST tools that support PHP: Comm_2
and Comm_1. We have acquired full licenses for both tools, allowing us to
run our tests without the restriction of and limited analysis time available
in the free trial options.

On top of them, we also decided to include in our tests a few selected
open source tools to verify whether their presence could bene�t the results
by helping commercial tools to overcome their limitations. In fact, while
much more limited in terms of complexity and supported features, it would
be enough for an OS tool to discover a data-�ow relationship missed by the
more mature commercial alternatives to provide a valuable contribution to
the overall collaborative e�ort.

Over the years, the research community has proposed several static vul-
nerability detection tools for PHP to choose from (including RIPS [65],
phpSAFE [123], WAP [151], Progpilot [130], WeVerca [86] and Pixy [94]).
For our experiments we selected Progpilot v1.0.2 and WAP v2.1 because
they both support scanning entire projects instead of individual �les, they
both provide a CLI implementation, and they both support object-oriented
code. In addition, Chapter 3 found Progpilot to be the best OS tool in
terms of its ability to handle the authors' testability tarpits library.

4.6.2 SAST Tools Integration

Since Whip needs to orchestrate the execution of SAST tools, it requires a
dedicated module to support the interaction with each tool and the parsing
of the generated alerts. So the integration of a SAST tool within Whip

requires the implementation of a small interface that handles its operation
and the collection and inspection of its alerts.

In order to add a static tool to Whip, two conditions must be met: (1)
the static tool needs to have a CLI interface or some form of API to control
its operation, and (2) the output (alerts) of the need to be stored in a way
that allows for an automated extraction and parsing. These requirements
come from the fact that Whip is fully automated and requires the ability
to orchestrate the process. For instance, Progpilot and WAP o�er CLI
commands to scan a project and produce results. To use them with Whip,
we run the scan command and redirect their output to a text �le. Then, we
wrote a script to parse the text �le and extract the data required by Whip.
The simple parser we developed is available in our repository [29].

It is typical for commercial SAST tools to provide in their reports a
list of �ndings along with the type and severity of each entry. The sever-
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ity was not important in our experiments, since Whip focuses on injection
vulnerabilities [20], which are considered by all SAST tools as high severity
risks. In addition, for each alert, SAST tools may also report the full path
between the corresponding source and sink (i.e., the attacker-controlled in-
put and the point in which the vulnerability is located in the code) to help
developers to understand the issue and provide a patch.

4.6.3 Dataset

To measure the bene�ts of combining multiple SAST tools, we tested our
tool on a set of modern and popular web applications. We cloned the
latest version of all PHP projects from Github with more than 1,000 stars,
resulting in an initial set of 1,183 projects.

We then extracted the number of sources of user-provided inputs in each
project, by grepping for the corresponding prede�ned variables in PHP (e.g.,
$_GET and $_POST). Roughly half of the projects (602 projects) do not
have any source. This is due to the fact that these are often libraries used
by other projects and not standalone applications. Among the remaining
projects, 127 contained more than 100 sources � thus making them a perfect
target for our vulnerability analysis. Thus, we selected these 127 applica-
tions as a dataset for our experiments.

The analysis was performed on a machine with 16 cores and 64 GB of
RAM. Since each SAST tool needed to be invoked multiple times for each
project, we excluded those for which a single analysis did not complete
within 6 hours. This was the case for 13 projects, reducing our �nal dataset
to 114 projects. The complete list of applications with their corresponding
statistics is reported in Appendix in Table 3. The projects range from small
(with less than 10K LoC) to big (with more than 1M LoC). Altogether,
they account for 21.4M LoC, 1.9 million functions, and 85K sources of user-
provided input.

4.7 Experiments: Results

We break down the results of our experiments in six di�erent parts. First,
we will examine the poor performance and lack of contribution of open
source tools. Then, by using XSS as an example, we will analyze di�erent
statistics that show howWhip performed on the 114 projects in our dataset,
including the number of iterations required to converge and the number of
additional edges that Whip introduced in the PHP code.
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In the third part, we will evaluate the impact of Whip by measuring
the number of extra alerts raised by each SAST tool for three types of
injection vulnerabilities (XSS, SQLI, and File Manipulation). An increase
in the number of alerts indicates that the tools were able to analyze the
application code more deeply and process more paths that were previously
blocked by the presence of testability tarpits.

In the fourth part, we will discuss the advantages and disadvantages
for companies that will use Whip. On the one hand, the tool will increase
the coverage of the source code and de-duplicate the alerts from multiple
tools. On the other hand, it will require more time and resources to scan
the project using multiple SAST tools over a few iterations.

In the �fth part of this section, we show that the model of the application
built by SAST tools thanks toWhip is more than the sum of the individual
models. In other words, it is not just that one tool can help the other to
overcome its limitations, but that each tool can now discover vulnerabilities
that could not be previously discovered by any tool in isolation.

Finally, in the sixth part, we compared the vulnerabilities we discov-
ered with a dataset of 100 past CVE reports, by analyzing the length and
complexity of the data-�ow paths associated with each bug.

4.7.1 Research Tools

In our experiments, Progpilot produced results only for 26 out of 114 projects
(23%) and crashed in the remaining cases. WAP did better, successfully
scanning 90 projects (79%). In both cases, the research tools did not re-
port any additional alerts (i.e., no new edges) on top of those reported by
commercial tools, leading to the conclusion that these tools could not be
used to enhance the analysis of commercial tools. This poor result is not
completely unexpected. In fact, in 2017 Nunes et al.[121] already noticed
that none of the static research tools for PHP (RIPS, phpSAFE, WAP, Pixy,
and WeVerca) were able to successfully analyze a complex web application
in its entirety. Similarly, Chapter 3 found that only commercial SAST tools
were up-to-date with recent PHP language features and capable of scanning
modern web applications and that the two leading commercial tools super-
sedes all other open source alternatives in terms of supported testability
tarpits.

In conclusion, adding small tools to the arsenal has a cost (in terms of
analysis time) but may not bring any clear bene�ts to security testing. On
the other hand, in the next sections we will see how the combination of
state of the art solutions can instead lead to a large increase both in terms
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Iteration 0 1 2 3 4 5 6 Total

Projects 9 31 33 23 10 3 5 114

Table 4.1: Number of Converged projects over iterations

Iteration 1 2 3 4 5 6 Total

Comm_1 5,475 1,847 365 131 68 46 7,932
Comm_2 6,976 1,450 462 240 144 104 9,376
Combined 12,451 3,297 827 371 212 150 17,308

Table 4.2: Inserted data-�ow edges with XSS fake sinks

of code coverage and number of alerts and discovered vulnerabilities.

4.7.2 General Statistics

Table 4.1 shows the number of iterations required by Whip to converge
(i.e., until no more data-�ow edges were discovered) for di�erent projects
when we run the experiment for XSS vulnerabilities. At each iteration,
each SAST tool was able to explore the application deeper, i.e., to test
the security of longer and longer inter-procedural data-�ow paths that were
invisible (or better, fragmented) without our approach. One iteration was
su�cient to converge for 31 of our 114 applications, two could cover roughly
half of the dataset, and the rest required three or more iterations � with a
maximum of six. This is very important, as it means that some applications
contained paths between a source and a sink that involved at least six
di�erent functions, all of which contained snippets of code that both our
tools were not able to process correctly (di�erent tools had problems with
di�erent code blocks in alternation).

Table 4.2 shows the number of edges added byWhip to the applications
code, for each iteration and each SAST tool. By far, the largest number of
edges (12.4K and 3.2K respectively) were added over the �rst two passes. In
total, our approach added 17,308 new edges: 7.9K to increase the coverage
of Comm_1 and 9.4K to increase the coverage of Comm_2.

It is also interesting to observe that not all applications were impacted
the same way. For instance, the Dolibarr application contained the max-
imum number of sources in our dataset (8,609 sources) with more than 8
million lines of code. This project was also the one for which our tool had
the largest e�ect, introducing 108 new stitches for Comm_2 and 206 for
Comm_1 after four iterations. At the other end of the spectrum we �nd
the Valet-plus project, which has the minimum number of sources in our
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dataset (100), and for which our tool only added two stitches for Comm_2
in the �rst iteration. Overall, Whip added 151.82 stitches per project, with
a median of 35. More details are presented in Table 3, where for every
project we show the number of stitches added and the number of iterations
run by Whip.

4.7.3 New Alerts

To test for new alerts we run three separate experiments, using Whip to
test high severity injection vulnerabilities such as XSS, SQLi, and �le ma-
nipulation vulnerabilities. As a reminder, the stitches we introduce are
always speci�c for a class of sinks as mixing two types can lead to errors in
the alerts. For instance, if a function propagates information unsanitized for
XSS but sanitized for SQLi, adding a stitch would result in a `shortcut` that
can make tools erroneously report SQLi vulnerabilities (since the alterna-
tive path we insert would bypass the sanitization). Therefore, when we add
stitches for a given type of sink, we need to later test only for vulnerabilities
that involve the same sink type.

For the three experiments we collected all the corresponding alerts (XSS,
SQLi, and �le manipulation, depending on the experiment) raised by the
SAST tools when scanning (i) the original version of each application as
well as (ii) the modi�ed versions generated by Whip.

Overall, Comm_2 went from 49,231 alerts on the original applications
to 61,583 (+25.1%) on the stitched versions. These were divided in 52,843
(versus 42,040) XSS, 1,789 (vs 1,744) SQLi, and 6,861 (vs 5,447) File Manip-
ulation. Comm_1 alerts increased instead from 50,217 to 54,985 (+9.49%),
divided into 33,028 XSS (vs 30,062), 10,284 SQLi (vs 9,236), and 11,673
File Manipulation (vs 10,919).

The complete breakdown of the discoveries for each project is presented
in Table 3. Even if we expect the majority of these alerts to be false alarms
(as we will discuss in more details in Section 4.7.5), these numbers show that
both SAST tools were able to improve the number of potentially vulnerable
data �ows by roughly 25% for Comm_2 and 10% for Comm_1.

We can further divide these sets of new alerts into two di�erent cate-
gories: Known and Unknown. The �rst contains new alerts that are gener-
ated by one tool (with the help of the other), but that the other tool was
already able to discover by itself. These alerts are associated with source-
sink paths in the data-�ow graph that only contain new edges for one tool.
The second category (Unknown alerts) contains instead the alert that one
tool generated (with the help of the other) but that none of the tools were
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Figure 4.3: The incremental number of alerts regarding the number of
projects

able to discover alone. In this case, the path associated with the alert passes
through stitches for both tools.

Figure 4.7.3 shows the breakdown of the Known and Unknown alerts
in the two categories for the three types. We can see that, over the 114
projects, Comm_1 was missing around 1,936 known alerts (1530, 151, and
255 for XSS, SQLI and File manipulation), which were already reported by
Comm_2. On the other hand, Comm_2 was missing 5,864 known alerts
(5076, 84, and 704 for XSS, SQLI and File manipulation) that were de-
tected by Comm_1. But it is much more important to focus on the curves
of the alerts that were previously unknown. In this case, we can notice that
a stunning 9,226 alerts with the highest priority (respectively (i) 2,742 re-
ported by Comm_1: 1436 XSS, 897 SQLI, and 409 File manipulation and
(ii) 6,484 by Comm_2: 5727 XSS, 51 SQLI, and 706 File manipulation)
were raised for the �rst time thanks to our tool.

If we look at the di�erent applications in our dataset, 65 out of 114
show an increasing number of high severity alerts for Comm_2, with an
average number of new alerts of 108.35. Comm_1 reported instead new
alerts in 61 projects, with an average of 41.82. At a closer look, we can
observe a clear relationship between the number of sources, the number of
stitches, and the number of alerts. For instance, Dolibarr, phpipam and
testlink-code, the three projects with the highest number of new alerts,
all have more than 900 sources each, and required more than three iterations
for Whip to converge. On the other hand, out of the 35 projects that have
less than 200 sources, 19 did not have any new discovery by Comm_2 and
21 had zero new alerts for Comm_1. This seems to suggest again that the
more complex the application is, the more likely it is to bene�t from our
approach, and the higher is the number of new alerts generated by SAST
tools.
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4.7.4 Overhead

Our approach o�ers many bene�ts for enterprises. First of all, our solution
increases the coverage of the source code and allows existing tools to report
new alerts and detect new vulnerabilities. In addition, Whip provides a
solution for companies that have invested in multiple SAST tools but are
facing di�culties in e�ectively integrating them. Our approach enables the
optimization of existing tools and can also save time for testers. In fact,
in our experiments we identi�ed 44,000 duplicate alerts that were sepa-
rately reported by Comm_1 and Comm_2, which our tool automatically
de-duplicates and reports only once.

The downside of our approach is the increased scanning time and re-
source consumption, as static tools must be re-executed over multiple iter-
ations. In our experiment, running Comm_2 alone for one iteration on all
projects took 11 hours, 23 minutes, and 21 seconds (6 minutes per project
on average). Comm_1 required 36 hours, 6 minutes, and 57 seconds (with
an average time of 19 minutes per project). Due to the additional itera-
tions,Whip took a total of 164 hours, 36 minutes, and 11 seconds to run all
experiments until all projects converged. Thus, on average Whip required
86 minutes per project, versus 25 minutes required by the two commercial
tools in isolation (corresponding to a slowdown factor of 3.4X).

A company can also decide to limit our approach to three iterations
(reducing the slowdown to 2.6X), a good compromise if we think that only
18/144 projects converged after three iterations, and that 83% of the new
alerts were reported over the �rst three iterations.

4.7.5 New Discoveries

As we previously explained, the use of our technique allowed the two tools
to report 9,226 completely new high severity alerts, discovered after adding
at least two stitches. To conclude this section, we now look at those alerts
and, through a process of manual validation, try to separate false positives
from zero-days vulnerabilities.

