

Secure and explainable voice biometrics

Massimiliano Todisco

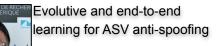
EURECOM, France

GRADUATE SCHOOL AND RESEARCH CENTER IN DIGITAL SCIENCE

Audio Security and Privacy group

Front-end optimisation & graph attention network for

Cryptographic primitives for GDPR compliance



Speaker

anonymisation

Wanying Ge PhD student

Michele Panariello PhD student

Voice biometrics and anti-spoofing

- Automatic Speaker Verification
 - vulnerability to spoofing
- Spoofing

Intro

- \circ speech synthesis
- \circ voice conversion
- replay attacks
- Countermeasures
 - CQCC features*
 - DNN based countermeasures
 - data augmentation techniques
 - single and integrated systems
- ASVspoof initiative co-founders

www.asvspoof.org

- o ASVspoof 2015, 2017, 2019, 2021
- ASVspoof5 is under development

Voice privacy enhancing technologies

- Voice biometrics and speech processing
 - vulnerability to privacy
 - privacy threats
 - biometric template theft
 - biometric data theft
- Privacy solutions
 - anonymisation
 - homomorphic encryption
 - multi-party computation
 - DNN based encryption
- VoicePrivacy initiative co-organisers

www.voiceprivacychallenge.org

• VoicePrivacy 2020, 2022

IBE-RSPEECH22

⇒ 📢)))

text-to-speech (TTS)

voice

conversion

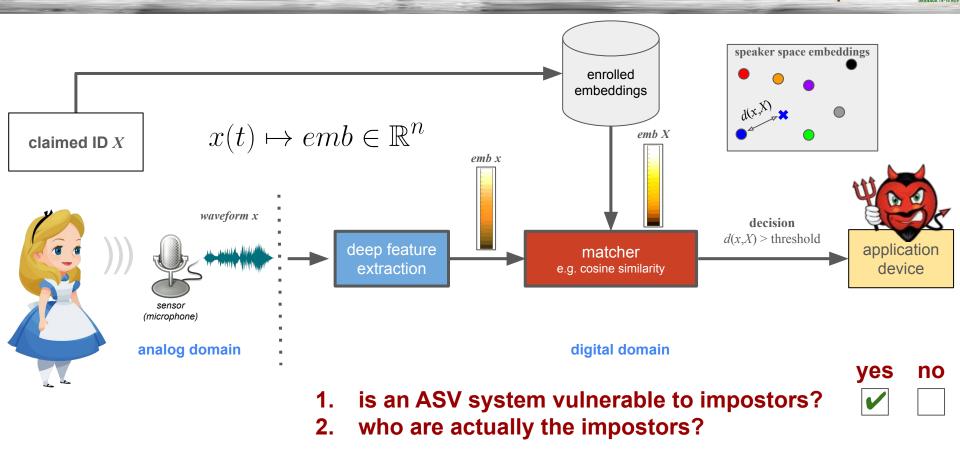
(VC)

replay attacks

- The era of voice cloning against voice biometrics
 - automatic speaker verification, spoofing attacks and countermeasures
- The ASVspoof challenge series
 - \circ from where it started from \rightarrow necessity as motivation
 - \circ $\;$ and where it arrived \rightarrow the lesson has actually been learned
- Voice cloning artefacts: a recent history of detection...
 - \circ the constant Q cepstral coefficients (CQCCs) \rightarrow modeling time-frequency atoms
 - *improve generalisation and robustness*
 - RawNet2 \rightarrow a deep network operating on time waveform
 - **RawGAT** \rightarrow graph attention networks: pay more focus on time-frequency atoms
 - AASIST → an integrated spectro-temporal heterogeneous graph attention networks
 - **RawBoost** \rightarrow a data augmentation based on signal processing
 - \blacksquare SSL \rightarrow self-supervised learning to learn more generalised representation
 - \circ ...and explainability
 - SHapley Additive exPlanations (SHAP) \rightarrow a simple and effective way to get evidence
- Links to open-source codes
- ASVspoof5: a glimpse into the future

The era of voice cloning against voice biometrics

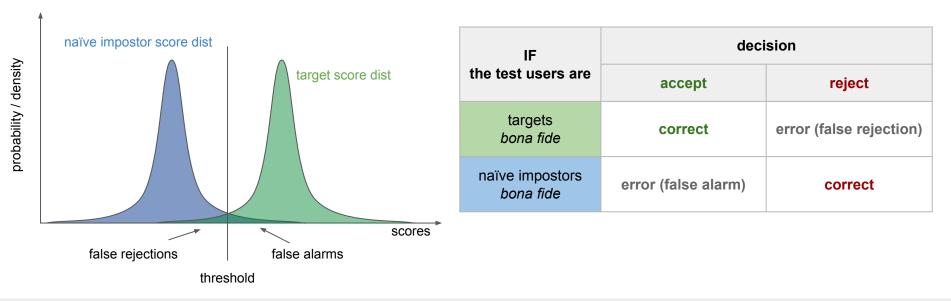
Automatic Speaker Verification (ASV)



Secure and explainable voice biometrics - Massimiliano Todisco

Automatic Speaker Verification (ASV)

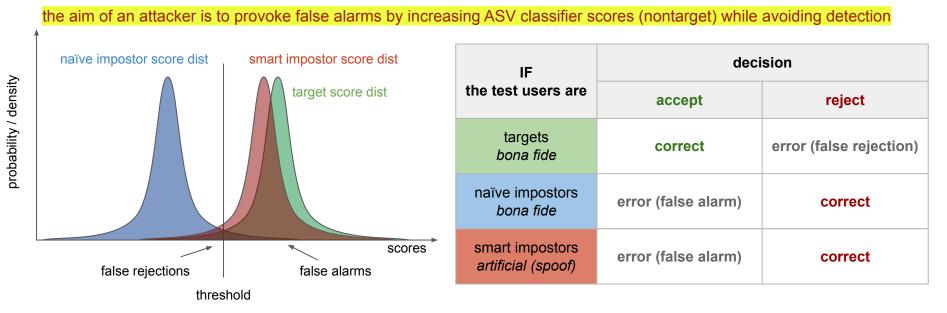
- A binary classification framework
 - targets who speak with their natural voice
 - naïve impostors who make **no effort** to impersonate the target



