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A B S T R A C T

We study the problem of selecting a subset of vectors from a large set to obtain the best signal representation
over a family of functions. Although greedy methods have been widely used to tackle this problem and many
of those have been analyzed under the lens of (weak) submodularity, none of these algorithms are explicitly
devised using such a functional property. Here, we revisit the vector-selection problem and introduce a function
that is shown to be submodular in expectation. This function not only guarantees near-optimality through
a greedy algorithm in expectation but also alleviates the existing deficiencies in commonly used matching
pursuit (MP) algorithms. We further show the relation between the single-point-estimate version of the
proposed greedy algorithm and MP variants. Moreover, we discuss extending the signal representation problem
to instances with knapsack and matroid constraints. Our theoretical findings are supported by numerical
experiments on the angle of arrival estimation problem, a typical signal representation task, demonstrating
the benefits of our method compared to traditional MP algorithms.
1. Introduction

In this paper, we are interested in revisiting the ubiquitous problem
of signal representation: from a given set of vectors, the problem
consists in selecting a subset of 𝐾 of them which best represent another
vector of interest, i.e., the target signal. This problem has found many
applications in signal processing and machine learning [1]. Within the
realm of signal processing, the vectors could be delayed versions of a
reference signal, and the goal is to represent another signal using a few
of them. This problem is encountered, for instance, in the direction of
arrival estimation (DOA) [2]. In machine learning, the vectors often
relate to features, and we want to make a prediction of a given
phenomenon using only a small part of the available features. Typically,
the involved vectors are referred to as atoms, and the set of atoms is
termed dictionary.

When dictionaries are composed of orthonormal atoms, the selec-
tion problem naturally reduces to representing the target signal as
the superposition of basis vectors; see, e.g., [3]. However, in the case
of redundant dictionaries, i.e., non-orthonormal atoms, the unique-
ness of the representation is not necessarily guaranteed. Due to inter-
pretability motivations or constraints given by a priori information, a
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parsimonious representation of the target signal is usually preferred,
which means that the representation with the least amount of atoms is
searched. Although finding the global optimal solution to this problem
is computationally intractable, greedy algorithms, e.g., matching pur-
suit (MP) and orthogonal MP (OMP), efficiently find such a solution
under appropriate conditions [4].

Aligned with the goal of the signal representation problem, MP-
based methods aim to compute a linear expansion of the target signal
in terms of a few atoms of the given dictionary. While MP constructs
its solution by successive approximations of the target signal with
orthogonal projections on elements of the dictionary [1], OMP builds
its solution by ensuring that the residual is orthogonal to the span of
previously added atoms [5]. Despite their differences, both methods
normalize all the atoms in the beginning, and, at each step, greedily
select the next atom, among the unselected ones, with the maximum
inner product with the residual. Though these methods exhibit good
performance in several instances [4], the fact that a part of each
unselected atom could lie over the span of the currently selected atoms
negatively affects the atom selection step because the remaining parts
are not normalized anymore.
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Although there have been many extensions of MP methods, e.g., [6–
9], none of these extensions provide guarantees on the optimality of
their solution for general problems. In addition, their performance
guarantees (if any) are only applicable to special cases, e.g., signals
with sparse representation or dictionaries with specific characteris-
tics [1,5–10].

Another family of methods, intended for the same goal, determines
the representation using some relaxations/modifications of the original
problem [11–15]. For instance, the method of frames (MOF), among
all solutions, picks out one whose representation coefficients have the
minimum 𝓁2-norm, while the principle of basis pursuit (BP) is to find

representation of the signal whose coefficients have the minimum
1-norm [11,12]. Yet, no guarantee is presented or the guarantees are
alid only for special cases.

Traditional ways to develop theoretical performance bounds for
ubset selection algorithms mostly involve the spectral conditions of
atrices related to the input data, see, e.g., [16]. However, the func-

ional property of submodularity can also be leveraged to analyze and
roduce performance guarantees. These efforts have led to multiplica-
ive approximation bounds for methods such as forward regression (FR)
nd OMP improving past known bounds [17].

Submodularity is a characteristic of set functions that exhibit the so-
alled diminishing returns property [18]. Employing greedy algorithms,
he maximization of a submodular function subject to cardinality and
atroid constraints (which are imposed in many practical signal rep-

esentation problems) can be performed near-optimally within a 1 −
1∕e factor [19–21]. Due to the near-optimality guarantees and the
conceptually simple algorithms, submodular optimization has appeared
in a wide variety of applications; e.g., antenna selection in multi-
input multi-output systems [22], virtual controller placement in 5G
software-defined networks [23], resource allocation in wireless com-
munication [24], sparse sampler design for detection [25], intelligent
reconfigurable surfaces placement [26], distributed machine learn-
ing [27], regression [28], online approximation algorithms [29], multi-
objective optimization [30], and active learning [31]. In addition, [32]
has proposed dictionary selection algorithms exploiting approximate
submodularity where the performance bounds are dependent on the
dictionary.

Although submodularity has been used to explain the good per-
formance of greedy algorithms for the signal representation problem,
the analyzed algorithms themselves have not been devised explicitly
using submodularity as a foundation. In this paper, we revisit the
problem of signal representation from a new perspective and introduce
a submodular objective function to devise a greedy algorithm, referred
to as submodular matching pursuit (SMP), which (𝑖) has probabilistic
near-optimality guarantees and (𝑖𝑖) overcomes the shortcomings of the
OMP algorithm. Using submodularity as a stepping stone, we discuss
the possibility of naturally extending the signal representation problem
to instances with constraints, namely knapsack and matroid constraints
while still ensuring near-optimality performance. Although other struc-
tured constraints, such as block sparsity, have been considered in the
past, to the best of our knowledge, this is the first time the afore-
mentioned constraints have been applied in the signal representation
setting. Our main contributions can be summarized as follows:

(1) We revisit the problem of signal representation and, motivated
by a wide range of applications, introduce a submodular objec-
tive set function for this problem.

(2) We propose the SMP algorithm, a greedy algorithm with a (1 −
e−1)-approximation ratio for the signal representation problem,
in expectation.

