
3/4/96

1 of 33

The Beteus Application
Programming Interface

Christian Blum and Olivier Schaller

Institut Eurécom
2229, route des Crêtes
F-06904 Sophia-Antipolis Cedex
{blum,schaller}@eurecom.fr

This technical report describes
application development on top of
the Beteus application platform. It
contains a complete reference of the
Beteus programming interface for
the development of tele-conferenc-
ing applications.

1 Introduction to Beteus

The application programming interface (API) described in this technical report was developed as
part of the collaborative teleconferencing platform of the European Beteus (Broadband Exchange
for Trans-European Usage) project [1][2][3][4]. The Beteus platform and its applications were
deployed in field trials over the European ATM pilot network which interconnects the Beteus part-
ners in France (Eurécom, Sophia Antipolis), Switzerland (CERN in Geneva, EPFL in Lausanne,
ETHZ in Zürich), Germany (TUB Berlin) and Sweden (KTH Stockholm). Beteus is a 16-month
follow-up to the BETEL tele-teaching project [5] in which two of the Beteus partners, Eurécom
and EPFL, were involved. The Beteus platform profited from the experience gained with the
BETEL tele-teaching application which was one of the first collaborative applications to be run
over cross-national ATM links in Europe.

Today’s collaborative teleconferencing systems are usually implemented as stand-alone applica-
tions with fixed interaction and communication scenarios. They implement all the components of
a teleconferencing system, from low-level media transmission and processing up to the user inter-
faces, from scratch. One drawback of this approach is that the interaction and communication sce-
narios may be hard to modify once implementation is reasonably advanced, or their modification
may even turn out to be impossible. Another drawback is that software may be hard to reuse for
other applications if its internal interfaces were not defined with this requirement in mind.

Technical Report: Eurecom-RR-96-020 December 1995

2 of 33 The Beteus Application Programming Interface

Ease of modification and software reuse were two prominent requirements imposed on the design
of the teleconferencing system for Beteus. This is because the main focus of Beteus is not so
much on the actual application than on a concept called thevirtual community. A virtual commu-
nity can be described as a group of people that interact with each other in a natural way by means
of a networked application. One prerequisite for natural interaction is high quality multipoint
audiovisual communication which in turn is only possible on a broadband network. Two types of
interaction within the virtual community were vaguely envisioned for Beteus at the beginning of
the design phase, one being a simple collaborative meeting, the other being tele-teaching. The
final interaction scenarios were thought to evolve out of a series of prototypes that could be tested
on the Beteus network. This situation led to the decision to construct a communication platform
on top of which the various scenarios could be implemented with significantly reduced effort as
compared to stand-alone prototype systems for every scenario. In March 1995, eight months after
the initial design steps, work was advanced to a point that the platform and its components could
be deployed for the field trials that started at that time. In July 1995, two application scenarios,
tele-meeting and tele-tutoring, were successfully demonstrated to a commission of the European
Union. The ease with which these application scenarios could be implemented justifies the extra-
effort that went into the development of the platform.

The Beteus platform was designed to take as much functionality out of the applications as possi-
ble. Most importantly, it completely relieves the application from connection management. This
simplifies application development to a point where there is not much more to be done than the
user interfaces. The platform interface is based on Tcl/Tk [6], a scripting language that offers both
support for user interfaces and support for network programming. The Tcl network programming
package Tcl-DP [7] provides for the communication between application processes and the plat-
form. Simple applications can be completely implemented in Tcl, which is ideal for rapid proto-
typing. More advanced applications will need some C++ code in addition and may profit from the
application compiler that is implemented on top of the Beteus platform. This compiler takes as
input an application description in the Beteus Cooperative Language (BeCool), from which it
generates C++ skeletons for the application processes [8][9].

This technical report discusses the interface between the Beteus platform and the applications that
run on top of it. In the remainder of this report we will refer to this interface as the Beteus API.
The next section describes the platform and it presents the main concepts and abstractions of the
API. This is followed by a more technical section about the architecture of the API and the remote
procedure call package on which it is based. The remaining three sections give a complete and
detailed reference of the API.

2 Main Concepts and Abstractions

This section discusses the main abstractions of the API and summarizes the platform services that
are based on these abstractions.

The Beteus Application Programming Interface 3 of 33

2.1. Abstractions

The main abstractions of the platform are

• site

• node

• connection endpoint

• session

• session application

• session vertex

• participant

• role

• bridge

• bridge set

These abstractions are described in the following.

Sites and Nodes

A design issue in Beteus was the architecture of the platform. In terms of control, the platform
could be completely centralized or completely distributed. The centralized solution was declined,
first because there would be a single point of failure, then because of performance and scalability
considerations. But it was felt that control should be centralized within the network of a project
partner. This is because it was assumed that an application endpoint will not be a single multime-
dia workstation, but rather a logical unit that is assembled from a collection of equipment includ-
ing workstations, multiple screens, cameras, speakers and microphones, as well as digital and
analog switches. For the total amount of tightly coupled equipment within the network of a
project partner the abstraction of asite is introduced. The abstraction of anode is introduced as
the application dependent mapping of equipment onto a logical application endpoint. Connection
and session control within a site is performed by a central entity that knows about the application
specific node mapping. Control within applications that span multiple sites is distributed among
the central entities of the respective sites. The resulting platform is thus semi-distributed: it is cen-
tralized within a site, but distributed among sites.