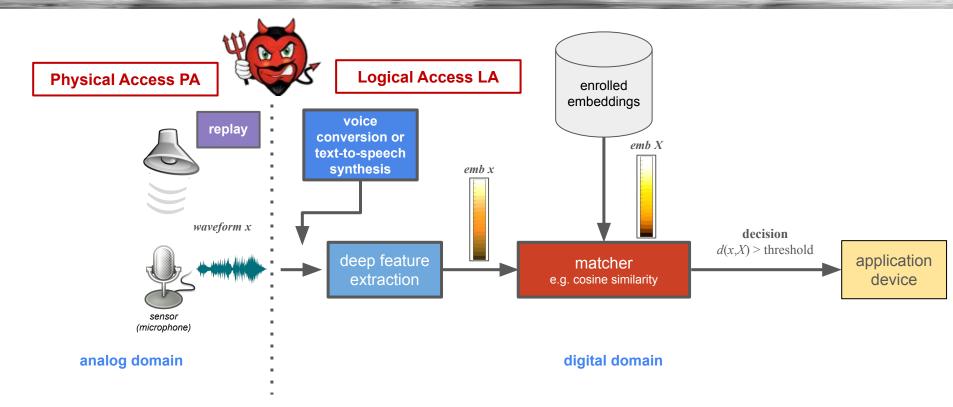
Secure and explainable voice biometrics - Massimiliano Todisco

Automatic Speaker Verification (ASV)

- A (quasi) binary classification framework
 - targets who speak with their natural voice
 - naïve impostors who make **no effort** to impersonate the target
 - smart impostors who make **effort** to impersonate the target



Spoofing/presentation attacks

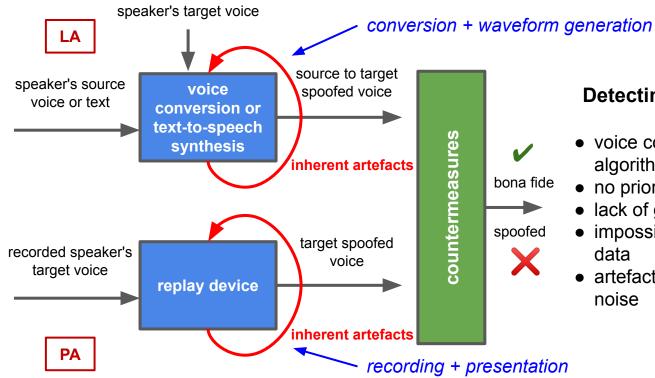


- persons masquerading as others in order to gain illegitimate access to sensitive or protected resources
- a.k.a. presentation attacks [ISO/IEC 30107-1:2016]

Secure and explainable voice biometrics - Massimiliano Todisco

Countermeasures to spoofing

• Spoofing inevitably adds artefacts to the speech signal



Detecting artefacts is a difficult task

IBE-RSPEECH22

- voice conversion or speech synthesis algorithms are continuously evolving
- no prior knowledge is given
 - lack of generalisation
- impossible to collect all the spoofing data
- artefacts can be obfuscated by (real-life) noise

Security in voice biometrics is becoming a necessity

Voice-driven interactive services are everywhere today

The Telegraph

Technology

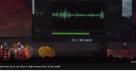
ALL SECTIONS

More ~

IBE-R_SPEECH22

In the eyes of the press

Patrick Collinson



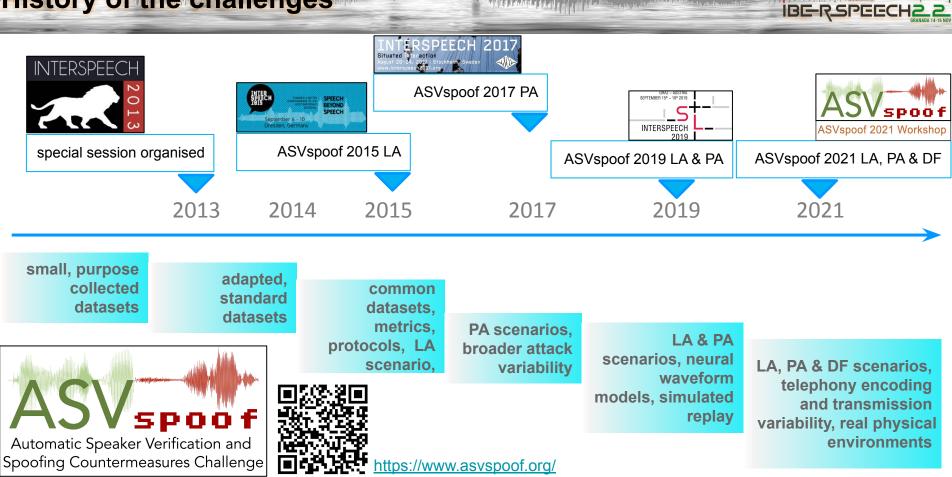
Lyrebird claims it can recreate any voic one minute of sample audio The reads and 100 precede considing but its a sign of things to come threads and 100 precede considing but its a sign of things to come thread werd general [= 16 X 37 / SHOP

Artificial intelligence is making human speech as malisable and replicable as posts. Today, a Canadian AI startup named <u>Lyndaid</u> unveiled its first product a set of algorithms the company claims can close anyone's voice by listening to just a single minute of sample under

en years ago this would have been impossible, but the analytic provess of machine ming has preven to be a perfect If for the idiospectation of human speech. Using antificial misence, companies like Gaugie have been able to create incredible Mellike synthesized

The ASVspoof challenge series

History of the challenges



ASVspoof members (2015-2021)

Secure and explainable voice biometrics - Massimiliano Todisco

Logical access - a constantly growing threat

• ASVspoof 2015 [1]

- 106 English speakers, disjoint in train / dev / eval sets
- \circ 10 TTS & VC methods, including known / unknown in eval set

• ASVspoof 2019 LA [2]

- 107 English speakers, disjoint in train / dev / eval sets
- 19 TTS & VC methods, including known / unknown in eval set

• ASVspoof 2021 LA [3]

- \circ same attacks as in 2019
- addition of new speakers
- addition of channel and transmission disturbance

Z. Wu et al., "ASVspoof: The Automatic Speaker Verification Spoofing and Countermeasures Challenge," in IEEE Journal of Selected Topics in Signal Processing, 2017.
 X. Wang et al., "ASVspoof 2019: a large-scale public database of synthesized, converted and replayed speech," in Computer Speech and Language, 2020.
 X. Liu et al., "ASVspoof 2021: Towards Spoofed and Deepfake Speech Detection in the Wild," under revision. <u>https://arxiv.org/pdf/2210.02437.pdf</u>

Logical Access LA

BE-RSPEEC

• ASVspoof 2015

 \circ S10 \rightarrow based on concatenation of speech units from a pre-recorded database