Since the number is too high for a complete and thorough manual in-
vestigation, we started by randomly sampling 10 alerts for each project, for
a total of 640 alerts. If at least one of the ten alerts was con�rmed as true
positive, we proceeded to verify all the other alerts for the same project, to
check how many alerts will be �xed when we �x this real vulnerability. In
total, this resulted in a set of 2,732 alerts we manually investigated. Each
time we con�rmed that an alert was a true positive, we contacted the devel-
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Type Project Stars Discoverd_By Vuls Status CVE FUNC LEN Stitch
1 XSS Vesta 2700 Comm_1 1 Con�rmed CVE-2022-36305 6 23 2
2 XSS Jukebox-RFID 1000 Comm_2 4 Con�rmed CVE-2022-36749 2 12 2
3 XSS Cacti 1200 Comm_2 3 Con�rmed Requested 8 33 2
4 File M ICEcoder 1400 Comm_2 2 Con�rmed CVE-2022-34026 4 14 2
5 XSS Dokuwiki 3500 Comm_1 1 Con�rmed CVE-2022-28919 4 13 2
6 XSS PicUploader 1000 Comm_1 4 Con�rmed CVE-2022-41442 4 16 2
7 XSS Phoronix 1700 Both* 7 Con�rmed CVE-2022-40704 14 43 2
8 XSS Librenms 2800 Comm_2 1 Con�rmed CVE-2022-36746 7 32 2
9 XSS Phpipam 1700 Comm_2 1 Pending CVE-2022-41443 5 17 2
10 File M Dzzo�ce 3500 Comm_2 7 Pending - 4 11 2
11 XSS Razor 1100 Comm_2 1 Pending CVE-2022-36747 7 18 2
12 XSS Pfsense 3900 Comm_2 1 Con�rmed CVE-2022-42247 4 16 3
13 XSS Carbon-Forum 1800 Comm_2 1 Pending - 8 47 4
14 XSS SuiteCRM 3100 Comm_2 1 Pending - 11 53 4

SUM 14 35

Both*: In Phoronix project, �ve discoveries deteced by Comm_2 and two de-
tected by Comm_1

Table 4.3: New Vulnerabilities Detected with Our Approach

opers to initiate a process of responsible disclosure. In each communication
we described the issue and provided feedback on how the vulnerability could
be �xed, and in some cases even submitted ourselves pull requests on Github
containing the patch.

At the time of submission, we identi�ed 35 zero-day vulnerabilities in
14 projects. Developers have con�rmed 24 of these vulnerabilities (from
9 di�erent projects), as shown in Table 5.2. The remaining 2697 alerts
we investigated turned out to be false alarms. The fact that 98% of the
validated alerts were false positives should not be a surprise as SAST tools
are known, unfortunately, for their very high false positive rates. With our
approach, the total number of generated alerts increased by roughly 10%. In
fact, without Whip Comm_2 and Comm_1 already reported a stunning
99,448 alerts. If we consider the fact that we only scanned very popular
projects that are regularly analyzed with SAST tools for security purposes,
we can expect the very vast majority (if not all) of these alerts to be false
alarms.

Table 5.2 reports the number of vulnerabilities aggregated in groups,
based on how they were handled by the developers. For instance, in the
Phoronix application (line 7 in the table) our system found several ways to
bypass the sanitize function the authors used in their project. While each
way is an independent discovery and therefore a true positive alert, the
developers were able to �x all of them by changing the sanitizer, and thus
we only requested one CVE covering all the corresponding cases. On top of
those already accepted, we also reported 11 other potential vulnerabilities in
�ve projects, for which we did not yet receive an acknowledgment from the
developers. Table 5.2 also shows the number of stitches required to discover
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each vulnerability. Among our �ndings, 32 vulnerabilities were discovered
with two stitches, one with 3 stitches, and 2 after the insertion of 4 stitches.

At �rst, one might think that missing data-�ow edges (the main con-
tribution Whip helps to mitigate) is only a tiny factor among many other
limitations that a�ect today's SAST tools. However, it is important to stress
that missing edges is NOT a limitation per se, but only the consequence of a
multitude of other actual limitations. In other words, many problems � from
the inability to support certain language features, to missing models of API
functions, to the inability to correctly reconstruct inter-procedural control
�ows, to under-approximation in resolving dynamic behaviors � ultimately
result in the inability of a tool to detect the data-�ow link among two parts
of a program. Given the nature of injection vulnerabilities, these missing
edges (independently from the reason why they are missing) are the main
cause of undiscovered vulnerabilities in complex real-world applications.

Ethical Risk Assessment. In this study, we responsibly disclosed 35
zero-day vulnerabilities that we detected using our approach. We validated
these vulnerabilities by manually checking 2,732 out of 9,226 alerts gener-
ated by Whip. Due to the large number of alerts, we were unable to check
them all. If the ratio remains the same, we could expect another 83 vulner-
abilities to be present in the remaining 6,494 unvalidated alerts. The names
of the static tools used to detect the alerts will be kept anonymous, and
we will not publish any information about the non-reported alerts. Finally,
we promise to delete all alerts from our servers after the paper has been
reviewed and accepted.

4.7.6 Vulnerabilities Complexity

Our approach not only helps tools to discover more vulnerabilities, but
also to discover vulnerabilities associated with long data-�ow paths, which
can be di�cult for analysts to discover even through manual inspection. To
support this hypothesis we built a dataset of 100 vulnerabilities (CVEs) from
Vuln-code DB [28], for which there was enough information to reconstruct
the vulnerable source-to-sink path. This requires the corresponding patch to
clearly distinguish between the security �x and other changes in the source
code, and the CVE to contain an example of input to reproduce the bug.
By using this information we manually reconstructed, for each vulnerability,
the path between the source and the sink through a manual inspection of
the source code. Over the 100 vulnerabilities in our dataset, the average
number of functions traversed by these paths is 3.4 (with a median of 3),
while the average number of lines of code is 7.8 (with a median of 5).
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If we compare these values with the ones associated with the vulnera-
bilities discovered by Whip (as reported in Table 5.2) we can notice a clear
di�erence. For instance, the length of the paths among the new vulnerabili-
ties we discovered span from 12 to 53 lines of code (with a mean of 24.9 and
a median of 17.5). Thus, if we take the length of the vulnerable path as a
possible measure of the complexity of a vulnerability, our approach results
in vulnerabilities that are, on average, three times more complex than those
regularly reported by other means.

This is due to the fact that our solution helps SAST tools to overcome
their limitations and therefore to explore deeper in the applications code
and detect vulnerabilities associated with long inter-procedural paths.

4.8 Related work

We can identify three research directions related to our work. First, re-
searchers have conducted extensive tests of di�erent SAST tools and they
concluded that none of them outperforms the other in all situations. Sec-
ond, researchers have tried to mitigate the shortcomings of a single tool by
either 1) combining static and dynamic techniques, 2) resorting to human
experts to help the tool perform better, or 3) combining multiple tools and
joining the results. However, our approach is the �rst that, by combining
the internal knowledge of di�erent tools, allows a set of tools to discover
more than the sum of the individual components.

Tools Comparison. Many research papers analyze static tools to demon-
strate that there is no tool that supersedes all others. Nunes et al. [122]
introduce a benchmark for comparing static analysis tools and their e�ec-
tiveness in detecting security vulnerabilities. The authors chose �ve static
tools for PHP and they found that the best tool varies from one scenario
to another, depending on the vulnerability class. Algaith et al. [39] com-
pare the same �ve static tools as well as their combinations. The authors
pointed out that none of the tools (or combinations thereof) can discover
all the vulnerabilities in their dataset, but a set of three gave the maximum
number of discoveries.

While most of the research papers compare open-source tools, few papers
also include commercial tools. For instance, Chapter 3 include three tools,
Spoto et al. [138] six and Kupsch et al. [99] compare Fortify and Coverity
on the analysis of a single project.

Tools Collaboration. In this work, we present a new direction to enable
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static tools to collaborate and discover more vulnerabilities. To the best of
our knowledge, there are no other works in this area, previous studies have
looked at other forms of collaborations � either between static and dynamic
tools, or between static tools and human developers.

[I] Static + Dynamic. Static tools have obvious limitations when
it comes to handling dynamic features [90, 89, 100], such as indirect func-
tion calls. NAVEX [40] tries to overcome these limitations by proposing
the collaboration between static and dynamic approaches. In this paper,
the authors proposed to use a crawler to capture the relationship between
di�erent web pages, and then use this information to complement a static
analysis performed on the application's source code. We can distinguish two
cases. If the name of the �le is de�ned statically, then there is no need for
the dynamic approach because SAST tools can already detect this �le. If,
on the other hand, the �le is included dynamically then none of the static
tools can detect this �le, and therefore the solution presented in this paper
does not help. Thus, we believe the two techniques to be orthogonal with
no intersections in their �ndings.

Other studies used dynamic techniques to verify the discoveries of static
tools. For example, Csallner et al. [64] used a hybrid analysis approach
to automate bug �ndings. The proposed approach includes three steps:
dynamic inference, static analysis, and dynamic veri�cation. The same
authors [63] also presented a di�erent approach in which a constraint solver
was used to generate concrete test cases to verify the static tools alerts.
There are also other types of collaborations, like the one proposed by Hough
et al. [91], in which the authors employ human developers' test suites to
support automated dynamic analysis.

[II] Static + Humans. A di�erent form of collaboration that has
been explored by researchers to overcome some of the limitations of SAST
tools is based on human-in-the-loop approaches. For instance, Al Kassar et
al. [36] discuss the collaboration between SAST tools and developers when
they provide manual transformation at the source code level to improve
the discoveries of the static tools. Other authors study how to change the
rules automatically depending on the users' preferences (e.g., in Mangal et
al. [111]), or how to provide feedback to the tool's developers to improve
the results (e.g., in Sadowski et al. [133]).

Combining the results of multiple tools. Many papers have proposed
to combine the output of di�erent static tools, as suggested by NIST �CAS
Static Analysis Tool Study Methodology� [114]. Meng et al. [116] show that
static tools for JAVA can report di�erent alerts for the same source code
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depending on the tool performance in that speci�c class of bugs. So they
ask the analyst to provide the source code and an example of the set of
bugs she is looking for. The system then chooses the right tools that are
most likely to provide the best results for that type of bugs and returns
a merged list of their discoveries. Rutar et al. [132] suggest a bug-�nding
meta-tool for joining the results of di�erent static tools together. Wang et
al. [149] introduce a web service where the user can choose the type of bugs
and upload the source code. The system then scans the code with multiple
tools and returns the merged results to the user. Finally, Nunes et al. [121]
run an empirical experiment on combining the results of �ve static tools
for web applications, reporting the increased percentage of the true-positive
and false-positive after this combination.

4.9 Conclusion

In this chapter, we proposed a novel idea to `force' di�erent SAST tools to
collaborate to �nd more vulnerabilities. Whereas each static tool has its
own strengths and weaknesses, our solution allows them to help each other
to overcome their respective challenges. Our approach is completely auto-
mated and considers all tools as black boxes (thus supporting commercial
tools for which we have no visibility on their internal data structures).

By routinely modifying the source code of the application under test, our
system can inject fake sinks to infer how tainted values propagate through
the di�erent program functions. Whenever one of the tools is unable to
`understand' these connections, we help it by stitching the data-�ow with
additional edges that bypass the problematic function.

Our experiments performed only on very large and popular PHP ap-
plications, show that our approach can successfully improve the amount of
source-to-sink paths that each tool is able to analyze. This leads to a total
increase in the number of critical alerts between 10-12%. By manually vali-
dating a subset of these new alerts, we discovered and reported 35 zero-day
vulnerabilities in 14 projects with more than 1,000 stars on Github.
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Preamble

We discussed in Chapter 3 how static tools have many testability tarpits
that block them from detecting vulnerabilities, and we discussed in Chap-
ter 4 how static tools can help each other through Whip. In this Chapter,
we show how even the best commercial tools struggle to scan applications
developed using frameworks with speci�c design patterns such as Model
View Controller (MVC). In this Chapter, we investigate MVC frameworks
and their interaction with the application source code. We identify the chal-
lenges that SAST face in understanding this interaction, and we provide a
solution to "disconnect" the application from the framework. Our innova-
tive approach operates solely on the application source code, transforming
the highly dynamic interaction challenges into static code that is testable
for SAST. This enables the SAST of MVC based web applications without
requiring any modi�cations on the SAST tools.

Our experiments demonstrate the e�ectiveness of our approach. Be-
sides validating our approach on vulnerable applications, we also applied
it against the latest version of 20 modern web applications based on the
CodeIgniter MVC framework (overall used by more than 1.5 million web-
sites). More than 2, 000 alerts were reported by SAST after our transforma-
tions: 826 stored XSS and 103 re�ected XSS vulnerabilities were con�rmed
as true positives impacting 18 of the 20 applications. Upon responsible
disclosure, CVEs were released to acknowledge our �ndings.

5.1 Introduction

According to the Acunetix Web Application Vulnerability Report 2020 [2],
25% of web applications are vulnerable to XSS injections. Developers com-
monly use static analysis tools, also referred to as Static Application Secu-
rity Testing (SAST, in short) tools, to �ght these vulnerabilities [125]. SAST
gets in input the source code of an application and try to reason about the
entire behavior of that application, to spot dangerous data-�ows and other
potential issues. However, many limitations have been identi�ed for SAST
that, in practice, make this approach neither sound nor complete. SAST
is thus subject to both false positives and false negatives, whose prevalence
strongly relate to the amount of dynamic features used by the application
under testing.