Nodes and Connection Endpoints

The mapping of equipment onto nodes is specified in a site configuration file. A node appears in
the site configuration file with a name and a list of connection endpoints. The names of these end-
points may be application specific. This allows applications to address endpoints, and with this
devices, that have a special position within the list of endpoints that form the node. As a simple
example, a distributed classroom application may use at one site two microphones, one for the

4 of 33 The Beteus Application Programming Interface

professor and one in the audience for questions. The application will distinguish these micro-
phones with different, meaningful endpoint names.

A prominent node configuration is the personal workplace, i.e., a node with personal camera,
microphone, speaker, video screen and work screen. This configuration is likely to be used by
more than one application.

Node and endpoint names is the only information in the site configuration file in which the appli-
cation is interested. There is additional address information in the configuration file that allows
the platform to establish connections to endpoints.

Figure 1 depicts a node that is configured as personal workplace. Audio, video and application
processing is provided by three different machines. Host A controls the audio endpoints PersS-
peaker and PersMicrophone. Host B controls the video endpoints PersScreen and PersCamera.
The application software runs on Host C and generates a user interface on an X-terminal.

Applications and Sessions

At the heart of the Beteus platform is an application model. The Beteus application model intro-
duces the abstractions of asession, a session vertex and asession application. A session is the
abstraction for one instance of a distributed application that runs on top of the Beteus platform. A
session comprises, from a logical point of view, a set of nodes as session members. From a com-
putational point of view, a session consists of a set of session endpoints, called session vertices,
which are processes that run on the session nodes. The ensemble of session vertices within a ses-
sion constitutes the session application. In the following we will use the term session application

Host B

Network

Video
Processing

Host A

Network

Audio
Processing

Video ScreenX-Terminal

FIGURE 1. Node Mapping

Host C

Application
Processing

X11 Protocol

PersMicrophone

PersSpeaker

PersCamera

PersScreen

The Beteus Application Programming Interface 5 of 33

interchangeably with application or application scenario. If we want to refer to a process running
at a node within the framework of a session application we will explicitly refer to it as session ver-
tex.

Figure 2 shows three sites with each of them having three nodes defined in its site configuration
file. A Beteus application is indicated that spans all three sites, with three nodes being implicated
at site A, two at site B, and one at site C. In fact, there is no limitation on the location of the nodes
that form a session; they can be all within a single site, or all within different sites. It is therefore
also completely hidden to the session vertex on a node if the session in which it participates spans
remote sites or if it is local. Session vertices always interact with their local site control, but the
processing of a session vertex request may trigger inter-site communication, which is the case
whenever connections need to be established in-between sites. The group communication module
indicated in Figure 2 provides the session broadcast, multicast and unicast messaging services
required for inter-site communication.

Participants

Participants are humans or groups of humans that register their name and node with the platform.
Once registered they can participate in sessions. For every session in which they participate there
will be a session vertex running at their node. Note that, from a computational point of view, it is
the session vertex rather than the person that is the actual session participant; the human partici-

Site Control A

Group Communication

FIGURE 2. BETEUS application model (SV=Session Vertex)

SITE A

Site Control B

SV 2
SV 5

Group Communication

SITE B

Node B1
Node B2

Node B3

SV 4

Node A3SV 3

Node A2

SV 1

Node A1

Site Control C

SV 6

Group Communication

SITE C

Node C3

Node C1

Node C2

6 of 33 The Beteus Application Programming Interface

pant is an attribute or name tag of the session vertex.

Roles

The session vertices of an application are identical in terms of code, but behave according to
dynamically taken or assignedroles. There is one prominent role within a session, which is the
session master. The session vertex that is the session master has certain rights with respect to the
session that other session vertices do not have. This includes for instance the right to delete nodes
or to kill the session. An application may decide for itself to which extent it offers this functional-
ity on a user interface. It may also offer this functionality on other interfaces than on the one of the
session vertex that holds the master role. The master role is the only role which exists per default
- all other roles are defined by the application itself. Applications may bind certain connection
endpoints to roles and let the site infrastructure do the mapping of the given role to a session ver-
tex. All roles, including the master role, can be reassigned to other session vertices. This allows
applications to specify the audio and video connection structure once on session start-up; later on
it will only transfer roles in-between session vertices when it wants to change the connection
structure. An evident example for this would be a speaker role that is at the root of an audio and a
video multicast connection. The infrastructure will automatically rebuild this multicast connec-
tion whenever the speaker role is passed from one session vertex to another. An application may
define as many roles as it wishes to, and session vertices may also hold multiple roles at the same
time.

Bridges and Bridge Sets

The introduction of the role abstraction provides already considerable comfort for application
development. In addition to this the platform provides abstractions for connection structures. A
bridge is a single-medium connection structure among session nodes. A bridge can either repre-
sent a point-to-point communication, a multicast communication, a broadcast communication, or
an all-to-all communication. The concept of a medium bridge hides the underlying network to the
application; a connection management entity realizes bridges with whatever transport the network
offers. A set of bridges, typically an audio and a related video bridge, can be assembled to form a
bridge set. An application configures the platform on start-up with a description of the bridge sets
that it uses. During a session only one bridge set can be active at a time. If the application wishes
to change the connection structure it will switch to another one of its bridge sets. The infrastruc-
ture will then tear down any connection that is not included in the new bridge set, and establish
the ones that are missing.

The concept of bridges and bridge sets, along with the concept of roles being at the endpoints of
bridges, allows to build applications that are almost stateless.

4.2. Platform Services

The services provided by the platform are

The Beteus Application Programming Interface 7 of 33

• connection control

• session management

• application sharing

• messaging service

• directory service

These services are summarized in the following.