1		Waveform	Spoofing	Feature	I
l	Subset	generation	method	representation	
	Genuine	None	None	N.A.	I
2	S 1	STRAIGHT vocoder	Frame-selection voice conversion	Mel-cepstrum, Band aperiodicity, F_0	
dev	S2	STRAIGHT vocoder	Slope shifting voice conversion	Mel-cepstrum, Band aperiodicity, F_0	Ē
∞	S 3	STRAIGHT vocoder	HMM-based speech synthesis	Mel-cepstrum, Band aperiodicity, F_0	known Igorithms
train	S 4	STRAIGHT vocoder	HMM-based speech synthesis	Mel-cepstrum, Band aperiodicity, F_0	망 전 영 전
tra	S5	MLSA vocoder	GMM-based voice conversion	Mel-cepstrum, F_0	ច
	S6	STRAIGHT vocoder	GMM-based voice conversion	Mel-cepstrum, Band aperiodicity, F_0	
_	S 7	STRAIGHT vocoder	GMM-based voice conversion	Line spectrum pair, F_0	
eval	S8	STRAIGHT vocoder	Tensor-based voice conversion	Mel-cepstrum, Band aperiodicity, F_0	le te
υ	S9	STRAIGHT vocoder	KPLS-based voice conversion	Mel-cepstrum, Band aperiodicity, F_0	unknowr algorithm
	S 10	Diphone concatenation	Unit selection-based speech synthesis	Waveform	ס ר

Secure and explainable voice biometrics - Massimiliano Todisco

Logical access - a constantly growing threat

• ASVspoof 2019 LA

		Input	Input processor	Duration	Conversion	Speaker represent.	Outputs	Waveform generator	Post process
>	A01	Text	NLP	HMM	AR RNN*	VAE*	MCC, F0	WaveNet*	
dev	A02	Text	NLP	HMM	AR RNN*	VAE*	MCC, F0, BAP	WORLD	
ŏ	A03	Text	NLP	FF*	FF*	One hot embed.	MCC, F0, BAP	WORLD	
	A04	Text	NLP	-	CART	-	MFCC, F0	Waveform concat.	
train	A05	Speech (human)	WORLD	-	VAE*	One hot embed.	MCC, F0, AP	WORLD	
t	A06	Speech (human)	LPCC/MFCC	- GMM-UBM		-	LPC	Spectral filtering + OLA	
	A07	Text	NLP	RNN*	RNN*	One hot embed.	MCC, F0, BA	WORLD	GAN*
	A08	Text	NLP	HMM	AR RNN*	One hot embed.	MCC, F0	Neural source-filter*	
	A09	Text	NLP	RNN*	RNN*	One hot embed.	MCC, F0	Vocaine	
	A10	Text	CNN+bi-RNN*	Attention*	AR RNN + CNN*	d-vector (RNN)*	Mel-spectrograms	WaveRNN*	
	A11	Text	CNN+bi-RNN*	Attention*	AR RNN + CNN*	d-vector (RNN)*	Mel-spectrograms	Griffin-Lim [13]	
_	A12	Text	NLP	RNN*	RNN*	One hot embed.	F0+linguistic features	WaveNet*	
eval	A13	Speech (TTS)	WORLD	DTW	Moment matching*	-	MCC	Waveform filtering	
Φ	A14	Speech (TTS)	ASR*	-	RNN*	-	MCC, F0, BAP	STRAIGHT	
	A15	Speech (TTS)	ASR*	1-1	RNN*	-	MCC, F0	WaveNet*	
	A16	Text	NLP	s=-	CART	-	MFCC, F0	Waveform concat.	
	A17	Speech (human)	WORLD	-	VAE*	One hot embed.	MCC, F0	Waveform filtering	
	A18	Speech (human)	MFCC/i-vector		Linear	PLDA	MFCC	MFCC vocoder	
	A19	Speech (human)	LPCC/MFCC	-	GMM-UBM	-	LPC	Spectral filtering + OLA	

Logical access - a constantly growing threat

• ASVspoof 2019 LA

[Input	Input processor	Duration	Conversion	Speaker represent.	Outputs	Waveform generator	Post process	1
>	A01	Text	NLP	HMM	AR RNN*	VAE*	MCC, F0	WaveNet*		1
dev	A02	Text	NLP	HMM	AR RNN*	VAE*	MCC, F0, BAP WORLD			
∞ 8	A03	Text	NLP	FF*	FF*	One hot embed.	MCC, F0, BAP WORLD			
1	A04	Text	NLP		CART	-	MFCC, F0	Waveform concat.		-
train	A05	Speech (human)	WORLD	-	VAE*	One hot embed.	MCC, F0, AP	WORLD		1
-	A06	Speech (human)	LPCC/MFCC	· ·	GMM-UBM	-	LPC	Spectral filtering + OLA		-
	A07	Text	NLP	RNN*	RNN*	One hot embed.	MCC, F0, BA	WORLD	GAN*]
	A08	Text	NLP	HMM	AR RNN*	One hot embed.	MCC, F0	Neural source-filter*		
	A09	Text	NLP	RNN*	RNN*	One hot embed.	MCC, F0	Vocaine		
	A10	Text	CNN+bi-RNN*	Attention*	AR RNN + CNN*	d-vector (RNN)*	Mel-spectrograms	WaveRNN*		
	A11	Text	CNN+bi-RNN*	Attention*	AR RNN + CNN*	d-vector (RNN)*	Mel-spectrograms	Griffin-Lim [13]		
=	A12	Text	NLP	RNN*	RNN*	One hot embed.	F0+linguistic features	WaveNet*		
eval	A13	Speech (TTS)	WORLD	DTW	Moment matching*	-	MCC	Waveform filtering		
ຍ	A14	Speech (TTS)	ASR*	·	RNN*	-	MCC, F0, BAP	STRAIGHT		
	A15	Speech (TTS)	ASR*) - (RNN*	-	MCC, F0	WaveNet*		
	A16	Text	NLP	-	CART	-	MFCC, F0	Waveform concat.		•
	A17	Speech (human)	WORLD	-	VAE*	One hot embed.	MCC, F0	Waveform filtering		
	A18	Speech (human)	MFCC/i-vector		Linear	PLDA	MFCC	MFCC vocoder		
	A19	Speech (human)	LPCC/MFCC	2. — 2	GMM-UBM	-	LPC	Spectral filtering + OLA		

