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Parallel and Distributed Hybrid Beamforming for
Multicell Millimeter Wave MIMO Full Duplex

Chandan Kumar Sheemar, Symeon Chatzinotas, Dirk Slock, Eva Lagunas and Jorge Querol

Abstract—Full duplex (FD) is an auspicious wireless tech-
nology that holds the potential to double data rates through
simultaneous transmission and reception. This paper proposes
two innovative designs of hybrid beamforming (HYBF) for
a multicell massive multiple-input-multiple-output (mMIMO)
millimeter wave (mmWave) FD system. Initially, we introduce
a novel centralized HYBF (C-HYBF) scheme, which employs
the minorization-maximization (MM) method. However, while
centralized beamforming designs offer superior performance,
they suffer from high computational complexity, substantial
communication overhead, and demand expensive computational
resources. To surmount these challenges, we present a framework
that facilitates per-link parallel and distributed HYBF (P&D-
HYBF) in the mmWave frequency band. This cooperative ap-
proach enables each base station (BS) to independently solve
its local, low-complexity sub-problems in parallel, resulting in
a substantial reduction in communication overhead and compu-
tational complexity. Simulation results demonstrate that P&D-
HYBF achieves comparable performance to C-HYBF, and with
only a few radio-frequency (RF) chains, both designs surpass the
capabilities of fully digital half duplex (HD) systems.

Index Terms—Millimeter Wave, Full duplex, Distributed Hy-
brid Beamforming, Minorization Maximization

I. INTRODUCTION

CELLULAR communication networks are in a perpetual
state of evolution, driven by the escalating demands of

emerging wireless data services and the need to maintain
uninterrupted connectivity. To accommodate the anticipated
surge in data volume, the research community has recently
shown significant interest in employing ultra-high-frequency
bands, notably the millimeter wave (mmWave) band [1]. In
comparison to traditional radio frequency (RF) and microwave
bands, the mmWave band provides approximately 200 times
greater spectrum. However, mmWave communication systems
encounter substantial propagation losses, which are mitigated
by employing a substantial number of antennas that can be
densely packed due to the shorter wavelength.

In parallel to the development of mmWave half duplex (HD)
systems has been the progression of full duplex (FD) technol-
ogy which enables simultaneous transmission and reception
in the same frequency band, which theoretically doubles the
spectral efficiency. However, FD systems suffer from self-
interference (SI), which can be 90 − 120 dB higher than
the received signal power. Advanced SI cancellation (SIC)
techniques are crucial to mitigate the SI power and make
FD feasible. Among the techniques being explored for SI
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management in FD systems, beamforming has exhibited sig-
nificant potential. Beamforming can be categorized as either
fully digital or hybrid beamforming (HYBF). The former
necessitates an equal number of radio frequency (RF) chains
and antennas, processing the signal in the baseband. On the
other hand, the latter requires only a limited number of
RF chains and employs lower-dimensional digital processing
alongside higher-dimensional analog processing. The imple-
mentation of such a solution is highly desirable, as it enables
the deployment of cost-effective mmWave FD transceivers [2].

A. Prior Work and Motivation

Recent studies investigating the potential of HYBF for
mmWave FD systems are available in [3]–[12]. In [3], HYBF
for a point-to-point massive multiple-input multiple-output
(mMIMO) mmWave FD system to optimize the sum-spectral
efficiency while keeping the signal level at the input of the
analog-to-digital converters (ADCs) under control is investi-
gated. In [4], a novel algorithm for the design of constant-
amplitude analog precoders and combiners of an FD mmWave
single-stream bidirectional link is discussed. In [5], HYBF for
an FD mmWave MIMO interference channel is presented. In
[6], the authors studied the performance of the two-timescale
HYBF approach for the mmWave FD relays. Robust HYBF
under imperfect channel state information (CSI) is studied
in [7]. In [8], HYBF for integrated access and backhaul is
investigated. In [9], the authors presented a novel HYBF
design for an amplify and forward mmWave FD relay. In [10],
a novel HYBF design for a single-antenna multi-user mmWave
FD system with 1-bit phase resolution is proposed. In [11], the
achievable gain of a mmWave FD system with one uplink (UL)
and one downlink (DL) user only under the limited receive
dynamic range is investigated. In [12], the potential of HYBF
for a single-cell mMIMO mmWave FD system is studied.

It is noteworthy that the existing literature has not addressed
the context of mmWave multi-cell FD systems with multi-
antenna users. Furthermore, all the proposed methods thus far
have been centralized, which presents significant challenges in
terms of feasibility, scalability, and cost-effectiveness for large-
scale real-time deployment. Centralized solutions, in general,
also suffer from substantial communication overhead, as the
global channel state information (CSI) must be transmitted to
the central node (CN) at each channel coherence time. This
transmission may involve multi-hop communication if the CN
is situated far from the network. Then, the CN has to perform
joint optimization of all variables on a high-performance com-
putational processor, followed by transmitting the optimized
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solution back to the base stations (BSs). Such a procedure,
necessitated at the millisecond scale, is clearly impractical.
Distributed solutions hold great promise in addressing these
challenges; however, their design is exceptionally complex
[13]–[15], particularly in the mmWave domain where the
analog beamformers and combiners are shared among the
users [16].

B. Main Contributions

In the subsequent sections, aiming to bridge the iden-
tified research gaps, we present two HYBF designs for a
multicell mmWave FD system with multiple antenna UL
and DL users, focusing on weighted sum rate (WSR) max-
imization. Initially, we introduce a novel centralized HYBF
(C-HYBF) scheme, leveraging the minorization-maximization
(MM) method based on alternating optimization [17]. It is
worth noting that while centralized solutions entail inherent
challenges at the implementation level, they demonstrate supe-
rior performance and can serve as a benchmark for comparing
the performance of distributed methods [18].

To overcome the challenges posed by C-HYBF, we intro-
duce the concept of parallel and distributed (P&D)-HYBF for
mmWave systems, a pioneering approach that decomposes
the global mmWave FD WSR maximization problem into
independent and decoupled low-complexity optimization sub-
problems on a per-link basis. This approach allows each
mmWave FD base BS to implement the optimization indepen-
dently and in parallel, utilizing cost-effective computational
processors. As a result, P&D-HYBF offers an exceptionally
efficient solution for HYBF. The implementation of P&D-
HYBF relies on cooperation, involving information sharing
of beamformers solely among neighboring BSs. Furthermore,
unlike C-HYBF, which necessitates the transmission of full
CSI to the CN, P&D-HYBF relies solely on local CSI,
thereby significantly reducing the overhead associated with
CSI exchange.

The design of P&D-HYBF in mmWave systems presents
considerable challenges due to the shared utilization of analog
beamformers and combiners by the DL and UL users within
the same cell. This sharing introduces intricately coupled
constraints that significantly complicate per-link decoupling
and optimization. Furthermore, the DL beamformers are sub-
ject to a total sum-power constraint that further exacerbates
the complexity of the system. Our objective is to address
these challenges and establish a framework for P&D-HYBF in
mmWave systems by elucidating strategies to effectively man-
age the various coupling constraints within the hybrid beam-
forming architecture. The computational analysis demonstrates
that P&D-HYBF exhibits remarkably low complexity, which
scales linearly with the size and density of the network. This
stands in contrast to the centralized HYBF (C-HYBF) scheme,
which exhibits a quadratic dependence on both network size
and density, necessitating exceptionally high computational
complexity per iteration. Simulation results validate that P&D-
HYBF achieves performance on par with C-HYBF while
surpassing the conventional fully digital half-duplex (HD)
system, even with a limited number of RF chains.

Cell 1

Cell 2

UL Users

DL Users

DL Users

UL Users

UL

DL

DL

UL

Text

Signal Corss-Interference
In-cell

Corss-Interference
Out-cell Corss-Interference

BS to BS

BS 1

BS 2

SI

Fig. 1: The multicell mmWave MIMO FD system.

Organization: The rest of the paper is organized as follows:
We first present the system model and problem formulation
in Section II, and the MM method is presented in Section
III. Sections IV and V present the C-HYBF scheme and the
P&D-HYBF designs, respectively. Finally, Sections VI and VII
discuss the simulation results and conclusions, respectively.

Mathematical Notations: Boldface lower and upper case
case characters denote vectors and matrices, respectively.
E{·},Tr{·}, (·)𝐻 , ⊗, I, and D𝑑 denote expectation, trace, con-
jugate transpose, Kronecker product, identity matrix, and the
𝑑 generalized dominant eigenvectors (GDEs) selection matrix,
respectively. A vector of zeros of size 𝑀 is denoted as 0𝑀×1,
vec(X) stacks the column of X into x, unvec(x) reshapes x into
X, and ∠X returns the phasors of matrix X. Cov(·) and diag(·)
denote the covariance and diagonal matrices, respectively, and
𝑠𝑣𝑑 (X) returns the singular value decomposition (SVD) of X.
X(𝑚, 𝑛) denotes the element at the m-th row and n-th column.

II. SYSTEM MODEL

Let B = {1, ...., 𝐵} denote the set containing the indices
of 𝐵 FD BSs serving in 𝐵 cells. Let D𝑏 = {1, ..., 𝐷𝑏}
and U𝑏 = {1, ...,𝑈𝑏} denote the sets containing the indices
of 𝐷𝑏 DL and 𝑈𝑏 UL multi-antenna HD users communi-
cating with BS 𝑏 ∈ B. The system setting with 𝐵 = 2
is shown in Fig. 1. The DL user 𝑗𝑏 ∈ D𝑏 and UL user
𝑘𝑏 ∈ U𝑏 are assumed to have 𝑁 𝑗𝑏 receive and 𝑀𝑘𝑏 transmit
antennas, respectively. The FD BS 𝑏 ∈ B is assumed to
have 𝑀𝑅𝐹

𝑏
and 𝑁𝑅𝐹

𝑏
transmit and receive RF chains and

𝑀𝑏 and 𝑁𝑏 transmit and receive antennas, respectively. We
denote with V 𝑗𝑏 ∈ C𝑀𝑅𝐹

𝑏
×𝑑 𝑗𝑏 and U𝑘𝑏 ∈ C𝑀𝑘𝑏

×𝑑𝑘𝑏 the
digital beamformers for the white unitary variance data streams
s 𝑗𝑏 ∈ C𝑑 𝑗𝑏

×1 and s𝑘𝑏 ∈ C𝑑𝑘𝑏 ×1 transmitted for DL user
𝑗𝑏 ∈ D𝑏 and from UL user 𝑘𝑏 ∈ U𝑏, respectively. Let W𝑏 ∈
C𝑀𝑏×𝑀𝑅𝐹

𝑏 and F𝑏 ∈ C𝑁𝑅𝐹
𝑏

×𝑁𝑏 denote the fully connected
analog beamformer and analog combiner for FD BS 𝑏 ∈ B,
respectively. The analog stage is assumed to be quantized and
let P𝑏 = {1, 𝑒𝑖2𝜋/𝑛𝑏 , 𝑒𝑖4𝜋/𝑛𝑏 , ..., 𝑒𝑖2𝜋𝑛𝑏−1/𝑛𝑏 } denote the set
of 𝑛𝑏 possible discrete values that the unit-modulus elements
of W𝑏 and F𝑏 can assume. Let Q𝑏 (·) denote the quantizer
function to quantize the infinite resolution elements of W𝑏 and
F𝑏 such that Q𝑏 (∠W𝑏 (𝑚, 𝑛)) and Q𝑏 (∠F𝑏 (𝑚, 𝑛) ∈ P𝑏,∀𝑚, 𝑛.

We assume the users to be suffering from hardware distor-
tions due to limited dynamic range (LDR), which is denoted
as c𝑘𝑏 and e 𝑗𝑏 for the UL user 𝑘𝑏 ∈ U𝑏 and DL user 𝑗𝑏 ∈ D𝑏,
respectively, and modelled with the LDR noise model [19]



3

c𝑘𝑏 ∼ CN(0𝑀𝑘𝑏
×1, 𝑘𝑘𝑏 diag(U𝑘𝑏U𝐻𝑘𝑏 )), (1)

e 𝑗𝑏 ∼ CN(0𝑁 𝑗𝑏
×1, 𝛽 𝑗𝑏 diag(𝚽 𝑗𝑏 )), (2)

where 𝑘𝑘𝑏 ≪ 1, 𝛽 𝑗𝑏 ≪ 1,𝚽 𝑗𝑏 = Cov(r 𝑗𝑏 ) and r 𝑗𝑏 denotes
the undistorted received signal for DL user 𝑗𝑏 ∈ D𝑏. Let c𝑏
and e𝑏 denote the transmit and receive LDR noise for FD BS
𝑏 ∈ B, respectively, modelled as

c𝑏 ∼ CN(0𝑀𝑏×1, 𝑘𝑏 diag(
∑︁

𝑛𝑏∈D𝑏

W𝑏V𝑛𝑏V𝐻𝑛𝑏W𝐻
𝑏 )), (3)

e𝑏 ∼ CN(0𝑁𝑅𝐹
𝑏

×1, 𝛽𝑏 diag(𝚽𝑏)), (4)

with 𝑘𝑏 ≪ 1, 𝛽𝑏 ≪ 1,𝚽𝑏 = Cov(r𝑏) and r𝑏 denotes the
undistorted received signal by FD BS 𝑏 ∈ B after the analog
combiner F𝑏. Let n𝑏 and n 𝑗𝑏 denote the thermal noise for FD
BS 𝑏 and DL user 𝑗𝑏, respectively, modelled as

n𝑏 ∼ CN(0𝑁𝑏×1, 𝜎
2
𝑏I), n 𝑗𝑏 ∼ CN(0𝑁 𝑗𝑏

×1, 𝜎
2
𝑗𝑏

I), (5)

with 𝜎2
𝑏

and 𝜎2
𝑗𝑏

denoting the noise variances.