Connection Control

As outlined above, the application specifies its connection structure in terms of roles, bridges and
bridge sets. The platform establishes the endpoints of bridges, i.e., audio or video sender and
receivers, and the necessary transport links that interconnect these endpoints. Endpoint parame-
ters like audio volume or video brightness are controlled via the connection management.

Session Management

Nodes may create sessions, join them, leave them, and delete them. The session management
interfaces internally to the connection control - connection structures are updated whenever nodes
enter or leave the session.

Application Sharing

Collaboration within Beteus applications is provided by the possibility to share workspaces
within the framework of the X11 windowing system. The interface of an X11 application running
at one node can be replicated at other nodes without that the application would need to be pre-
pared for this. This allows to visualize X11 applications at different nodes and further to share
their control among the session members. Visualization is already an important aspect since it
allows to communicate information, like it is contained in electronic documents or in the interface
of a simulator, in a very convenient way. If the control of an X11 application is to be shared, there
is a need for floor control. The platform offers the floor control features of the shared workspace
system that it uses.

The application sharing component of Beteus is Xwedge from ETHZ [10].

Messaging Service

Session vertices use the messaging service of the platform to communicate among each other.

Directory Service

Nodes register with the platform when they are activated. One field in the information sent to the
platform is the participant name under which the node wants to register. Once registered the pres-
ence of a node is visible to all other nodes within the network via the directory service. In addition

8 of 33 The Beteus Application Programming Interface

to registration information, the directory service informs about announced and ongoing sessions.
This information is used by nodes to create or to join sessions.

The directory service enhances the platform from a development to a complete communication
environment that could be used by a group of people scattered over different sites for their daily
work.

5 Tcl-DP and the Interface Architecture

Figure 3 depicts the interface architecture. Session vertices, control panel and site manager are
built around Tcl interpreters. Session vertices and control panel do remote procedure calls in the
site manager, whereas the site manager sends asynchronous events back to these processes. The
control panel launches session vertices.

A session vertex needs to register callback procedures for the events it wants to receive.

Site Manager

API

Connection Management

Application

 Site
Control

Session Vertex

User Interface

Control Panel

RPC RPCEvent Event

Tcl Interpreter

Ctrl

User Interface

Tcl InterpreterTcl interpreter

FIGURE 3. BETEUS Application Interface Architecture

The Beteus Application Programming Interface 9 of 33

6 API Procedure Calls and Event Notifications

This section contains an overview of the API procedure calls and event notifications. Tables are
given for procedure calls, event notifications, parameter types and important variables.

6.1. API Procedure Call and Event Notification Overview

API procedure calls are classified into the following categories:

Registration user registration and deregistration

Endpoint Handling audio and video endpoint device control

Session Directory directory service related calls

Session Startup session initialization and startup

Session Information convenience functions

Session Control session membership and lifetime control

Bridge Set Handling application state/bridge set handling

Communication communication among session vertices

Role Handling role assignment and transfer

Application Sharing X11 application sharing

The following section describes theses categories in more detail. Table 1 shows a summary of API
function calls. There is an entry in the restriction column if usage of the call is restricted. Registra-
tion and deregistration are not really restricted to the control panel, but it can be assumed that only
the control panel will call these procedures. A good portion of the procedure calls are restricted to
the session master.

Table 2 show the event notifications send to the control panel. A control panel does not need to
register these callbacks - the event names used correspond to control panel procedures that must
be implemented by every control panel. Table 3 shows the event notifications sent to session verti-
ces. Most event notifications to session vertices are the result of session master action. A session
vertex that wants to receive them must explicitly register a callback function with the site manage-
ment. The event identifier that is used in the registration call is indicated in the second column of
Table 3.