(3) We demonstrate how the so-called Optimized Orthogonal Match-
ing Pursuit (OOMP) algorithm [6] can be interpreted as the

single-point estimate version of the SMP algorithm.

2 
(4) We establish the near-optimality (in probability) of using the
finite-sample version of our introduced submodular function,
thereby substantiating the near-optimality of the OOMP algo-
rithm.

(5) We discuss extending the signal representation problem to in-
stances with knapsack and matroid constraints, arguing that
slightly modified versions of the SMP algorithm return solutions
with approximation ratios of 1

2 (1 − e−1)- and 1∕2, respectively.

Notation. Boldface lower(upper)case denote column vectors, e.g., a
(matrices A). Calligraphic letters are used for sets and || denotes the
cardinality of the set ; ⧵ is used as the operator of set subtraction.

he Hermitian operator is denoted by (⋅)𝐻 . Given a dictionary matrix
, and a subset  of indices of columns of 𝜱, 𝜱 denotes a matrix

composed of the columns of 𝜱 indexed by . span{A} stands for the
span of columns of A; and 𝜫 = 𝜱 (𝜱𝐻

 𝜱 )−1𝜱𝐻
 is the projection

atrix onto span{𝜱}. y is the projection of y over span{𝜱}. ⟨⋅, ⋅⟩
and ‖ ⋅ ‖2 denote the inner product and the 𝓁2-norm, respectively.

2. Preliminaries

Consider a set of 𝑁 𝑀-dimensional atoms, {𝝓𝑖 ∈ C𝑀}𝑁𝑖=1, being
epresented by a matrix 𝜱 ∈ C𝑀×𝑁 . This matrix is usually referred
o as dictionary. In the signal representation problem, we aim to find
n accurate representation of a target signal y ∈ C𝑀×1 over span{𝜱}
uch that only a few atoms are involved. In other words, we look for a
epresentation y with || as small as possible.

A related problem, but with a different context, is the so-called
ignal recovery problem. Given a measurement vector y, the goal is
o find the atoms and corresponding coefficients that best reconstruct
he signal. The recovery problem is modeled as follows

= 𝜱x + e, (1)

where y ∈ C𝑀×1, 𝜱 ∈ C𝑀×𝑁 , x ∈ C𝑁×1, and e ∈ C𝑀×1 are the
measurement vector, dictionary matrix, unknown coefficients vector,
and noise vector, respectively. This problem reduces to estimate of the
non-zero coefficients of x, given the measurement vector y, under the
assumption that 𝜱 is known.

As both signal representation and recovery problems have the same
goal -selecting a subset of atoms with the minimum cardinality that
best represents the signal- though in different contexts, our problem
formulation and the proposed algorithms in this work apply to both of
them.

2.1. Submodularity

Here, we list a series of definitions needed in this paper and a set of
theoretical results, within submodular analysis, which we use to sustain
the claims of this work.

First, we introduce the formal definition of submodularity.

Definition 1 (Submodularity).A set function 𝑓 ∶ 2 → R defined over
the ground set  = {1, 2,… , 𝑁} is submodular if for every  ⊆  and
for all 𝑎, 𝑏 ∈  ⧵  it holds that

𝑓 ( ∪ {𝑎}) − 𝑓 () ⩾ 𝑓 ( ∪ {𝑎, 𝑏}) − 𝑓 ( ∪ {𝑏}). (2)

The submodularity definition offers valuable intuition. Let us con-
sider  ⊆  as a set of elements providing some benefit 𝑓 (). Accord-
ing to the definition, for a submodular function 𝑓 , adding an element
𝑏 to the set , denoted as  ∪ 𝑏, does not increase the marginal benefit
of any element 𝑎. Consequently, submodular set functions demonstrate
a natural property of diminishing returns.

Monotonicity is a common property of set functions appearing in
the signal representation problem.



E. Tohidi et al. Signal Processing 226 (2025) 109638 
Fig. 1. Illustration of the sensing coverage problem with the coverage of each sensor.
Each black dot represents a possible sensor location with the circle depicting the
corresponding coverage area. The goal is to select a subset of sensors to maximize
the covered area.

Definition 2 (Monotonicity).A set function 𝑓 ∶ 2 → R defined over
the ground set  = {1, 2,… , 𝑁} is monotonic if for every  ⊆  ⊆  ,
𝑓 () ⩽ 𝑓 ().

Finally, a set function is said to be normalized if 𝑓 (∅) = 0.
We now formally define the constraint subset selection problem.

Definition 3 (Constrained Subset Selection). Given a ground set  , a set
function 𝑓 , and a set of sets , find a set satisfying  ⊆  and  ∈ ,
maximizing 𝑓 ().

From the above definition, it is clear that the signal representation
problem (described before) is an instance of the constrained subset
selection problem, where the function 𝑓 measures how well the set 
of atoms represents the target signal. The set of sets , in the standard
version of the problem, are all subsets of  whose cardinality is smaller
than a prescribed 𝐾, i.e., 𝐾 ∶= { ∶  ⊆  , || ≤ 𝐾}.

In order to illustrate constrained subset selection problems in Def-
inition 3 more clearly, here, we briefly discuss the so-called sensing
coverage problem. This example application will be used throughout
the paper to make concrete constraints discussed later.

Consider a set of potential sensor locations (i.e., the ground set)
with corresponding functioning areas that define the regions around
each sensor from which useful information can be collected. Given that
these sensors incur costs, our objective is to optimize their deployment
locations to maximize effectiveness while controlling costs. Conse-
quently, the optimization problem translates into a coverage problem,
where the goal is to maximize the covered area of the sensing field
while selecting a limited number of sensors. An illustration of such
a sensor selection problem is provided in Fig. 1, where each black
dot represents a potential sensor location and the circle represents
its coverage area. This scenario naturally leads to a constrained subset
selection [18]. Additionally, the diminishing returns property is evident
in this example; namely, the increase in coverage area provided by an
additional sensor (i.e., circle) is nonincreasing as the size of the selected
sensor set increases.