A. Channel Modelling

We assume perfect CSI, which can be achieved based on the
compressed sensing-based techniques developed for mmWave,
similar to [20]. Let H 𝑗𝑏 ∈ C𝑁 𝑗𝑏

×𝑀𝑏 and H𝑘𝑏 ∈ C𝑁𝑏×𝑀𝑘𝑏

denote the channels between DL user 𝑗𝑏 ∈ D𝑏 and UL user
𝑘𝑏 ∈ U𝑏 and FD BS 𝑏 ∈ B, respectively. Let H 𝑗𝑏 ,𝑘𝑏 ∈
C𝑁 𝑗𝑏

×𝑀𝑘𝑏 and H 𝑗𝑏 ,𝑘𝑐 ∈ C𝑁 𝑗𝑏
×𝑀𝑘𝑐 denote the in-cell UL

cross-interference (CI) channel (generated from opposite trans-
mission directions) between the DL user 𝑗𝑏 ∈ D𝑏 and UL user
𝑘𝑏 ∈ U𝑏 and the out-cell UL CI channel response between
the DL user 𝑗𝑏 ∈ D𝑏 and UL user 𝑘𝑐 ∈ U𝑐, respectively, with
𝑏 ≠ 𝑐. Let H 𝑗𝑏 ,𝑐 ∈ C𝑁 𝑗𝑏

×𝑀𝑐 and H𝑏,𝑘𝑐 ∈ C𝑁𝑏×𝑀𝑘𝑐 denote the
interference channels responses from FD BS 𝑐 ∈ B to DL user
𝑗𝑏 ∈ D𝑏 and from UL user 𝑘𝑐 ∈ U𝑐 to FD BS 𝑏, respectively,
with 𝑐 ≠ 𝑏. Let H𝑏,𝑐 ∈ C𝑁𝑏×𝑀𝑐 and H𝑏,𝑏 ∈ C𝑁𝑏×𝑀𝑏 denote
the DL CI channel response from FD BS 𝑐 ∈ B to FD BS
𝑏 ∈ B, with 𝑐 ≠ 𝑏, and the SI channel response for FD
BS 𝑏 ∈ B, respectively. In mmWave, channel H𝑘𝑏 can be
modelled as

H𝑘𝑏 =

√︄
1
𝑁𝑘𝑏

𝑁
𝑝

𝑘𝑏∑︁
𝑛=1
𝛼𝑛𝑘𝑏a𝑏𝑟 (𝜙𝑛𝑘𝑏 ) a𝑘𝑏𝑡 (𝜃𝑛𝑘𝑏 )

𝑇 , (6)

where the scalars 𝑁 𝑝
𝑘𝑏

and 𝛼𝑛
𝑘𝑏

denote the number of paths
and a complex Gaussian random variable with amplitudes
and phases distributed according to the Rayleigh and uniform
distribution, respectively. The vectors a𝑏𝑟 (𝜙𝑛𝑘𝑏 ) and a𝑘𝑏𝑡 (𝜃𝑛

𝑘𝑏
)𝑇

denote the receive and transmit antenna array response for
FD BS 𝑏 ∈ B and UL user 𝑘𝑏 ∈ U𝑏, respectively, with the
angle of arrival (AoA) 𝜙𝑛

𝑘𝑏
and angle of departure (AoD) 𝜃𝑛

𝑘𝑏
,

respectively. The channel responses H 𝑗𝑏 ,H 𝑗𝑏 ,𝑘𝑏 ,H 𝑗𝑏 ,𝑘𝑐 ,H 𝑗𝑏 ,𝑐

and H𝑏,𝑘𝑐 can be modelled similarly as (6) and the SI channel
H𝑏,𝑏 ∈ C𝑁𝑏×𝑀𝑏 can be modelled as [12]

H𝑏 =

√︂
𝜅𝑏

𝜅𝑏 + 1
H𝐿
𝑏 +

√︂
1

𝜅𝑏 + 1
H𝑅
𝑏 , (7)

TABLE I: Main Notations
U𝑘𝑏

Digital beamformer for UL user 𝑘𝑏
V 𝑗𝑏

Digital beamformer for DL user 𝑗𝑏

W𝑏 Analog beamformer for BS 𝑏

F𝑏 Analog combiner at BS b
H 𝑗𝑏

Direct channel for DL user 𝑗𝑏

H𝑘𝑏
Direct channel for UL user 𝑘𝑏

H 𝑗𝑏 ,𝑘𝑏
CI channel from 𝑘𝑏 to 𝑗𝑏

H 𝑗𝑏 ,𝑘𝑐
CI channel from 𝑘𝑐 to 𝑗𝑏

H 𝑗𝑏 ,𝑐 Interference channel from BS 𝑐 to 𝑗𝑏

H𝑏,𝑘𝑐
Interference channel from user 𝑘𝑐 to the BS 𝑏

H𝑏,𝑐 BS-to-BS interference channel from BS 𝑐 to the BS 𝑏

H𝑏,𝑏 SI channel for BS 𝑏

where H𝑅
𝑏

denotes the reflected components which can be
modelled as (6) and H𝐿

𝑏
denotes the line of sight (LoS)

channel, given as

H𝐿
𝑏 (𝑚, 𝑛) =

𝜌𝑏

𝑟𝑚,𝑛
𝑒− 𝑗2𝜋

𝑟𝑚,𝑛
𝜆 . (8)

The scalars 𝜅𝑏, 𝜌𝑏, 𝑟𝑚,𝑛 and 𝜆 denote the Rician factor, the
power normalization constant to assure E( | |H𝐿

𝑏
(𝑚, 𝑛) | |2

𝐹
) =

𝑀𝑏𝑁𝑏, the distance between 𝑚-th receive and 𝑛-th transmit
antenna and the wavelength, respectively. The main notations
described above are summarized in Table I.

B. Problem Formulation

Let y 𝑗𝑏 and y𝑘𝑏 denote the signals received by the DL user
𝑗𝑏 ∈ D𝑏 and by the FD BS 𝑏 ∈ B from UL user 𝑘𝑏 ∈ U𝑏

after the analog combiner F𝑏, respectively, given as

y 𝑗𝑏 =H 𝑗𝑏 (
∑︁

𝑛𝑏∈D𝑏

W𝑏V𝑛𝑏s𝑛𝑏+ c𝑏) + e 𝑗𝑏+ n 𝑗𝑏 +
∑︁
𝑘𝑏∈U𝑏

H 𝑗𝑏 ,𝑘𝑏 (U𝑘𝑏s𝑘𝑏

+ c𝑘𝑏 ) +
∑︁

𝑐∈B,𝑐≠𝑏

[
H 𝑗𝑏 ,𝑐 (

∑︁
𝑛𝑐∈D𝑐

W𝑐V𝑛𝑐 s𝑛𝑐 + c𝑐)

+
∑︁
𝑘𝑐∈U𝑐

H 𝑗𝑏 ,𝑘𝑐 (U𝑘𝑐 s𝑘𝑐 + c𝑘𝑐 )
]
,

(9)
y𝑘𝑏 =F𝑏𝐻

[ ∑︁
𝑘𝑏∈U𝑏

H𝑘𝑏 (U𝑘𝑏s𝑘𝑏 + c𝑘𝑏 ) + n𝑏 + H𝑏,𝑏 (
∑︁
𝑗𝑏∈D𝑏

W𝑏

V 𝑗𝑏s 𝑗𝑏 + c𝑏) +
∑︁

𝑐∈B,𝑐≠𝑏
[H𝑏,𝑐 (

∑︁
𝑗𝑐∈D𝑐

W𝑐V 𝑗𝑐 s 𝑗𝑐 + c𝑐)

+
∑︁
𝑘𝑐∈U𝑐

H𝑏,𝑘𝑐 (U𝑘𝑐 s𝑘𝑐 + c𝑘𝑐 )]
]
+ e𝑏 .

(10)
Let 𝑘𝑏, 𝑗𝑏 and 𝑏 denote the indices in the sets U𝑏, D𝑏

and B without the elements 𝑘𝑏, 𝑗𝑏 and 𝑏, respectively. Let
T𝑘𝑏 ≜ U𝑘𝑏U𝐻

𝑘𝑏
and Q 𝑗𝑏 ≜ W𝑏V 𝑗𝑏V𝐻

𝑗𝑏
W𝐻
𝑏

denote the transmit
covariance matrices of UL user 𝑘𝑏 ∈ U𝑏 and of FD BS 𝑏 ∈ B
intended for its DL user 𝑗𝑏 ∈ D𝑏, respectively. Let (R𝑘𝑏 ) R

𝑘𝑏
and (R 𝑗𝑏 ) R 𝑗𝑏

denote the (signal plus) interference plus noise
covariance matrices received by the FD BS 𝑏 ∈ B from UL
user 𝑘𝑏 ∈ U𝑏 and by the DL user 𝑗𝑏 ∈ D𝑏, respectively.
The matrices R𝑘𝑏 and R 𝑗𝑏 can be written as (11) and R

𝑘𝑏

and R 𝑗𝑏
can be obtained as R

𝑘𝑏
= R𝑘𝑏 − H 𝑗𝑏Q 𝑗𝑏H𝐻

𝑗𝑏
and

R 𝑗𝑏
= R 𝑗𝑏 − F𝑏𝐻H𝑘𝑏T𝑘𝑏H𝐻

𝑘𝑏
F𝑏, respectively.

The WSR maximization problem for HYBF in the consid-
ered scenario with 𝐽𝑏 DL and 𝑈𝑏 UL multi-antenna users
∀𝑏 ∈ B, under the joint sum-power, unit-modulus and discrete
phase-shifters constraints can be stated as
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R 𝑗𝑏 =H 𝑗𝑏Q 𝑗𝑏H𝐻𝑗𝑏 + H 𝑗𝑏 (
∑︁

𝑛𝑏∈D𝑏
𝑛𝑏≠ 𝑗𝑏

Q𝑛𝑏 )H𝐻𝑗𝑏 + H 𝑗𝑏 𝑘𝑏diag(
∑︁

𝑛𝑏∈D𝑏

Q𝑛𝑏 )H𝐻𝑗𝑏 +
∑︁

𝑘𝑏∈U𝑏

H 𝑗𝑏 ,𝑘𝑏 (T𝑘𝑏 + 𝑘𝑘𝑏diag(T𝑘𝑏))H
𝐻
𝑗𝑏 ,𝑘𝑏

+
∑︁
𝑐∈B
𝑐≠𝑏

H 𝑗𝑏 ,𝑐

(
∑︁

𝑛𝑐∈D𝑐

Q𝑛𝑐 + 𝑘𝑐diag(Q𝑛𝑐 ))H𝐻𝑗𝑏 ,𝑐 +
∑︁
𝑐∈B
𝑐≠𝑏

∑︁
𝑘𝑐∈U𝑐

H 𝑗𝑏 ,𝑘𝑐 (T𝑘𝑐 + 𝑘𝑘𝑐diag(T𝑘𝑐 ))H
𝐻
𝑗𝑏 ,𝑘𝑐

+ 𝛽 𝑗𝑏diag(Φ 𝑗𝑏 ) + 𝜎2
𝑗𝑏

I𝑁 𝑗𝑏
,

(11a)

R𝑘𝑏 =F𝑏𝐻 (H𝑘𝑏T𝑘𝑏H𝐻
𝑘𝑏

+
∑︁

𝑚𝑏∈U𝑏

𝑚𝑏≠𝑘𝑏

H𝑚𝑏
T𝑚𝑏

H𝐻𝑚𝑏
+

∑︁
𝑚𝑏∈U𝑏

𝑘𝑚𝑏
H𝑚𝑏

diag(T𝑚𝑏
)H𝐻𝑚𝑏

+ H𝑏,𝑏
∑︁
𝑗𝑏∈D𝑏

(Q 𝑗𝑏 + 𝑘𝑏diag(Q 𝑗𝑏 ))H𝐻𝑏,𝑏

+
∑︁
𝑐∈B
𝑐≠𝑏

H𝑏,𝑐
∑︁
𝑗𝑐∈D𝑐

(Q 𝑗𝑐 + 𝑘𝑐diag(Q 𝑗𝑐 ))H𝐻𝑏,𝑐 +
∑︁
𝑐∈B
𝑐≠𝑏

∑︁
𝑘𝑐∈U𝑐

H𝑏,𝑘𝑐 (T𝑘𝑐 + 𝑘𝑘𝑐diag(T𝑘𝑐 ))H
𝐻
𝑏,𝑘𝑐

+ 𝜎2
𝑏
I𝑛𝑏 )F𝑏 + 𝛽𝑏diag(𝚽𝑏),

(11b)

max
U,V

W𝑏 ,F𝑏

∑︁
𝑏∈B

[ ∑︁
𝑘𝑏∈U𝑏

𝑤𝑘𝑏 ln det(R−1
𝑘𝑏

R𝑘𝑏 )+
∑︁
𝑗𝑏∈D𝑏

𝑤 𝑗𝑏 ln det(R−1
𝑗𝑏

R 𝑗𝑏 )
]

(12a)
s.t. Tr(U𝑘𝑏U𝐻𝑘𝑏 ) ≤ 𝑝𝑘𝑏 , ∀𝑘𝑏 ∈ U𝑏, (12b)

Tr(
∑︁
𝑗∈D𝑏

W𝑏V 𝑗V𝐻𝑗 W𝐻
𝑏 ) ≤ 𝑝𝑏, ∀𝑏 ∈ B, (12c)

W𝑏 (𝑚, 𝑛) & F𝑏 (𝑚, 𝑛) ∈ P𝑏, ∀𝑚, 𝑛. (12d)

The scalar 𝑤𝑖 denotes the rate weight for user 𝑖 and 𝑝𝑏 denotes
the sum-power constraint for BS 𝑏 ∈ B, U and V denote the
collection of digital beamformers in UL and DL, respectively,
and W𝑏 and F𝑏 denote the collections of analog beamformers
and combiners, respectively.