Secure and explainable voice biometrics - Massimiliano Todisco

same algorithms

• ASVspoof 2019 LA

[Input	Input processor	Duration	Conversion	Speaker represent.	Outputs	Waveform generator	Post process
2	A01	Text	NLP	HMM	AR RNN*	VAE*	MCC, F0	WaveNet*	
dev	A02	Text	NLP	HMM	AR RNN*	VAE*	MCC, F0, BAP	WORLD	
∞	A03	Text	NLP	FF*	FF*	One hot embed.	MCC, F0, BAP	WORLD	
	A04	Text	NLP	-	CART	-	MFCC, F0	Waveform concat.	
train	A05	Speech (human)	WORLD	(=)	VAE*	One hot embed.	MCC, F0, AP	WORLD	
	A06	Speech (human)	LPCC/MFCC		GMM-UBM	-	LPC	Spectral filtering + OLA	
	A07	Text	NLP	RNN*	RNN*	One hot embed.	MCC, F0, BA	WORLD	GAN*
	A08	Text	NLP	HMM	AR RNN*	One hot embed.	MCC, F0	Neural source-filter*	
	A09	Text	NLP	RNN*	RNN*	One hot embed.	MCC, F0	Vocaine	
	A10	Text	CNN+bi-RNN*	Attention*	AR RNN + CNN*	d-vector (RNN)*	Mel-spectrograms	WaveRNN*	
	A11	Text	CNN+bi-RNN*	Attention*	AR RNN + CNN*	d-vector (RNN)*	Mel-spectrograms	Griffin-Lim [13]	
_	A12	Text	NLP	RNN*	RNN*	One hot embed. F0+linguistic features		WaveNet*	
eval	A13	Speech (TTS)	WORLD	DTW	Moment matching*	-	MCC	Waveform filtering	
e	A14	Speech (TTS)	ASR*	-	RNN*	-	MCC, F0, BAP	STRAIGHT	
	A15	Speech (TTS)	ASR*	-	RNN*	=	MCC, F0	WaveNet*	
	A16	Text	NLP		CART	-	MFCC, F0	Waveform concat.	
	A17	Speech (human)	WORLD	-	VAE*	One hot embed.	MCC, F0	Waveform filtering	
	A18	Speech (human)	MFCC/i-vector		Linear	PLDA	MFCC	MFCC vocoder	
	A19	Speech (human)	LPCC/MFCC	2 — 2	GMM-UBM	-	LPC	Spectral filtering + OLA	

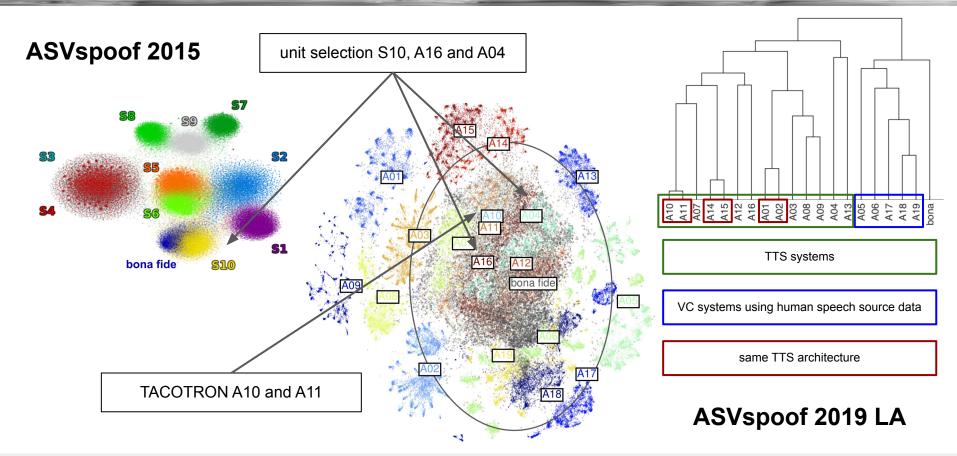
• ASVspoof 2019 LA

[Input processor	Duration	Conversion	Speaker represent.	Outputs	Waveform generator	Post process
2	A01	Text	NLP	HMM	AR RNN*	VAE*	MCC, F0	WaveNet*	
dev	A02	Text	NLP	HMM	AR RNN*	VAE*	MCC, F0, BAP	WORLD	
∞	A03	Text	NLP	FF*	FF*	One hot embed.	MCC, F0, BAP	WORLD	
	A04	Text	NLP	-	CART	-	MFCC, F0	Waveform concat.	
train	A05	Speech (human)	WORLD	(-)	VAE*	One hot embed.	MCC, F0, AP	WORLD	
t	A06	Speech (human)	LPCC/MFCC		GMM-UBM	-	LPC	Spectral filtering + OLA	
	A07	Text	NLP	RNN*	RNN*	One hot embed.	MCC, F0, BA	WORLD	GAN*
	A08	Text	NLP	HMM	AR RNN*	One hot embed.	MCC, F0	Neural source-filter*	
	A09	Text	NLP	RNN*	RNN*	One hot embed.	MCC, F0	Vocaine	
	A10	Text	CNN+bi-RNN*	Attention*	AR RNN + CNN*	d-vector (RNN)*	Mel-spectrograms	WaveRNN*	
	A11	Text	CNN+bi-RNN*	Attention*	AR RNN + CNN*	d-vector (RNN)*	Mel-spectrograms	Griffin-Lim [13]	
_	A12	Text	NLP	RNN*	RNN*	One hot embed.	F0+linguistic features	WaveNet*	
eval	A13	Speech (TTS)	WORLD	DTW	Moment matching*	-	MCC	Waveform filtering	
0	A14	Speech (TTS)	ASR*	-	RNN*	-	MCC, F0, BAP	STRAIGHT	
	A15	Speech (TTS)	ASR*	1-1	RNN*	Ξ	MCC, F0	WaveNet*	
	A16	Text	NLP		CART	-	MFCC, F0	Waveform concat.	
	A17	Speech (human)	WORLD	-	VAE*	One hot embed.	MCC, F0	Waveform filtering	
	A18	Speech (human)	MFCC/i-vector		Linear	PLDA	MFCC	MFCC vocoder	
	A19	Speech (human)	LPCC/MFCC		GMM-UBM	-	LPC	Spectral filtering + OLA	