A trend that makes the SAST task even more di�cult is the wide usage
of model-view-controller (MVC) frameworks in modern web applications.
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For instance, only considering PHP, over 23.5% of the Top 1 Million web-
sites [10] use MVC frameworks. If the MVC paradigm eases the development
and maintenance of the application, it also add a lot of dynamicity in the
interaction between the application code and the MVC framework code.
Using SAST in this situation becomes just unfeasible.

To mitigate this problem, some studies have been conducted to enhance
the testability of these MVC-based applications by developing speci�cations
and vocabularies to capture application behavior that SAST often misses.
In these studies, SAST tools are either updated to adapt to this behavior
or new tools are created from scratch (e.g., [45, 139, 81]). Unfortunately,
these progresses do not seem to be adopted by advanced SAST tools that
are widely used by developers (mainly commercial SAST tools). This puts
at risk the security of modern web applications strongly based on MVC
framework.

In this chapter, we introduce a novel approach to transform an appli-
cation's source code and disconnect it from the MVC framework. Our ap-
proach focuses solely on the application source code, making it applicable to
both research and commercial SAST tools without requiring access to their
internal implementations. The core idea is based on a two-phases process.
First, our approach identi�es problematic �ows between the application
and the MVC framework. Second, our approach transforms those �ows
from highly dynamic application-to-framework �ows to static application-
to-application �ows, so to make them "understable" for SAST tools.

In our work, we focus on the PHP scripting language: unlike previous
works, that have focused on JAVA and ASP.NET, PHP is still by far the
most common language to develop Web applications (78% market share in
2022 [8]), and its frameworks are widely adopted by top websites.

We conducted two experiments to demonstrate the e�ectiveness of our
approach in improving the source code coverage processed by SAST tools.
Indeed, in both the experiments the SAST tools reported a signi�cant
higher number of security alerts. In the �rst experiment, we applied our
approach against 10 known-to-be-vulnerable applications built on popular
MVC frameworks for PHP (Laravel and CodeIgniter). Our transformations,
performed manually by us, enable SAST to detect the expected vulnerabili-
ties. In the second experiment, we automated the transformation process for
20 CodeIgniter projects from Github and Sourcecodester. SAST reported
over 2000 new �ndings, including 826 previously unknown stored XSS vul-
nerabilities and 103 re�ected XSS vulnerabilities a�ecting 18 out of the 20
projects analyzed. All a�ected projects acknowledged our �ndings following
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responsible disclosure and CVEs were released.
The rest of the chapter is organized as follows. Section 5.2 presents

background information on the MVC design pattern, static analysis tools
and their e�ciency in detecting injection vulnerabilities. A motivational
example is presented in Section 5.3, highlighting one of the previously re-
ported vulnerabilities. Section 5.4 discusses the motivation behind PHP
frameworks and their prevalence in open-source projects. Our approach
and the steps taken to disconnect the application from the framework are
explained in Section 5.5. Finally, our experiments and results are presented
in Section 5.6 and Section 5.7.

5.2 Background

5.2.1 MVC Pattern

The Model-View-Controller [58] (MVC) is a popular design pattern widely
used to implement modern web applications. The pattern separates the
user interface from the core application logic by using three main elements.
The model (dedicated to the business logic) manages the data and the re-
lation with the database. The view (dedicated to the UI logic) displays the
data from the model and encapsulates the presentation by showing only the
required attributes. Finally, the controller (which is the processing unit)
responds to the user's requests and organizes the communication between
the model and the view.

For example, in a typical e-commerce website, the model would de�ne
the product's properties while the view would be in charge of how the web-
site should display the products. When a user wants to browse a speci�c
item, the controller would receive the request with the product's ID, ask
the model for the corresponding product (which will be retrieved from the
database), and forward its data to the view to be formatted and displayed
to the user.

This pattern is often adopted for its ability to easily organize large-size
applications. In fact, the MVC pattern o�ers extremely loose coupling and
higher cohesion between the three layers, which facilitate parallel and fast
development [87]. Hao et al.[83] discusses in more detail the advantage of
the separation between the three layers, and Majeed et al. [110] shows how
this separation simpli�es the development process, and creates scalable ap-
plications. Hapsari et al. [97] shows the advantages of MVC also to improve
the reusability of code. In addition to that, the �exibility of the MVC design



5.2. Background 87

makes the project easy to plan, maintain, and modify by the development
teams.

On the negative side, Singh et al. [137] list some disadvantages of MVC.
For example, the authors found that it is hard for programmers to under-
stand the MVC architecture and that MVC can make the code deployment
more di�cult. To solve the usability problems and simplify the adoption
of the pattern, many Web development frameworks encapsulate the MVC
approach in an easier-to-use bundle (as we will describe in more details in
Section 5.4).

From a testing perspective, things get more interesting. On the one
hand, researchers (such as Wu et al.[155] and Freeman [73]) have shown
how the modularity of MVC can facilitate unit testing. On the other hand,
other studies noted the di�culty of understanding the data �ow on the
MVC pattern [137], which can introduce problems for testing tools that
need to reason over large portions of an application (which is often the
case for security testing). For instance Spring and Struts are popular MVC
frameworks for JAVA, and di�erent publications (e.g., JackEE in Antoniadis
et al. [45], TAJ in Tripp et al. [147], and F4F in Sridharan el al. [139]) tried to
address the testability of enterprise applications that use these frameworks
by providing new framework modeling approaches that can help to better
understand their data �ow.

To the best of our knowledge, no research has been conducted to measure
the impact of MVC on the testability of an application, nor the consequence
of the adoption of this popular pattern on security testing.

5.2.2 SAST Tools and Testability Tarpits

Over the past 20 years, static tools have been largely used in industry to
detect injection vulnerabilities. These occur when an attacker can input
harmful data that misuses the system, often because input validation is
lacking. For example, special characters can manipulate SQL queries (SQL
Injection) [18] or inputs can include scripting tags that execute JavaScript
on the client side (XSS) [17]. Static tools detect these vulnerabilities by
tracing the �ow of user input (source) to the endpoint (sink) without any
form of sanitization.

Static analysis also comes with many limitations. Chapter 3 compiled
a list of hundreds of code patterns that hinder the static analysis of web
applications. These patterns capture speci�c code instructions, referred to
as testability tarpits by the authors, that prevent SAST tools from recon-
structing the correct data-�ow of the target applications, thus impacting
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the detection of severe injection vulnerabilities.
Among the di�erent classes of tarpits presented in [36], one is related to

the use of dynamic features that result in values that can only be computed
at runtime (or that are di�cult to compute otherwise). While it is not
surprising that SAST tools need some form of approximation to deal with,
for instance, indirect function calls, our goal is to show that these tarpits
are at the core of how MVC is operating. In other words, while MVC might
ease software development and maintenance, it introduces unavoidable road-
blocks for full-program static analysis.

As an example, we will now brie�y discuss four dynamic features in PHP
and their related testability tarpits which are commonly associated with
the MVC implementations that targeted with three commercial SAST tools
Comm_1, Comm_2, and Comm_3. For each dynamic feature we illustrate
some of the testability tarpits with their code snippets taken from the open
source catalog [23] made available by [36]: each code snippet comprises a
trivial XSS vulnerability (occurring at the line with the echo statement),
useful to test whether a SAST tool is blocked by the tarpit or not.

[DF1] Function and Methods Variables. In PHP, it is possible to call
a function whose name is stored in a variable (Pattern 76 in [23]). As seen
in the code snippet, the variable ($var) holds the name of the function
(in this case, "func"). Comm_1, Comm_3, and Comm_2 are unable to
detect the vulnerability because they cannot identify the function in this
code. Similarly, when the method name is stored in a variable (Pattern 82
in [23]), the same issue arises.

function func($x){echo $x;}

$var = "func";

$var($_GET['p1']);

[DF2] Class Name Variables. In this dynamic feature, a static tool
is unable to determine which class will be used (Pattern 81 in [23]), so
it cannot identify the properties or methods of the class. Comm_1 and
Comm_3 cannot detect the vulnerability, but Comm_2 uses a heuristic. In
this example, if the "func" method is de�ned only in one class, Checkmarx
maps the method call with the method body. However, if multiple classes
have the same name, Comm_2 ignores the method calls and is unable to
detect the vulnerability.

class myclass{ function func($x){echo $x;}}

$var = "myclass";

$obj = new $var();
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$obj->func($_GET['p1']);

[DF3] File Variables. In PHP when one �le includes another �le, all the
variables from the external �le are accessible from the internal �le without
de�ning the variables as globals. In this tarpit, Comm_1, Comm_3 and
Comm_2 cannot detect the relation between File1 and File2 (Pattern 79
in [23]) and cannot discover the XSS vulnerability with the variable $x.

// File1 content

$x = $_GET['p1'];

$var = "File2.php";

include($var);

// File2 content

echo $x;

[DF4] Variable Variables. In di�er from other programming languages,
PHP has a special feature called variable-variable, when the name of the
variable is in another variable. This feature gives a lot of dynamicity for
PHP but it is not possible for Comm_1, Comm_3 and Comm_2 to follow
the variable (Pattern 84 in [23]). Similarly, the property names can also be
stored in a variable (e.g. $obj->$var).

$x = $_GET['p1'];

$var = "x";

echo $$var;

5.3 Motivation

While the MVC design pattern can be implemented in di�erent ways, each
implementation requires the use of many dynamic features to provide to the
application enough �exibility to handle the relation between the models,
views, and controllers. This dynamicity clashes with the operation of SAST
tools, which need to be able to statically identify and analyze data-�ow
paths between sources (where users can inject information) and sinks (where
that same information is used in a sensitive operation). Intuitively, we can
therefore expect SAST tools to encounter many di�culties when tasked to
analyze an application that uses the MVC pattern.

To show the impact on a practical example we investigated several
CVEs (e.g., CVE-2014-1944, CVE-2014-6280, CVE-2015-2796, and CVE-
2016-10509) reported for PHP projects that implement the MVC pattern.
For instance, Listing 5.1 shows a simpli�ed version of the XSS vulnerability
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1 Env::executeAction(request_controller(), request_action());
2 static function executeAction($controller_name, $action) {
3 $controller = new $controller_name();
4 return $controller=>execute($action);
5 }
6 function request_controller() {
7 return $_GET['c'];
8 }
9 function request_action() {
10 return $_GET['a'];
11 }
12 function execute($action) {
13 // call the method search
14 $this=>$action();
15 $this=>render();
16 }
17 function search() {
18 $search_for = array_var($_GET, 'search_for');
19 assign('search_string', $search_for);
20 }
21 function assign($name, $value) {
22 $this=>vars[$name] = $value;
23 }
24 function render() {
25 $template_path = $this=>getTemplatePath();
26 includeTemplate($template_path);
27 }
28 function includeTemplate($template) {
29 extract($this=>vars, EXTR_SKIP);
30 // include the �le search.php
31 include $template;
32 }
33 //search.php
34 echo $search_string;

Listing 5.1: CVE-2015-2796 - Example of an XSS vulnerability

from CVE-2015-2796. The user input is provided in the parameters of this
request:

index.php?c=project&a=search&search_for=INPUT

where c represents the name of the controller and a the name of the action
(the method in the controller). The vulnerable path traverses the connection
between a controller and a view. The user chooses the controller and the
method which will be called, then the view is loaded by using the search
string provided by the user. Since this string is not sanitized, it leads to a
XSS vulnerability.

In more detail, the vulnerability in Listing 5.1 begins with the call to the
static method executeAction (line 1). This method retrieves the controller
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and action names from the GET request (in this example, the controller
name is "project" and the action name is "search"). It then creates a new
instance of the controller and invokes the execute method, passing the ac-
tion name. Within executeAction, we encounter the �rst dynamic feature:
[DF2], previously described in Section 5.2.2. The execute function calls the
action search (line 14), revealing the second dynamic feature [DF1].

The "search" method retrieves the "search_for" string from the GET re-
quest and stores it in the vars array using the assignmethod. The execute
method then calls the render, which retrieves the template name (line 25)
and invokes the includeTemplate method to include the template. This
method uses the built-in extract function to load variables from the array,
whose keys are used as the names of the generated variables. This results
in the variable $search_string, which holds the value of the "search_for"
input. The use of a variable to hold the name of another variable (the key
of the array, in this case) introduces a third dynamic feature of type [DF4].
Finally, after loading the variables, includeTemplate includes the view �le,
which prints the input and triggers the XSS vulnerability. The �le inclu-
sion is performed using a �lename stored in a variable, which represents the
fourth dynamic feature [DF3].

This example shows how even a simple custom implementation of the
MVC design pattern, which does not involve any complex MVC framework,
requires many dynamic features that impede SAST testability. Just along
the path of the aforementioned XSS we identify four tarpits which are very
di�cult for SAST tools to handle.

It is also interesting to notice how this vulnerability emphasizes the
di�erence between static and dynamic testing solutions. In fact, while in the
source code the path traverses 15 di�erent functions invoked dynamically,
the vulnerability could be easily discovered by using a black-box approach,
just inserting a script in the search box.

5.4 MVC Frameworks

As emphasized by Singh et al. [137], the MVC design requires a good knowl-
edge of software engineering and its development and deployment are di�-
cult and time consuming. Thus, many Web Application Frameworks have
been developed to aid programmers in creating and maintaining their ap-
plications.

Each framework provides a set of resources and tools, together with a
standardized way to develop an application that programmers need to fol-
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Figure 5.1: Number of commits over 22 years

low in their coding practices (like the name of the classes and the �le/direc-
tory structure). In addition to that, they provide ready built-in features to
handle common tasks, such as authentication, session management, trans-
actional business logic, web application security, object relational mapping,
and others.

PHP is one of the preferred languages for these frameworks because of its
�exibility and its ability to support re�ection and other dynamic features,
as explained in [100] and [90]. For example, PHP can invoke functions
and create new class instances from names stored inside a variable, as we
saw in the tarpits presented in Section 5.2.2. As a result, PHP is the �rst
language in the list of Framework Usage Distribution among the Top 1
Million websites [10], with its frameworks adopted by over 23.5% of the
sites.