III. MINORIZATION-MAXIMIZATION

Finding the global optimum of problem (12) is extremely
challenging as it is non-concave in the transmit covariance ma-
trices T𝑘𝑏 and Q 𝑗𝑏 due to interference. To find its sub-optimal
solution based on alternating optimization, we leverage the
MM method [17], which allows reformulating (12) with its
minorizer using the difference-of-convex (DC) functions [17].

Let WR𝑈𝐿
𝑘𝑏

and WR𝐷𝐿𝑗𝑏 denote the weighted rate (WR) of
users 𝑘𝑏 ∈ U𝑏 and 𝑗𝑏 ∈ D𝑏, respectively, and let WSR𝑈𝐿

𝑘𝑏

and WSR𝐷𝐿
𝑗𝑏

denote the WSR of users in UL and DL outside
the cell 𝑏, respectively. The dependence of the global WSR in
(12) on the aforementioned terms can be highlighted as

WSR= WR𝑈𝐿𝑘𝑏 +WSR𝑈𝐿
𝑘𝑏

+WR𝐷𝐿𝑗𝑏 +WSR𝐷𝐿
𝑗𝑏

+WSR𝑈𝐿
𝑏

+WSR𝐷𝐿
𝑏

(13)
in which the WSR in UL and DL for FD BS 𝑏 ∈ B is given as
WSR𝑈𝐿

𝑏
= WR𝑈𝐿

𝑘𝑏
+WSR𝑈𝐿

𝑘𝑏
and WSR𝐷𝐿

𝑏
= WR𝐷𝐿𝑗𝑏 +WSR𝐷𝐿

𝑗𝑏
,

respectively. Considering the dependence of the transmit co-
variance matrices on the global WSR, only WR𝑈𝐿

𝑘𝑏
is concave

in T𝑘𝑏 and WSR𝑈𝐿
𝑘𝑏

, WSR𝐷𝐿
𝑏

, WSR𝑈𝐿
𝑏

and WSR𝐷𝐿
𝑏

are non
concave in T𝑘𝑏 due to interference. Similarly, only WR𝐷𝐿𝑗𝑏 is
concave in Q 𝑗𝑏 and WSR𝐷𝐿

𝑗𝑏
, WSR𝑈𝐿

𝑏
,WSR𝑈𝐿

𝑏
,WSR𝐷𝐿

𝑏
are

non concave in Q 𝑗𝑏 . As a linear function is simultaneously
convex and concave, DC functions introduce the first order
Taylor series expansion of WSR𝑈𝐿

𝑘𝑏
, WSR𝐷𝐿

𝑏
, WSR𝑈𝐿

𝑏
and

WSR𝐷𝐿
𝑏

in T𝑘𝑏 , around T̂𝑘𝑏 (i.e. around all T𝑘𝑏 ), and for
WSR𝐷𝐿

𝑗𝑏
, WSR𝑈𝐿

𝑏
,WSR𝑈𝐿

𝑏
,WSR𝐷𝐿

𝑏
around Q̂ 𝑗𝑏 (i.e. around

all Q 𝑗𝑏 ). Let T̂ and Q̂ denote the sets of all such T̂𝑘𝑏 and

Q̂ 𝑗𝑏 , respectively. The tangent expressions for the non-concave
terms for T𝑘𝑏 can be written by computing the gradients

Ĝ𝑈𝐿
𝑘𝑏 ,𝑏

= −
𝜕WSR𝑈𝐿

𝑘𝑏

𝜕T𝑘𝑏
|T̂,Q̂, Ĝ𝐷𝐿

𝑘𝑏 ,𝑏
= −

𝜕WSR𝐷𝐿
𝑏

𝜕T𝑘𝑏
|T̂,Q̂, (14a)

Ĝ𝑈𝐿
𝑘𝑏 ,𝑏

= −
𝜕WSR𝑈𝐿

𝑏

𝜕T𝑘𝑏
|T̂,Q̂, Ĝ𝐷𝐿

𝑘𝑏 ,𝑏
= −

𝜕WSR𝐷𝐿
𝑏

𝜕T𝑘𝑏
|T̂,Q̂, (14b)

which allow to write the minorizers, denoted as WSR𝑈𝐿
𝑘𝑏
,

WSR𝐷𝐿
𝑏
, WSR𝑈𝐿

𝑏
and WSR𝐷𝐿

𝑏
with respect to T𝑘𝑏 . Similarly,

for the transmit covariance matrix Q 𝑗𝑏 , we have the gradients

Ĝ𝑈𝐿𝑗𝑏 ,𝑏 = −
𝜕WSR𝑈𝐿

𝑏

𝜕Q 𝑗𝑏

|T̂,Q̂, Ĝ𝐷𝐿

𝑗𝑏 ,𝑏
= −

𝜕WSR𝐷𝐿
𝑗𝑏

𝜕Q 𝑗𝑏

|T̂,Q̂, (15a)

Ĝ𝑈𝐿
𝑗𝑏 ,𝑏

= −
𝜕WSR𝑈𝐿

𝑏

𝜕Q 𝑗𝑏

|T̂,Q̂, Ĝ𝐷𝐿

𝑗𝑏 ,𝑏
= −

𝜕WSR𝐷𝐿
𝑏

𝜕Q 𝑗𝑏

|T̂,Q̂, (15b)

which allow to write the minorizers WSR𝑈𝐿
𝑏
, WSR𝐷𝐿

𝑗𝑏
,

WSR𝑈𝐿
𝑏

and WSR𝐷𝐿
𝑏

with respect to Q 𝑗𝑏 . The gradients (14)
and (15) can be computed by applying the matrix differentia-
tion properties and they are reported in Table II.

Let 𝜆𝑘𝑏 and 𝜓𝑏 denote the Lagrange multipliers associated
with the sum-power constraint for UL user 𝑘𝑏 ∈ U𝑏 and FD
BS 𝑏 ∈ B, respectively. For notational convenience, let

𝚺1
𝑘𝑏

= H𝐻
𝑘𝑏

F𝑏R−1
𝑘𝑏

F𝑏𝐻H𝑘𝑏 , 𝚺1
𝑗𝑏
= H𝐻

𝑗𝑏
R−1
𝑗𝑏

H 𝑗𝑏 , (16a)

𝚺2
𝑘𝑏

= Ĝ𝑈𝐿
𝑘𝑏 ,𝑏

+ Ĝ𝐷𝐿
𝑘𝑏 ,𝑏

+ Ĝ𝑈𝐿
𝑘𝑏 ,𝑏

+ Ĝ𝐷𝐿

𝑘𝑏 ,𝑏
+ 𝜆𝑘𝑏I, (16b)

𝚺2
𝑗𝑏
= Ĝ𝑈𝐿𝑗𝑏 ,𝑏 + Ĝ𝐷𝐿

𝑗𝑏 ,𝑏
+ Ĝ𝑈𝐿

𝑗𝑏 ,𝑏
+ Ĝ𝐷𝐿

𝑗𝑏 ,𝑏
+ 𝜓𝑏I. (16c)

We remark that the effect of the LDR noise is captured in
the gradients. By considering the minorized WSR constructed
with the gradients (14)-(15), ignoring the constant terms
and the unit-modulus and quantization constraints (12d), and
augmenting it with the constraints leads to the Lagrangian

L =
∑︁
𝑏∈B

[ ∑︁
𝑘𝑏∈U𝑏

(𝑤𝑘𝑏 ln det(I + U𝐻𝑘𝑏𝚺
1
𝑘𝑏

U𝑘𝑏 ) − Tr(U𝐻𝑘𝑏𝚺
2
𝑘𝑏

U𝑘𝑏 )

+ 𝜆𝑘𝑏 𝑝𝑘𝑏 ) +
∑︁
𝑗𝑏∈D𝑏

(𝑤 𝑗𝑏 ln det(I + V𝐻𝑗𝑏W𝑏
𝐻𝚺1

𝑗𝑏
W𝑏V 𝑗𝑏 )

− Tr(V𝐻𝑗𝑏W𝑏
𝐻𝚺2

𝑗𝑏
W𝑏V 𝑗𝑏 ) + 𝜓𝑏𝑝𝑏)

]
.

(17)
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TABLE II: Gradients expressions to construct the minorized WSR cost function.

Ĝ𝑈𝐿

𝑘𝑏 ,𝑏

∑
𝑚𝑏 ∈U𝑏
𝑚𝑏≠𝑘𝑏

𝑤𝑚𝑏
[H𝐻

𝑚𝑏
F𝑏 (R−1

𝑚𝑏
− R−1

𝑚𝑏
+ 𝛽𝑏diag(R−1

𝑚𝑏
− R−1

𝑚𝑏
) )F𝑏

𝐻H𝑚𝑏
+ 𝑘𝑚𝑏

diag(H𝐻
𝑚𝑏

F𝑏 (R−1
𝑚𝑏

− R−1
𝑚𝑏

)F𝑏
𝐻H𝑚𝑏

) ].

Ĝ𝐷𝐿
𝑘𝑏 ,𝑏

∑
𝑗𝑏 ∈D𝑏

𝑤 𝑗𝑏
[H𝐻

𝑗𝑏 ,𝑘𝑏
(R−1

𝑗𝑏
− R−1

𝑗𝑏
+ 𝛽 𝑗𝑏

diag(R−1
𝑗𝑏

− R−1
𝑗𝑏
) )H 𝑗𝑏 ,𝑘𝑐

+ 𝑘𝑘𝑏diag(H𝐻
𝑗𝑏 ,𝑘𝑏

(R−1
𝑗𝑏

− R−1
𝑗𝑏
)H 𝑗𝑏 ,𝑘𝑏

) ]
Ĝ𝑈𝐿

𝑘𝑏 ,𝑏

∑
𝑐∈B
𝑐≠𝑏

∑
𝑘𝑐 ∈U𝑐

𝑤𝑘𝑐 [H𝐻
𝑐,𝑘𝑏

F𝑐 (R−1
𝑘𝑐

− R−1
𝑘𝑐

+ 𝛽𝑐diag(R−1
𝑘𝑐

− R−1
𝑘𝑐

) )F𝑐
𝐻H𝑐,𝑘𝑏

+ 𝑘𝑘𝑏diag(H𝐻
𝑐,𝑘𝑏

F𝑐 (R−1
𝑘𝑐

− R−1
𝑘𝑐

)F𝑐
𝐻H𝑐,𝑘𝑏

) ]

Ĝ𝐷𝐿

𝑘𝑏 ,𝑏

∑
𝑐∈B
𝑐≠𝑏

∑
𝑗𝑐 ∈D𝑐

𝑤 𝑗𝑐 [H𝐻
𝑗𝑐 ,𝑘𝑏

(R−1
𝑗𝑐

− R−1
𝑗𝑐

+ 𝛽 𝑗𝑐diag(R−1
𝑗𝑐

− R−1
𝑗𝑐
) )H𝑐,𝑘𝑏

+ 𝑘𝑘𝑏diag(H𝐻
𝑐,𝑘𝑏

(R−1
𝑗𝑐

− R−1
𝑗𝑐
)H𝑐,𝑘𝑏

) ]

Ĝ𝑈𝐿
𝑗𝑏 ,𝑏

∑
𝑘𝑏 ∈U𝑏

𝑤𝑘𝑏
[H𝐻

𝑏,𝑏
F𝑏 (R−1

𝑘𝑏
− R−1

𝑘𝑏
+ 𝛽𝑏diag(R−1

𝑘𝑏
− R−1

𝑘𝑏
) )F𝑏

𝐻H𝑏,𝑏 + 𝑘𝑘𝑏diag(H𝐻
𝑏,𝑏

F𝑏 (R−1
𝑘𝑏

− R−1
𝑘𝑏

)F𝑏
𝐻H𝑏,𝑏 ) ]

Ĝ𝐷𝐿

𝑗𝑏 ,𝑏

∑
𝑙𝑏 ∈D𝑏
𝑙𝑏≠ 𝑗𝑏

𝑤𝑙𝑏
[H𝐻

𝑙𝑏
(R−1

𝑙𝑏
− R−1

𝑙𝑏
+ 𝛽𝑙𝑏diag(R−1

𝑙𝑏
− R−1

𝑙𝑏
) )H𝐻

𝑙𝑏
+ 𝑘𝑐diag(H𝐻

𝑙𝑏
(R−1

𝑙𝑏
− R−1

𝑙𝑏
)H𝑙𝑏

) ]

Ĝ𝑈𝐿

𝑗𝑏 ,𝑏

∑
𝑐∈B
𝑐≠𝑏

∑
𝑘𝑐 ∈U𝑐

𝑤𝑘𝑐 [H𝐻
𝑐,𝑏

F𝑐 (R−1
𝑘𝑐

− R−1
𝑘𝑐

+ 𝛽𝑐diag(R−1
𝑘𝑐

− R−1
𝑘𝑐

) )F𝑐
𝐻H𝑐,𝑏 + 𝑘𝑏diag(H𝐻

𝑐,𝑏
F𝑐 (R−1

𝑘𝑐
− R−1

𝑘𝑐
)F𝑐

𝐻H𝑐,𝑏 ) ]

Ĝ𝐷𝐿

𝑗𝑏 ,𝑏

∑
𝑐∈B
𝑐≠𝑏

∑
𝑗𝑐 ∈D𝑐

𝑤 𝑗𝑐 [H𝐻
𝑗𝑐 ,𝑏

(R−1
𝑗𝑐

− R−1
𝑗𝑐

+ 𝛽 𝑗𝑐diag(R−1
𝑗𝑐

− R−1
𝑗𝑐
) )H 𝑗𝑐 ,𝑏 + 𝑘𝑏diag(H𝐻

𝑗𝑐 ,𝑏
(R−1

𝑗𝑐
− R−1

𝑗𝑐
)H 𝑗𝑐 ,𝑏 ]

Remark 1: The tangent expressions constitute a touching
lower bound, and the original WSR and its minorized version
have the same Karush–Kuhn–Tucker (KKT) conditions. Hence
any (sub) optimal solution for minorized WSR is also (sub)
optimal for the original WSR

IV. CENTRALIZED HYBRID BEAMFORMING

This section presents a novel C-HYBF design based on
alternating optimization to solve the WSR maximization prob-
lem to a local optimum. Hereafter, while optimizing one
variable, we assume the remaining ones to be fixed and their
information to be summarized in the gradients, which are
updated at each iteration.