Though at first glance, the sensing coverage problem seems to be
disconnected from the signal representation problem, it is possible to
establish a direct relation between these two problems as follows. Con-
sider the correspondence between the sensors and the columns of the
dictionary, and the target signal to the target field (i.e., the rectangular
field in this case). Clearly, some atoms/sensors are correlated/have
coverage overlap and some are uncorrelated/separated. We aim to

represent/fill the target signal/field with the atoms/sensors.

3 
Now that the motivation behind the discussed setting is in order,
we now provide a well-known result with respect to the solution of this
kind of problem using a greedy heuristic. That is, when the set function
𝑓 is submodular, and  takes a particular form, we have the following
known result.

Theorem 1 ([19]). Let 𝑓 ∶ 2 → R be a normalized, monotonic,
submodular set function defined on the subsets of a finite ground set  .
Let G be a set of 𝐾 elements selected by Algorithm 1. Then,

𝑓 (G) ⩾ (1 − e−1)𝑓 (OPT), (3)

where OPT is the solution to the cardinality-constrained subset selection
problem with  = 𝐾 .

2.2. Matching pursuit algorithms

We briefly review the two main variants of MP methods, namely
MP and OMP, to put them in context with respect to Algorithm 1.

Matching Pursuit. The original version of MP iteratively constructs
a solution by substituting line 2 in Algorithm 1 by

𝑖∗ = 𝑖𝑘 ∶= argmax
𝑖∉𝑘−1

|⟨𝑅𝑘,𝝓𝑖⟩|, (4)

where 𝑅𝑘+1 ∶= 𝑅𝑘 − 𝛼𝑘𝝓𝑖𝑘 , with 𝛼𝑘 ∶= |⟨𝑅𝑘,𝝓𝑖𝑘 ⟩|; and 𝑅1 ∶= y.
Orthogonal Matching Pursuit. In this refined version of MP, the

selection rule is the same as that of (4), but with a slightly different
definition for the 𝑘th residual, i.e.,

𝑅𝑘 ∶= y − y𝑘−1 . (5)

Although OMP improves on MP, in general, the 𝑘th-selected atom
cannot be guaranteed to be completely outside of span{𝜱𝑘−1}. This
characteristic hinders the ability of OMP (and subsequently MP) to find
the best representation for the target signal in many instances.

2.3. Pitfalls of OMP: A motivating toy example

To illustrate the aforementioned problem of OMP, let us study the
following toy problem. Consider 𝑀 = 𝑁 = 3 and y = [1000, 10, 1]𝐻 . Let
the dictionary, with normalized columns, be given as

𝜱 =
⎡

⎢

⎢

⎣

1 0.9959 0
0 0.09 0
0 0 1

⎤

⎥

⎥

⎦

. (6)

Assume a cardinality constraint that limits the representation to a
maximum of 𝐾 = 2 atoms. In the first iteration, OMP selects the
first column as it has the maximum inner product with the signal y.
Removing the projected part, i.e., y{1}, the residual is equal to 𝑅2 =
[0, 10, 1]𝑇 . A quick calculation of the inner product between 𝑅2 with
the two remaining columns gives

⟨𝑅2,𝝓2⟩ = 0.9, ⟨𝑅2,𝝓3⟩ = 1. (7)

Therefore, at the second iteration, OMP selects the third column form-
ing the solution OMP = {1, 3}. This leaves a final residual of 𝑅3 =
[0, 10, 0]𝐻 with norm 10, while, if we select the first two columns,
i.e.,  ′ = {1, 2}, the final residual would have a norm of 1, i.e., 𝑅′

3 =
[0, 0, 1]𝐻 .

The reason for this deficiency in the selection of vectors is that at
the second iteration, the second column has a non-zero inner prod-
uct with the first column which is already selected. This causes the
normalization of columns in the initialization phase to be unfair.

In the following, using (5) as a foundation, we introduce a submod-
ular function that (𝑖) naturally tackles the aforementioned problem of

OMP and (𝑖𝑖) allows for near-optimal guarantees through Algorithm 1.
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3. Sparse representation and submodularity

In this section, we first discuss a closely related result in the inter-
section of sparse representation and submodularity. We then argue that
if the average performance of the reconstruction, over the input space,
is considered, the resulting function can be shown to be submodular.
We use this result to provide an efficient algorithm with probabilistic
guarantees in the next section.

3.1. Sparse representation objective

Let us consider a set of 𝑚 target signals, {y(𝑖)}𝑚𝑖=1. Given that our
oal is to best represent the target signals, we can consider the residual
c.f. (5)] for the last step and put forth the following objective for
onstructing the solution set

𝑚() ∶=
1
𝑚

∑

𝑖

[

‖y(𝑖)‖22 − ‖y(𝑖) − y(𝑖) ‖

2
2
]

, (8)

here y(𝑖) denotes the projection of the 𝑖th target signal onto span{𝜱}.
The objective function (8) has been considered before in [32] for

he dictionary selection problem and its approximate submodularity has
een shown. Here, we restate this result for completeness.

heorem 2 ([32]). If the dictionary 𝜱 has incoherence 𝜇 ∶= max
∀(𝑖,𝑗),𝑖≠𝑗

⟨𝝓𝑖,𝝓𝑗⟩|, then 𝑓𝑚 satisfies

𝑚( ∪ {𝑎}) − 𝑓𝑚() ≥ 𝑓𝑚( ∪ {𝑎, 𝑏}) − 𝑓𝑚( ∪ {𝑎}) − 𝜖 (9)

or all 𝑎, 𝑏 ∈  ⧵ , where 𝜖 ≤ 4𝐾𝜇.

Although the above result, in combination with the guarantees
rovided in [32], portrays an optimistic landscape for finding a near-
ptimal solution to the dictionary learning problem (an instance of the
parse representation problem), the guarantees available for Algorithm
degrade with the number of desired atoms, 𝐾 and does not depend

n the number, 𝑚, of considered target signals.
In spite of the above issue with the near-optimality guarantee, in

ractice, the greedy algorithm empirically performs well for large 𝑚.
ere, we argue that this has to do with the properties of (8) when
→ ∞.