IBE-RSPEECH22

ASVspoof 2019 LA - data providers

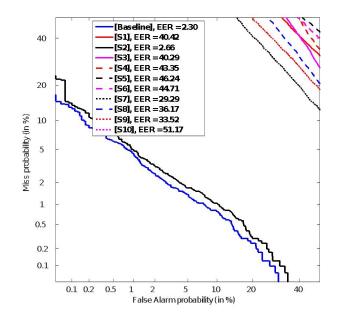
Attack-wise speaker clustering



Secure and explainable voice biometrics - Massimiliano Todisco

ASVspoof 2015 assessment & results

- ASV vulnerability and primary submission results for the ASVspoof 2015 challenge
 - the best EER for S10 is 8.49%



		Average Equal Error Rates (EERs) [%]										
	Known		Unknown		All							
System ID	AVG S1-S5	AVG S6-S9	S10	AVG S6-S10	AVG							
Α	0.408	0.394	8.490	2.013	1.211							
В	0.008	0.009	19.571	3.922	1.965							
C	0.058	0.098	24.601	4.998	2.528							
D	0.003	0.003	26.142	5.231	2.617							
E	0.041	0.085	26.393	5.347	2.694							
F	0.358	0.453	28.581	6.078	3.218							
G	0.405	0.304	30.021	6.247	3.326							
H	0.670	0.042	37.068	6.041	3.355							
I	0.005	0.839	32.651	7.447	3.726							
J	0.025	0.033	40.708	8.168	4.097							
K	0.210	0.195	43.638	8.883	4.547							
L	0.412	7.310	35.890	13.026	6.719							
Μ	8.528	17.423	31.574	20.253	14.391							
N	7.874	15.580	43.991	21.262	14.568							
0	17.723	14.532	41.519	19.929	18.826							
Р	21.206	15.763	46.102	21.831	21.518							

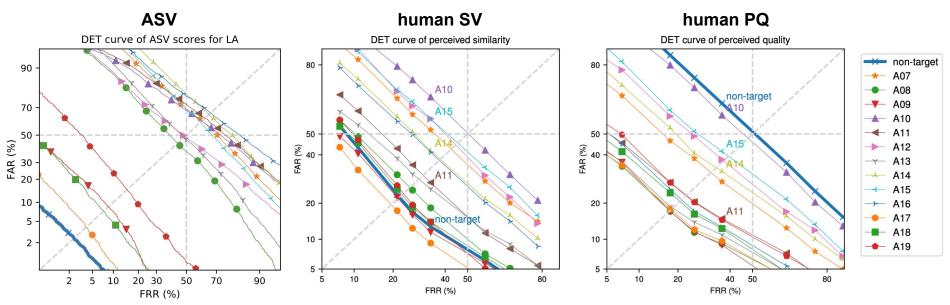
[.] Z. Wu et al., "ASVspoof: The Automatic Speaker Verification Spoofing and Countermeasures Challenge," in IEEE Journal of Selected Topics in Signal Processing, 2017.

Secure and explainable voice biometrics - Massimiliano Todisco

ASVspoof 2019 LA assessment

• ASV vulnerability vs human assessment [1]

- A10 (TACOTRON) is perceived with very **good** quality and very **similar** to the target
- A17 (VC) is perceived with **bad** quality and very **different** from the target
- similarly, A17 does NOT foul the ASV

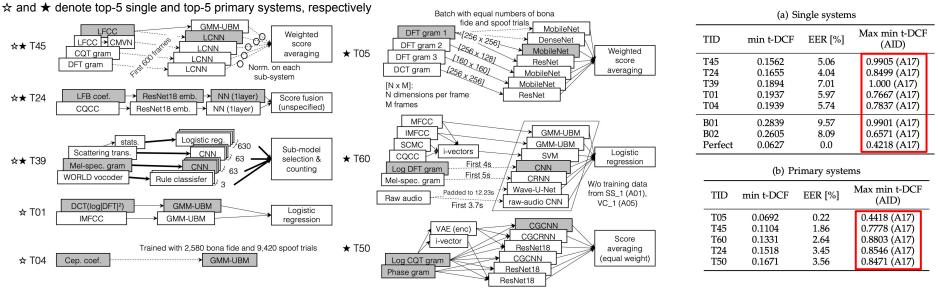


[1] Andreas Nautsch, Xin Wang, Nicholas Evans, Tomi Kinnunen, Ville Vestman, Massimiliano Todisco, Hector Delgado, Md Sahidullah, Junichi Yamagishi, Kong Aik Lee, "ASVspoof 2019: spoofing countermeasures for the detection of synthesized, converted and replayed speech", IEEE Transactions on Biometrics, Behavior, and Identity Science

Secure and explainable voice biometrics - Massimiliano Todisco

• Top-5 single and primary system submissions

- single systems (grey blocks) perform poorly
- \circ primary systems perform well \rightarrow drawback: consist of fusion of many system
- \circ A17 the worst attack \rightarrow not detectable by CMs



[.] Andreas Nautsch, Xin Wang, Nicholas Evans, Tomi Kinnunen, Ville Vestman, Massimiliano Todisco, Hector Delgado, Md Sahidullah, Junichi Yamagishi, Kong Aik Lee, "ASVspoof 2019: spoofing countermeasures for the detection of synthesized, converted and replayed speech", IEEE Transactions on Biometrics, Behavior, and Identity Science

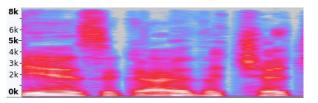
Secure and explainable voice biometrics - Massimiliano Todisco

ASVspoof 2021 LA spoof detection in the wild

- Data is transmitted across telephony or VoIP networks with various coding and transmission effects
- Variability resulting from encoding, transmission, distortion of devices

		Cond.	Codec	Sampling rate	Transmission	Bitrate
 varied codecs actual VoIP channel actual PSTN channel actual PSTN channel 	unknown codecs	LA-C1 LA-C2 LA-C3 LA-C4 <u>LA-C5</u> <u>LA-C6</u> LA-C7	- a-law unk. + μ-law G.722 μ-law GSM OPUS	16 kHz 8 kHz 8 kHz 16 kHz 8 kHz 8 kHz 16 kHz	- VoIP PSTN + VoIP VoIP VoIP VoIP VoIP	250 kbps 64 kbps - / 64 kbps 64 kbps 64 kbps 13 kbps VBR 16 kbps