Most PHP Frameworks guide the development of web applications by
following the MVC design pattern to provide rapid development, reduce
time, create stable applications and reduce the amount of repetitive code. In
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the annual Developer Ecosystem Survey conducted by Jetbrains in 2021 [24]
on 31, 743 developers from 183 countries, only 7% of PHP developers de-
clared that they develop applications without any framework.

We identi�ed 14 frameworks that are popular and used by PHP develop-
ers: CakePHP, CodeIgniter, Drupal, FatFree, FuelPHP, Joomla, Laminas,
Laravel, PhalconPHP, YII, Phpixie, PopPHP, Slim, and Symfony. All these
frameworks use the MVC design pattern.

5.4.1 Framework Prevalence

To study the prevalence of these frameworks we cloned all PHP projects on
Github with more than 200 stars. Out of the resulting 5, 270 projects, 3, 853
included a composer.json �le1. We searched in the composer �les for the
14 frameworks, and found that 2, 316 projects have at least one framework
in the dependencies. Thus, we can conclude that more than 60% of the
popular open source PHP projects that use a composer �le are developed
with one of the aforementioned 14 frameworks.

We also counted the number of commits on PHP projects over the last
decade. Figure 5.1 shows the average number of commits between 2012
(composer released year) and 2022. The green and orange lines represent
projects which have a composer �le (with and without a framework depen-
dency), and the blue line those without. The graph shows that after 2015
the average number of commits on projects developed by using frameworks
is almost double compared with projects without framework.

5.4.2 Implementation

Figure 5.2 shows the di�erent entities involved in a typical MVC imple-
mentation. The user sends requests to the controller. The controller then
manages the communication between the view and the model to insert, up-
date, fetch or delete the requested data. Finally, it displays the result back
to the user. In the Figure we can also see the drivers that provide the
implementation for di�erent Database Management Systems (DBMS).

SAST tools struggle to handle this complexity as they are unable to
reconstruct the relation between the di�erent entities of the pattern. To
understand the reasons, we analyzed the implementation of the MVC pat-
tern in the latest version of four popular PHP frameworks: Laravel (v10),

1The PHP Composer https://getcomposer.org/ is a tool for dependency manage-
ment in PHP. It helps the developers to de�ne the dependencies in their project and
update them by running one command
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Figure 5.2: MVC Design Pattern

Symfony (v6), CodeIgniter (v4), and CakePHP (v4). As a guiding example,
we are going to use a vulnerability we discovered in our experiments on the
Kalkun project (an open source web-based SMS manager), which is built
by using the CodeIgniter framework.

In the example, summarized in Listing 5.2, the attacker controls the
username, which is stored un-sanitized in the DB. When the user logs in
(lines 12-18), the username is retrieved from the DB and saved in the ses-
sion. Then the system redirects the user to the index action in the Kalkun
controller (line 17), which loads the layout view (line 22). Next, the layout
view loads another view (dock, see line 25) where the username is extracted
from the session and displayed in the page (line 27). This leads to a second
order XSS vulnerability.

None of the SAST tools in our arsenal is able to detect that vulnera-
bility. This is only partially related to the fact that the vulnerability is a
stored XSS. Even when we decompose the stored XSS into (1) detecting
that an attacker-controlled value is ending in a database element and (2)
that element is retrieved from the database and printed, the SAST tools
fail already in the �rst decomposed step, indicating that the data-�ows of
attacker-controlled inputs are very challenging for applications using MVC
framework.

We will now detail the challenges for SAST emerging from the inte-
gration between the application and the MVC implementations. For each
challenge we enumerate the dynamic features (cf. Section 5.2) that make
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1 <?php
2 // Usermodel model
3 function addUser(){
4 $this=>db=>set('username',trim($this=>input=>post('username')));
5 }
6 // login controller
7 function index(){
8 $this=>load=>model('Kalkun_model');
9 $this=>Kalkun_model=>login();
10 }
11 // Kalkun_model model
12 function login(){
13 $username = $this=>input=>post('username');
14 $query = $this=>db=>from('user')=>where('username', $username)=>get();
15 if ($query=>num_rows() === 1){
16 $this=>session=>set_userdata('username', $query=>row('username'));
17 redirect('kalkun');
18 }
19 }
20 // kalkun controller
21 function index(){
22 $this=>load=>view('main/layout');
23 }
24 // main/layout view
25 $this=>load=>view('main/dock');
26 // main/dock view
27 echo $this=>session=>userdata('username');

Listing 5.2: XSS vulnerability in Kalkun project

SAST failing over some MVC implementations. More details, including
a table summarizing how each challenge impacts the most popular MVC
frameworks, are available in our repository [16].

[CM] Controller ↔ Model. The controller communicates with the model
every time it needs to interact with the database. For instance, in List-
ing 5.2, the login controller loads the Kalkun_model and calls the login

function to check the username (lines 8-9).
The loading of the model is implemented in di�erent ways across the

frameworks we analyzed. In our example, the CodeIgniter backend creates
a new instance of the class name and assigns it to a property with the same
name of the class:

public function model($model, $name){
$CI =& get_instance();
$model = new $model();
$CI=>$name = $model;
}



96 96

The CodeIgniter backend code is thus impacted by two dynamic features:
the class-name-variable [DF2] and the property-variable [DF4]. The same
PHP dynamic features impact also Symfony and CakePHP. The only ex-
ception is Laravel, where the model loading relies on static methods only,
and therefore it can be handled correctly by SAST tools.

[MDB] Model ↔ Database. The model communicates with the database
whenever it needs to fetch, add, update or delete information. In our ex-
ample of Listing 5.2, the Usermodel model contacts the database to set the
username (line 4) and the Kalkun_model model retrieves the user data from
the database (line 14).

An advantage provided by all frameworks is the transparent support for
multiple Database Management Systems (DBMSs), which is handled by a
separate driver for each database (e.g., PDO, CUBRID, and Mysqli). The
model communicates with the drivers by running a query, query builder,
or object-relational mapper (ORM). The name of the driver is set in the
con�guration �le for the whole project, and a new instance of this driver is
created accordingly. This is implemented by keeping the name of the driver
in a variable, which leads to a class-name-variable dynamic feature [DF2],
hereafter illustrated for the CodeIgniter backend:

// Instantiate the DB adapter
$driver = 'CI_DB_'.$params['dbdriver'].'_driver';
$DB = new $driver($params);

[CC] Controller ↔ Controller. A controller can redirect the request to
a di�erent action in the same controller or to another controller. In our
example, after a successful login a user is redirected to the index method
in the kalkun controller (line 17).

All frameworks store the name of the class and the method to in-
voke as strings, which lead to the dynamic features method-variable [DF1],
class-name-variable [DF2], and variable-variable [DF4]. For instance, in
CodeIgniter, we observe the redirect function utilizing the controller class
name and method name.

redirect("ClassName","MethodName");

[CV] Controller ↔ View. After the controller receives the user re-
quest and communicates with the model, it loads the view and passes
the requested data to this view. In our example, the code loads the page
main/layout.php (line 22).

All four frameworks use a similar approach to load a view, delegating
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the operation to a function that receives the view name as parameter, lead-
ing to a File-Variables dynamic feature [DF3]. In Laravel, Symfony, and
CodeIgniter the function also receives an array of variables that is later
passed to the view, while CakePHP adds each variable separately through
the set method. Either way, the name of the variable to pass will be stored
into another variable, which leads to variable-variables [DF4]. For example,
if we look at the code of CodeIgniter, we can see that the method view

receives the name of the �le and the data, then passes them in an array to
the function _ci_load. This function generates the names in new variables,
introducing a variable-variables [DF4]:

protected function _ci_load($_ci_data){
foreach (array('_ci_view', '_ci_vars') as $_ci_val){
$$_ci_val = $_ci_data[$_ci_val];
}
}
public function view($view, $vars){
return $this=>_ci_load(array('_ci_view' => $view, '_ci_vars' => $vars));
}

[VV] View ↔ View. Usually, website pages share a common style and
design. To avoid replicating code among the di�erent views, frameworks
allow the developer to create subviews, which can be reused and included
into others. For example, the main/dock.php is loaded in main/layout.php

(line 25 in Listing 5.2).
Symfony uses Twig templates to handle views [25] and Laravel uses

Blade templates [3]. These templates de�ne a speci�c language for the view
�les. This requires SAST tools to interpret those speci�c languages that is
mainly an engineering e�ort. This is out-of-scope in our work that instead
targets the PHP language.

In CodeIgniter, similar to the controller-view relation, the controller
can load multiple views or load the content of one and then pass it to
another view inside a variable. As such, this [VV] in CodeIgniter has to
deal with the File-Variables [DF3] and variable-variables [DF4] dynamic
features. Instead, CakePHP divide views into templates, elements, layouts,
helpers, and cells. All the relations between these entities in CakePHP use
dynamic constructs. Thus, extending the view with another view adds both
a �le-variable [DF3] and a variable-variable [DF4]. While passing the name
of the method as a string in the cell will experience the method-variable
[DF1], and loading the helper face the class-name-variable [DF2].

[I] Input Management. Frameworks provide classes to deal with requests
and responses and to get information from POST and GET parameters, �les,
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environment variables, external servers, and cookies. For instance, in our
example (Listing 5.2) the username is sent over a POST request (line 4 and
13).

Both Symfony and Laravel provide a Request class that uses InputBags
containers to store the user inputs. The InputBags implementation, in turn,
introduces a function-variable [DF1]:

static function createRequestFromFactory($args){
$request = (self::$requestFactory)($args);
return $request;

}
$request = self::createRequestFromFactory($_GET, $_POST, [], $_COOKIE, $_FILES,

$_SERVER);

CakePHP de�nes instead request classes as components, whose loading
procedure introduces a property-variable [DF4] and a class-name-variable
[DF2]. On the other hand, in CodeIgniter, the input property is loaded
in the constructor of the controllers' parent (CI_Controller), whose code
contains a property-variable [DF4]:

foreach (is_loaded() as $var => $class){
$this=>$var =& load_class($class);
}
// then we can access the POST through
$this=>input=>post('param_name');

[S] Session Management. Frameworks provide an implementation
of sessions. The session is part of the request in Laravel and Symfony,
while a system library must be loaded in CodeIgniter and a component in
CakePHP, resulting in a class-name-variable [DF2] and property-variable
[DF4]. We can see the usage of the session in our example when we save
and retrieve the username (line 16 and 27).

5.5 Our Approach

In the previous section, we showed that it is impossible for static tools to
detect connections between an application's source code and MVC frame-
works. Using these tools to scan an application's code relying on a MVC
framework is ine�ective and a waste of resources as we will further demon-
strate with experimental evidence in Sections 5.6 and 5.7. In this paper,
we present a novel approach to enable the SAST tool to capture the �ow
between the application and the MVC frameworks by transforming the ap-
plication's code (only for the purpose and timeframe of the SAST analysis)
and without modifying the SAST tool. Our approach di�ers from previous
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Figure 5.3: Our Approach

works that require changes to the static tool (Sridharan et al.[139]) or the
creation of a new ad-hoc SAST tool (Antoniadis et al.[45]).

Chapter 3 proposed a one-to-one solution for their testability tarpits.
However some of these tarpits must be resolved manually by the develop-
ers. Transforming the highly dynamic MVC framework's code therefore
would require a comprehensive understanding and rewriting of the entire
framework and its dependencies. In this chapter, we propose a new trans-
formation called "MVC design transformation" that involves understanding
the main tasks of an MVC framework and providing alternative code to
achieve the same task without using the framework's code.

Our approach is illustrated in Figure 5.3. It takes the application source
code as input, discovers the MVC challenges in the application, applies the
transformations to disconnect the application from the MVC framework,
scans the transformed code using a static tool, and presents the �ndings to
the user for (manual) validation (e.g., classify true positives vs or false ones).
Cutting the connection between the application and framework reduces the
number of testability tarpits and improves the coverage of the source code.
However, there may still be testability tarpits, as part of the application
itself and not related to the MVC framework, that developers can handle
by applying the approach proposed in [36].

In the rest of this section, we illustrate our approach by showing con-
crete transformations for the latest version (i.e., v4) of the CodeIgniter
framework. However, our approach can be implemented for any other MVC
implementations. In our repository, we detail the implementation of our ap-
proach also for CodeIgniter v3 and Laravel v10 (latest). Implementing the
transformations for other MVC frameworks follows a similar process and it
just a matter of allocating development time. From our own experience, we
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estimate this development time to one week overall for one intermediate-
level developer to comprehend the challenges in the framework, create the
detection rules, perform the transformation, and test their implementation.

5.5.1 Detection

Before applying any transformation, our approach detects in the application
the code areas that need to be transformed, i.e., those areas impacted by
the MVC challenges discussed in the previous section. We use the PHP
Opcode, the low-level instructions that are processed by the PHP Zend
engine [15], to detect the areas to transform and the important values for
the transformations.

For example, the following presents the PHP and the corresponding
opcode for loading the model in CodeIgniter:

/* PHP Code */

$this->load->model("product","prod");

/* PHP Opcode */

T0 = FETCH_OBJ_R THIS string("load")

INIT_METHOD_CALL 2 T0 string("model")

SEND_VAL_EX string("product") 1

SEND_VAL_EX string("prod") 2

DO_FCALL

To detect this operation, our approach searches in the opcode for the
operation that fetchs an object to read (FETCH_OBJ_R) through the method
load. Then, it determines the method call model from this object (INIT_METHOD_CALL).
The names of the model class and of the property to load are then extracted
from the SEND_VAL_EX operations and used to provide static values to the
related trasformation.