.2. Asymptotics of sparse representation objective function

Let the objective function for 𝑚 → ∞ be given by

() ∶= lim
𝑚→∞

𝑓𝑚() = E{‖y‖22 − ‖𝑅‖
2
2}, (10)

here E{⋅} stands for the expectation over the input space; and 𝑅 ∶=
− y .

After some mathematical manipulations (see Appendix A), the
arginal gain of (10), i.e., 𝛥(𝑠|) ∶= 𝑓 (𝑠 ∪ ) − 𝑓 (), can be written

s

(𝑠|) = tr
{

1
‖v𝑠‖22

v𝐻𝑠 Ryv𝑠
}

(11)

here v𝑠 ∶= (I −𝜫 )𝝓𝑠; and Ry ∶= E{yy𝐻}.
Note that when there is no structure in the input space, i.e., Ry = I,

he marginal gain 𝛥(𝑠|) is independent of both  and 𝑠; that is,

(𝑠|) = 1 ∀ 𝑠 ∈  ⧵  ,  ⊂  . (12)

The assertion in (12) implies that in such a case, (10) is a modular
et function, i.e., equality holds in (2).

In practice, a sparse representation is usually searched under the
ssumption that there exists some structure in the input space, hence the
bove results seem irrelevant. However, building on the developed intu-
tion, in the following, we show that function (10) is indeed submodular
ndependently of the structure of the input signal space.

Before showing the submodularity of 𝑓 , we establish its following
roperty.
 t

4 
Algorithm 1 Greedy Algorithm

Input: 𝑓 (⋅), 𝐾,  .
utput: 𝐾 .
Initialization: 0 = ∅;

1: for 𝑘 = 1 to 𝐾 do
2: 𝑖∗ = argmax

𝑖∈⧵𝑘−1
𝑓 ( ∪ {𝑖})

3: 𝑘 ← 𝑘−1 ∪ {𝑖∗};
4: end for

Proposition 1. The set function 𝑓 is a normalized and nondecreasing
(monotonic) set function.

Proof. We show that 𝑓 is normalized by noticing that if  = ∅,
then y = 𝟎, and therefore 𝑓 (∅) = E{‖y‖22 − ‖y‖22} = 0. To show the
monotonic behavior of 𝑓 , it is sufficient to show that 𝑓 () ⩽ 𝑓 ( ∪{𝑎})

here 𝑎 ∉  is an index of a column of 𝜱. This fact can be seen
y setting the 𝑎th coefficient of y∪{𝑎} to 0 (a special case of y∪{𝑎}):
his selection leads to 𝑓 () = 𝑓 ( ∪ {𝑎}). Thus, in general, 𝑓 () ⩽
( ∪ {𝑎}). □

Now, to show the submodularity of 𝑓 (⋅), we need to introduce the
ollowing result.

emma 1. Let y be a vector in a Hilbert space . If u, v ∈  be two
normalized vectors (i.e., unit norm) such that span(u, v) = , then, the
following inequality holds:

E{‖y‖22} ⩾ E{‖y − ⟨y,u⟩u‖22 + ‖y − ⟨y, v⟩v‖22}. (13)

Proof. See Appendix B. □

The above lemma provides a way to guarantee that on average, the
energy of the target signal is not over-represented by arbitrary vectors
spanning the space wherein it lives. Using the above lemma, we are
ready to state the following result.

Theorem 3. The function 𝑓 (⋅) defined in (10) is submodular.

Proof. See Appendix C. □

The result in Theorem 3 has the following implication.

Corollary 1. Let 𝑓 be given as (10), and  = 𝐾 , for some prescribed 𝐾.
Then, the set G returned by Algorithm 1 provides a (1−e−1)-approximation
for the cardinality-constrained subset selection problem.

Despite that the above results guarantee near-optimality for the
set constructed by the greedy algorithm, this, in general, requires
knowledge of the statistics of the input space, i.e., Ry. Unfortunately,
in many cases, this information is not available (or is only known
approximately). Thus, Algorithm 1 cannot be directly employed in
practice. In the next section, we retake our previous toy example and
discuss the single-point-estimate version of the greedy algorithm which
deals with the (possible) lack of statistics of the input space. And we
provide near-optimality guarantees for the finite-sample case of (10).

4. Submodular matching pursuit

Recall that to maximize 𝑓 [c.f. (10)], Algorithm 1 selects, at the 𝑘th
step, the element which maximizes the marginal gain; that is,

𝑖∗ = argmax
𝑖∉𝑘−1

𝛥(𝑖|𝑘−1) = E
{

⟨𝑅𝑘−1 ,𝝓𝑖⟩
2

‖(I −𝜫𝑘−1 )𝝓𝑖‖
2
2

}

. (14)

Different from OMP (and MP), the greedy heuristic in (14) selects

he column of the dictionary with the largest expected weighted inner
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Algorithm 2 SMP :: Single-point-estimate
Input: 𝜱, y, 𝐾.
Output: .

Initialization:  = ∅; 𝑅 = y; Z = []; V = []
1: for 𝑘 = 1 to 𝐾 do
2: for 𝑖 ∉  do
3: if 𝑘 = 1 then
4: 𝜫 = 𝟎
5: end if
6: 𝝓̃𝑖 = (I −𝜫 )𝝓𝑖
7: 𝝓̃𝑖 = 𝝓̃𝑖∕||𝝓̃𝑖||2
8: end for
9: 𝑖∗ = argmax𝑖∉ |𝝓̃𝐻

𝑖 𝑅|
10:  =  ∪ {𝑖∗}
11: V = [V 𝝓̃𝑖∗ ]
12: Update Z = (V𝐻V)−1 using (42)
13: 𝜫 = VZV𝐻

14: 𝑅 = (I −𝜫 )y
15: end for

product with respect to the residual. The applied weights in (14) are
given by the norm of the component of the column (atom) living in
the orthogonal subspace to span{𝜱}. From this point on, we refer to

lgorithm 1 as Submodular Matching Pursuit (SMP) when the greedy
ule (14) is employed.