A. Digital Beamforming

To optimize the digital beamformers U𝑘𝑏 and V 𝑗𝑏 we take
the derivatives of (17), which leads to the KKT conditions

𝚺1
𝑘𝑏

U𝑘𝑏 (I + U𝐻𝑘𝑏𝚺
1
𝑘𝑏

U𝑘𝑏 )−1 − 𝚺2
𝑘𝑏

U𝑘𝑏 = 0, (18a)

W𝑏
𝐻𝚺1

𝑗𝑏
W𝑏V 𝑗𝑏 (I+V𝐻𝑗𝑏W𝑏

𝐻𝚺1
𝑗𝑏

W𝑏V 𝑗𝑏 )−1

− W𝑏
𝐻𝚺2

𝑗𝑏
W𝑏V 𝑗𝑏 = 0.

(18b)

Theorem 1. The optimal digital beamformers U𝑘𝑏 and V 𝑗𝑏

for (17), given the remaining variables fixed, can be computed
as the GDE solution of the pair of the following matrices

U𝑘𝑏 = D𝑑𝑘𝑏 (𝚺
1
𝑘𝑏
,𝚺2

𝑘𝑏
), (19a)

V 𝑗𝑏 = D𝑑 𝑗𝑏
(W𝑏

𝐻𝚺1
𝑗𝑏

W𝑏,W𝑏
𝐻𝚺2

𝑗𝑏
W𝑏), (19b)

where the matrix D𝑑𝑘𝑏 (D𝑑𝑘𝑏 ) selects 𝑑𝑘𝑏 (𝑑𝑘𝑏 ) GDEs.

Proof. The proof is provided in Appendix A. □

It is imperative to acknowledge that GDEs furnish optimized
beamforming directions while leaving the power aspect unad-
dressed. In our approach, we propose the scaling of beam-
formers to possess unit-norm columns, thereby facilitating
the inclusion of optimal power allocation. It is important to
highlight that this scaling operation does not compromise the
optimality of the beamforming directions.

B. Analog Beamforming

Consider first the optimization of unconstrained analog
beamformer W𝑏,∀𝑏 ∈ B, without (12d), for which the
optimization problem can be written as

max
W𝑏

∑︁
𝑗𝑏∈D𝑏

[𝑤 𝑗𝑏 ln det(I + V𝐻𝑗𝑏W𝑏
𝐻𝚺1

𝑗𝑏
W𝑏V 𝑗𝑏 )

− Tr(V𝐻𝑗𝑏W𝑏
𝐻𝚺2

𝑗𝑏
W𝑏V 𝑗𝑏 )] .

(20)

By taking its derivative we get to the following KKT condition∑︁
𝑗𝑏∈D

(𝚺1
𝑗𝑏

W𝑏V 𝑗𝑏V𝐻𝑗𝑏 (I + V 𝑗𝑏V𝐻𝑗𝑏W𝑏
𝐻𝚺1

𝑗𝑏
W𝑏)−1

− 𝚺2
𝑗𝑏

W𝑏V 𝑗𝑏V𝐻𝑗𝑏 ) = 0.
(21)

Theorem 2. The optimal vectorized unconstrained analog
beamformer W𝑏 for (20) can be optimized as one GDE
solution of the pair of the sum of following matrices

vec(W𝑏) =D1 (
∑︁
𝑗𝑏∈D𝑏

(V 𝑗𝑏V𝐻𝑗𝑏 (I + V 𝑗𝑏V𝐻𝑗𝑏W𝑏
𝐻𝚺1

𝑗𝑏
W𝑏)−1)𝑇

⊗ 𝚺1
𝑗𝑏
,

∑︁
𝑗𝑏∈D𝑏

(V 𝑗𝑏V𝐻𝑗𝑏 )
𝑇 ⊗ (𝚺2

𝑗𝑏
)).

(22)

Proof. The proof is provided in Appendix B □

The result stated in Theorem 2 provides the opti-
mized vectorized unconstrained analog beamformer. Operation
unvec(vec(W𝑏)) is required to reshape it into the correct
dimensions. To projects its elements on the set P𝑏, we do
W𝑏 = Q𝑏 (∠W𝑏 (𝑚, 𝑛)) ∈ P𝑏,∀𝑚, 𝑛. Note that such operation
results in optimality loss, which depends on the resolution of
the phase shifts, and will be evaluated in Section VI.

C. Analog Combining

The optimization process for the analog combiner, denoted
as F𝑏, is comparatively straightforward when compared to the
optimization of the analog beamformer. It is noteworthy that
the analog combiners do not appear in the trace operators of
equation (17). Instead, they are solely present in 𝚺1

𝑘𝑏
,∀𝑘𝑏

within cell 𝑏 ∈ B. This absence is due to the fact that the
analog combiners do not generate any interference towards
other links. Consequently, in order to optimize F𝑏, we can
directly focus on the original problem instead of minorized
WSR with respect to F𝑏.
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The primary objective of the analog combiner is to effec-
tively combine the received covariance matrices at the antenna
level in order to maximize the WSR. Within this context, let
(R𝑎

𝑘𝑏
) and R𝑎

𝑘𝑏
represent the (signal plus) interference and

noise covariance matrices received at the antennas of the FD
BS 𝑏 ∈ B, which are to be combined with F𝑏. By leveraging
R𝑎
𝑘𝑏

and R𝑎
𝑘𝑏

, the matrices R𝑘𝑏 and R
𝑘𝑏

can be derived as

R𝑘𝑏 = F𝑏𝐻R𝑎
𝑘𝑏

F𝑏 and R
𝑘𝑏

= F𝑏𝐻R𝑘𝑏
𝑎
F𝑏. To optimize

the unconstrained F𝑏, the logarithm function’s properties can
be effectively employed, which allows stating the following
optimization problem

max
F𝑏

∑︁
𝑘𝑏∈U𝑏

𝑤𝑘𝑏 [ln det(F𝑏𝐻R𝑎𝑘𝑏F𝑏) − ln det(F𝑏𝐻R𝑎
𝑘𝑏

F𝑏)] .

(23)
By solving the purely concave optimization problem (23), we
obtain the optimal analog combiner as follows.

F𝑏 = D𝑁𝑅𝐹
𝑏

(
∑︁
𝑘𝑏∈U𝑏

𝑤𝑘𝑏R𝑎𝑘𝑏 ,
∑︁
𝑘𝑏∈U𝑏

𝑤𝑘𝑏R𝑎
𝑘𝑏
), (24)

where the matrix D𝑁𝑅𝐹
𝑏

selects GDEs equal to the number
of receive RF chains 𝑁𝑅𝐹

𝑏
at the FD BS 𝑏 ∈ B. In order to

satisfy the constraints for (24), we normalize the amplitudes of
F𝑏 using the ∠· operation, and then subject it to quantization
through the function Q𝑏 (∠F𝑏 (𝑚, 𝑛)) ∈ P𝑏. It should be noted
that this quantization process introduces a loss in optimality,
which is contingent upon the resolution of the phase shift and
will be assessed in Section VI.

D. Optimal Power Allocation

Let P𝑘𝑏 and P 𝑗𝑏 denote the diagonal stream power matrices
for the UL user 𝑘𝑏 ∈ U𝑏 and DL user 𝑗𝑏 ∈ D𝑏, respectively,
to be included in the beamformers U𝑘𝑏 and V𝑘𝑏 , respectively.
Given the normalized digital beamformers, the optimal power
allocation problems can be formally stated as

max
P𝑘𝑏

𝑤𝑘𝑏 ln det(I + U𝐻𝑘𝑏𝚺
1
𝑘𝑏

U𝑘𝑏P𝑘𝑏 ) − Tr(U𝐻𝑘𝑏𝚺
2
𝑘𝑏

U𝑘𝑏P𝑘𝑏 ),
(25a)

max
P 𝑗𝑏

𝑤 𝑗𝑏 ln det(I+V𝐻𝑗𝑏W𝑏
𝐻𝚺1

𝑗𝑏
W𝑏V 𝑗𝑏P 𝑗𝑏 )

− Tr(V𝐻𝑗𝑏W𝑏
𝐻𝚺2

𝑗𝑏
W𝑏V 𝑗𝑏P 𝑗𝑏 ).

(25b)

It is important to remember that when we multiply the
unit-norm beamformers with the corresponding powers, it
is equivalent to using non-normalized digital beamformers
that incorporate the optimal power allocation. Hence, the
optimality of (19a)-(19b) remains intact. Solving (25a)-(25b)
leads to the following optimal power allocation

P𝑘𝑏=(𝑤𝑘𝑏 (U𝐻𝑘𝑏𝚺
2
𝑘𝑏

U𝑘𝑏 )−1−(U𝐻𝑘𝑏𝚺
1
𝑘𝑏

U𝑘𝑏 )−1)+, (26a)

P 𝑗𝑏=(𝑤 𝑗𝑏 (V𝐻𝑗𝑏W𝑏
𝐻𝚺2

𝑗𝑏
W𝑏V 𝑗𝑏 )−1− (V𝐻𝑗𝑏W𝑏

𝐻𝚺1
𝑗𝑏

W𝑏V 𝑗𝑏 )−1)+,
(26b)

where (X)+ = 𝑚𝑎𝑥{0,X}. Given the optimal stream powers,
we can search for the Lagrange multipliers satisfying the total
sum-power constraint. Let P𝐷𝐿 and P𝑈𝐿 denote the collection
of powers in DL and UL, respectively, and let 𝚲 and 𝚿 denote
the collection of multipliers for 𝜆𝑘𝑏 and 𝜓𝑏, respectively.
Given (26), consider the dependence of the Lagrangian only

on the multipliers and powers as L(𝚲,𝚿,P𝐷𝐿 ,P𝑈𝐿), obtained
by including the power matrices P𝑘𝑏 and P 𝑗𝑏 in (17).

The multipliers in 𝚲 and 𝚿 should be such that the
Lagrangian is finite and the values of multipliers are strictly
positive, i.e.,

min
𝚿,𝚲

max
P𝐷𝐿 ,P𝑈𝐿

L(𝚲,𝚿,P𝐷𝐿 ,P𝑈𝐿),

s.t. 𝚿,𝚲 ⪰ 0.
(27)

The dual function maxP𝐷𝐿 ,P𝑈𝐿 L is the pointwise supremum
of a family of functions of 𝚿,𝚲, it is convex [21] and the
globally optimal values for 𝚿 and 𝚲 can be found by using any
of the numerous convex-optimization techniques. In this work,
we adopt the Bisection method. Let 𝜆𝑘𝑏 , 𝜓𝑏 and 𝜓𝑏, 𝜆𝑘𝑏 denote
the upper and lower bounds for searching the multipliers
𝜓𝑏 and 𝜆𝑘𝑏 , respectively, and let [0, 𝜆𝑚𝑎𝑥

𝑘𝑏
] and [0, 𝜓𝑚𝑎𝑥

𝑏
]

denote their search range. Note also that as the GDE solution
is computed given fixed multipliers, doing water-filling for
the powers while searching for the multipliers leads to non
diagonal power matrices. Hence, consider a SVD of the powers
as [L𝑠𝑣𝑑P𝑖

,D𝑠𝑣𝑑P𝑖
,R𝑠𝑣𝑑P𝑖

] = 𝑠𝑣𝑑 (P𝑖), with P𝑖 = P𝑘𝑏 or P𝑖 = P 𝑗𝑏 ,
and the matrices L𝑠𝑣𝑑P𝑖

,D𝑠𝑣𝑑P𝑖
and R𝑠𝑣𝑑P𝑖

denote the left unitary,
diagonal and right unitary matrices obtained from the SVD
of P𝑖 . The diagonal structure of the power matrices while
searching for the multipliers can be re-established as P𝑖 = D𝑖 ,
with 𝑖 ∈ U𝑏 or D𝑏.

By using the closed-form expressions derived above, the
complete alternating optimization-based C-HYBF procedure
to optimize (17) is formally stated in Algorithm 1.

E. Convergence of C-HYBF

The convergence of Algorithm 1 can be proved by using
the minorization theory [17], alternating or cyclic optimization
[17], Lagrange dual function [21], saddle-point interpretation
[21] and KKT conditions [21]. For the WSR cost function
(12), we construct its minorizer, which is a touching lower
bound for (12), hence we can write

WSR ≥ WSR = WR𝑈𝐿
𝑘𝑏 ,𝑏

+ WSR𝑈𝐿
𝑘𝑏 ,𝑏

+ WR𝐷𝐿
𝑗𝑏 ,𝑏

+ WSR𝐷𝐿
𝑗𝑏 ,𝑏

+ WSR𝐷𝐿
𝑏

+ WSR𝑈𝐿
𝑏
.