Category Call Restriction Description

Registration Register control panel registers a user with the platform

Table 1: API Procedure Call Overview

10 of 33 The Beteus Application Programming Interface

Deregister control panel deregisters a user from the platform

Endpoint
Handling

GetEndpoints - gets the audio/video endpoints of the node

SetDeviceParameter - sets a device (endpoint) parameter

GetDeviceParameter - gets all parameter settings of a device

Disable - disable an endpoint

Enable - enable an endpoint that was disabled

Loop - connect a local source to a local sink endpoint

Unloop - disconnect a local sink from local sources

Session
Directory

SessionAnnounce - announce a session

SessionAnnouncementCancel - cancel a session announcement

SessionAnnouncementGet - get the identifiers of all sessions

SessionOngoingGet - get the identifiers of all ongoing sessions

SessionAnnounceQuery - get the description of a certain session

SessionOngoingQuery - get the description of a certain ongoing session

Session
Startup

SessionInit master start session initialization

SessionInitRole master initialize a session role

DefineBridge master define a bridge

DefineBridgeSet master define a bridge set

RegisterCallback session vertex register an event notification callback

SessionStart master start the session

Session
Information

GetParticipantID - get the participant identifier of a participant

GetParticipantName - get the participant name of a participant

GetSessionVertexId - get the session vertex identifier of a session ver-
tex

GetSessionVertexName - get the session vertex name of a session vertex

SessionGetMaster - get the session vertex of the session master

Session
Control

SessionJoin - join a session

SessionLeave non masters leave a session

SessionKill master kill a session

Bridge Set
Handling

ChangeBridgeSet master change the active bridge set

Category Call Restriction Description

Table 1: API Procedure Call Overview

The Beteus Application Programming Interface 11 of 33

Communica-
tion

Send - send a message to another session vertex

Role
Handling

SessionGetRoleHolder - get a list of participants holding a certain role

SessionGetRole - get the list of roles a participant holds

SessionMaster master transfer the master role

AddRole master add a role to a participant

RemoveRole master remove a role from a participant

Application
Sharing

GetXapps - get the list of sharable X11 applications

ShareXapp - share an X11 application

UnshareXapp - unshare an X11 application

Event Description

Invitation invite the participant to a session

BroadcastRcv reception of a broadcast message

NewSession notification for session directory update

UserNotify notify an new registration or deregistration

NewAV notify a audio/video parameter change

Table 2: API Event Notification To Control Panel

Event Type Evid Description

Receive 1 a message from another session vertex

Join 2 a new participant in the session

Left 3 a participant left the session

Kill 4 the session is killed

RoleAdd 5 a role got added to this session vertex

RoleDel 6 a role got removed from this session vertex

Table 3: API Event Notification To Session Vertices

Category Call Restriction Description

Table 1: API Procedure Call Overview

12 of 33 The Beteus Application Programming Interface

6.2. API Types

Since the Beteus API is based on Tcl all variables come as strings and lists of strings. A string can
have multiple interpretations which for themselves are not part of the weakly typed Tcl. The type
interpretations that are used by the API Tcl-DP calls are shown in Table 3. This table has columns
for type name, Tcl conversion function, Tcl string format and corresponding C/C++ type. The
type names that are defined are String, Integer, Enum, Time and List. String, Integer, Enum and
Time are string variables in Tcl; List is an arbitrary list that contains String, Integer, Enum, Time
or again a List as items. Within C or C++ code the Tcl standard conversion functions should be
used for Integer, Enum and List. Conversion is not necessary for strings, and for the Time type
there exists a proprietary conversion function. After conversion to C/C++ types, String ischar* ,
Integer and Enum areint , Time islong , and List is decomposed into an array ofargc char*

strings of which again each has to be converted.

The basic types in Table 3 are the building block for the composed types that are listed in Table 4.
Table 3 and Table 4 contain all type interpretations currently be used for the API.

Type Name Conversion Tcl String Format C/C++ Type

String (unnecessary) ’/0’ terminated character string char*

Integer Tcl_GetInt() ’/0’ terminated numeric character string int

Enum{1,2,3,...} Tcl_GetInt() ’/0’ terminated numeric character string int

Time proprietary function /0’ terminated character string typedef long Time

List{listItem} Tcl_SplitList() ’/0’ terminated character string containing list
items separated by whitespace characters - if a
list item is itself a list it is limited by curly braces

int argc,char* argv[]

Table 4: Basic Types

Type Name Decomposition Description

StringList typedef List{String} StringList list of strings

IntegerList typedef List{Integer} IntegerList list of integers

Eplist typedef String Epname
typedef Enum{1,2} Fdir
typedef List{Epname Fdir} Eplist

list of endpoint descriptions - an endpoint
description contains an endpoint name and a
flow direction (1=source,2=sink)

Rlist typedef String Rname
typedef Integer Rid
typedef List{Rname Rid} Rlist

list of roles - a list item contains a role name
and a role identifier

Table 5: List Types

The Beteus Application Programming Interface 13 of 33

6.3. API Names and Identifiers

The names and identifiers that are used in API calls and event notifications correspond to the main
abstractions that are discussed in Section 4. Identifiers are of type Integer and are, with few excep-
tions, assigned by the platform; names are Strings that are assigned by the user, the application, or
the configuration file. Most names have equivalences to identifiers. Names are important on the
level of graphical user interfaces where they represent the equivalent identifiers in a user-friendly
way; identifiers are the real control handles for the platform and remain us such hidden to the user.
The exceptions to this rule are the names that denominate nodes and endpoints in the site configu-
ration file.

Table 5 presents a list of the most important names and identifiers. For the specification of the API
calls and event notifications variable names are used to circumvent the Tcl type problem. A vari-

Pmlist typedef Integer Parid
typedef Integer Value
typedef List{Parid Value} Pmlist

list of parameter settings - a parameter setting
consists of a parameter identifier and a value

Variable Type Source Scope Description

pid Integer site mgr network (u) participant identifier

sid Integer site mgr network (u) session identifier

svid Integer site mgr session (u) session vertex identifier

rid Integer site mgr session (u) role identifier

bid Integer site mgr session (u) bridge identifier

bsid Integer site mgr session (u) bridge set identifier

epname String config file node (u) endpoint name

pname String user network participant name

rname String application session (u) role name

node String config file site (u) node name

svname String site mgr session(u) session vertex name

aname String application network (u) application name

sname String user network session name

xappname String user site (u) name of an X11 sharable application

Table 6: Names and Identifiers

Type Name Decomposition Description

Table 5: List Types

14 of 33 The Beteus Application Programming Interface

able that corresponds to a major concept will therefore have the same name throughout the speci-
fication. Table 5 lists for each variable name, type interpretation, assignment source, scope and
description. It is also indicated if a name or identifier is unique within its scope.

Identifiers

The participant identifier and the session identifier have network (platform) scope and are unique.
Combined they would constitute a unique session vertex identifier. Nevertheless, it was decided to
have a separate identifier for this. The session vertex, role, bridge and bridge set identifiers have
session scope and are unique within the session.

Names

Node names have site scope and are unique within a site. Endpoint names have node scope and
are unique within their node. Participant and session names have network scope and are visible
via the directory service - they do not have to be unique, although it would make sense. A session
application name has network scope and must be unique. A role name has session scope and
should be unique within the session.