5.5.2 Transformation

Once the code areas with MVC challenges are identi�ed, our approach trans-
forms them to remove their dynamic features and to make the application
code more testable for SAST.

Hereafter we present the transformations for the MVC challenges im-
pacting CodeIgniter. (For each transformation we specify which MVC chal-
lenge(s) the tranformation remediates by means of the following notation
transformation -> challenge(s).)

Load Model -> [CM]. Our transformation creates a new instance of
the model directly and assigns it to the related property name.
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/* Before */

$this->load->model("product","prod");

/* After */

$this->prod = new Product();

Load View -> [CV] and [VV]. We change the variables that will
pass to the view to be global variables and include the related PHP �le.

/* Before */

$data["var1"] = "val1";

$data["var2"] = "val2";

$this>load->view("display",$data);

/* After */

$GLOBALS["var1"] = "val1";

$GLOBALS["var2"] = "val2";

include "display.php";

Database -> [MDB]. We provide one database class instead of all
the classes and drivers that deal with the model. This class contains all
the methods that models need to communicate with the database. Then,
we categorize the methods into two categories. (1) Methods insert data
in the database, we change the body of the method to print the inserted
values. (2) methods get data from the database, we change the body of
the method to return a GET input (source). This implementation helps us
detect second-order vulnerabilities, as we will explain in the next section.

/* Before */

$this->db->insert("table_name",$object);

$object = $this->db->get($id);

/* After */

$this->db = new database();

$this->db->insert("table_name",$object);

$object = $this->db->get($id);

class database{

public function insert($table,$object){

echo $object;

}

public function get($id){

return $_GET['p1'];

}

}

Redirect to a Controller -> [CC]. In this transformation, we create
a new instance of the controller then we call the method of this controller.

/* Before */
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redirect("ProductsController","choose");

redirect("ProductsController");

/* After */

$product = new ProductsController();

$product->choose();

$product = new ProductsController();

$product->index();

Input Management -> [I].We transfer the inputs (Post, Get, Cookie,
and Server) for direct inputs in PHP. For example to transform form the
GET parameter.

/* Before */

$var = $this->input->get('p1');

/* After */

$var = $_GET['p1'];

Session Management -> [S]. Replacing the session methods with
global variables helps static tools solve the di�culties in understanding the
sessions in CodeIgniter framework.

/* Before */

$this->session->set_userdata('var_name', 'value');

$var = $this->session->userdata('var_name');

/* After */

$GLOBALS['var_name'] = 'value';

$var = $GLOBALS['var_name'];

5.5.3 SAST scan

After separating the application source code from the framework, our ap-
proach runs the SAST tool to scan the transformed source code. It shall
be noted that the transformation that our approach performs is only for
the purpose of having a better static analysis and it is not intended to be
persisted on the project code as it would contrast the MVC bene�ts.

The SAST tool reports any unsanitized input �ows from source to sink
that it identi�es. In doing so, it often produces many false alerts due to
over-approximation strategies. The alerts reported by SAST need thus to
be carefully validated.

5.5.4 Validation

Finally, we validate our approach by manually examining the alerts gen-
erated in the previous step. A larger number of alerts indicates that the
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tool can cover a larger space and identify better data-�ow connections in
the source code. Detecting more exploitable vulnerabilities (true positives)
proves the e�cacy of our approach and demonstrates that commercial static
tools may fail to identify high-severity vulnerabilities when the application
relies on a framework.

In evaluating vulnerabilities, we concentrate on both �rst-order (direct
path from source to sink) and second-order (two paths, from source to
database and from database to sink) vulnerabilities, as outlined by Dahse
et al. [66]. The second-order vulnerabilities assess the impact of controller-
model and model-database challenges, while both types measure the impact
of other MVC challenges.

None of the static tools in our study are capable of detecting second-
order vulnerabilities, as they require parsing database queries and linking
stored and retrieved data. To overcome this, we modify the database class
by inserting a sink and retrieving a source, as described in the [MDB] trans-
formation. This allows us to manually validate the alert from the database
to the sink. If the alert is a true positive, we then match and validate the
path from the source to the database.

Our approach does not result in an increase in false positive rate for
�rst-order vulnerabilities despite the SAST over-approximations. However,
increased false positives may occur in the second-order when the source is
sanitized prior to being stored in the database.

On the other hand, developers are advised to apply sanitizers at the
sink as discussed in [30]. This is because the input may change along the
path, potentially rendering the sanitizer useless, or because the same in-
put may reach di�erent sinks which require di�erent sanitizers. Although
CodeIgniter previously o�ered a feature to sanitize all project inputs, it was
removed in version 4 as it was deemed a bad idea [31].

5.6 Experiment: Manual MVC transformations

In this section, we will demonstrate the usage of our SAST-enabling trans-
formations against 10 known-to-be-vulnerable applications based on two
popular MVC frameworks, Laravel and CodeIgniter. The goal is to show
that our transformations, manually applied on the vulnerable paths of the
known-to-be-vulnerable applications, enable SAST tools to detect the ex-
pected vulnerabilities.
MVC frameworks. We selected Laravel and CodeIgniter because of their
popularity. Each of them is used in over 1.5 million of enterprise applica-
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tions [13, 7].

Static Tool. We selected the commercial SAST tool Comm_1 for our
study. Our decision is based on two elements. First, the recent results
in [36, 121] demonstrate that commercial tools have signi�cantly higher
support than open-source tools over SAST challenges for PHP. Second, by
running three commercial static tools in our arsenal (Comm_1, Comm_2,
and Comm_3) against the publicly available benchmark of [23], Comm_1
reported the better results.

Vulnerability Type. We chose XSS for our experiment as it is the most
prevalent injection vulnerability and ranks second on the top 25 most dan-
gerous software weaknesses [1]. We are taking into account both re�ected
and stored XSS.

Dataset. We target known-to-be-vulnerable projects by selecting 5 CVEs
related to Laravel and 5 to CodeIgniter. We �rst look at projects developed
for those MVC frameworks [12, 6], and we then search for reported XSS
vulnerabilities in those projects in the CVEs database https://cve.mitr

e.org/.

Methodology. For each CVE in our dataset, we �rst fetch the source code
associated with the CVE report. Second, we inspect the XSS vulnerabil-
ity of the CVE and we identify the XSS vulnerability path in the code,
so to clearly extract from that path both (i) the MVC challenges and (ii)
the traditional tarpits (see [36]) in the project unrelated to MVC that may
block SAST. Third, we run the SAST tool (Comm_1) against the code to
con�rm that the expected vulnerability is not reported. (Actually, no XSS
�ndings are reported at all by the SAST tool, con�rming the complexity
of the MVC-based code). Fourth, we apply our MVC related transforma-
tions over the XSS vulnerability path, so to remediate the MVC challenges
previously extracted and when necessary we also perform remediations for
the additional application tarpits unrelated to MVC. Finally, we run the
SAST tool against the transformed code and check whether the expected
XSS vulnerability is now properly reported.

Results. Table 5.1 shows the ten CVEs in our dataset. For each CVE, we
present whether it refers to �rst or second order XSS, the MVC framework
and version, and the MVC challenges and the extra application tarpits (not
related to MVC) that we remediated to detect the expected XSS vulnera-
bility. More details, including the vulnerability path of these CVEs, are in
our repository [16].

All the vulnerabilities have an MVC-related input management chal-
lenge, and all the stored XSS involve controller-model and model-database
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CVE MVC CM CV VV MDB I AT
CVE-2022-419381 LA v8 ✓ ✓ ✓ ✓ 2
CVE-2021-273711 LA v7 ✓ ✓ ✓ ✓
CVE-2019-15489� LA v5.7 ✓
CVE-2018-209621 LA v5 ✓ ✓ ✓ ✓ ✓
CVE-2018-19917� LA v5 ✓ ✓

CVE-2020-260431 CI v3 ✓ ✓ ✓ ✓ ✓
CVE-2022-285861 CI v3 ✓ ✓ ✓ ✓
CVE-2018-167721 CI v3 ✓ ✓ ✓
CVE-2019-72231 CI v3 ✓ ✓ ✓ ✓ 2
CVE-2018-122551 CI v3 ✓ ✓ ✓ ✓ 2

�: 1st order XSS, 1: 2nd order XSS
LA: Laravel, CI: CodeIgniter, AT: extra application tarpits
note: [CC] and [S] are not reported as no CVE included that.

Table 5.1: Previous Reported Vulnerabilities

relations. All the discoveries end in view �les where we can observe controller-
view relations, except for CVE-2018-16772 where the sink is in a controller
�le. Only 2 discoveries (CVE-2018-20962 and CVE-2020-26043) have view-
view relations, and no controller-controller relation nor session management
were observed.

By applying our MVC transformations (see Section 5.5.2), Comm_1
detects the expected vulnerabilities for 7 out of 10 CVEs. Despite reme-
diating MVC challenges, the remaining 3 CVEs still have application-level
testability tarpits unrelated to MVC that block Comm_1 from detecting
the bugs. Once we address two extra tarpits (Patterns 38 and 81 in [23])
in CVE-2022-41938, and two di�erent extra tarpits (Patterns 17 and 79
in [23]) in both CVE-2019-7223 and CVE-2018-12255, the static tool can
detect all the expected vulnerabilities.

5.7 Experiment: Automated MVC transformations

In the prior section, we demonstrated the e�ectiveness of our approach in
helping SAST tools to discover known vulnerabilities in 10 projects run by
two popular MVC frameworks. In this section, we assess our approach on a
dataset of 20 MVC-based applications where the ground truth is unknown,
i.e., we do not know if these applications are vulnerable or not. The goal is
to determine if by applying in an automated manner the transformations of
our approach, we can still help SAST tools to improve the coverage of their
testing analysis. The main metrics we can use in this respect are (i) the
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number of new �ndings reported by the SAST tools and (ii) the detection
of any previously unknown vulnerability.

Summary. More than 2000 new �ndings were reported by SAST after
our approach transformed the code. Among these �ndings there are 826
previously unknown stored XSS and 103 new re�ected XSS. These severe
issues are impacting 18 of the 20 projects we analyzed. Upon responsible
disclosure of our vulnerabilities, all the a�ected projects acknowledged our
�ndings and CVEs were (or are about to be) released.

Settings. In this experiment, we apply our automated approach to CodeIgniter
framework v3 and v4, using Comm_1 as a static tool and XSS as the vul-
nerability type. We selected the top 10 most popular projects based on
CodeIgniter from its Github library [6] (excluding libraries and plugins),
and 10 projects based on CodeIgniter from Sourcecodester, a website where
developers share source code for various projects and services in PHP. The
projects from Sourcecodester include websites that provide services like a
bookstore website, expense management system, hotel management system,
and a blog site. We used these 20 projects to assess our approach.

Results. Table 5.2 More than 2, 000 alerts were reported at the view �les:
upon validation this resulted in 774 true positive stored XSS (from the
database to the sink) and 100 true positive re�ected XSS (from source to
sink); 1, 151 alerts were false positives. 93 alerts were reported for the
controller �les: 52 true positive stored XSS and 3 true positive re�ected XSS;
38 alerts were false positives. We provide additional information regarding
our discoveries and their vulnerable paths in our repository [16]. On the
other hand, we didn't �nd any vulnerabilities in two projects. The Online
Exam System project had all inputs sanitized, and the Pagination Tutorial
website, being a simple tutorial site, only had one source that didn't reach
a sink.

Responsible disclosure. We reported the new discoveries to the devel-
opers and created pull requests to �x some of them. Our �ndings were
acknowledged and we obtained CVEs for all the vulnerable projects, but
Mapos for which the developers approved our pull request to �x the vul-
nerability and we are in the process to get the CVE. Our �ndings reveal
hidden bugs by the MVC components, which pose a challenge for static
tools. For example, as seen in the Kalkun project 5.2, the relationship
between the MVC components, such as controller-controller, input man-
agement, controller-model, controller-view, model-database, view-view, and
the session management in CodeIgniter, result in at least seven testability
tarpits that make very di�cult for SAST to explore the data-�ow that could
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Github Project Stars Views_FP Views_TP Ctr_FP Ctr_TP CVE
1 Wscats-cms 251 3 12 0 8+(1) CVE-2023-23016
2 Corn-manager 406 0 0+(2) 0 0 CVE-2023-23017
3 Kalkun 182 15 1 2 0 CVE-2023-23015
4 InventorySystem 172 0 0 0 27 CVE-2023-23014
5 hr-payroll 137 462 73 36 14 CVE-2023-23013
6 classroombookings 127 0 4 0 0 CVE-2023-23012
7 InvoicePlane 2.1K 7 5+(13) 0 0+(2) CVE-2023-23011
8 Ecommerce Bootstrap 1K 68 57+(25) 0 0 CVE-2023-23010
9 Mapos 615 300 261 0 0 Con�rmed
10 Sales Management System 375 81 30+(22) 0 0 CVE-2023-23018

Sourcecodester Project Views
1 Book Store 5.2K 3 47 0 3 CVE-2023-23024
2 Expense Management System 4.3K 45 9 0 0 CVE-2023-23027
3 Sales Management System 4.8K 38 18 0 0 CVE-2023-23026
4 Hotel System 5K 31 22 0 0 CVE-2023-23025
5 Laundry System 2.7K 6 163 0 0 CVE-2023-23023
6 Employees Payroll 5.8K 36 59+(23) 0 0 CVE-2023-23022
7 Point Of Sale 4.5K 28 7+(6) 0 0 CVE-2023-23021
8 Online Exam System 5.9K 65 0 0 0 -
9 Blog Site 2.8K 36 6+(9) 0 0 CVE-2023-23019
10 Pagination Tutorial 776 0 0 0 0 -

SUM 1151 774+(100) 38 52+(3) 18

Views_FP, Views_FP: Alerts (true or false positive) at view �le.
Ctr_FP, Ctr_TP: Alerts (true or false positive) at controller �le.
XX+(YY): XX the number of second order vulnerabilities, YY the number of
�rst order vulnerabilities.