(28)
The minorized WSR, which is concave in T𝑘𝑏 and Q 𝑗𝑏 ,

has the same gradient of the original WSR maximization
problem (12), hence the KKT conditions are not affected.
Reparameterizing T𝑘𝑏 or Q 𝑗𝑏 in terms of W𝑏,V 𝑗𝑏 ,∀ 𝑗𝑏 ∈ D𝑏,
or U𝑘𝑏 ,∀𝑘𝑏 ∈ U𝑏, respectively, augmenting the minorized
WSR cost function with the Lagrange multipliers and power
constraints leads to (32). By incorporating further the power
matrices we get to L(𝚲,𝚿,P𝐷𝐿 ,P𝑈𝐿). Every alternating
update of the L for the variables W𝑏,F𝑏,∀𝑏 ∈ B,V 𝑗𝑏 ,∀ 𝑗𝑏 ∈
D𝑏,U𝑘𝑏 ,∀𝑘𝑏 ∈ U𝑏,P𝑘𝑏 ,P 𝑗𝑏 , 𝜆𝑘𝑏 and 𝜓𝑏, leads to a mono-
tonic increase of the WSR, which assures convergence. For
the KKT conditions, at the convergence point, the gradients
of L for V 𝑗𝑏 ,W𝑏,U𝑘𝑏 or P𝑘𝑏 ,P 𝑗𝑏 correspond to the gradients
of the Lagrangian of the original problem (12), and hence the
sub-optimal solution for the minorized WSR matches the sub-
optimal solution of the original problem. For the fixed analog
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Algorithm 1 Centralized Hybrid Beamforming
Given: The CSI and rate weights.
Initialize: W𝑏 , F𝑏 ,V 𝑗𝑏

,U𝑘𝑏
, ∀ 𝑗𝑏 & ∀𝑘𝑏 .

Set: 𝜆𝑘𝑏 = 0, 𝜆𝑘𝑏 = 𝜆𝑚𝑎𝑥
𝑘𝑏

, 𝜓𝑏 = 0, 𝜓𝑏 = 𝜓𝑚𝑎𝑥
𝑏

, ∀𝑘𝑏 & ∀𝑏
Repeat until convergence

for 𝑏 = 1 : 𝐵
Compute W𝑏 with (22), do unvec(W𝑏 ) and get ∠W𝑏

for: 𝑗𝑏 = 1 : 𝐷𝑏

Compute Ĝ𝑈𝐿
𝑗𝑏 ,𝑏

, Ĝ𝐷𝐿
𝑗𝑏 ,𝑏

, Ĝ𝑈𝐿

𝑗𝑏 ,𝑏
, Ĝ𝐷𝐿

𝑗𝑏 ,𝑏
from Table II

Optimize V 𝑗𝑏
with (19a) and normalize its columns

Next 𝑗𝑏
Repeat until convergence

set 𝜓𝑏 = (𝜓𝑏 + 𝜓𝑏 )/2
for 𝑗𝑏 = 1 : 𝐷𝑏

Compute P 𝑗𝑏
with (26), do SVD, set P 𝑗𝑏

= D𝑠𝑣𝑑
𝑃𝑗𝑏

Set Q 𝑗𝑏
= W𝑏V 𝑗𝑏

P 𝑗𝑏
V𝐻

𝑗𝑏
W𝐻

𝑏
Next 𝑗𝑏
if constraint for 𝜓𝑏 is violated

set 𝜓𝑏 = 𝜓𝑏

else 𝜓𝑏 = 𝜓𝑏
for: 𝑘𝑏 = 1 : 𝐾𝑏

Compute Ĝ𝑈𝐿
𝑘𝑏 ,𝑏

, Ĝ𝐷𝐿
𝑘𝑏 ,𝑏

, Ĝ𝑈𝐿

𝑘𝑏 ,𝑏
, Ĝ𝐷𝐿

𝑘𝑏 ,𝑏
from Table II.

Optimize U𝑘𝑏
with (19b) and normalize its columns

Repeat until convergence
set 𝜆𝑘𝑏 = (𝜆𝑘𝑏 + 𝜆𝑘𝑏 )/2
Compute P𝑘𝑏

with (26), do SVD, set P𝑘𝑏
= D𝑠𝑣𝑑

𝑃𝑘𝑏

Set T
𝑏
= U𝑘𝑏

P𝑘𝑏
U𝐻
𝑘𝑏

if constraint for 𝜆𝑘𝑏 is violated
set 𝜆𝑘𝑏 = 𝜆𝑘𝑏

else 𝜆𝑘𝑏 = 𝜆𝑘𝑏
Next 𝑘𝑏

Next 𝑏
Quantize W𝑏 and F𝑏 , with Q𝑏 ( ·) , ∀𝑏

and digital beamformers, L is concave in powers, hence we
have strong duality for the saddle point, i.e.,

max
P𝐷𝐿 ,P𝑈𝐿

min
𝚲,𝚿

L(𝚲,𝚿,P𝑈𝐿 ,P𝐷𝐿). (29)

Let X∗ and 𝑥∗ denote the optimal solution for matrix X or
scalar 𝑥 at the convergence, respectively. As each iteration
leads to a monotonic increase in the WSR and the power
are updated by satisfying the sum-power constraint, at the
convergence point, the solution of the optimization problem

min
𝚲,𝚿

L(V∗
𝑗𝑏
,W𝑏

∗,F𝑏∗,U∗
𝑏,P

𝐷𝐿∗,P𝑈𝐿∗,𝚲,𝚿) (30)

satisfies the KKT conditions for the powers in P𝐷𝐿 and P𝑈𝐿
and the complementary slackness conditions

𝜓∗
𝑏 (𝑝𝑏 −

∑︁
𝑗𝑏∈D𝑏

Tr(W𝑏
∗V∗

𝑗𝑏
P∗
𝑗𝑏

V∗𝐻
𝑗𝑏

W𝑏
∗𝐻 )) = 0, (31a)

𝜆∗𝑘𝑏 (𝑝𝑘𝑏 − Tr(U∗
𝑘𝑏

P∗
𝑘𝑏

U∗𝐻
𝑘𝑏

)) = 0, (31b)

with the individual factors in the products being non-negative.

V. PARALLEL AND DISTRIBUTED IMPLEMENTATION

As previously mentioned in Section I, the implementation
of C-HYBF in a real-time, large-scale mmWave FD network is
not feasible. In order to address these limitations, we introduce
the concept of P&D-HYBF for mmWave, which relies on
cooperative interactions among neighbouring FD BSs. To

establish the P&D-HYBF scheme, we make the following
assumptions:

1) there exists a feedback link among the neighbouring FD
BSs and they cooperate by exchanging information about
the digital beamformers, analog beamformers and analog
combiners via the feedback link;

2) local CSI is accessible by each FD BS;
3) each FD BS has multiple low-cost computational proces-

sors dedicated for UL and DL;
4) computations take place at the FD BSs in each cell in

a synchronous fashion, i.e., iteration 𝑛 at each BS takes
place when iteration 𝑛 − 1 is completed by all the BSs.

Note that to satisfy 1), information can be broadcasted as well.
Recall that the MM optimization technique allowed us to write
the Lagrangian of the original WSR problem (12) as

L =
∑︁
𝑏∈B

[ ∑︁
𝑘𝑏∈U𝑏

(𝑤𝑘𝑏 ln det(I + U𝐻𝑘𝑏𝚺
1
𝑘𝑏

U𝑘𝑏 ) − Tr(U𝐻𝑘𝑏𝚺
2
𝑘𝑏

U𝑘𝑏 )

+ 𝜆𝑘𝑏 𝑝𝑘𝑏 ) +
∑︁
𝑗𝑏∈D𝑏

(𝑤 𝑗𝑏 ln det(I + V𝐻𝑗𝑏W𝑏
𝐻𝚺1

𝑗𝑏
W𝑏V 𝑗𝑏 )

− Tr(V𝐻𝑗𝑏W𝑏
𝐻𝚺2

𝑗𝑏
W𝑏V 𝑗𝑏 ) + 𝜓𝑏𝑝𝑏)

]
.

(32)
Upon analyzing its structure, it is important to note that when
optimizing a single variable, assuming the remaining variables
are fixed, only the gradients present in 𝚺2

𝑘𝑏
or 𝚺2

𝑗𝑏
are required.

Therefore, the gradients provide comprehensive information
regarding the remaining interfering links within the network.
From a practical standpoint, the gradients for each link account
for the interference generated towards all other links, thereby
discouraging greedy behavior during the optimization of beam-
forming directions. However, it should be acknowledged that
(32) exhibits coupling among different links, as the covariance
matrices of other users directly influence the gradients, which
vary during the update of each beamformer.

To decouple (32) into local per-link independent optimiza-
tion sub-problems, we assume that each FD BS has some
memory to save information. Hereafter, overline will empha-
size that the variables are only local and saved in the memory
of each FD BS. We introduce the following local variables

L𝐼𝑛𝑘𝑏 = Ĝ𝑈𝐿
𝑘𝑏 ,𝑏

+ Ĝ𝐷𝐿
𝑘𝑏 ,𝑏

, L𝑂𝑢𝑡𝑘𝑏
= Ĝ𝑈𝐿

𝑘𝑏 ,𝑏
+ Ĝ𝐷𝐿

𝑘𝑏 ,𝑏
, ∀𝑘𝑏 ∈ U𝑏,

(33a)

L𝐼𝑛𝑗𝑏 = Ĝ𝑈𝐿𝑗𝑏 ,𝑏 + Ĝ𝐷𝐿

𝑗𝑏 ,𝑏
, L𝑂𝑢𝑡𝑗𝑏

= Ĝ𝑈𝐿
𝑗𝑏 ,𝑏

+ Ĝ𝐷𝐿

𝑗𝑏 ,𝑏
, ∀ 𝑗𝑏 ∈ D𝑏,

(33b)
to be saved in the memory of each FD BS 𝑏 ∈ B. The
local variables L𝐼𝑛𝑘𝑏 and L𝑂𝑢𝑡𝑘𝑏

store information pertaining to
the total interference generated within and outside the cell,
respectively, by the beamformer of the UL user 𝑘𝑏 ∈ U𝑏.
Similarly, the local variables L𝐼𝑛𝑗𝑏 and L𝑂𝑢𝑡𝑗𝑏

capture information
about the interference generated within the same cell and in
neighbouring cells, respectively, by the FD BS 𝑏 ∈ B while
serving its DL user 𝑗𝑏 ∈ D𝑏. It is important to note that each
FD BS can update the in-cell local variables L𝐼𝑛𝑘𝑏 and L𝐼𝑛𝑗𝑏
by itself, without requiring feedback. To update the out-cell
variables L𝑂𝑢𝑡𝑘𝑏

and L𝑂𝑢𝑡𝑗𝑏
, feedback from neighbouring BSs

regarding their beamformers is necessary for computing (33).
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Additionally, to store information regarding the interference-
plus-noise covariance matrices at the RF chains and antenna
level (for the analog combiner), the following local variables
are defined

R−1
𝑗𝑏

= R−1
𝑗𝑏
, ∀ 𝑗𝑏, (34a)

R−1
𝑘𝑏

= R−1
𝑘𝑏
, R𝑎𝑘𝑏 = R𝑎𝑘𝑏 , R𝑎𝑘𝑏 = R𝑎

𝑘𝑏
, ∀𝑘𝑏 . (34b)

For notational compactness, similar to (16), we also define the
following variables

Z1
𝑘𝑏

= H𝐻
𝑘𝑏

F𝑏R−1
𝑘𝑏

F𝑏𝐻H𝑘𝑏 , Z2
𝑘𝑏

= L𝐼𝑛𝑘𝑏 +L𝑂𝑢𝑡𝑘𝑏
+𝜆𝑘𝑏I, ∀𝑘𝑏,

(35a)
Z1
𝑗𝑏
= H𝐻

𝑗𝑏
R−1
𝑗𝑏

H 𝑗𝑏 , Z2
𝑗𝑏
= L𝐼𝑛𝑗𝑏 + L𝑂𝑢𝑡𝑗𝑏

+ 𝜓𝑏I, ∀ 𝑗𝑏,
(35b)

which now depends only on the fixed local variables. By
using the local variables, the Lagrangian (32) can be rewritten
in terms of the information saved only in the local variables
as

L =
∑︁
𝑏∈B

[
∑︁
𝑘𝑏∈U𝑏

(𝑤𝑘𝑏 ln det(I + U𝐻𝑘𝑏Z1
𝑘𝑏

U𝑘𝑏 ) − Tr(U𝐻𝑘𝑏Z2
𝑘𝑏

U𝑘𝑏 )

+ 𝜆𝑘𝑏 𝑝𝑘𝑏 ) +
∑︁
𝑗𝑏∈D𝑏

(𝑤 𝑗𝑏 ln det(I + V𝐻𝑗𝑏W𝑏
𝐻Z1

𝑗𝑏
W𝑏V 𝑗𝑏 )

− Tr(V𝐻𝑗𝑏W𝑏
𝐻Z1

𝑗𝑏
W𝑏V 𝑗𝑏 ) + 𝜓𝑏𝑝𝑏)

]
.

(36)
Unlike (32), (36) becomes fully decoupled at the cell level (not
per link). This is because it relies on local variables that remain
fixed for each FD BS and are updated only when feedback
is received from neighbouring BSs. However, it should be
noted that in both UL and DL, the optimization of the analog
combiner F𝑏 in Z1

𝑘𝑏
and the analog beamformer W𝑏 for all

𝑏 ∈ B remains coupled, as they are shared among the UL
and DL users within the same cell, respectively. Additionally,
the analog beamformer W𝑏 also impacts the total transmit
power of each FD BS, presenting a significant challenge in
achieving independent per-link optimization in the DL based
on (36). The management of the coupling constraints and the
P&D optimization for HYBF, starting from (36) ∀𝑏 ∈ B is
discussed in the following.