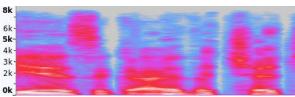
none



PSTN

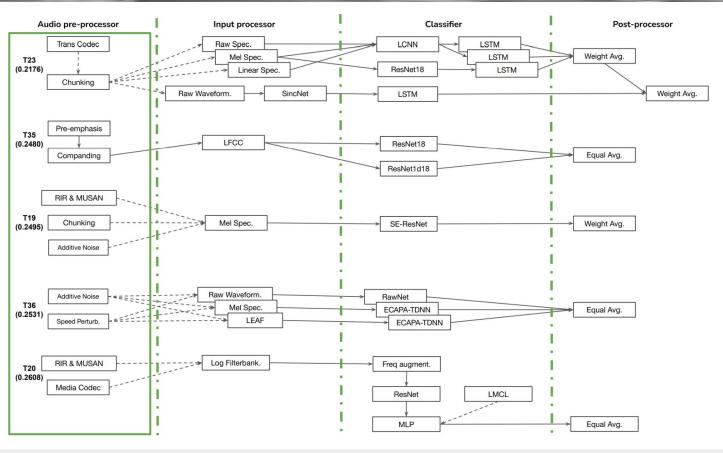
OPUS

IBE-RSPEECH22



[.] X. Liu et al., "ASVspoof 2021: Towards Spoofed and Deepfake Speech Detection in the Wild," under revision. https://arxiv.org/pdf/2210.02437.pdf

ASVspoof 2021 LA submitted CM systems & results

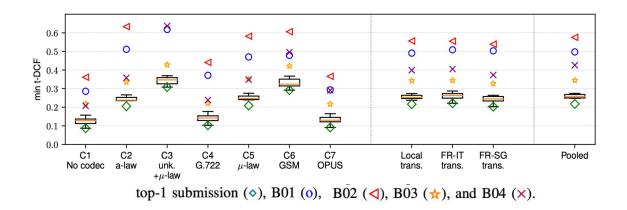


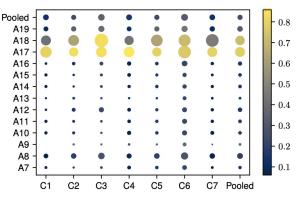
		Evaluati	ion set		
#	ID	t-DCF	EER		
1	T23	0.2176	1.32		
2	T35	0.2480	2.77		
3	T19	0.2495	3.13		
4		0.2500	2.81		
5	T36	0.2531	3.10		
6	T20	0.2608	3.21		
7	T08	0.2672	3.62		
8	T16	0.2689	3.63		
9		0.2725	3.61		
10	T04	0.2747	5.58		
11	T06	0.2853	5.66		
12		0.2880	5.01		
13	T03	0.2882	4.66		
14		0.2893	5.70		
15	T31	0.3094	5.46		
16	T17	0.3279	7.19		
17	T07	0.3310	8.23		
18	T30	0.3362	8.89		
19	B03	0.3445	9.26		
20	T02	0.3445	7.79		
21	T14	0.3451	8.98		
22	T11	0.3666	7.19		
23	T34	0.4059	13.45		
24	B04	0.4257	9.50		

IBE-RSPEECH22

ASVspoof 2021 LA results by disturbance

- Top-10 system submissions submissions decomposed over different factors
 - (no codec, G.722, OPUS) is lower than for narrowband conditions (a-law, PSTN, u-law and GSM) → importance of information at higher frequencies
 - among the narrowband conditions, lower bit rates and uncontrolled transmission (GSM and unk. + μlaw) lead to worse performance
 - transmission routes have little impact upon CM performance
 - A17 remains the worst attack with A18





IBE-RSPEECH

[.] Andreas Nautsch, Xin Wang, Nicholas Evans, Tomi Kinnunen, Ville Vestman, Massimiliano Todisco, Hector Delgado, Md Sahidullah, Junichi Yamagishi, Kong Aik Lee, "ASVspoof 2019: spoofing countermeasures for the detection of synthesized, converted and replayed speech", IEEE Transactions on Biometrics, Behavior, and Identity Science

Top system architecture among the challenges

$\bullet \quad 2015 \rightarrow 2019$

- \circ pre-processor \rightarrow no substantial difference; no pre-processing
- *features* → from a compact (MFCC) to complete representation (STFT); exploring other compact features (LFCC, CQCC, IMFCC)
- \circ classifiers \rightarrow from GMM towards deeper classifiers (ResNet, CNN)
- \circ *post-processor* \rightarrow no substantial difference; normalisation and score average fusion

	ASVspoof 2015	ASVspoof 2019 LA
pre-processo	NONE pre-emphasis	none
features	i-vectors MEL MFCC STFT * LPC	MELCQT CQCC STUD Frame LFCC
classifiers	MLP GMM SVM GMA-UEM	GMM-UBMResNet CNN MobileNet
post-processo	or score_average CMVN none	score_average

$\bullet \quad 2019 \rightarrow 2021$

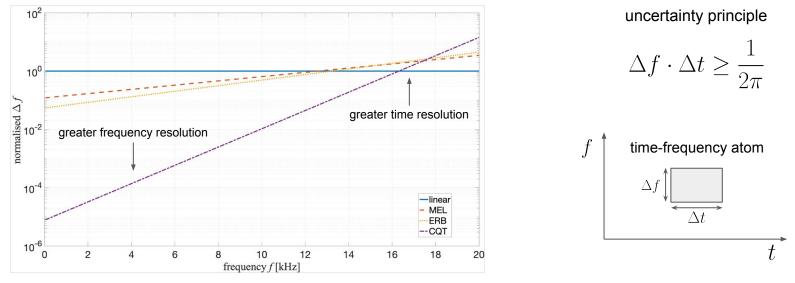
- \circ pre-processor \rightarrow very substantial difference; toward data augmentation and signal pre-processing
- \circ features \rightarrow from a complete (STFT) to a more auditory-based representation (MEL) and time-domain waveform
- \circ classifiers \rightarrow no substantial difference; addition of some state-of-the-art systems for ASV (ECAPA-TDNN)
- \circ *post-processor* \rightarrow no substantial difference; normalisation and score average fusion

	ASVspoof 2019 LA	ASVspoof 2021 LA
pre-processor	none	CODECS additive_noise
features	i-vectors WE STUB FUED LFCC	
classifiers	GMM-UBMResNet CNN MobileNet	LSTM ResNet ECAPA-TONN
post-processor	score_average	score_average

Voice cloning artefacts a recent history of detection and explainability

The constant Q cepstral coefficients (CQCCs)

- Can we explain why the CQCC [1] front-end performs well for certain attacks?
 - based on Constant Q transform (CQT) [2]
 - reflect more closely human perception
 - humans do not perceive frequencies on a linear scale

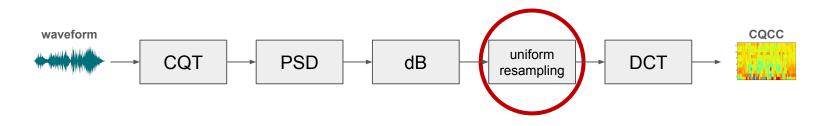


[1] M. Todisco, H. Delgado, N. Evans, "Constant Q cepstral coefficients: A spoofing countermeasure for automatic speaker verification," Computer Speech & Language, 2017. [2] J. Brown, "Calculation of a constant Q spectral transform," Journal of the Acoustical Society of America, vol. 89, no. 1, pp. 425– 434, January 1991.