Some words need to be said about the session vertex name. It was felt that it is necessary to have
unique session vertex names for the directory service and for display in the user interfaces of the
applications. A session vertex name is assigned by the site manager and is a combination of par-
ticipant name, node name and site name (participant.node.site). The session vertex name is unique
within a session; it is unique on the network in case a user on a node can not participate in more
than one session. Note that the session vertex name can also be used as a unique participant name.

The Beteus Application Programming Interface 15 of 33

7 API Procedure Call Reference

This section contains a detailed reference for the API procedure calls.

Calling from within a Tcl Script

The syntax to be followed when calling a procedure from a Tcl script is:

dp_RPC $socket ProcedureName par1 par2 par3.....parn

The socket that is used for the communication with the site management is obtained with a call to
the Tcl-DP proceduresdp_MakeRPCClient anddp_connect .

Calling from within a C/C++ Program

There are a couple of C routines that give C/C++ programs access to the Tcl-DP remote procedure
call commands. The routine Tdp_RPC() contains a command parameter - this is the Tcl script that
is to be evaluated by the remote Tcl interpreter. It will be set to

char* command = "ProcedureName par1 par2 par3.....parn";

See Section 3 or the Tcl-DP manual pages for more detail.

7.1. Registration

Prior to any other action a user must register himself with the platform. Once registered a user is
visible to other registered users via the directory service of the platform. A user will deregister
when he has finished all of his session activities and when he will no more be reachable. Registra-
tion and deregistration is a functionality offered by the user interface of the control panel.

Register

A user registers with the name under which he wants to be handled in the directory service and in

following sessions. The control panel itself adds the name of the host or X11 display on which it
is running as node name to the registration message. The node name must have a correspondence
in the site configuration file. Only one user can be registered with a given node at a time, i.e., a
second registration attempt on a node will fail. Note that it is possible that a user registers with the
same name at more than one node, if for some reason he wants to participate in more than one ses-
sion at a time. The registration call returns the unique participant identifier with which the control

Register pname node

pname String participant name

node String node name

returns: pid Integer participant identifier

16 of 33 The Beteus Application Programming Interface

panel and the eventual session vertices will identify themselves in consequent calls.

Deregister

For deregistration the control panel simply gives the participant identifier to identify itself. On

deregistration the participant will be removed from the session directory and from all sessions in
which he participates.

7.2. Endpoint Handling

Once a participant is registered his control panel and any subsequently launched session vertex
can ask for the list of audio and video endpoints that are registered in the site configuration file for
this node. The control panel can then let the user control the devices that are associated with these
endpoints. Session vertices may offer such control in their user interfaces in parallel to the control
panel, but it is more likely that they will control endpoint devices as part of the application sce-
nario in a hidden way.

GetEndpoints

The participant identifier identifies the node for which the endpoint list is wanted. The flow type

parameter specifies which endpoint list is wanted: audio or video. The return parameter is a list of
audio or video endpoint devices. A list item contains the endpoint name and an indication if the
endpoint is source or sink.

SetDeviceParameter

To set a device parameter the caller identifies the concerned node with the participant identifier

Deregister pid

pid Integer participant identifier

returns: -

GetEndpoints pid ftype

pid Integer participant identifier

ftype Enum{1,2} flow type: 1=audio,2=video

returns: eplist Eplist list of ftype node endpoints

SetDeviceParameter pid epname parId value

pid Integer participant identifier

The Beteus Application Programming Interface 17 of 33

and the device parameter with an endpoint name and a parameter identifier. The parameter value
is of type Integer.

GetDeviceParameter

This call returns the parameter settings for one endpoint. An item in the returned parameter list

contains a parameter identifier and a parameter value.

Disable

This call allows to disable an endpoint. The interpretation of this action is endpoint specific: a

video source will stop to transmit, whereas a video sink will stop to playout the received stream.
Note that endpoints are per default enabled on startup.

Enable

This call allows to enable an endpoint that has previously been disabled.

epname String endpoint name

parid Integer parameter identifier

value Integer value

returns: -

GetDeviceParameter pid epname

pid Integer participant identifier

epname String endpoint name

returns: pmlist Pmlist list of parameter id/value pairs

Disable pid epname

pid Integer participant identifier

epname String endpoint name

returns: -

Enable pid epname

pid Integer participant identifier

epname String endpoint name

SetDeviceParameter pid epname parId value

18 of 33 The Beteus Application Programming Interface

Loop

An audio or video stream source can be looped back onto a sink endpoint within the same node.

This allows a participant to see or hear how he his perceived by other session participants. In the
implemented version, this has no effect outside a session since the audio/video processes are not
yet running.

Unloop

This call is the inverse to the loop call; it disconnects the given sink endpoint from a local source

endpoints (assuming that a source can be connected to many sinks, but a sink get connected only
with one loop at a time).

7.3. Session Directory

The session directory service offers access to information about registered users and announced
and ongoing sessions. The calls listed here are typically used by the control panel, but there is no
limitation on them being also used by a session vertex.