A. Per-Link Independent Sub-Problems in UL

In UL transmission, each user is subject to an individual
sum-power constraint, while the analog combiner F𝑏, present
in Z1

𝑘𝑏
, is shared among all UL users within the same cell.

To achieve decoupled optimization on a per-link basis, we
make the assumption that FD BS 𝑏 ∈ B updates F𝑏 only
after updating all digital beamformers U𝑘𝑏 for all 𝑘𝑏 ∈ U𝑏.
With this assumption and fixed local variables, the UL WSR
maximization problem for each BS can be decomposed into
into independent three layers of sub-problems.

At the bottom layer, FD BS 𝑏 ∈ B independently and in
parallel solves sub-problems to update U𝑘𝑏 ,∀𝑘𝑏. At the middle
layer, FD BS 𝑏 ∈ B independently updates the stream power
matrix P𝑘𝑏 while searching for the independent multiplier
𝜆𝑘𝑏 ,∀𝑘𝑏 in parallel. Finally, at the top layer, after solving the
two-layer UL sub-problems, only one update of the shared
analog combiner is required. Figure 2 visually illustrates the

concept of per-link decomposition for UL WSR for FD BS
𝑏 ∈ B, comprising three sub-layers, with the sub-problems at
each layer being solved sequentially from bottom to top, given
the local variables have been recently updated based on the
feedback.

Due to the per-link independent decomposition with fixed
local variables, the Lagrangian for the UL user 𝑘𝑏 ∈ U𝑏 with
independent sum-power constraint 𝑝𝑘𝑏 , can be written as

L𝑘𝑏 = 𝑤𝑘𝑏 ln det(I + U𝐻𝑘𝑏Z1
𝑘𝑏

U𝑘𝑏 ) − Tr(U𝐻𝑘𝑏Z2
𝑘𝑏

U𝑘𝑏 ) + 𝜆𝑘𝑏 𝑝𝑘𝑏 ,
(37)

in which for the bottom layer the analog combiner F𝑏 in Z1
𝑘𝑏

and the powers are fixed. To optimize U𝑘𝑏 , a derivative of
(37) can be taken, which leads to a similar KKT condition as
(18a), with 𝚺𝑖

𝑘𝑏
replaced with Z𝑖

𝑘𝑏
,∀𝑖. By following a similar

proof of Appendix A, it can be easily shown that the WSR
maximizing U𝑘𝑏 for (37) can be computed as

U𝑘𝑏 = D𝑑𝑘𝑏 (Z
1
𝑘𝑏
,Z2

𝑘𝑏
). (38)

Note that the computation of (38) can be parallelized across the
multi-processor FD BS 𝑏 ∈ B, ∀𝑘𝑏 ∈ U𝑏. This parallelization
is feasible due to the fact that the shared component F𝑏 will
be updated at the top layer, and the information pertaining to
the interference generated towards other links is encapsulated
within the local variables, which are fixed.

In the intermediate layer, the power optimization remains
decoupled due to the individual sum-power constraints of each
UL user and the fixed local variables. In order to determine
the optimal P𝑘𝑏 simultaneously ∀𝑘𝑏, we begin by normalizing
the columns of (38) to have unit norm ∀𝑘𝑏. The independent
power allocation problem for P&D-HYBF in the UL can be
formally defined as follows:

max
P𝑘𝑏

[𝑤𝑘𝑏 ln det(I + U𝐻𝑘𝑏Z1
𝑘𝑏

U𝑘𝑏P𝑘𝑏 ) − Tr(U𝐻𝑘𝑏Z2
𝑘𝑏

U𝑘𝑏P𝑘𝑏 )] .
(39)

Solving (39) independently ∀𝑘𝑏 yields the following parallel
power allocation scheme

P𝑘𝑏 = (𝑤𝑘𝑏 (U𝐻𝑘 Z1
𝑘𝑏

U𝑘𝑏 )−1 − (U𝐻𝑘𝑏Z2
𝑘𝑏

U𝑘𝑏 )−1)+, (40)

which can be computed while searching for the multiplier
𝜆𝑘𝑏 associated with its independent sum-power constraint in
parallel ∀𝑘𝑏. It is worth noting that the power allocation
problem consists of a purely concave component and a linear
component that is simultaneously convex and concave. As
a result, the overall problem is concave, and the solution
provided by (40) yields an optimal power allocation scheme.
The multiplier 𝜆𝑘𝑏 ,∀𝑘𝑏, must satisfy the condition that (37)
is finite and that 𝜆𝑘𝑏 is strictly positive. This multiplier can
be determined by solving the following problem in parallel:

min
𝜆𝑘𝑏

max
P𝑘𝑏

L𝑘𝑏 (𝜆𝑘𝑏 ,P𝑘𝑏 ),

s.t. 𝜆𝑘𝑏 ⪰ 0,
(41)

while independently allocating the powers at the middle layer
∀𝑘𝑏. The dual function

max
P𝑘𝑏

L𝑘𝑏 (𝜆𝑘𝑏 ,P𝑘𝑏 ), (42)
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Fig. 2: Decomposition of the UL WSR into three layers of
sub-problems ∀𝑏 ∈ B.

Fig. 3: Decomposition of the DL WSR into three layers of
sub-problems ∀𝑏 ∈ B.

is convex [21] and can be solved with the Bisection method,
as for the C-HYBF scheme. If P𝑘𝑏 becomes non-diagonal, its
diagonal structure can be reestablished as P𝑘𝑏 = D𝑠𝑣𝑑P𝑘𝑏

, where

D𝑠𝑣𝑑P𝑘𝑏

is a diagonal matrix obtained from SVD of the non-
diagonal P𝑘𝑏 .

At the top layer, one update of F𝑏 is required ∀𝑏 ∈ B. Note
that simultaneous variation in parallel of the beamformers U𝑘𝑏
and powers P𝑘𝑏 , ∀𝑘𝑏, at the bottom and middle layer vary
the received covariance matrices. This information should be
updated in the local variables R𝑎𝑘𝑏 and R𝑎

𝑘𝑏
at the antenna

level, which F𝑏 should combine. As each FD BS 𝑏 ∈ B
has complete information about the optimized variables at the
middle and bottom layers, it can use it to update first R𝑎𝑘𝑏 and
R𝑎
𝑘𝑏
,∀𝑘𝑏 ∈ U𝑏. As the WSR is fully concave with respect

to the analog combiner F𝑏, to optimize it we consider the
following optimization problem for the unconstrained case

max
F𝑏

∑︁
𝑘𝑏∈U𝑏

𝑤𝑘𝑏 [ln det(F𝑏𝐻R𝑎𝑘𝑏F𝑏) − ln det(F𝑏𝐻R𝑎𝑘𝑏F𝑏)],

(43)
where the local variables R𝑎𝑘𝑏 and R𝑎𝑘𝑏 have been recently
updated by using the information from the middle and bottom
layers. Problem (43) is fully concave and solving it leads to
the following optimal unconstrained analog combiner

F𝑏 = D𝑁𝑅𝐹
𝑏

(
∑︁
𝑘𝑏∈U𝑏

𝑤𝑘𝑏R𝑎𝑘𝑏 ,
∑︁
𝑘𝑏∈U𝑏

𝑤𝑘𝑏R𝑎𝑘𝑏 ). (44)

To satisfy the unit-modulus and quantization constraints, the
amplitudes of F𝑏 are normalized to have unit-norm and then
quantized as F𝑏 (𝑚, 𝑛) = Q𝑏 (∠F𝑏 (𝑚, 𝑛)) ∈ P𝑏, for all 𝑚 and
𝑛. Such operation introduces a loss of optimality, which is
directly influenced by the phase resolution of the phase shifters
and will be examined through simulations.

B. Per-Link Independent Sub-Problems in DL

The decomposition of the DL WSR poses greater chal-
lenges due to the interdependence of the sum-power constraint
among the DL users in set D𝑏,∀𝑏. Additionally, the analog
beamformer W𝑏 is shared among DL users within the same
cell and impacts the overall transmit power. To introduce
per-link independent decomposition in DL, we assume that
each FD BS 𝑏 ∈ B first updates the digital beamformers
for the DL users with unit-norm columns, while keeping
the Lagrange multiplier 𝜓𝑏 and the analog beamformer W𝑏

fixed. Furthermore, the powers are included afterwards, while
searching the common multiplier 𝜓𝑏. Given this assumption,
the DL WSR problem, for each FD BS 𝑏 ∈ B, decomposes
into three layers of sub-problems.

At the bottom layer, each FD BS has to optimize the DL
beamformers V 𝑗𝑏 , ∀ 𝑗𝑏, and normalize its columns to unit-
norm, in parallel. At the middle layer, one update of the analog
beamformer W𝑏 is required. Finally, at the top layer, we have
to search for the Lagrange multiplier 𝜓𝑏 satisfying the coupled
sum-power constraint and update the power matrices P 𝑗𝑏 for
the DL users in parallel ∀ 𝑗𝑏. Fig. 3 shows the decomposition
of the DL WSR into three layers of sub-problems, which must
be solved from the bottom to the top.

We observe that the feasibility of per-link optimization
arises from the exceptional attribute of MM, which permits
power allocation at the highest layer. Alternative methodolo-
gies, like WMMSE, wherein powers and beamformers are
jointly devised, would not facilitate the possibility of P&D-
HYBF.

For FD BS 𝑏 ∈ B, the Lagrangian for the DL WSR can be
written as

L𝐷𝐿
𝑏 =

∑︁
𝑗𝑏∈D𝑏

(𝑤 𝑗𝑏 ln det(I + V𝐻𝑗𝑏W𝑏
𝐻Z1

𝑗𝑏
W𝑏V 𝑗𝑏 )

− Tr(V𝐻𝑗𝑏W𝑏
𝐻Z2

𝑗𝑏
W𝑏V 𝑗𝑏 ) + 𝜓𝑏𝑝𝑏).

(45)

Note that in contrast to the UL case (37) which had per-
link Lagrangian ∀𝑘𝑏 ∈ U𝑏, (45) exhibits coupling among the
downlink users in D𝑏. In equation (45), for the lower layer,
when 𝜓𝑏, W𝑏, and Z 𝑗𝑏𝑖 are held constant, the optimization of
the digital beamformers with unit-norm columns remains inde-
pendent. Given the local variables Z𝑖

𝑗𝑏
,∀𝑖, digital beamformer

V 𝑗𝑏 can be optimized as

V 𝑗𝑏 = D𝑑 𝑗𝑏
(W𝑏

𝐻Z1
𝑗𝑏

W𝑏,W𝑏
𝐻Z2

𝑗𝑏
W𝑏), (46)

The columns of which can be normalized to have a unit norm
in parallel for all 𝑗𝑏, thereby enabling the inclusion of optimal
power allocation at the top layer. Upon completing the parallel
update of the digital beamformers V 𝑗𝑏∀ 𝑗𝑏, the middle layer
necessitates the optimization of the analog combiner W𝑏 for
FD BS 𝑏 ∈ B. In this regard, each FD BS 𝑏 ∈ B must
independently tackle the following optimization problem at
the middle layer for the unconstrained analog beamformer

max
W𝑏

∑︁
𝑗𝑏∈D𝑏

(𝑤 𝑗𝑏 ln det(I + V𝐻𝑗𝑏W𝑏
𝐻Z1

𝑗𝑏
W𝑏V 𝑗𝑏 )

− Tr(V𝐻𝑗𝑏W𝑏
𝐻Z2

𝑗𝑏
W𝑏V 𝑗𝑏 )).

(47)
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Note that each FD BS has complete information about the
digital beamformers optimized at the bottom layer, which must
be first used to update R−1

𝑗𝑏
and L𝐼𝑛𝑗𝑏 appearing in Z1

𝑗𝑏
and Z2

𝑗𝑏
in (47), respectively, ∀ 𝑗𝑏. To optimize W𝑏 a derivative of (47)
can be taken, and from the KKT condition it can be easily
shown that W𝑏 can be optimized as

vec(W𝑏) = D1 (
∑︁
𝑗𝑏∈D𝑏

(V 𝑗𝑏V𝐻𝑗𝑏 (I + V 𝑗𝑏V𝐻𝑗𝑏W𝑏
𝐻Z1

𝑗𝑏
W𝑏)−1)𝑇

⊗ Z1
𝑗𝑏
,

∑︁
𝑗𝑏∈D𝑏

(V 𝑗𝑏V𝐻𝑗𝑏 )
𝑇 ⊗ Z2

𝑗𝑏
).

(48)
The analog combiner W𝑏 optimized according to (48) is un-
constrained and vectorized. Therefore, we do unvec(vec(W𝑏))
to shape it into correct dimensions, normalize the amplitude
with ∠· and quantize it such that W𝑏 = Q(∠W𝑏) ∈ P𝑏.

For the top layer, the optimal stream power allocation can be
included while searching the multiplier 𝜓𝑏 to satisfy the sum-
power constraint 𝑝𝑏. Assuming the multiplier 𝜓𝑏 to be fixed,
which is captured in Z2

𝑗𝑏
, the power optimization problem

∀ 𝑗𝑏 ∈ D𝑏 can be stated as

max
P 𝑗𝑏

𝑤 𝑗𝑏 ln det(I + V𝐻𝑗𝑏W𝑏
𝐻Z1

𝑗𝑏
W𝑏V 𝑗𝑏P 𝑗𝑏 )

− Tr(V𝐻𝑗𝑏W𝑏
𝐻Z2

𝑗𝑏
W𝑏V 𝑗𝑏P 𝑗𝑏 ).