.1. Revisiting our motivating example

To illustrate how the weights of (14) work, let us recall our toy
xample [c.f. (6)] and consider that the expectation in (14) is removed,
nd only a particular target signal is assumed. After the first step of the
reedy algorithm, i.e., 1 = {1}, we have the following reweighted atoms

1 ∶=
{

ṽ2 ∶=
⎡

⎢

⎢

⎣

0
1
0

⎤

⎥

⎥

⎦

, ṽ3 ∶=
⎡

⎢

⎢

⎣

0
0
1

⎤

⎥

⎥

⎦

}

, (15)

where the atoms are the decorrelated versions of the previous columns,
i.e., ṽ𝑖 = (I − 𝜫{1})𝝓𝑖∕‖(I − 𝜫{1})𝝓𝑖‖2. Notice that the last atom is
kept unchanged as it has a zero inner product with the first column.
Calculating the inner products with the target signal we have

⟨y, ṽ2⟩ = 10, ⟨y, ṽ3⟩ = 1. (16)

Thus, the second column is selected in the second iteration. This
version of the algorithm, referred to as single-point-estimate SMP (see
Algorithm 2), is indeed the optimized orthogonal matching pursuit
(OOMP) method [6]. Here, we refer to it as single-point-estimate as
the expectation is approximated with a single sample (unique target
signal). Although OOMP was originally derived to alleviate the com-
mon issues of OMP, we arrive at it by means of submodularity, taking
a completely different route. This further supports the evidence that
OOMP can achieve good results in practice as it leverages intrinsically
the submodularity of the underlying cost function. It is worth noting
that in the case of a dictionary learning problem with 𝑚 > 1, the
solution is obtained by substituting line 9 in Algorithm 2 with the
following expression:

𝑖∗ = argmax
𝑖∉

𝛥(𝑖|), (17)

where 𝛥(𝑖|) is defined based on the objective function 𝑓 in (8).

4.2. A finite-sample result for submodular matching pursuit

Though we have shown that asymptotically, 𝑚 → ∞, the set function

𝑓𝑚 is a submodular set function, most of the cases of practical interest l

5 
occur when 𝑚 is finite; that is, in the finite-sample regime. Thus, in the
following, we provide a near-optimality guarantee for the case where
the finite-sample version [c.f. (8)] (and therefore any variant of SMP)
is used to find a solution for (10) using Algorithm 1.

Theorem 4. Let 𝑓𝑚 and 𝑓 be defined as in (8) and (10), respectively.
Further, assume that the target signals {y(𝑖)}𝑚𝑖=1 are i.i.d. Given a prescribed
𝐾 and tolerance 𝜖𝑚, the set G returned by Algorithm 1, using 𝑓𝑚 as input,
satisfies

P(𝑓𝑚(G) ≥ (1 − e−1)𝑓 (OPT) − (2𝐾 + 1)𝜖𝑚) = 𝑝𝐾 (18)

where

ln 𝑝𝐾 = (2𝐾 + 1)𝐾 ln(1 − 𝜎2∕𝑚𝜖2𝑚), (19)

where 𝜎2 ∶= max⊆𝑉 E{|𝑓𝑚() − 𝑓 ()|2}.

roof. See Appendix D □

This result is similar in flavor to that of [32] in the sense that it
hows the near-optimality of employing the cost function (8) to solve
he signal representation problem, but differs in the following aspects:
𝑖) it is probabilistic; (𝑖𝑖) it has a dependency on the number of target
ignals considered; and (𝑖𝑖𝑖) it is applicable to Algorithm 2 even though
he true objective to maximize is 𝑓 . Due to (𝑖𝑖𝑖), we can then guarantee
probabilistically) the near-optimality of the set returned by Algorithm

(and hence OOMP) for the signal representation problem as it is a
pecial case of the result of Theorem 4 with 𝑚 = 1.

. Constrained submodular matching pursuit

Although in the literature there have been efforts to extend classical
atching pursuit algorithms to settings with constraints, see, e.g., [33–
6], most of this work either focus on linear constraints, i.e., restriction
f the solution to a linear subspace, or in the modification altogether
f the cost to optimize to promote structural characteristics in the
olution. These considerations lead to algorithms, that though based
n MP methods, deviate significantly from their original formulation.
hus, in many cases, they do not enjoy the simplicity of MP approaches.

Deviating from the type of constraints addressed in the above-
entioned works, we here shift our attention to constraints that are
ervasive in selection problems: combinatorial constraints. Also, we
how that for these kinds of constraints, under minor modifications to
lgorithm 2, near-optimal guarantees can be provided. In this section,
e first formally introduce these kinds of constraints, namely knapsack
nd matroid constraints, and provide examples of applications, within
ignal processing, wherein they naturally appear. Then, we discuss the
odifications to Algorithm 2 that are required to provide near-optimal

uarantees by means of a greedy heuristic.

.1. Knapsack constraints

Instead of enforcing a cardinality constraint for the subset selection
roblem in Definition 3, in many applications, the elements in  might
ave non-uniform costs, i.e., 𝑝𝑠, 𝑠 ∈  . Thus, given a budget 𝐵, we
re interested in finding a set  ⊆  maximizing 𝑓 (), subject to
he budget constraint 𝑝 =

∑

𝑠∈ 𝑝𝑠 ⩽ 𝐵. This situation arises, for
xample, in the sensing coverage problem (Fig. 1) where each of the
ensors has a given operative cost. Different sources of energy, variety
f accommodation costs, or level of energy efficiency can be the reason
ehind this difference in operative cost. Subsequently, in such cases, the
onstraint on the number of sensors, the cardinality constraint, converts
o a budget constraint in which the total cost of selected sensors should
ot exceed the given budget.