SessionAnnounce

Every session must be announced before it is actually started. The announcement call returns the

returns: -

Loop pid srcepname sinkepname

pid Integer participant identifier

srcepname String source endpoint name

sinkepname String sink endpoint name

returns: -

Unloop pid sinkepname

pid Integer participant identifier

sinkepname String sink endpoint name

returns: -

SessionAnnounce pid sname priv sched desc aname command plist

pid Integer participant identifier

Enable pid epname

The Beteus Application Programming Interface 19 of 33

session identifier that is subsequently needed to start the session. The information given with the
announcement call will be made visible to all registered users via the directory service. The ses-
sion name is an informal attribute of the announced session that helps distinguishing different ses-
sion announcements. The session name is complemented by a textual description of what this
session is about. The privacy parameter indicates if the session is public or private. The announce-
ment call contains further the name of the session application, the command with which a session
vertex is launched, and a list of authorized participants in case the session is private.

A session remains in the stateannounced until it is created or cancelled. The session directory
does not remove it automatically when the session is not created at the time for which it is sched-
uled.

SessionAnnouncementCancel

A session announcement can be cancelled by the participant who announced it.

SessionAnnouncementGet

This call returns the session identifiers for all announced or ongoing sessions. These identifiers

are subsequently used to query the session directory for sessions.

sname String session name

priv Enum{1,2} session privacy: 1=public,2=private

sched Time the time for which the session is scheduled

desc String a textual description of the session

aname String the name of the session application

command String session vertex startup command

plist StringList a list of authorized session participants

returns:sid Integer session identifier

SessionAnnouncementCancel pid sid

pid Integer participant identifier

sid Integer session identifier

returns: -

SessionAnnouncementGet

returns: slist IntegerList list of session identifiers

SessionAnnounce pid sname priv sched desc aname command plist

20 of 33 The Beteus Application Programming Interface

SessionOngoingGet

This call returns the session identifiers for all ongoing sessions. These identifiers are subsequently

used to query the session directory for ongoing sessions.

SessionAnnouncementQuery

This call gives access to the session information that was previously given to the session directory
within a session announcement. If the session is private and the querying participant is not in the

list of authorized users, the parameters scheduled time, description and participant list are not
returned.

SessionOngoingQuery

This call retrieves information about ongoing sessions. The call returns the session name and a list

SessionOngoingGet

returns: slist IntegerList list of session identifiers

SessionAnnouncementQuery pid sid

pid Integer participant identifier

sid Integer session identifier

returns:

sname String session name

phase Enum{1..5} session state: 1=announced, 2=init,3=ongoing,
4=suspended,5=recovering

priv Enum{1,2} privacy: 1=public,2=private

sched Time the time for which the session is scheduled

desc String the textual description of the session

aname String the name of the session applications

command String session vertex startup command

plist StringList list of authorized participants

SessionOngoingQuery pid sid

pid Integer participant identifier

sid Integer session identifier

returns:

The Beteus Application Programming Interface 21 of 33

of current session participants.

7.4. Session Startup

The calls within the session startup category have to be called in a certain sequence. A session that
has previously been announced will be started at some time. Following a respective user com-
mand the control panel will fork and execute the command line that is associated with the session
announcement. The resulting session vertex will call SessionInit at the beginning and SessionStart
at the end of the session startup phase. Inbetween these calls it will configure the session with the
application specific roles, bridges and bridge sets, and it will register the event callbacks.

Note that only the participant which announced the session can actually initialize and start it. The
session vertex of this participant automatically becomes the master of the session - a role that can
subsequently be passed to another session vertex.

SessionInit

This call marks the beginning of the session initialization period. The session identifier parameter

must correspond to a session that is announced by the calling participant. The session changes
from stateannounced to stateinit.

SessionInitRole

Roles need to be made known to the infrastructure before they can be used for bridge definitions.

sname String session name

plist StringList list of current session participants

SessionInit pid sid

pid Integer participant identifier

sid Integer session identifier

returns: -

SessionInitRole pid rname max plist

pid Integer participant identifier

sid String session identifier

rname String role name

max Integer maximum number of role holders

SessionOngoingQuery pid sid

22 of 33 The Beteus Application Programming Interface

The role initialization call contains an application specific role name, the maximum number of
session participants that may hold the role, and possibly a list of participants to which this role can
be assigned to. This list of participant is a list of name, thus participants that register with these
name can take the role. The participant list is empty if there no restrictions on role assignment.

The call returns an identifier for the role.

DefineBridge

A bridge can be a point-to-point, point-to-multipoint, multipoint-to-point or multipoint-to-

multipoint connection depending on how the source and sink roles specified in the DefineBridge
call are distributed within the session. A bridge is either an audio, a video or an application shar-
ing connection as given in the type parameter. The priority level decides which of two or more
active bridges that are competing for the same endpoint will prevail. The information and time
granularity parameters are generic descriptions of stream parameters. In the case of video, time
granularity is interpreted as frame rate and information granularity as window size. In the case of
audio, time granularity is sample rate and information granularity is sample size. The source and
sink endpoint names specify the logical devices that will terminate the network unicast or multi-
cast connections of which the bridge is assembled. The source and sink role identifiers point to

plist StringList list of participants that may hold
this role

returns: rid Integer role identifier

DefineBridge pid sid type prio ginfo gtime srcepname rid sinkepname rlist

pid Integer participant identifier

sid Integer session identifier

type Enum{1,2,3} 1=audio,2=video,3=sharedXapp

prio Integer priority level [0..100]

ginfo Integer information granularity [0..100]

gtime Integer time granularity [0..100]

srcepname String source endpoint name

rid Integer source role identifier

sinkepname String sink endpoint name

rlist IntegerList list of sink role identifiers

returns: bid Integer bridge identifier

SessionInitRole pid rname max plist

The Beteus Application Programming Interface 23 of 33

the session vertices that are interconnected by the bridge. Note that there may be more than one
sink role. This allows to build point-to-multipoint and multipoint-to-multipoint connections with
different roles at the sinks. A multipoint-to-point or multipoint-to-multipoint connection is cre-
ated if there is more than one session vertex holding the respective source role.