Table 5.2: New Vulnerabilities Detected with Our Approach

lead to a vulnerability.

5.8 Related work

Challenges for Static Tools. Al Kassar et al. [36] is a recent paper that
discusses in detail the di�culties for static tools in handling some code prac-
tices in PHP and JS, and they suggest some types of transformations that
can increase the coverage of the source code. While Landman et al. [101],
Yue et al. [102], Fourtounis et al. [72], and Sui el al. [142] discussed the chal-
lenges for static tools with re�ection and dynamic features in JAVA. Other
papers work on improving static tools like Livshits et al. [105] presents
an automatic probabilistic approach for inferring explicit information �ow
speci�cations from the source code. Alhuzali et al. [40] and Chandra et
al. [61] combines the static and dynamic approaches to capture the explicit
data and control �ows. In addition to that, Allamanis et al. [43] present in
their survey di�erent papers in machine learning for structured prediction
in di�erent programming languages like Gu et al. [77] who use deep learning
to predict the sequence of API calls and Raychev et al. [131] who predict
program properties from massive codebases.

In our research, we complement this line of research by providing an
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alternative method to address the challenges of SAST by o�ering a design
transformation that eliminates a series of MVC challenges instead of ad-
dressing each one individually.

Static Tools with frameworks. Di�erent papers discussed the rela-
tions between the application source code and frameworks in several pro-
gramming languages. Researchers suggest creating a speci�cation like Jas-
pan el al. [93] which presents Fusion language for the speci�cation, and
Bastani el al. [52] presents ATLAS that infers points-to speci�cations. Srid-
haran et al. [139] present a standardized language for the speci�cation
(WAFL), then they add the WAFL speci�cation support for ACTARUS
static analyzer [81]. While writing the WAFL generator is far from a trivial
task as they mention in Antoniadis et al. [45]. In addition to that, Ball
et al.[50] present an approach of creating a boolean API speci�cation from
several programs that use this API, and Aldrich et al. [37] use the PLAID
language to purpose the typestate-oriented programming where classes are
modeled in terms of their changed states.

Other works build static tools for enterprise applications that are devel-
oped by di�erent frameworks as we can see in JakeEE and TAJ in Antoniadis
et al. [45] and Tripp et al. [147]. Both of the static analyzers use frame-
work modeling for JAVA frameworks (like Spring and Struts). Concerto, in
Toman et al. [144], is a framework-based applications which combines con-
crete and abstract interpretation. Arzt et al. [47] presents FlowDroid which
is a tainting analyzer for android applications that need to handle callbacks
invoked by the Android framework. And Paramitha et al [127] built a static
tool for Laravel framework in PHP. In this tool, they use tainting analysis
on the AST that is generated from the application's source code. Unfortu-
nately, this static tool is not published and they evaluated their approach
only on 7 old reported CVEs. Another commercial static tool for Ruby
and Rails is Brakeman Pro [4] which became part of Synopsys in 2018.
This work delves into the frameworks and highlights the dynamic features,
which have been brie�y discussed in previous studies [139, 102].

Our solution is implemented at the application level and does not require
any modi�cations to static tools, giving developers the �exibility to use any
static tool of their choice.

5.9 Conclusion

In this chapter, we propose a novel approach to transform the source code of
an MVC-based application so to "disconnect" it from the MVC framework.
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Unlike previous works that aim to adapt SAST tools to understand the
dynamic features occuring in this MVC setting, our solution operates at the
source code level and enables to perform the analysis without changing the
SAST tools. As proof of concept, we implemented our approach for popular
PHP MVC frameworks (CodeIgniter and Laravel), used by millions of web
applications.

Our experiments were conducted on 10 known-to-be-vulnerable applica-
tions and against the latest version of 20 applications served by the popular
CodeIgniter MVC framework. The results demonstrate that our transfor-
mations enables SAST tools to detect the known vulnerabilities. In addi-
tion, 929 new high-severity zero-day vulnerabilities were uncovered by our
approach, including 826 stored XSS and 103 re�ected XSS. We responsibly
disclosed all of our �ndings, that were properly con�rmed and acknowledged
with CVEs.

5.10 Data Availability

In our Github repository [16], we provide all resources related to our work.
This includes 5 main elements. First, a table that details the MVC chal-
lenges in all the MVC implementations of Laravel, Symfony, CodeIgniter,
and CakePHP (an overview of this was discussed in Section 5.4.2). Sec-
ond, an explanation of the transformations for the latest version of Laravel
(similar to the CodeIgniter transformations we described in Section 5.5.2).
Third, our implementation to detect and transform the MVC challenges in
CodeIgniter (v3 and v4) and Laravel (v10). Fourth, the details (vulnerable
paths) of the old reported CVEs that we discussed in Section 5.6. Fifth, the
details (e.g., vulnerable paths) of the novel vulnerabilities that we discovered
with our approach and that we overview in Section 5.7.
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6.1 Future Works

While we have de�ned a list of testability patterns that we checked sys-
tematically in Chapter 3, developers and researchers may encounter new
patterns when working with di�erent programming languages. To have a
greater impact in the research community, a framework that standardizes
testability patterns and their discovery rules could be created. This frame-
work could be integrated into IDEs such as Eclipse and NetBeans, which
would allow developers to identify the lines of code that selected static tools
cannot comprehend. This approach could encourage security testing dur-
ing the development process, reducing testability tarpits and improving the
coverage of static tools, thus mitigating the risk of undetected vulnerabili-
ties.

Chapter 4 introduces Whip, a groundbreaking approach that facilitates
collaboration among SAST tools by sharing information to surmount their
limitations. By exclusively operating on the application source code, our
technique employs di�erent tools as an oracle to detect signs of disrupted
data �ows. This technique is applicable to other forms of collaborations,
such as dynamic tools with static tools or static tools combined with human
interaction. Such solutions can resolve new testability tarpits that static
tools are incapable of detecting and address challenges that are beyond the
scope of dynamic approaches or human interaction, but can be resolved by
static tools.

Finally, Chapter 5 is devoted to the analysis of the MVC frameworks
and their interaction with the application source code. We explore the
challenges that SAST tools encounter when attempting to comprehend this
interaction, and we propose a solution to disconnect the application from
the framework. This solution is generalizable and can be applied to cover
all the frameworks and third-party libraries that are typically employed
in applications. By severing the connections between the application and
its dependencies, we can signi�cantly reduce scanning time, enhance the
detection of vulnerabilities, and minimize the risk of encountering testability
tarpits.

6.2 Conclusion

This thesis provides evidence that certain code patterns, referred to as testa-
bility tarpits in Chapter 3, present a signi�cant challenge for static analysis
of real-world web applications. Our research involved assembling a library



6.2. Conclusion 113

of testability tarpits for the two most commonly used web programming
languages (PHP and JS), which we evaluated using a combination of state-
of-the-art open-source and commercial SAST tools. This library resulted in
the development of a new OWASP project aimed at creating a community
focused on testability tarpits [19]. Then, we established discovery rules for
these tarpits and applied them to thousands of open-source applications,
revealing that these tarpits are widespread, indicating that static analysis
has numerous blind spots. Furthermore, we conducted two sets of experi-
ments that demonstrated that refactoring the code to remove tarpits had a
substantial impact on the alerts generated by SAST tools, resulting in the
identi�cation of numerous previously unknown vulnerabilities.

In Chapter 4, we proposed a novel approach to address the high preva-
lence of tarpits in web applications, which involves "forcing" di�erent SAST
tools to collaborate in order to detect more vulnerabilities. While each static
tool has its own strengths and weaknesses, our solution enables them to work
together to overcome their respective limitations. Our fully automated ap-
proach treats all tools as black boxes, making it compatible with commercial
tools for which we have no visibility into their internal data structures. By
periodically modifying the source code of the application under test, our
system inserts mock sinks to trace how tainted values spread across vari-
ous program functions. When one of the tools is unable to interpret these
connections, we assist it by linking the data �ow with additional edges that
circumvent the problematic function.

Finally, in Chapter 5, we present a novel approach to transform the
source code of an MVC-based application to "disconnect" it from the MVC
framework. Unlike previous works that focus on adapting SAST tools to
understand the dynamic features present in this MVC setting, our solution
operates at the source code level and enables analysis without modifying
the SAST tools. To demonstrate the e�ectiveness of our approach, we im-
plemented it for popular PHP MVC frameworks (CodeIgniter and Laravel)
that are used by millions of web applications.

We believe that the �ndings and solutions presented in this thesis can be
a valuable foundation for future research in this �eld and provide guidance
for both academics and practitioners to address the limitations and the
solutions of SAST tools.
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.1 Appendix A

.1.1 Testability patterns for PHP

The testability patterns for PHP are presented in Table 1. This table groups together (by using horizontal lines)
pattern instances which address similar aspects of the language and have the same response from SAST tools.
For each instance (tarpit), the table reports its name, its properties with respect to the dimensions introduced in
Section 3.3.1, and the tools that are a�ected by it (by using a sequence of letters, R for RIPS, S for PHPsafe, W
for WAP, P for Progpilot, X for Comm_1 and Y for Comm_2). When a tool handles the pattern by means of an
over-approximation, we mark its name with an overline. For instance, the string −−−−XY means that a tarpit
is handled correctly only by Comm_1 and via over-approximation by Comm_2. The last fours sets of columns
report the prevalence of each pattern instance in our four datasets � as expressed by the number of a�ected projects
(prj column) and by the median number of occurrences of the pattern (med column).

Finally, when the same pattern has multiple instances (e.g., to describe tests belonging to di�erent dynamic
categories) that lead to the same result, we group them and report their number in the number of instances (#i)
column.

Table 1: Patterns

ID Pattern #i API SEC Dyn OOP Neg Tools SC GL GM GH
prj med prj med prj med prj med

1 static_variables 1 S −−−−−− 50 13 443 4 635 7 712 14.0

2 global_variables 1 S −S−−XY 89 10 203 7 213 10 210 12.0
3 global_array 1 S −−WP−Y 33 6 138 4.0 162 5.0 179 7

4 conditional_assignment1 S R−WPXY 221 74 795 18 890 31.5 908 59.0

5 combined_operator 1 S R−WPXY 335 170 919 33 942 64.0 934 97.5

6 coalesce 1 S RS−−XY 0 0 0 0 280 6.0 433 11

7 string_arithmetic_operations1 D S RSW−XY 277 10 523 6 636 9.0 707 11

8 simple_reference 1 S −−−−X− 42 39 163 9 231 5 292 6.0

9 reference_argument 1 S −−−−XY 208 14 387 7 399 10 486 9.0



1
1
8

1
1
8

10 return_by_reference 1 S −−−−−− 19 11 83 4 95 4 132 4.0

11 foreach_with_reference1 S −−−−−− 41 7 182 3.0 238 4.0 321 4

12 make_ref 2 S D −−−P−Y 25 6 116 6.0 134 4.0 180 4.0
13 assign_static_prop_ref1 S −−−PX− 9 1.0 19 1 10 1.0 17 1

14 object_assigned_by_reference1 S −−−−X− 22 21 100 6.5 107 7 155 5

15 nested_function 1 S −SWPX− 66 3.5 166 4.0 222 4.0 283 5
16 variadic_functions 1 S −−−−XY 1 12 59 3 143 3 239 3

17 get_arguments 1 S R−−−−Y 23 5.0 106 4.0 137 4 191 4
18 send_unpack 1 S RS−−X− 1 31 73 3 146 3.0 264 4.0
19 closures 2 D2 −−−−XY 36 1 543 7 733 11 782 25.5

20 use_with_closures 2 D2 D −−−−XY 25 1 321 4 524 5.0 614 12.0

21 simple_object 1 S D −−−PXY 336 199 968 350.5 977 863 974 1536.5

22 assign_object 1 S D −−W−X− 30 3 138 4.0 212 4.0 325 4

23 object_argument 1 S D −−−−X− 119 30 591 23 718 53.5 804 79.5

24 new_self 1 S D −−−−X− 41 6 162 2.0 249 3 351 3

25 clone 1 S D −−−PX− 41 6 147 3 238 5.0 338 5.0

26 late_static_binding 2 D2 D D −−−−X− 13 1.0 165 4 279 5 386 8.0

27 get_called_class 1 D2 D −−−−−− 0 0 16 1.0 28 1.0 34 2.0

28 static_methods 1 S D −−−PX− 119 17 792 29.0 865 61 898 126.5

29 static_properties 1 S D −−−PX− 93 48 406 12.0 498 14.0 615 20

30 anonymous_classes 1 S D −−−−XY 1 6 30 2.0 81 3 174 3.0

31 static_method_variable2 D2,D4 D −−−−−− 1 1 23 1 51 2 68 2.0

32 set_overloading 1 S D −−−−X− 0 0 44 6.0 50 7.0 61 8

33 get_overloading 1 S D −−−−−− 1 1 56 6.5 70 7.0 81 8

34 isset_overloading 1 S D −−−−−− 1 1 32 6.5 34 7.0 49 7

35 unset_overloading 1 S D −−−−X− 0 0 24 5.5 23 8 29 7

36 call_overloading 1 S D −−−−−− 6 1.0 47 4 59 7 68 7.5

37 callstatic_overloading 1 S D −−−−−− 3 22 12 35.0 20 141.0 26 41.0
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38 invoke 1 S D −−−−X− 1 21 6 1.5 9 3 11 4