In order to maximize the knapsack-constrained representation prob-

em, we build a solution using two variants of the proposed SMP



E. Tohidi et al.

a
A

𝑖

a
f

𝑖

B
s
s
s
w
o
s
i

5

R
i
i
o
t
s
t
t
c
i

Signal Processing 226 (2025) 109638 
Fig. 2. Performance comparison of different algorithms for a small scenario with a cardinality constraint (a) Objective function versus 𝐾, (b) Estimation error versus 𝐾.
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lgorithm. The first variant substitutes the selection rule (line 9) in
lgorithm 2 by
∗ = argmax |𝝓̃𝐻

𝑖 𝑅|, (20)
s.t. 𝑖 ∈ {𝑗 ∶ 𝑗 ∉  , 𝑝∪{𝑗} ≤ 𝐵},

nd in the second variant, the selection rule is substituted by the
ollowing rule
∗ = argmax |𝝓̃𝐻

𝑖 𝑅|∕𝑝𝑖 (21)
s.t. 𝑖 ∈ {𝑗 ∶ 𝑗 ∉  , 𝑝∪{𝑗} ≤ 𝐵}.

oth algorithms stop when there is no element satisfying the con-
traints. It is shown that if 𝑓 is a normalized, monotonic, submodular
et function, executing both variants of the proposed algorithm and
electing the best of the two results, achieves the optimal solution
ith the factor 1

2 (1 − e−1) [37]. Further, with a partial enumeration
f all feasible sets of cardinality one or two, and substituting the
election rule (21) in Algorithm 2, a (1− 1∕e)-approximation guarantee
s achieved [38].

.2. Matroid constraints

A matroid is defined as a pair ( ,) in which  is a finite set
and  ⊆ 2 comprises any subset of  which satisfies the following
properties:

•  ⊆  ⊆  and  ∈  implies  ∈ .
• , ∈  and || > || implies that ∃𝑎 ∈  ∖ such that
 ∪ {𝑎} ∈ .

ecalling the sensing coverage problem, in some applications, the ex-
stence of some of the sensors can be mutually exclusive. For example,
n case the locations of candidate sensors are physically overlapping,
nly one would fit in the considered position. Also, one can consider
he case that different subgroups of sensors are fed from particular
ources of energy with limited capacities. This could lead, for instance,
o constraints with respect to the number of selected sensors from
he different subgroups. To provide a more concrete example, let us
onsider {𝑖, 𝑖 = 1,… ,𝑀} to be a partition of the ground set  ,
.e.,  =

⋃𝑀
𝑖=1 𝑖 ∶ 𝑖 ∩ 𝑗 = ∅ ∀ 𝑖, 𝑗. Defining the matroid ( ,)

with  = {| ⊆  , | ∩𝑖| ⩽ 𝐾𝑖, 𝑖 = 1,… ,𝑀}, we obtain a so-called
partition matroid. This kind of matroids has applications, for instance,
in the problem of joint transmit/receive antenna selection, e.g., [22].
In this setting, the partition matroid, ( ,), is composed of the sets
of transmitters and receivers, and 𝐾1 and 𝐾2 denote the maximum
allowed number of transmitters and receivers, respectively, that can be
selected.
 o

6 
Recalling the subset selection problem in Definition 3, to maximize
the objective function subject to a given matroid ( ,), we employ
the proposed SMP algorithm by substituting the selection rule (line 9)
in Algorithm 2 by

𝑖∗ = argmax |𝝓̃𝐻
𝑖 𝑅|, (22)

s.t. 𝑖 ∈ {𝑗 ∶ 𝑗 ∉  ,  ∪ {𝑗} ∈ }.

and the algorithm stops when there is no such element. It is shown that
if 𝑓 is a normalized, monotonic, submodular set function, the proposed
algorithm achieves the optimal solution with the factor 1

2 [39]. Alter-
natively, a (1 − 1∕e)-approximation guarantee can be achieved if the
continuous greedy algorithm in [21] is used instead.

6. Experiments

In this section, we make a comparison between the SMP algorithm
and the MP and OMP algorithms. First of all, it is worth noting that the
MP and OMP algorithms have computational complexities of 𝑂(𝐾𝑀𝑁)
nd 𝑂(𝐾𝑀𝑁+𝐾3), respectively. When comparing computational com-
lexities, the proposed SMP algorithm requires approximately 𝐾 times
ore computations. In the sequel, we compare the algorithms from

heir performance perspective.
For the following set of simulations, we consider the direction of ar-

ival (DOA) estimation problem [2]. We assume an array of 𝑀 sensors
laced along a line with 𝜆∕2 spacing (𝜆 is the wavelength). Moreover,
e grid the total angle span of interest, for these simulations [−80, 80]
egree, into a set of 𝑁 discrete angle cells. Using the formulation in (1),
e consider an additive white Gaussian noise (AWGN) with a signal-

o-noise ratio (SNR) equal to 20dB. Also, we consider there exist 𝐾
ources in the assumed angle span. To evaluate the performance of
he algorithms for both signal representation and recovery problems,
e consider two metrics. One is the objective function introduced

n (10) (without the expectation) which determines the quality of
epresentation. The other metric is the estimation error which is defined
s ‖𝜽() − 𝜽𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙‖2 where 𝜽() and 𝜽𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 are the estimate and real
OAs, respectively.

For the first case, we compare SMP, OMP, and MP algorithms for
scenario with 𝑀 = 10 and 𝑁 = 15 for the problem with cardinality

onstraint. Since it is a small scenario, the optimal solution (the result
f an exhaustive search) is also compared. It should be noted that since
e are working with a noise-contaminated signal, the exhaustive search
ay result in a higher objective value in comparison with the original

et of columns. Fig. 2(a) depicts the objective function versus the
ardinality constraint 𝐾. As observed in the figure, SMP outperforms
MP and MP and approaches the optimal solution. Using the solution

f these algorithms for signal representation, in Fig. 2(b), the estimation
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Fig. 3. Performance comparison of different algorithms for a large scenario with a cardinality constraint (a) Objective function versus 𝐾, (b) Estimation error versus 𝐾.
Fig. 4. Performance comparison of different algorithms for a large scenario with a matroid constraint (a) Objective function versus 𝐾, (b) Estimation error versus 𝐾.
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rror versus 𝐾 is plotted (clearly the estimation error for the original
et of columns is zero and is not plotted). It is worth pointing out that
higher value of the objective function does not necessarily result in
lower estimation error. As shown in Fig. 2(b), the SMP has a lower

stimation error in comparison with OMP and MP.
For the second case, in Fig. 3, we compare different algorithms for

scenario with 𝑀 = 30 and 𝑁 = 100 where we have the cardinality
onstraint. Again, the superiority of SMP over OMP and MP is clear in
igs. 3(a) and 3(b).