The call returns a bridge identifier that is subsequently used to add the bridge to bridge sets.

DefineBridgeSet

Bridges are combined to bridge sets. The call contains a list of bridge identifiers and returns a
bridge set identifier. A certain bridge may be added to more than one bridge set.

RegisterCallback

The event identifier specifies the event for which a callback is to be registered (see Table 2). The

site management uses the TCL callback identifier when sending event notifications to the session
vertex.

SessionStart

After a session has been initialized it is started. The session enters the stateongoing and estab-

DefineBridgeSet pid sid blist

pid Integer participant identifier

sid String session identifier

blist IntegerList bridge identifier list

returns: bsid Integer bridge set identifier

RegisterCallback pid sid evid tclcb

pid Integer participant identifier

sid Integer session identifier

evid Integer event identifier

tclcb String TCL callback identifier

returns: -

SessionStart pid sid bsid

pid Integer participant identifier

sid Integer session identifier

24 of 33 The Beteus Application Programming Interface

lishes the connection structure that corresponds the specified bridge set as soon as participants
join the session. Note that the session master also has to join the session to become session partic-
ipant.

7.5. Session Information

The following calls allow for some convenience in application implementation; they allow session
vertices to retrieve identifers and names in an ad hoc manner, i.e., without memorizing them.

GetParticipantId

This call returns the participant identifier that corresponds to a participant name.

GetParticipantName

This call returns the participant name that is associated with a participant identifier.

GetSessionVertexId

This call returns the identifier of the session vertex that runs at a certain node.

bsid Integer bridge set identifier

returns: -

GetParticipantId pname

pname String participant name

returns: pid Integer participant identifier

GetParticipantName pid

pid Integer participant identifier

returns:pname String participant name

GetSessionVertexID svname

svname String node name

returns: svid Integer session vertex identifier

SessionStart pid sid bsid

The Beteus Application Programming Interface 25 of 33

GetSessionVertexName

This call returns the node name that is associated with a registered participant.

SessionGetMaster

This call returns the name of the session vertex that holds the master role for the given session.

7.6. Session Control

The calls in this category deal with session membership and session lifetime. A session can only
be joined; there is a session invitation mechanism to notify the participant. Session vertices can
leave a session or can be kicked out by the session master. The session master can kill the session.

SessionJoin

The SessionJoin call contains the initial specification of the session vertex name. The session ver-

tex name is usually the same as the participant name, but it could be another name in further
implementation that allows a participant to be in more than one session at a time. A global session
vertex name will be assigned by the site manager using a dotted notation consisting of the session
vertex name, the node name and the site name. This forms a unique name that can be used for the
identification of a session vertex within a session. Nevertheless, the site management also returns
a unique session vertex identifier. The session vertex name is displayed in user interfaces, whereas
the session vertex identifier is only used for control purposes.

GetSessionVertexName pid

pid Integer participant identifier

returns:svname String session vertex name

SessionGetMaster pid sid

pid Integer participant identifier

sid Integer session identifier

returns:svname String session vertex name

SessionJoin pid sid svname

pid Integer participant identifier

sid Integer session identifier

svname String session vertex name

returns: svid Integer session vertex identifier

26 of 33 The Beteus Application Programming Interface

SessionLeave

Any session participant but a master can leave a session. If a session master wants to leave a ses-

sion he first has to turn over his role to another session participant. The session participant identi-
fies himself with his session vertex identifier.

SessionKill

Only the session master can kill the session. The session master identifies himself with his session

vertex identifier.

7.7. Bridge Set Handling

The number of bridge sets defined for an application corresponds to possible application states.
The connection structures established among the session participants by two bridge sets are likely
to be fundamentally different from each other.

ChangeBridgeSet

Only the session master can change a bridge set. The initial bridge set was specified in the Ses-
sionStart call. When changing the bridge set the master identifies himself with his session vertex

identifier.

SessionLeave sid svname

sid Integer session identifier

svid Integer session vertex identifier

returns: -

SessionKill sid svid

sid Integer

svid Integer

returns: -

ChangeBridgeSet sid svid bsid

sid Integer session identifier

svid Integer session vertex identifier

bsid Integer bridge set identifier

returns: -

The Beteus Application Programming Interface 27 of 33

7.8. Communication

The session vertices of a session are the endpoints of a distributed application; as such they must
communicate with each other.

Send

This call sends a message to a list of session vertices. If the session vertex wants to send a mes-

sage to specific role holders he first has to find out about their session vertex identifiers (Session-
GetRoleHolder).

7.9. Role Handling

Roles can be added or removed from session vertices. A session vertex may hold more than one
role at the same time.

SessionGetRoleHolder

This call returns a list of the participants that hold a certain role.

SessionGetRole

This call returns the list of roles that a participant holds within a certain session.

Send svlist msg

svlist StringList session identifier list

msg String message

returns: -

SessionGetRoleHolder pid sid rid

pid Integer participant identifier

sid Integer session identifier

rid Integer role identifier

returns: plist StringList list of session vertex global names

SessionGetRole pid sid

pid Integer participant identifier

sid Integer session identifier

returns: rlist Rlist list of role id/name pairs

28 of 33 The Beteus Application Programming Interface

SessionMaster

This call transfers the master role to another session vertex. Only the master himself can transfer

his master role to another session vertex.