Secure and explainable voice biometrics - Massimiliano Todisco

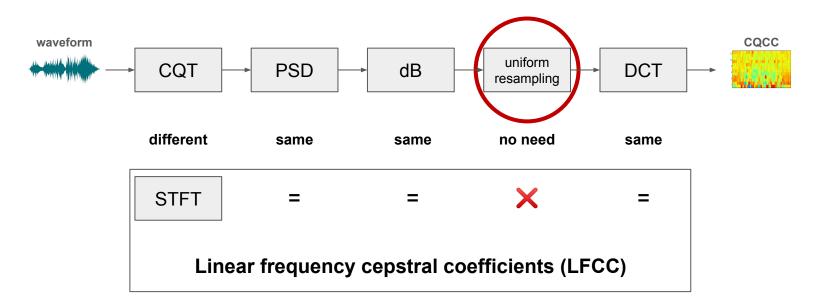
The constant Q cepstral coefficients (CQCCs)

- CQCCs pipeline
 - \circ cepstral computation \rightarrow CQT and DCT have different scale (geometric vs linear)
 - uniform resample \rightarrow equal weighting to information across the full spectrum



The constant Q cepstral coefficients (CQCCs)

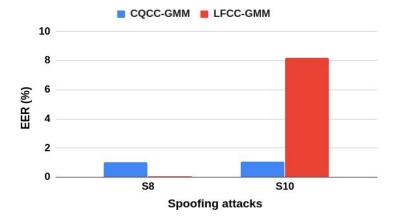
- CQCCs pipeline
 - \circ cepstral computation \rightarrow CQT and DCT have different scale (geometric vs linear)
 - uniform resample \rightarrow equal weighting to information across the full spectrum



CQCCs vs LFCCs

• ASVspoof 2015 database

- substantial variations in the performance
 - CQCC-GMM best detected: S10
 - LFCC-GMM best detected: S8



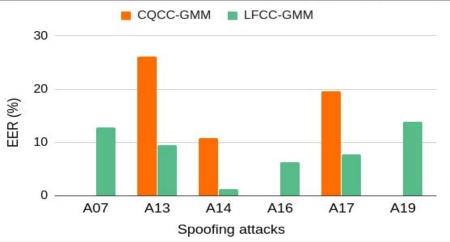
System	S8	S10
GMM-CQCC	1.033	1.065
GMM-LFCC	0.074	8.185

CQCCs vs LFCCs

• ASVspoof 2019 LA database

- substantial variations in the performance
 - CQCC-GMM best detected: A07, A16 and A19
 - LFCC-GMM best detected: A13, A14 and A17

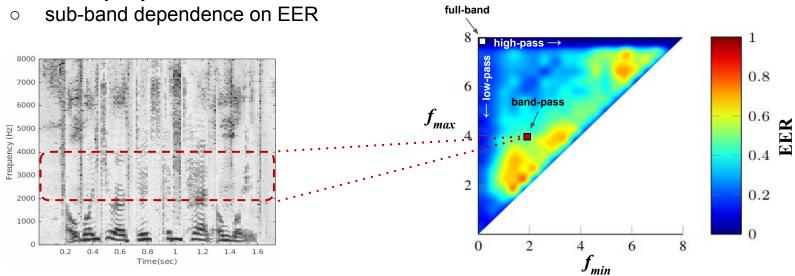
System	A07	A08	A09	A10	A11	A12	A13	A14	A15	A16	A17	A18	A19
GMM-CQCC	0.00	0.04	0.14	15.16	0.08	4.74	26.15	10.85	1.26	0.00	19.62	3.81	0.04
GMM-LFCC	12.86	0.37	0.00	18.97	0.12	4.92	9.57	1.22	2.22	6.31	7.71	3.58	13.94



Secure and explainable voice biometrics - Massimiliano Todisco

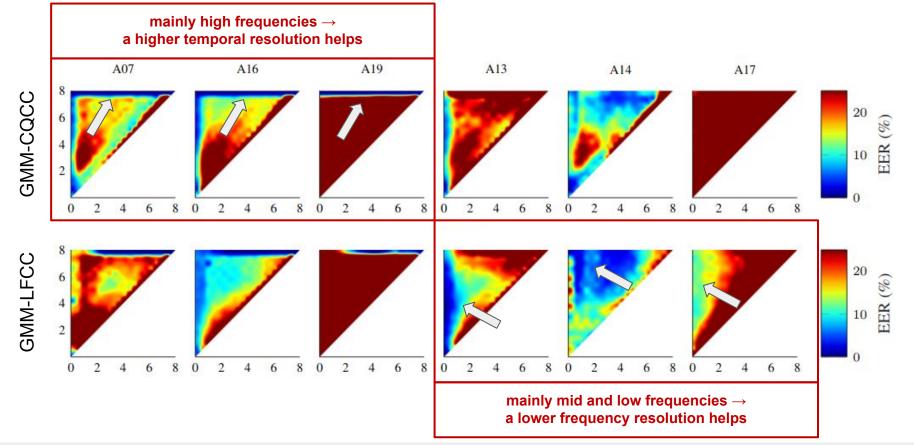
• Research hypotheses

- spoofing artefacts can be localised in the spectrum, e.g. high-band, mid-band or low-band
- o cepstral analysis smooths information across the full band and dilutes localised information
- more reliable detection with features that emphasize information at the sub-band level
- 2D heat map representation



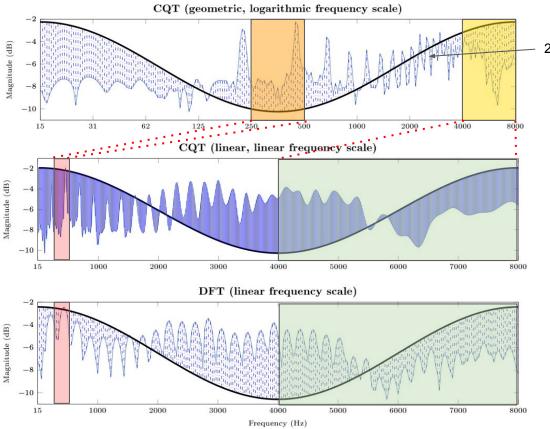
[1] H. Tak et al., "An explainability study of the constant Q cepstral coefficient spoofing countermeasure for automatic speaker verification," in Proc. Speaker Odyssey Workshop, 2020.