(49)

In (49), the update of power matrix P 𝑗𝑏 ,∀ 𝑗𝑏, remains
independent and the multiplier 𝜓𝑏 must be updated
based on the sum of the transmit covariance matrices
Tr(∑ 𝑗𝑏

W𝑏
𝐻V𝐻

𝑗𝑏
P 𝑗𝑏V 𝑗𝑏W𝑏), once all the power matrices P 𝑗𝑏

are updated in parallel. Solving (49) in parallel ∀ 𝑗𝑏 leads to
the following optimal power allocation scheme

P 𝑗𝑏 = (𝑤 𝑗𝑏 (V𝐻𝑗𝑏W𝐻
𝑏 Z1

𝑗𝑏
W𝑏V 𝑗𝑏 )−1 − (V𝐻𝑗𝑏W𝐻

𝑏 Z2
𝑗𝑏

W𝑏V 𝑗𝑏 )−1)+.
(50)

As a final step, the multiplier 𝜓𝑏 can be searched with the
Bisection method similar to (41), and while doing so, the
optimal power allocation for the DL user in the set D𝑏 can
be computed in parallel according to (50).

Adopting a cooperative methodology, each FD base BS
engages in the exchange of information concerning the up-
dated digital beamformers, analog beamformer, and combiner
with neighboring BSs following each synchronized iteration.
This collaborative information sharing enables every FD BS
to gain insight into the generated interference and facilitates
the appropriate adjustment of its beamformers throughout the
independent optimization process. A comprehensive procedure
outlining the execution of the cooperative P&D-HYBF is
presented in Algorithm 2.

Remark 2: Remark that the required information exchange is
minimal as each FD BS only needs to share one analog beam-
former and analog combiner, which have sizes corresponding
to the number of antennas at the BS, along with several small-
sized digital beamformers (sized according to the number
of RF chains for DL or the number of UL user antennas,
which is very small). Additionally, P&D-HYBF relies on local
interfering channels (Assumption 2), which are incorporated
in the local variables, resulting in a significant reduction in
communication overhead compared to C-HYBF. Furthermore,
as computations take place locally at each FD BS, it allows

Algorithm 2 Parallel and Distributed Hybrid Beamforming
Given: The rate weights, CSI and multiple processors in UL and DL ∀𝑏.
Initialize: W𝑏 ,V 𝑗𝑏

,U𝑘𝑏
, ∀ 𝑗𝑏 ∈ D𝑏 , ∀𝑘𝑏 ∈ U𝑏 in each cell.

Repeat until convergence
∀𝑏 ∈ B, share W𝑏 , F𝑏 and U𝑘𝑏

,V 𝑗𝑏
, ∀𝑘𝑏 , ∀ 𝑗𝑏 with the neighbour-

ing FD BSs.
In parallel ∀𝑏 (∀𝑘𝑏 ∈ U𝑏 , ∀ 𝑗𝑏 ∈ D𝑏)

Update L𝐼𝑛

𝑗𝑏
, L𝐼𝑛

𝑘𝑏
and L𝑂𝑢𝑡

𝑗𝑏
and L𝑂𝑢𝑡

𝑘𝑏
in (35) , from the memory

and based on the feedback, respectively.
Update R−1

𝑘𝑏
and R

𝑗𝑏
in (34) from the memory.

Solve in parallel ∀𝑏 ∈ B
Parallel DL for FD BS 𝑏

Set: 𝜓𝑏 = 0, 𝜓𝑏 = 𝜓𝑚𝑎𝑥
𝑏

.
Bottom layer: Compute V 𝑗𝑏

, ∀ 𝑗𝑏 in parallel with (46) and
normalize it to unit-norm columns

Update R−1
𝑗𝑏

and L𝐼𝑛

𝑗𝑏
, ∀ 𝑗𝑏 from the memory

Middle layer: Compute W𝑏 with (48), do unvec and get ∠W𝑏

Top layer: Repeat until convergence
set 𝜓𝑏 = (𝜓𝑏 + 𝜓𝑏 )/2
In parallel ∀ 𝑗𝑏

Compute P 𝑗𝑏
(50), do SVD, set P 𝑗𝑏

= DP 𝑗𝑏

Set Q 𝑗𝑏
= W𝑏V 𝑗𝑏

P 𝑗𝑏
V𝐻

𝑗𝑏
W𝐻

𝑏

if constraint for 𝜓𝑏 is violated
set 𝜓𝑏 = 𝜓𝑏 ,

else 𝜓𝑏 = 𝜓𝑏
Parallel UL for FD BS 𝑏

Set: 𝜆𝑘𝑏 = 0, 𝜆𝑘𝑏 = 𝜆𝑚𝑎𝑥
𝑘𝑏

, ∀𝑘𝑏 .
Bottom layer: Compute U𝑘𝑏

, ∀𝑘𝑏 , (38) in parallel
Normalize U𝑘𝑏

, ∀𝑘𝑏 .
Middle layer: Repeat until convergence in parallel ∀𝑘𝑏

set 𝜆𝑘𝑏 = (𝜆𝑘𝑏 + 𝜆𝑘𝑏 )/2
Compute P𝑘𝑏

with (40), do SVD and set P𝑘𝑏
= D𝑃𝑘𝑏

Set T
𝑏
= U𝑘𝑏

P𝑘𝑏
U𝐻
𝑘𝑏

if constraint for 𝜆𝑘𝑏 is violated
set 𝜆𝑘𝑏 = 𝜆𝑘𝑏

else 𝜆𝑘𝑏 = 𝜆𝑘𝑏
Update R𝑎

𝑘𝑏
,R𝑎

𝑘𝑏
, ∀𝑘𝑏 .

Top layer: Compute F𝑏 with (44) and get ∠F𝑏 .
Repeat

Quantize W𝑏 and F𝑏 , with Q𝑏 ( ·) , ∀𝑏.

faster adaptation of the beamformers to highly dynamically
variable local traffic demands.

C. On the Convergence of P&D-HYBF

The convergence of P&D-HYBF can be shown by following
a similar approach for C-HYBF and therefore we consider
omitting it. However, there are some notable differences in
the information captured by the local variables used in P&D-
HYBF compared to the gradients used in C-HYBF. This results
in different KKT conditions and therefore both algorithms
converge to a different local optimum during the alternating
optimization process, resulting in different achievable WSR
at each iteration. It will be shown later that the difference
between the achievable WSR by C-HYBF and P&D-HYBF at
the convergence is negligible.

D. Computational Complexity Analysis

In this section, we present the per-iteration computational
complexity for the C-HYBF and P&D-HYBF schemes. For
such purpose, an equal number of users in DL and UL in
each cell, i.e., 𝐷𝑏 = 𝐷 and 𝑈𝑏 = 𝑈, ∀𝑏 ∈ B with |B| = 𝐵, is
assumed. Moreover, the number of antennas in each cell for
the FD BSs, UL and DL users is also assumed to be the same
in each cell.
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Let us consider only the computational complexity of C-
HYBF denoted with C𝐶 , by ignoring its huge communication
overhead to transfer complete CSI every channel coherence
time to the CN and communicating back the optimized vari-
ables, given by

C𝐶 =O(𝐵2𝑈2𝑁𝑅𝐹𝑏
3 + 𝐵2𝑈𝐷𝑁3

𝑗𝑏
+ 𝐵2𝐷2𝑁3

𝑗𝑏
+ 𝐵2𝐷𝑈𝑁𝑅𝐹𝑏

3

+ 𝐵𝑀𝑅𝐹
𝑏

2
𝑀2
𝑏 + 𝐵𝑁

𝑅𝐹
𝑏 𝑁2

𝑏 + 𝐵𝐷𝑑 𝑗𝑏𝑀
𝑅𝐹
𝑏

2 + 𝐵𝐷𝑑𝑘𝑏𝑁2
𝑘𝑏
).

(51)
For P&D-HYBF, different computational processors have

different computational burdens. Therefore we consider com-
paring its worst-case complexity in each cell, denoted as
C𝐷𝐿
𝑃&𝐷 and C𝑈𝐿

𝑃&𝐷 for DL and UL, respectively. Namely, let
𝑍𝐷𝐿 and 𝑍𝑈𝐿 denote the number of processors dedicated
for DL and UL by each FD BS, respectively. It is necessary
to distinguish two cases: 1) 𝑍𝐷𝐿 = 𝐷, 𝑍𝑈𝐿 = 𝑈, and 2)
𝑍𝐷𝐿 < 𝐷, 𝑍𝑈𝐿 < 𝑈,∀𝑏. The first case considers fully parallel
implementation with the number of processors equals to the
number of users. For such a case, the worst-case complexity in
UL and DL is given for the processors which make one update
of the digital beamformer in UL and the analog combiner, and
one update of the digital beamformer in DL and the analog
beamformer, respectively, in each cell. For the fully parallel
implementation (case 1), the complexity results to be

C𝐷𝐿𝑃&𝐷 = O(𝐵𝐷𝑁3
𝑗𝑏
+ 𝐵𝑈𝑁𝑅𝐹𝑏

3 + 𝑑 𝑗𝑏𝑀𝑅𝐹
𝑏

2 + 𝑀𝑅𝐹
𝑏

2
𝑀2
𝑏),
(52a)

C𝑈𝐿𝑃&𝐷 = O(𝐵𝑈𝑁𝑅𝐹𝑏
3 + 𝐵𝐷𝑁3

𝑗𝑏
+ 𝑑𝑘𝑏𝑁2

𝑘𝑏
+ 𝑁𝑅𝐹𝑏 𝑁2

𝑏) (52b)

The second case considers that the number of processors
dedicated is less than the number of users. In such a case, each
processor may have to update 𝐾 and 𝑁 digital beamformers
in DL and UL, respectively, before updating the analog part.
In such a case, the worst-case complexity in DL and UL is
given for the processors which update 𝐾 digital beamformers
and the analog beamformer, and 𝑁 digital beamformers and
the analog combiner, respectively, in each cell. In such a case,
the worst-case complexity in UL and DL for P&D-HYBF is

C𝐷𝐿𝑃&𝐷 = O(𝐾𝐵𝐷𝑁3
𝑗𝑏
+ 𝐾𝐵𝑈𝑁𝑅𝐹𝑏

3 + 𝐾𝑑 𝑗𝑏𝑀𝑅𝐹
𝑏

2 + 𝑀𝑅𝐹
𝑏

2
𝑀2
𝑏)

(53a)

C𝑈𝐿𝑃&𝐷 = O(𝑁𝐵𝑈𝑁𝑅𝐹𝑏
3 + 𝑁𝐵𝐷𝑁3

𝑗𝑏
+ 𝑁𝑑𝑘𝑏𝑁2

𝑘𝑏
+ 𝑁𝑅𝐹𝑏 𝑁2

𝑏)
(53b)

It is noteworthy that the worst-case complexity of P&D-
HYBF is significantly lower than that of C-HYBF. It scales
linearly with the network size (𝐵) and density (𝐷 and 𝑈),
while C-HYBF has a quadratic scaling.

VI. SIMULATION RESULTS

This section presents simulation results to evaluate the
performance of the proposed C-HYBF and P&D-HYBF
schemes. For comparison, we consider the following bench-
mark schemes: 1) A centralized Fully Digital FD scheme with
the LDR noise. 2) A centralized Fully Digital HD scheme with
LDR noise, serving the UL and DL users by separating the
resources in times.
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Fig. 4: Typical convergence behaviour of the proposed
schemes.

To compare the performance with a fully digital HD system,
we define the additional gain in terms of percentage for an FD
system over an HD system as

𝐺𝑎𝑖𝑛 =
WSR𝐹𝐷 − WSR𝐻𝐷

WSR𝐻𝐷
× 100[%], (54)

where WSR𝐹𝐷 and WSR𝐻𝐷 are the network WSR for the
FD and HD systems, respectively. We assume the same SNR
level for all the FD BSs, defined as SNR = 𝑝𝑏/𝜎2

𝑏
, with

transmit power 𝑝𝑏 and thermal noise variance 𝜎2
𝑏
. We assume

that the UL users and FD BSs transmit the same amount of
power, i.e., 𝑝𝑘𝑏 = 𝑝𝑏,∀𝑘𝑏. The thermal noise level for DL
users is set as 𝜎2

𝑗𝑏
= 𝜎2

𝑏
,∀ 𝑗𝑏. The total transmit power is

normalized to 1, and we choose the thermal noise variance
to meet the desired SNR. We simulate a multicell network
of 𝐵 = 2 cells, with each FD BS serving one DL and one
UL user. P&D-HYBF is evaluated on a computer consisting
of 4 computational processors, equal to the number of users
in the network, i.e., fully parallel implementation, by using
the parfor function in MATLAB. The FD BSs are assumed
to have 𝑀𝑏 = 100 transmit and 𝑁𝑏 = 60 receive antennas,
and the number of RF chains in transmission and reception is
chosen as 𝑀𝑅𝐹

𝑏
= 𝑁𝑅𝐹

𝑏
= 32, 16, 10 or 8. The phase shifters

are assumed to be quantized with a uniform quantizer Q𝑏 (·)
of 10 or 4 bits. The DL and UL users are assumed to have
𝑁 𝑗𝑏 = 𝑁𝑘𝑏 = 5 antennas and are served with 𝑑 𝑗𝑏 = 𝑑𝑘𝑏 = 2
data streams. The number of paths for each device is chosen to
be 𝑁 𝑝

𝑘𝑏
= 3, and the AOA 𝜃𝑛

𝑘𝑏
and AOD 𝜙𝑛

𝑘𝑏
are assumed to be

uniformly distributed in the interval U ∼ [−30◦, 30◦],∀ 𝑗𝑏, 𝑘𝑏.
We assume uniform-linear arrays (ULAs) for the FD BSs and
users. For the FD BSs, the transmit and the receive array are
assumed to be separated with distance 𝐷𝑏 = 20 cm with a
relative angle Θ𝑏 = 90◦ and 𝑟𝑚,𝑛 in (7) is set given 𝐷𝑏 and
Θ𝑏. The Rician factor is chosen to be 𝜅𝑏 = 1 and the rate
weights are set to be 𝑤𝑘𝑏 = 𝑤 𝑗𝑏 = 1. Digital beamformers
are initialized as the dominant eigenvectors of the channel
covariance matrices of each user. The analog beamformers and
combiners are initialized as the dominant eigenvectors of the
sum of the channel covariance matrices across all the DL and
UL users, respectively. Results reported herein are averaged
over 100 channel realizations.