AddRole

With this call the master adds a role to a session vertex.

RemoveRole

With this call the master removes a role from a session vertex.

7.10. Application Sharing

The following calls control application sharing.

GetXapps

This call gets a list of sharable applications for a certain application.

SessionMaster sid svid newsvid

sid Integer session identifier

svid Integer master session vertex identifier

newsvid Integer new master

returns: -

AddRole sid svid rid

sid Integer session identifier

svid Integer session vertex identifier

rid Integer role identifier

returns: -

RemoveRole sid svid rid

sid Integer session identifier

svid Integer session vertex identifier

rid Integer role identifier

returns: -

The Beteus Application Programming Interface 29 of 33

ShareXapp

This call shares a certain X11 application. The associated bridge determines with whom this

application is shared. Note that if the specified bridge in not in the current bridge set, there will be
no effect until the change of an appropriate bridge set.

UnshareXapp

This call unshares an application - a shared application is disassociated from a bridge.

GetXapps sid svid bid

sid Integer session identifier

svid Integer session vertex identifier

bid Integer bridge identifier

returns: applist StringList application list

ShareXapp sid svid bid [xapp]

sid Integer session identifier

svid Integer session vertex identifier

bid Integer bridge identifier

xapp String application name

returns: xapp String application name

UnshareXapp sid svid bid [xapp]

sid Integer session identifier

svid Integer session vertex identifier

bid Integer bridge identifier

xapp String application name

returns: xapp String application name

30 of 33 The Beteus Application Programming Interface

8 Event Notification Reference

Callbacks are registered with the procedure call RegisterCallback. The event identifier that is used
for this registration is given in the event description tables.

8.1. Callbacks to the Beteus Console

Invitation

An invitation notification is sent when a session starts or ends and the participant is in the list of

invited participants.

BroadcastRcv

A broadcast message is transmitted to the control panel. Svname is the global session vertex name

of the sender.

NewSession

A notification is sent when a session has changed state in order to update the session directory of

the control panel.

Invitation cmd sid

cmd Integer new: cmd=1, delete: cmd=2

sid Integer session identifier

BroadcastRcv svname msg

svname String session vertex name

msg String message

NewSession sid

sid Integer session identifier

The Beteus Application Programming Interface 31 of 33

UserNotify

A notification is sent when a participant registers of deregisters.

8.2. Callbacks to Beteus SessionVertices

All callbacks contain a session identifier

Receive

A message is received (the message was sent with Send).

Join

A session vertex joined the session. Note that the session vertex that receives this notification is

not interested in the session vertex identifier. It will probably just display the session vertex name
of the new participant in its user interface.

Left

A session vertex left the session. Note that the session vertex that receives this message is not

UserNotify cmd pname

cmd Integer register: cmd=1, deregister: cmd=2

pname String participant global name

Receive sid msg

sid Integer session identifier

msg String message

Event identifier: 1

Join sid svname

sid Integer session identifier

svname String session vertex name

Event identifier: 2

Left sid svname

sid Integer session identifier

32 of 33 The Beteus Application Programming Interface

interested in the session vertex identifier.

Kill

The session got killed.

RoleAdd

The session vertex gets a role added by the session master.

RoleDel

The session master removed a role from this session vertex.

svname String session vertex name

Event identifier: 3

Kill sid

sid Integer session identifier

Event identifier: 4

RoleAdd sid svid rid

sid Integer session identifier

svid Integer session vertex identifier

rid Integer role identifier

Event identifier: 5

RoleDel sid svid rid

sid Integer session identifier

svid Integer session vertex identifier

rid Integer role identifier

Event identifier: 6

Left sid svname

The Beteus Application Programming Interface 33 of 33

9 Bibliography
[1] Beteus Report: "Functional specification", Deliverable D2, July1994.

[2] Beteus Report: "Detailed specification", Deliverable D6, November 1994.

[3] Beteus Report: "Working Prototype of the Application Platform Specification", Deliverable D8, June 1995.

[4] C. Blum, Ph. Dubois, R. Molva, and O. Schaller,"A Semi-Distributed Platform for the Support of CSCW Appli-
cations",Proceedings of the 1st International Distributed Conference, Madeira, November 1995.

[5] Y.-H. Pusztaszeri, E. Biersack, Ph. Dubois, J.-P. Gaspoz M. Goud, P. Gros, JP Hubaux :"Multimedia Teletutor-
ing over a Trans-European ATM Network",2nd IWACA Conference, Heidelberg, September 1994.

[6] J. K. Ousterhout, "TCL and TK Toolkit", Addison-Wesley Publishing,1994.

[7] L. A. Rowe, B. Smith, and S. Yenftp:" Tcl Distributed Programming (Tcl-DP)", University of Berkely Com-
puter Science Division,ftp://mm-ftp.cs.berkeley.edu/pub/multimedia/Tcl-DP/tcl-dp-v1.0ak, March 1993.

[8] J. Lindblad and O. Schaller:"BeCool and the BETEUS Application Programming Interface", Eurécom Techni-
cal Report, June 1995.

[9] J. Lindblad:"The BeCool Thesis Project Report", Master’s thesis at the KTH Sweden, 1995.

[10] Th. Gutekunst, D. Bauer, G. Caronni, Hasan and B. Plattner:"A Distributed and Policy-Free General-Purpose
Shared Window System",IEEE/ACM Transactions on Networking, Februrary 1995.