For the final case, we consider the representation problem subject
o a matroid constraint. In this scenario, we have 𝑀 = 30 and 𝑁 = 100.
oreover, the matroid constraint is constructed as follows: we split the

otal 100 angle cells into 50 groups of non-overlapping angle cells each
onsisting of 2 consecutive angle cells. We put the limitation that at
ost one angle cell from each group can be selected. This defines a
artition matroid. Fig. 4 depicts the results of different algorithms. In
ig. 4(a), although the gap between the original solution and the result
f SMP is increased, SMP is still better than OMP and MP algorithms.
n addition, the estimation error plotted in Fig. 4(b) presents similar
esults for all three algorithms.

Even though the results look quite good for cardinality constraints,
he gains seem to be less impressive for matroid constraints, especially
n Fig. 4(b). An intuitive explanation is that in the matroid example,
e have two possibilities in each partition (consecutive angle cells).
ven if the selected cell within the two cells of a partition is wrong, its

ontribution to the estimation error, i.e., ‖𝜽() − 𝜽𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙‖2, is small, S

7 
hile the superiority of the SMP is still evident in Fig. 4(a) due to
pplying a different objective function.

. Conclusion

Investigating the problem of signal representation from a new per-
pective, we introduced a new formulation and proved that the ob-
ective function is submodular. We discussed how the problems of
ignal representation and signal recovery are related, and thus, the
ame model and algorithm work for both. Besides the conventional
ardinality constraint, for the first time, we posed this problem with a
atroid constraint which enables using the proposed SMP algorithms

or a wider variety of applications. Leveraging submodularity, we
roposed the SMP algorithm that not only (for the first time) provides
valid near-optimal performance bound for any signal representation

roblem, but also resolves the existing deficiency in the OMP algorithm.
n addition, we show the connection of the single-point-estimate ver-
ion of SMP with OOMP. Finally, as shown through the simulations, the
MP algorithm outperforms the MP and OMP algorithms.
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Appendix A. Marginal gain expression

Let us first expand the set function and rewrite it as

𝑓 () = E{‖y‖22 − ‖y − y‖22} = 2E{⟨y,y ⟩} − E{‖y‖22}

= 2E{y𝐻𝜫y} − E{(y𝐻𝜫 )(𝜫y)} = E{y𝐻𝜫y}, (23)

where the fact 𝜫𝜫 = 𝜫 has been used. Now, using the above
expression, the marginal gain 𝛥(𝑠|) can be expressed as

𝛥(𝑠|) = 𝑓 ( ∪ {𝑠}) − 𝑓 () = E{y𝐻 (𝜫 +𝜫 ṽ𝑠 )y} − E{y𝐻𝜫y}

= E{y𝐻𝜫 ṽ𝑠y}. (24)

Recalling that ṽ𝑠 ∶= v𝑠∕‖v𝑠‖2, with v𝑠 ∶= (I − 𝜫 )𝝓𝑠, the projection
matrix 𝜫 ṽ𝑠 can be written as

𝜫 ṽ𝑠 = ṽ𝑠ṽ
𝐻
𝑠 = 1

‖v𝑠‖22
v𝑠v𝐻𝑠 . (25)

ence, applying trace properties to the terms in (24), i.e.,

(𝑠|) = E{y𝐻𝜫 ṽ𝑠y} = E{tr
(

y𝐻𝜫 ṽ𝑠y
)

} = tr
(

𝜫 ṽ𝑠E{yy
𝐻}

)

, (26)

nd setting Ry ∶= E{yy𝐻}, the expression (11) for the marginal gain is
btained.

ppendix B. Proof of Lemma 1

roof. Expanding right side of (13) leads to

E{‖y‖22} ⩾ E{‖y‖22 + ⟨y,u⟩2 − 2⟨y,u⟩2 + ‖y‖22 + ⟨y,v⟩2 − 2⟨y,v⟩2}

E{⟨y,u⟩2 + ⟨y,v⟩2} ⩾ E{‖y‖22} ⇒ E{
‖y‖22
2

+
‖y‖22
2

} ⩾ E{‖y‖22},

(27)

here the last inequality is obtained by the following integration:

{⟨y,u⟩2} =
E{‖y‖22}

2𝜋 ∫

2𝜋

0
cos2 𝜃𝑑𝜃 =

E{‖y‖22}
2𝜋 ∫

2𝜋

0

1 + cos 2𝜃
2

𝑑𝜃

=
E{‖y‖22}

2
,

(28)

where a uniform distribution is considered for the angle between y and
. This assumption is due to the fact that y in Lemma 1 is not the
riginal signal but a projection of the original signal into the span of
wo vectors as derived in Theorem 3 and particularly in (34). As there
s no prior information on these two vectors, it is reasonable to consider
uniform distribution for the angle between the projected part and u.

It is worth mentioning that the uniform distribution is not the
nly distribution that brings the result of (28). Based on (28), it is
traightforward to see that (27) is met for any probability density
unction (pdf) of the angle between y and u, denoted by 𝑓 (𝜃), as long as

the inequality ∫ 2𝜋
0 𝑓 (𝜃) cos 2𝜃𝑑𝜃 ⩾ 0 is satisfied. Apart from the pdfs that

hold the constraint in an equality form (e.g., the uniform distribution
as shown in (28)), for any pdf 𝑓1(𝜃) that strictly satisfies the inequality,
here is a corresponding pdf 𝑓2(𝜃) = 𝑓1((𝜃 + 𝜋∕2) mod 2𝜋) that violates
he constraint, and vice versa, i.e.,

2𝜋

0
𝑓2(𝜃) cos 2𝜃𝑑𝜃 = ∫

2𝜋

0
𝑓1(𝜃) cos(2𝜃 − 𝜋)𝑑𝜃

= −∫

2𝜋

0
𝑓1(𝜃) cos 2𝜃𝑑𝜃.