Figure 4 showcases the convergence characteristics of the
proposed schemes in comparison to the fully digital FD sys-
tem. It is apparent that the proposed schemes achieve varying
rates of improvement in WSR at each iteration and converge
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Fig. 5: Execution time for the C-HYBF and the P&D HYBF
schemes with 32-RF chains.
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Fig. 6: Average WSR as a function of the LDR noise with
SNR= 20 dB and a large number of RF chains.

towards distinct local optima. However, the discrepancy in the
attained WSR at convergence is negligible. Notably, P&D-
HYBF demonstrates rapid convergence within a few iterations,
thereby requiring minimal communication overhead for shar-
ing updated variable information.

Figure 5 illustrates the execution time of C-HYBF and
P&D-HYBF, considering the utilization of 32 RF chains. C-
HYBF requires substantial computational time as it iteratively
updates variables through alternating optimization, one after
another. The transfer of complete CSI to the CN and the
communication of optimized variables to all cells further
contribute to a significant time overhead, which is disregarded
in the simulations. On the other hand, P&D-HYBF allows
for parallel computation of local variables at each FD BS,
where each BS optimizes its local beamformers solely for
its associated users using multiple low-cost processors. The
results demonstrate that P&D-HYBF requires approximately
1/21 and 1/2.3 less time in the UL and DL, respectively,
compared to the average execution time of C-HYBF.

The complexity of P&D-HYBF in the DL is dominated by
the computation of a single large GDE to update the vectorized
analog beamformer, with a complexity of O(𝑀𝑅𝐹

𝑏

2
𝑀2
𝑏
). In

the UL, the complexity primarily stems from the computation
of the analog combiner, which scales as O(𝑁𝑅𝐹

𝑏
𝑁2
𝑏
). It is

important to note that the execution time for solving one sub-
problem for the bottom layers in the UL and DL is negligible
compared to the average execution time of C-HYBF. Based
on the aforementioned complexity analysis, we anticipate that
the execution time of C-HYBF will grow quadratically with
the number of users or cells which is infeasible for a large
real-time FD network.

Fig. 6 shows the average WSR achieved with both schemes
as a function of the LDR noise with 32 or 16 RF chains and
10 or 4 bits phase-resolution. It is visible that the P&D-HYBF
performs very close to the C-HYBF scheme with the same
number of RF chains and phase resolution. Fully digital FD
achieves ∼ 83% of additional gain than the fully digital HD for
any LDR noise level. For a low LDR noise level 𝑘𝑏 < −80 dB,
C-HYBF and P&D-HYBF with 32 RF chains achieve ∼ 74, 55
and ∼ 71, 54% additional gain and with 16 RF chains they
achieve ∼ 67%, 48% and ∼ 64%, 47% additional gain with
10, 4 bits phase-resolution, respectively. We can also see that
when the LDR noise variance increases, the achievable WSR
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Fig. 7: Average WSR as a function of the LDR noise with
SNR= 20 dB and a small number of RF chains.

for both the FD and HD systems decreases considerably. Fig.
7 shows the average WSR as a function of the LDR noise with
only 12 or 10 RF chains and with 10 or 4 bits phase-resolution.
For LDR noise 𝑘𝑏 ≤ 80 dB, C-HYBF and P&D-HYBF with
12 RF chains achieve ∼ 60, 43% and ∼ 57, 43% additional
gain and with 10 RF chains they achieve additional gain of
∼ 58, 38% and ∼ 53, 37% with 10, 4 bit phase-resolution,
respectively.

Fig. 8 shows the average WSR as a function of the SNR
with 32 and 16 RF chains and with 10 or 4 bit phase-resolution
affected with LDR noise 𝑘𝑏 = −80 dB, in comparison with
the benchmark schemes. We can see that a fully digital FD
system achieves ∼ 94% and ∼ 82% additional gain at low
and high SNR, respectively. With 32 RF chains and 10 bit
phase-resolution, the C-HYBF scheme achieves ∼ 79% gain
at all the SNR levels and the P&D-HYBF achieves ∼ 77%
and ∼ 68% gain at low and high SNR, respectively. As the
phase resolution decreases to 4-bits, we can see that the loss
in WSR compared to the 10-bit phase-resolution case is much
more evident at high SNR. Still, with 16 RF chains and 10 or
4 bit phase-resolution, both schemes significantly outperform
the fully digital HD scheme for any SNR level.

Fig. 9 shows the average WSR as a function of the SNR
with the same LDR noise level as in Fig. 8, i.e., 𝑘𝑏 = −80 dB,
but with 10 or 12 RF chains and 10 or 4 bit phase-resolution.
The achieved average WSR presents a similar behaviour as
in the case of a high number of RF chains, and it is visible
that the proposed schemes significantly outperform the fully
digital HD system also with a very low number of RF chains
and phase-resolution. Moreover, P&D-HYBF achieves similar
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Fig. 8: Average WSR as a function of the SNR with LDR
noise 𝜅𝑘𝑏 = −80 dB and a large number of RF chains.

-10 -5 0 5 10 15 20 25

SNR

30

40

50

60

70

80

90

100

110

120

A
ve

ra
ge

 W
ei

gh
te

d 
S

um
-R

at
e 

[b
ps

/H
z]

Fully Digital FD

C-HYBF-12RF-10bit

C-HYBF-12RF-4bit

C-HYBF-10RF-10bit

C-HYBF-10RF-4bit

P&D-HYBF-12RF-10bit

P&D-HYBF-12RF-4bit

P&D-HYBF-10RF-10bit

P&D-HYBF-10RF-4bit

Fully Digital HD

Fig. 9: Average WSR as a function of the SNR with LDR
noise 𝜅𝑘𝑏 = −80 dB and a small number of RF chains.
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Fig. 10: Average WSR as function of the SNR with LDR noise
𝜅𝑘𝑏 = −40 dB and a large number of RF chains.
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Fig. 11: Average WSR as a function of the SNR with LDR
noise 𝜅𝑘𝑏 = −40 dB and a small number of RF chains.

performance as the C-HYBF scheme regardless of the phase
resolution and number of RF chains.

Figure 10 exhibits the average achieved WSR as a function
of the SNR in the presence of LDR noise 𝑘𝑏 = −40 dB. It
is evident that when the LDR noise dominates, reducing the
variance of thermal noise has a negligible impact on the effec-
tive signal-to-LDR-plus-thermal-noise ratio. Consequently, the
dominance of LDR noise variance acts as a threshold, limiting
the effective SLNR and thereby restricting the achievable
WSR, which tends to saturate at SNR= 10 dB. Notably,
even with a high level of LDR noise, both the C-HYBF
and P&D-HYBF achieve similar performance gains. It can be
also observed that both schemes achieve higher WSR when
utilizing 16 RF chains and 10-bit phase resolution compared
to the case of 32 RF chains and 4-bit phase resolution. Figure
11 illustrates the average WSR as a function of the SNR,
considering only 10 or 12 RF chains and 10 or 4-bit phase
resolution.

The aforementioned findings serve as compelling evidence
for the superior performance of both proposed schemes com-
pared to the fully digital HD system. Furthermore, an im-
portant conclusion can be drawn, namely that P&D-HYBF
exhibits comparable performance to C-HYBF without any
degradation while offering numerous advantages in terms
of scalability, computational complexity, deployability and
communication overhead. As a result, P&D-HYBF emerges
as a prominent solution for future large-scale mmWave FD
networks.

VII. CONCLUSION

This article presented two HYBF schemes for WSR maxi-
mization in multicell mmWave mMIMO FD systems. Firstly,
a C-HYBF scheme based on alternating optimization is pre-
sented. However, C-HYBF requires massive communication
overhead to exchange information between the FD network
and the CN. Moreover, very high computational power is
required to optimize numerous variables jointly. To overcome
these drawbacks, a very low-complexity P&D-HYBF design
is proposed, which enables each FD BS to solve its local
per-link independent sub-problems simultaneously on differ-
ent computational processors, which drastically reduces the
communication overhead. Its complexity scales only linearly
as a function of the network size, making it highly scalable
and enabling the deployment of low-cost computational pro-
cessors at each BS. Simulation results show that the proposed
HYBF designs achieve similar average WSR and significantly
outperform the centralized fully digital HD systems with only
a few RF chains.

APPENDIX A
PROOF OF THEOREM 1

We firstly proceed with the proof by considering the mi-
norized WSR for the digital beamformer V 𝑗𝑏 , and the proof for
the digital beamformer U𝑘𝑏 follows similarly. For the digital
beamformer V 𝑗𝑏 , when the remaining variables are fixed, the
following optimization problem can be considered
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max
V 𝑗𝑏

[𝑤 𝑗𝑏 ln det(I + V𝐻𝑗𝑏W𝑏
𝐻𝚺1

𝑗𝑏
W𝑏V 𝑗𝑏 )

− Tr(V𝐻𝑗𝑏W𝑏
𝐻𝚺2

𝑗𝑏
W𝑏V 𝑗𝑏 )] .

(55)

To prove the result stated in Theorem 1, (57) must be
simplified such that the Hadamard’s inequality applies as
in Proposition 1 [22] or Theorem 1 [23]. The Cholesky
decomposition of the matrix (W𝑏

𝐻𝚺2
𝑗𝑏

W𝑏) can be written as
L 𝑗𝑏L𝐻

𝑗𝑏
where L 𝑗𝑏 is the lower triangular Cholesky factor. We

can define Ṽ 𝑗𝑏 = L𝐻
𝑗𝑏

V 𝑗𝑏 , which allows to write (57) as

max
V 𝑗𝑏

[𝑤 𝑗𝑏 ln det(I + Ṽ 𝑗𝑏

𝐻L−1
𝑗𝑏

W𝑏
𝐻𝚺1

𝑗𝑏
W𝑏L−𝐻

𝑗𝑏
Ṽ 𝑗𝑏 )

− Tr(Ṽ 𝑗𝑏

𝐻Ṽ 𝑗𝑏 )] .
(56)

Let A 𝑗𝑏𝚲 𝑗𝑏A𝐻
𝑗𝑏

be the eigen decomposition of
L−1
𝑗𝑏

W𝑏
𝐻𝚺1

𝑗𝑏
W𝑏L−𝐻

𝑗𝑏
, where A 𝑗𝑏 and 𝚲 𝑗𝑏 are the unitary and

diagonal power matrices. Let D 𝑗𝑏 = A𝐻
𝑗𝑏

Ṽ 𝑗𝑏

𝐻Ṽ 𝑗𝑏A 𝑗𝑏 , and
the problem (56) can be restated as

max
D 𝑗𝑏

[𝑤 𝑗𝑏 ln det(I + D 𝑗𝑏𝚲 𝑗𝑏 ) − Tr(D 𝑗𝑏 )] . (57)

By using Hadamard’s inequality [Page 233 [24]], it can be
easily shown that the optimal D 𝑗𝑏 must be diagonal. Let V 𝑗𝑏 =

L−𝐻
𝑗𝑏

A 𝑗𝑏D
1
2
𝑗𝑏

and we can write

W𝑏
𝐻𝚺1

𝑗𝑏
W𝑏 = L 𝑗𝑏L𝐻𝑗𝑏L−𝐻

𝑗𝑏
A 𝑗𝑏D

1
2
𝑗𝑏
𝚲 𝑗𝑏 = W𝑏

𝐻𝚺2
𝑗𝑏

W𝑏V 𝑗𝑏𝚲 𝑗𝑏

(58)
which shows that the WSR maximizing beamformer is made
of the GDEs solution. A similar proof can be followed also
to prove that the optimal digital beamformer U𝑘𝑏 can be
optimized as the GDEs solution.

APPENDIX B
PROOF OF THEOREM 2

To optimize the analog beamformer W𝑏 given the remaining
variables to be fixed, we consider the following optimization
problem

max
W𝑏

∑︁
𝑗𝑏∈D𝑏

[𝑤 𝑗𝑏 ln det(I + V𝐻𝑗𝑏W𝑏
𝐻𝚺1

𝑗𝑏
W𝑏V 𝑗𝑏 )

− Tr(V𝐻𝑗𝑏W𝑏
𝐻𝚺2

𝑗𝑏
W𝑏V 𝑗𝑏 )] .

(59)

To prove the result for the analog beamformer, note that a
similar reasoning as for the digital beamformer in Appendix
A does not apply directly. This is due to the fact that the
KKT condition for the analog beamformer (21) have the
form A1W𝑏A2 = B1W𝑏B2 and thus not resolvable for
W𝑏. To solve it for the analog beamformer W𝑏, we can
apply the identity vec(AXB) = B𝑇 ⊗Avec(X) [25], which
allows to rewrite (59) as a function of the vectorized analog
beamformers W𝑏, leading to a resolvable KKT condition
for vec(W𝑏). A similar proof from Appendix A, as done
in Theorem 3 [12], can be applied to the vectorized analog
beamformer W𝑏, and show that the optimal vectorized analog
beamformer is a GDE of the sum of the matrices in (22).
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