39 serialize_unserialize 1 S D −−−P−− 42 1.5 135 5 143 8 188 6.0

40 trait 1 S D −−−−XC 87 6 800 13.0 881 26 907 43

41 self_methods 1 S D −−−PX− 68 35 360 12.0 482 15.0 602 22.5

42 destructor 1 S D −−−−−− 102 1 59 4 78 5.5 88 7.0

43 tostring_echo_object 1 S D −−−−XY 9 12 76 14.5 86 25.0 108 16.0

44 verify_return_type 2 S D −−−PX− 41 32 454 9.0 607 21 713 44

45 static_method_from_variable1 D2 D −−−P−Y 23 3 98 2.0 166 4.0 235 4

46 object_to_array 1 D2 D −−−−−− 50 13 290 4.0 405 4 475 5

47 Overriding 1 S D −−−PXC 62 11 569 16 698 24 750 49

48 construct_with_inheritance1 S D −−−PX− 64 4.5 471 7 590 11 680 17

49 static_instance 1 S D −−−−−− 9 3 103 1 114 3 161 2

50 throw_exception 1 D2 −−−−−− 84 24 610 9.0 739 13 810 21.0

51 catch_exception 1 S RS−−−C 95 6 466 4.5 612 6.0 687 11

52 try_catch_�nally 2 D2 D R−−−XY 3 6 39 2 86 2.0 197 2

53 track_error 1 S −−−P−− 135 20 333 5 407 6 521 7
54 generators 1 S R−−−X− 5 1.0 57 2 113 3 204 5.0
55 goto 1 S −−−−X− 3 8 68 8.0 95 4 155 5

56 exit 1 D S RSWP−− 261 3 182 2.0 185 4 226 4.0
57 JS_redirect 1 S −−−−−− 151 8 27 3.0 115 3 137 4.0

58 simple_array 2 D1 D R−−PXY 338 336.5 973 120 970 224.5 963 439

59 foreach_with_array 1 D S R−−−−Y 68 9.5 208 4.0 237 5 297 4

foreach_with_array 1 S R−−PXY 262 21 831 10 883 21 917 29

60 array_walk 2 D D2,D4 −−−−−− 19 1.0 43 1 60 2.0 74 2.0

61 array_map 2 D D2,D4 −−−−−− 41 12 167 3 214 5.0 280 4.0

62 parse_str_function 1 D D4 R−−−−− 17 4.0 76 1.0 88 3.0 112 2.0

63 substring_replace_function1 D S RS−−−Y 38 4.0 80 3.0 97 3 118 3.0
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64 preg_match 1 D S R−−−X− 100 6.0 277 6 279 9 355 6

65 system (system) 1 D D S R−−PXY 1 1 20 3.0 37 3 41 2

system (exec) 1 D D S R−−PXY 20 3 78 2.0 100 3.0 130 3.0

system (unlink) 1 D D S R−−PXY 101 3 159 4 181 6 237 5

66 superglobals 1 D S −SWPX− 177 7.0 331 4 355 6 413 6

superglobals 1 D S R−W−X− 323 19 112 4.0 133 8 148 5.0

superglobals 1 D S −S−−X− 9 1 58 1.5 81 2 102 2.0

superglobals 1 D S RSWP−Y 240 9 90 4.0 120 4.0 124 4.0

67 odbc 1 D D S RS−PXY 1 1 48 2.0 60 2.0 63 2

68 compact 2 D D2-D4 −−−−−− 1 1 48 2.0 60 2.0 63 2

69 create_function 1 D D1 −−−−−− 1 3 49 2 38 4.0 44 2.0

70 extract 1 D D2 −−−−−− 117 15 80 2.5 100 3.0 89 2

71 array_functions 1 D S −−−−−Y 23 1.0 86 2.0 114 2.0 155 3

array_functions 1 D S R−−−−Y 10 1.0 23 2 37 1 40 2.0

72 procedural_queries 1 D D S R−−PXY 187 26 30 2.5 33 4 24 4

procedural_queries 2 D D S −−−−XY 73 4 43 3 38 4 38 2.0

73 wrong_sanitizers 2 D D S RS−PX− 174 5 242 3.0 303 5 332 5.0

74 dirname 1 D D D1 −−−−−− 23 3.0 101 4 111 4 131 4

75 bu�er 1 D S −−−−−− 27 2 150 2.5 190 3.0 181 4

76 function_variable 2 D2,D4 −−−−−− 40 2.5 315 3 465 4 602 7.0

77 object_callable 2 D2,D4 −−−−−− 12 6 89 2 141 3 252 4.0

78 autoloading_classes 1 D D2 D −−−P−− 50 1 123 1 138 1.0 150 2.0

79 dynamic_include 1 D1 D R−−PX− 337 44 549 5 600 5.0 636 6.0

dynamic_include 1 D2 D R−−PX− 7 2 14 2.0 19 1 27 2
dynamic_include 2 D3 −−−−−− 137 2 155 5 190 4.5 219 4

dynamic_include 1 D4 −−−−−− 337 85.0 665 6 712 7.0 754 7.0

80 callback_functions 1 D1 −−−P−Y 41 2 128 3.0 159 3 208 2.5

callback_functions 2 D2 −−−P−− 5 2 11 2 15 2 31 2

callback_functions 1 D3 −−−−−− 8 7 17 2 29 1 38 1.5
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callback_functions 1 D4 −−−−−− 65 6 180 4.0 188 4.5 269 5

81 new_from_variable 1 D2 D −−−−−− 12 7 90 5.0 122 3.0 127 3

new_from_variable 1 D3 D −−−−−− 0 0 0 0 0 0 0 0

new_from_variable 1 D4 D −−−−−− 39 8 394 4.0 503 5 600 6.0

82 methods_variable 1 D2 D −−−−−− 14 4.0 99 4 163 4 211 4

methods_variable 1 D4 D −−−−−− 46 3 223 3 351 3 448 4.0

83 array_variable_key 2 D2 D R−−−XY 74 8.0 173 8 255 8 277 5

array_variable_key 2 D4 D −−−−XY 238 21 763 12 831 18 883 32

84 variable_variables 1 D2 −−−−−− 24 5.0 20 5.0 27 5 47 5

variable_variables 1 D4 −−−−−− 123 5 81 4 108 4.5 147 3

Total 122 26 16 39 7 7623 1716 22687 1031 27875 2004.5 32572 3097.5
Average 74 16.66 220.2 10 270.6 19.5 316.23 30.07

Legenda for column Tools: RIPS (R), phpSAFE (S), WAP (W), Progpilot (P), Comm_1 (X), Comm_2(Y)

.1.2 Testability patterns for JS

The JS testability patterns are listed and detailed for the community in our repository [34]. 34 of these patterns
resemble their PHP siblings, targeting basic language constructs and operators (OOP, functions and variables).
All the others focus on JS peculiarities such as speci�c data structure handlers (e.g., Proxy, WeakSet) or web
operations (e.g., Ajax requests). We classi�ed each pattern instance according to the same dimensions introduced
in Section 3.3.1 for PHP: over 153 patterns instances, 40 are about OOP, 20 capture negative test cases, 22 are
security related, and 22 refer to internal API (recall that these dimensions overlap between each other). For what
concerns the Static vs Dynamic features dimension, 101 instances are static (S ) and the rest are dynamic (17
belong to D1, 17 to D2, 10 to D3 and 8 to D4 ). Table 2 presents the testability patterns in Javascript.

Table 2: JS Patterns
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ID Pattern #i API SEC Dyn OOP Neg Tools

1 unset_element_array 1 S D L−−XY
unset_element_array 1 S L−−XY

2 uri 1 S L−ZXY
uri 1 D S D −−Z−Y

3 evaluated_call_time 1 S D L−−XY
evaluated_call_time 1 S L−−XY

4 function_apply 1 S −−−XY
5 variadic 1 S −−−X−
6 callback_function 2 D1-D3 −−−−Y
7 array_unshift 1 S L−−X−
8 send_unpack 1 S −−−XY
9 late_static_binding 1 D2 L−ZXY
10 spread_properties 1 S −−−XY
11 closure_scope_chain 1 S L−ZX−
12 NaN 1 S L−ZX−
13 function_declared_immediately_executed1 S −−−−−

14 template_literals 1 D S L−ZXY
15 re�ect_delete 2 S-D4 D −−−XY

re�ect_delete 1 D4 −−−XY
16 nullish_coaleshing_operator 1 S L−Z−−
17 call 2 S L−−XY
18 arguments 1 S L−−X−
19 nested_function 1 S L−ZXY
20 too_function_calls 2 S L−Z−Y
21 new_target 1 S L−ZX−
22 reduce 1 S −−−XY
23 forEach_in_nested 1 S L−Z−−
24 �nite 1 S L−ZXY
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25 weak_map 1 D D2 L−−XY
weak_map 1 D D2 D L−−XY

26 computed_properties 1 S −−−XY
27 cast_string_array 1 S L−ZXY
28 closures 2 D2 L−ZXY

closures 1 D2 L−−−−
29 recursion 2 D1 L−ZXY
30 generator_delegation 1 D2 −−−X−

generator_delegation 1 D4 −−−−Y
31 generatorfunction_constructor 1 D3 −−−−Y
32 array_shift 1 S L−−XY

array_shift 1 S D L−−XY
33 array_lenght 1 S D L−−XY

array_lenght 1 S L−−XY
34 bind 1 D1 −−−−Y
35 async_methods 1 D1 L−−−−
36 returned_function 1 S L−ZX−
37 generators 1 D3 −−−X−

generators 1 D3 −−−−Y
generators 1 D3 −−−XY
generators 1 D3 D −−−XY

38 while_break 1 S L−ZXY
39 function_get_arguments 1 D1 L−ZXY

function_get_arguments 1 D2 −−−X−
function_get_arguments 1 D4 −−−−−

40 function_name_con�ict 1 S L−ZXY
41 symbol 1 D S −−−XY
42 anonymous_object 1 D1 L−−−−
43 window_global 1 S L−Z−−
44 array_map 1 D2 L−−XY
45 escape_unescape(deprecated) 1 D D S D −−ZXY
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escape_unescape(deprecated) 1 D S −−ZXY
46 continue 1 S L−ZXY
47 check_type 1 D S L−ZXY
48 compare_variables 1 S −−−XY
49 arrow_function 1 D2 L−Z−Y
50 conditional_assign 1 S L−ZXY
51 global_variable 1 S L−Z−Y
52 super_property 1 D1 D −−−−−
53 simple_set 1 S D −−−XY
54 de�ne_property 1 D1 D L−Z−Y

de�ne_property 1 D1 D D L−Z−Y
55 inheritance 1 S D −−−−Y
56 weak_ref 1 D D2 D −−−−Y
57 object_seal 1 S D −−−XY
58 object_freeze 1 S D −−−XY
59 simple_object 1 D S D L−−−Y
60 object_create 1 D1 D −−−XY
61 delete_properties 1 S D D L−−−Y

delete_properties 1 S1 D −−−−Y
62 static_variable 1 S D −−−−Y
63 to_string 1 D S D L−−X−
64 assign_object 1 S D −−Z−−
65 proto 1 D4 D −−−X−
66 static_methods_and_prop 1 S D L−−−Y
67 symbol_to_string_tag 1 D D1 D −−−X−
68 promise 1 S D L−−XY

promise 2 S D L−ZXY
69 set_and_get 1 S D L−ZXY

set_and_get 1 S D L−−XY
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70 re�ect_get 1 D S D −−−XY
re�ect_get 1 D S D −−−−Y

71 named_class 1 D1 D L−−−−
named_class 1 D1 D L−−X−
named_class 1 D1 D D L−−X−

72 errors 7 D S D L−−X−
73 weak_set 1 D S D −−−XY
74 object_argument 1 S D −−ZX−
75 functions_in_object 1 D1 D −−−−Y
76 reference_argument 1 S D −−Z−−
77 object_clone 1 S D −−−−−
78 asynchronous_event_handler 1 D D2 L−Z−Y

asynchronous_event_handler 1 D D4 L−Z−−
79 inline_function 1 D1 L−Z−Y
80 json 1 D S L−ZXY
81 text_encoder 1 D S −−−XY
82 location_assign_with_search 1 D D S L−Z−Y
83 getAttribute 1 D D S −−−−Y
84 try_catch 1 S L−Z−Y

try_catch 1 D D2 L−Z−Y
try_catch 1 D D2 D L−Z−Y

85 block_scope 1 S L−ZX−
86 type_juggling 1 D3 −−−−−

type_juggling 2 D3 L−−XY
type_juggling 1 D3 D L−−XY

87 modules 1 D2 −−−−Y
88 with(deprecated) 1 S L−−XY
89 proxy 1 D S L−−XY

proxy 1 D S D L−−XY
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90 simple_array 1 S L−ZXY
simple_array 1 S D L−ZXY

91 destructuring 1 S L−ZXY
92 set_to_array 1 S D −−−−Y

set_to_array 1 S −−−−Y
93 for_of 1 S L−−XY
94 matrix 1 S −−ZXY

matrix 1 S −−−XY
matrix 1 S D −−−XY

95 arithmetic_operation_array_index 1 S L−−−Y

arithmetic_operation_array_index 1 S D L−−−Y

96 object_literals 1 S L−−XY
object_literals 1 S L−ZXY
object_literals 1 S L−Z−Y

97 vulnerable_key_dictionary 2 S-D4 −−−−−
98 throw_exception 1 D D2 L−−−−

throw_exception 1 D D4 −−−−−
99 GET_ajax 1 D D D2 L−ZXY
100 replace_substring 1 D S L−ZXY
101 innerHTML_outerHTML 2 D D S L−−−Y

Total 153 22 22 40 20

Legenda for column Tools: LGTM (L), NodeJsScan (N), Comm_3 (Z), Comm_1 (X), Comm_2(Y)

.2 Appendix B
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Table 3: Dataset: Information and Results

ID Project Project info Comm_2 Comm_1 Stitches Iter
stars functions LoC sources before after di� before after di�

1 easyappointments 2281 4561 54619 139 0 0 0 19 19 0 9 2
2 ampache 3074 9894 127334 662 12 66 54 557 557 0 29 1
3 amp-wp 1750 8038 111224 213 0 0 0 1 1 0 38 1
4 sqli-labs 4092 107 6791 214 77 77 0 83 122 39 63 3
5 jetpack 1402 20737 238372 1080 25 32 7 139 365 226 248 3
6 bjyadmin 1743 29217 178780 397 491 492 1 40 40 0 39 2
7 CodeIgniter 18183 3657 35663 308 0 0 0 18 18 0 6 2
8 boinc 1500 22237 124889 385 18 20 2 240 243 3 20 2
9 brefphp 2512 965 6867 145 7 7 0 5 5 0 0 0
10 upload-labs 2872 54 2649 129 25 25 0 43 43 0 11 3
11 cacti 1242 19825 169391 402 5429 6364 935 2397 2948 551 539 3
12 cashmusic 1166 60516 501394 1028 125 153 28 289 294 5 163 4
13 organizr 3914 56312 161912 293 10 10 0 46 46 0 1 1
14 unmark 1544 3151 40325 167 4 6 2 29 29 0 12 2
15 razor 1127 12572 91366 354 55 63 8 431 431 0 66 1
16 CodeIgniter4 4205 9602 110251 776 8 8 0 10 14 4 9 1
17 DVWA 6335 1555 21169 217 28 28 0 33 33 0 18 2
18 diskoverdata 1180 3598 34282 163 661 678 17 277 277 0 29 2
19 docker-labs 10842 23412 167147 1576 1444 1591 147 138 197 59 668 4
20 dolibarr 3339 55001 897702 8609 17249 19010 1761 13846 15044 1198 3860 6
21 drupal 3735 60469 834417 208 0 0 0 41 41 0 7 1
22 elementor 4519 8661 69504 102 4 4 0 20 20 0 18 4
23 facebook-php 3303 238 2794 115 5 5 0 2 2 0 0 0
24 yii2-fecshop 4952 17751 174633 118 4 6 2 162 162 0 11 2
25 loklak-wp 1511 28212 437612 1980 2191 2191 0 262 322 60 780 3
26 phimpme-drupal 1537 74385 699289 618 0 0 0 39 40 1 47 3
27 phimpme-wp 1534 9824 114294 1397 1224 1272 48 155 215 60 554 3
28 freescout 1563 36940 304065 229 0 0 0 56 56 0 14 1
29 FreshRSS 4542 2597 65362 168 29 29 0 82 82 0 3 1
30 Froxlor 1441 1395 60567 453 10 10 0 172 172 0 59 2
31 rhaphp 1078 15980 58617 201 5 9 4 54 55 1 15 2
32 Geocoder 3814 1453 17788 240 0 0 0 35 35 0 0 0
33 glpi 2691 13103 349606 3719 780 1925 1145 1223 1278 55 626 2
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34 imgurl 1566 2542 36465 164 1 2 1 56 57 1 20 2
35 scws 1573 417 6722 121 12 36 24 105 105 0 6 1
36 VueThink 1347 1998 24799 119 19 53 34 50 50 0 21 6
37 icecoder 1352 1515 11963 228 192 207 15 137 137 0 21 1
38 php-webshells 1713 1114 67034 1986 2519 2541 22 2401 2435 34 133 2
39 open�ights 1187 3189 10642 133 331 362 31 117 152 35 69 3
40 KodExplorer 5685 5197 58321 187 76 85 9 31 33 2 18 2
41 php-benchmark 1032 12335 155976 886 3 3 0 102 107 5 40 3
42 laravel 27494 23460 186354 443 0 0 0 2 2 0 1 1
43 Leantime 1279 2803 25268 386 29 29 0 37 37 0 34 1
44 siler 1124 1354 9518 175 0 0 0 0 0 0 0 0
45 laragon 2681 2532 49531 237 19 19 0 12 12 0 7 1
46 librenms 2801 14740 189156 597 39 103 64 969 990 21 158 6
47 Carbon-Forum 1822 3217 18462 113 33 38 5 85 85 0 20 3
48 Heimdall 4541 38854 500566 852 0 0 0 41 41 0 1 1
49 livehelperchat 1657 16291 259066 1026 455 801 346 615 791 176 335 3
50 Bon�re 1412 9957 94654 290 12 12 0 254 254 0 42 2
51 maccms10 1315 8759 79683 247 64 114 50 78 78 0 43 4
52 mailcow 5379 10489 117508 312 2201 2201 0 196 196 0 0 0
53 mantisbt 1430 4619 75258 101 48 113 65 273 286 13 197 4
54 matomo 16591 56514 278007 479 12 21 9 5 7 2 127 3
55 wp-heroku 1310 16100 364351 1579 1289 1447 158 214 271 57 671 4
56 microweber 2441 37534 223627 552 486 502 16 186 187 1 110 1
57 RPi-Jukebox 1027 689 7418 229 262 299 37 222 222 0 10 2
58 revolution 1303 13340 212276 261 4 5 1 72 96 24 36 3
59 Tieba-Cloud 1457 354 6752 106 155 161 6 154 212 58 41 2
60 nextcloud 19615 36516 374898 149 0 1 1 67 67 0 31 3
61 TeamPass 1423 36731 308672 190 100 102 2 1111 1112 1 46 2
62 php-saml 1041 3718 12467 126 0 0 0 3 3 0 29 1
63 opencart 6524 20323 140010 102 0 0 0 44 44 0 1 1
64 openemr 1950 43594 614196 5700 709 709 0 2165 2165 0 0 0
65 opnsense 2045 7011 90751 748 796 923 127 918 918 0 141 2
66 osTicket 2468 9694 186413 1372 152 569 417 546 549 3 284 2
67 owncloud 7785 141876 1142883 288 9 28 19 167 180 13 124 2
68 pfsense 3751 7660 144419 4501 841 944 103 312 330 18 382 3
69 codefever 2157 9893 84621 170 2 2 0 17 17 0 19 2
70 phabricator 12264 42138 507825 119 0 0 0 24 25 1 22 1
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71 cphalcon 10593 12477 136374 454 0 0 0 0 0 0 0 0
72 phoronix 1717 3491 69063 444 320 360 40 734 739 5 64 3
73 phpbb 1545 10958 373623 260 5 6 1 1051 1054 3 55 3
74 phpipam 1722 8574 81371 2633 392 3447 3055 2611 2711 100 640 5
75 phpmyadmin 6103 16629 169239 3082 9 30 21 417 433 16 353 5
76 AdminLTE 1539 889 9289 222 7 7 0 40 42 2 9 1
77 Piwigo 1971 9214 165970 743 263 314 51 572 581 9 200 2
78 PrestaShop 6544 39985 388000 762 153 181 28 333 351 18 125 2
79 PrivateBin 4191 1637 11487 182 4 4 0 1 2 1 8 1
80 q2a 1533 3052 39491 110 66 73 7 43 57 14 125 3
81 raspap-webgui 3682 6620 8196 263 16 16 0 81 81 0 6 1
82 chevereto 2573 2095 24861 451 33 58 25 243 246 3 76 3
83 roundcubemail 4481 5990 76416 507 105 114 9 340 407 67 191 3
84 SuiteCRM 3053 40136 453028 7669 1496 1979 483 4157 4620 463 1021 6
85 skratos 2444 2765 27039 102 0 0 0 6 6 0 3 1
86 CMS-Hunter 1560 3770 48828 337 401 401 0 20 20 0 18 2
87 vesta 2672 2512 38648 1571 146 146 0 91 113 22 173 4
88 sw-platform 1925 41493 523192 294 0 0 0 149 149 0 0 0
89 shopware 1282 51066 355113 179 0 5 5 2094 2094 0 14 1
90 dokuwiki 3476 7869 223130 569 13 17 4 57 65 8 57 1
91 symfony 27127 40468 825093 400 0 0 0 78 78 0 3 1
92 testlink-code 1162 42148 461497 977 734 1023 289 409 502 93 780 4
93 ThinkUp 3316 9827 124552 768 182 349 167 75 94 19 290 2
94 WDScanner 1616 476 5443 193 172 172 0 125 138 13 11 2
95 thinkphp 2856 3768 51134 325 90 154 64 18 18 0 21 2
96 typecho-fans 1428 24394 91606 232 15 27 12 154 158 4 131 6
97 vanilla 2548 25780 220101 217 2 34 32 102 102 0 30 3
98 adminer 5328 1612 26199 357 116 147 31 239 302 63 167 3
99 wordless 1405 7686 70934 105 53 53 0 35 35 0 6 2
100 valet-plus 1527 579 6141 100 0 0 0 11 13 2 2 1
101 Gazelle 1729 2277 71583 1361 2362 2391 29 1224 1808 584 99 2
102 mediawiki 3046 53017 618354 210 5 6 1 41 63 22 74 1
103 woocommerce 8062 20420 252407 968 0 0 0 68 68 0 204 3
104 WordPress 16450 44715 287812 1806 192 222 30 149 167 18 273 4
105 custom-�elds-pro 1112 5458 18635 123 0 0 0 1 1 0 0 0
106 PicUploader 1017 67475 688682 184 5 5 0 390 402 12 26 1
107 FruityWi� 2026 4099 18112 186 63 63 0 31 32 1 2 1



1
3
0

1
3
0

108 yii 4830 11056 743321 1015 2 7 5 21 21 0 13 1
109 yii2 13966 11888 117759 431 0 0 0 3 3 0 3 1
110 YOURLS 8268 2548 42477 179 44 61 17 39 50 11 62 3
111 pikachu 2264 204 6934 223 211 211 0 71 76 5 39 2
112 zoneminder 3744 14517 213544 1531 219 323 104 334 688 354 313 2
113 skycaiji 1578 17181 137508 251 44 102 58 148 156 8 97 4
114 dzzo�ce 3499 28897 150297 328 501 2562 2061 679 780 101 322 5

SUM 448K 1.9M 21.4M 85K 49231 61583 12352 50217 54985 4768 17308 251

Project info: Stars in Github, num of functions, PHP line of code, num of Sources. XSS, SQLI and FileM Discoveries: num
of Comm_2 alerts (before, after and di�), num of Comm_1 alerts (before, after and di�). Our approach - other info: num
of stitches and the iterations till no more stitches.

.3 Appendix C

Table 4: MVC Challenges in Laravel, Symfony, CodeIgniter, and
CakePHP

ID Relation Framework Code

1 Controller ↔ Model Laravel $products = Products::all();

2 Controller ↔ Model Symfony function method_name(ManagerRegistry $doctrine){
$entityManager = $doctrine=>getManager();
$products = $entityManager=>getRepository(Entity_name::class)=>�ndall();

}

3 Controller ↔ Model CodeIgniter $this=>load=>model('ModelName','PropertyName');

4 Controller ↔ Model CakePHP $this=>loadModel('ModelName');

5 Controller ↔ View Laravel view('view_name', ['var1'=>'val1','var2'=>'val2']);
view('view_name')=>with('var1', 'val1');

6 Controller ↔ View Symfony $this=>render('view_name', ['var1'=>'val1','var2'=>'val2']);

7 Controller ↔ View CodeIgniter $this=>load=>view('view_name', ['var1'=>'val1','var2'=>'val2']);
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8 Controller ↔ View CakePHP $this=>set('var1', 'val1');
$this=>render('view_name');

9 View ↔ View Laravel @include('view_name', ['var' => 'val'])

10 View ↔ View Symfony // Parent template
<html><title>{%block title%}Parent{%endblock%}</title></html>
// Child template
{% extends 'parent.html.twig' %}
{% block title %}Child{% endblock %}

11 View ↔ View CodeIgniter $data['nested'] = $this=>load=>view('view2', '', TRUE);
$this=>load=>view('view1', $data);

12 View ↔ View CakePHP echo $this=>fetch('view2',['var1'=>'val1','var2'=>'val2']);
$this=>extend('view2',['var1'=>'val1','var2'=>'val2']);
echo $this=>element('element_name',['var1'=>'val1','var2'=>'val2']);
$this=>cell('Cell_name::Method_name', ['val1','val2']);
$this=>loadHelper('helper_name');

13 Controller ↔ Controller Laravel redirect()=>route('route_name', ['var1'=>'val1','var2'=>'val2']);
redirect()=>action([ControllerName::class,'Method'],['var1'=>'val1','var2'=>'val2']);

14 Controller ↔ Controller Symfony $this=>redirectToRoute('page_name', ['car1' => val1]);
$this=>redirect('http://symfony.com/doc');

15 Controller ↔ Controller CodeIgniter redirect("className","methodName");
redirect("className");

16 Controller ↔ Controller CakePHP $this=>redirect(['controller' => 'ControllerName', 'action' => 'MethodName']);
$this=>setAction('MethodName');

17 Input Management Laravel public function action_name(Request $request){
$name = $request=>input('name');

}

18 Input Management Symfony $input = $request=>query=>get('page', 1);
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19 Input Management CodeIgniter $this=>input=>post('param_name');

20 Input Management CakePHP $this=>loadComponent('RequestHandler');
$input = $this=>request=>getParam('param_name');

21 Session Management Laravel public function action_name(Request $request){
$request=>session()=>put('key', 'value');
$value = $request=>session()=>get('key');

}

22 Session Management Symfony $session = $this=>requestStack=>getSession();
$session=>set('var', 'val');
$var = $session=>get('var');

23 Session Management CodeIgniter $this=>load=>library('session');
$this=>session=>set_userdata('item', 'value');
$var = $this=>session=>userdata('item');

24 Session Management CakePHP $this=>loadComponent('RequestHandler');
$session = $this=>request=>getSession();
$name = $session=>read('item');
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