(29)

onsequently, more than half of the possible pdfs (i.e., including the
nes that satisfy the equality form plus half of the rest) lead to the
esult of Lemma 1. □
8 
ppendix C. Proof of Theorem 3

roof. Substituting (10) in (2) leads to

{‖y‖22 − ‖y − y∪{𝑎}‖22 − ‖y‖22 + ‖y − y‖22}
⩾ E{‖y‖22 − ‖y − y∪{𝑎,𝑏}‖22 − ‖y‖22 + ‖y − y∪{𝑏}‖22}.

(30)

Simplifying equal terms from both sides, (30) reduces to

E{‖y − y‖22 − ‖y − y∪{𝑎}‖22} ⩾ E{‖y − y∪{𝑏}‖22 − ‖y − y∪{𝑎,𝑏}‖22}. (31)

ere, we introduce 𝝓{𝑎̃} and 𝝓{𝑏̃} in order to present the part of 𝝓{𝑎} and
{𝑏}, respectively, that are not in span{𝜱}, i.e., 𝝓{𝑎̃},𝝓{𝑏̃} ⟂ span{𝜱}.
oreover, we restate y as

= ỹ + y + y{𝑎̃,𝑏̃}, (32)

where ỹ is defined as the residual of projecting y over span{𝜱∪{𝑎̃,𝑏̃}},
i.e., ỹ = y − y∪{𝑎̃,𝑏̃}. Expanding y using (32) and following some
simplifications we obtain

E{‖ỹ + y{𝑎̃,𝑏̃}‖22 − ‖ỹ + y{𝑎̃,𝑏̃} − y{𝑎̃}‖22} ⩾ E{‖ỹ + y{𝑎̃,𝑏̃} − y{𝑏̃}‖22 − ‖ỹ‖22}.

(33)

Since ỹ is orthogonal to the other terms in (33), the following inequality
is obtained:

E{‖y{𝑎̃,𝑏̃}‖22} ⩾ E{‖y{𝑎̃,𝑏̃} − y{𝑎̃}‖22 + ‖y{𝑎̃,𝑏̃} − y{𝑏̃}‖22}, (34)

which is correct based on Lemma 1. □

Appendix D. Proof of Theorem 4

Proof. To show the result, consider the following chain of inequalities,
i.e.,

𝑓 (OPT)
(𝑎)
≤ 𝑓 (OPT ∪ 𝑖)

(𝑏)
= 𝑓 (𝑖) +

𝑘
∑

𝑗=1
𝛥(𝑣∗𝑗 |𝑖 ∪ 𝑣1,… , 𝑣𝑗−1)

(𝑐)
≤ 𝑓 (𝑖) +

∑

𝑣∈∗
𝛥(𝑣|𝑖) (35)

(𝑑)
≤ 𝑓𝑚(𝑖) + 𝜖𝑚 +

∑

𝑣∈OPT

[𝛥𝑖+1 + 2𝜖𝑚] = 𝑓𝑚(𝑖) +𝐾𝛥𝑖+1 + 𝛼𝜖𝑚,

(36)

where (𝑎) is due to monotonicity; (𝑏) is established by a telescopic
sum; (𝑐) is result of submodularity; and (𝑑) holds with probability (1 −
𝜎2∕𝑚𝜖2𝑚)

2𝐾+1 by a Chernoff’s bound-type inequality. 𝛥𝑖+1 ∶= 𝑓𝑚(𝑖+1) −
𝑓𝑚(𝑖) and 𝛼 = 2𝐾 + 1.

Now, we can define the following quantity.

𝛿𝑖 ∶= 𝑓 (OPT) − 𝑓𝑚(𝑖)
(𝑎)
≤ 𝐾𝛥𝑖+1 + 𝛼𝜖𝑚 = 𝐾(𝛿𝑖 − 𝛿𝑖+1) + 𝛼𝜖𝑚, (37)

where (𝑎) is established using the previous inequalities. Rearranging
terms from the above expression, we get

𝛿𝑖+1 ≤
(𝐾 − 1)

𝐾
𝛿𝑖 + 𝜖′𝑚, (38)

here 𝜖′𝑚 ∶= (2 +𝐾−1)𝜖𝑚.
Finally, applying the above inequality repetitively (𝑘 times), we

btain

𝑘 ≤
(

𝐾 − 1
𝐾

)𝑘
𝛿0 + 𝜖′𝑚

𝑘−1
∑

𝑙=0

(

𝐾 − 1
𝐾

)𝑙 (𝑎)
≤ e−𝑘∕𝐾𝑓 (OPT) + 𝑘𝜖′𝑚, (39)

which leads to the desired result

𝑓 ( ) ≥ (1 − e−1)𝑓 ( ) −𝐾𝜖′ . □ (40)
𝑚 G OPT 𝑚
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Appendix E. Computational aspects: Matrix update

Given a matrix X with inverse Y = (X𝐻X)−1, the procedure for
updating Y, when a column is added to the matrix X, is given by the
following procedure.

Consider Xnew =
[

X v
]

, thus

Y−1
new = X𝐻

newXnew =
[

X𝐻

v𝐻
]

[

X v
]

=
[

X𝐻X X𝐻v
v𝐻X v𝐻v

]

(41)

Using the inverse of a partitioned matrix, the updated inverse is
achieved as follows [40]

Y =
[

X𝐻X X𝐻v
v𝐻X v𝐻v

]−1

=
[

F −𝛼YX𝐻v
−𝛼v𝐻XY𝐻 𝛼

]

(42)

where

𝛼 = 1
v𝐻v − v𝐻XYX𝐻v

, F = Y + 𝛼YX𝐻vv𝐻XY𝐻 . (43)

Eq. (42) is then used in Algorithm 2 to alleviate the computational
complexity of taking the full inverse.
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