Sub-band analysis: a method for explainability



Secure and explainable voice biometrics - Massimiliano Todisco

Time-frequency resolution vs cepstral computation



2nd cosine function DCT

CQCC in cepstral geometric representation

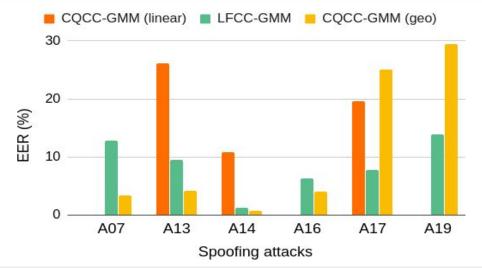
IBE-RSPEECH22

- no use of resampling
- more cepstral information at low frequencies (orange area) wrt CQCC linear and DFT (pink area)
- less cepstral information at high frequencies (yellow area) wrt CQCC linear and DFT (green area)

Secure and explainable voice biometrics - Massimiliano Todisco

- ASVspoof 2019 LA database
 - CQCC-GMM (geometric-scale) best detected: A13 and A14

System	A07	A08	A09	A10	A11	A12	A13	A14	A15	A16	A17	A18	A19
GMM-CQCC (linear)	0.00	0.04	0.14	15.16	0.08	4.74	26.15	10.85	1.26	0.00	19.62	3.81	0.04
GMM-LFCC	12.86	0.37	0.00	18.97	0.12	4.92	9.5 7	1.22	2.22	6.31	7.71	3.58	13.94
GMM-CQCC (geometric)	3.39	0.34	0.46	6.86	4.62	3.58	4.23	0.67	1.52	4.00	25.04	19.63	29.46

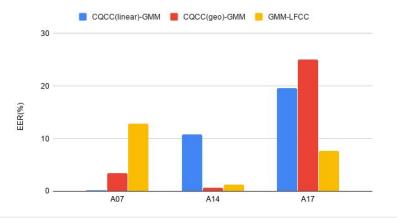


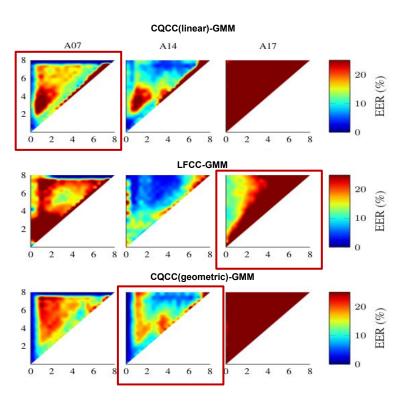
Secure and explainable voice biometrics - Massimiliano Todisco

Findings and key messages

- no silver bullet works
- different attacks exhibit artefacts within different subbands
- better potential to capture these with front-ends which emphasise information in the relevant frequency band

System	A07	A14	A17
GMM-CQCC (linear)	0.00	10.85	19.62
GMM-LFCC	12.86	1.22	7.71
GMM-CQCC (geometric)	3.39	0.67	25.04





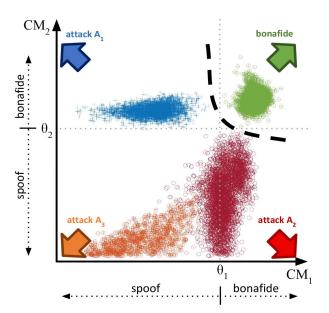
[.] H. Tak et al., "Spoofing Attack Detection using the Non-linear Fusion of Sub-band Classifiers," in Proc. INTERSPEECH, 2020.

Secure and explainable voice biometrics - Massimiliano Todisco

Time-frequency resolution matters a lot!

Fusion of subband-based classifiers?

- hypothesis 1
 - what if we increase LFCC resolution?
- Ensemble of subband-based classifiers work?
 - hypothesis 2
 - an ensemble of subband classifiers, each tuned to the detection of different attacks in different sub-bands, should give more reliable detection
 - hypothesis 3
 - non-linear, rather than linear fusion of subband classifiers will better exploit complementarity



High resolution LFCC

- Optimisation of the spectral resolution at full-band level
 - nothing simpler: 30 ms window with a 15 ms shift using 1024 FFT points

• Optimisation of the number of filterbanks

• Bhattacharyya distance to optimise the number of filters in a linear filterbank

Table 1: min t-DCF, EER and Bhattacharyya distance betweenbona fide and spoofed score distributions for different numbersof subband filters N. Baseline configuration illustrated inbold; selected configuration in italics.

min t-DCF	EER (%)	D_B
0.2110	2.71	0.1338
0.0000	0.79	0.1706
0.0000	0.00	0.1770
0.0000	0.00	0.1785
0.0000	0.00	0.1793
0.0000	0.00	0.1826
0.0000	0.00	0.1788
0.0000	0.00	0.1823
0.0000	0.00	0.1830
0.0000	0.00	0.1820
	0.2110 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.79 0.0000 0.00 0.0000 0.00 0.0000 0.00 0.0000 0.00 0.0000 0.00 0.0000 0.00 0.0000 0.00 0.0000 0.00 0.0000 0.00 0.0000 0.00

$$D_B(b,s) = \frac{1}{4} ln \left(\frac{1}{4} \left(\frac{\sigma_b^2}{\sigma_s^2} + \frac{\sigma_s^2}{\sigma_b^2} + 2 \right) \right) + \frac{1}{4} \left(\frac{(\mu_b - \mu_s)^2}{\sigma_b^2 + \sigma_s^2} \right)$$

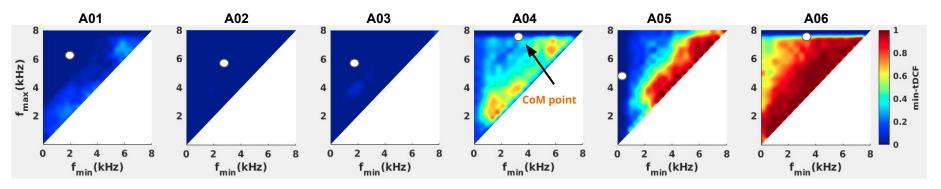
IBE-RSPEECH

where subscripts b and s indicate parameters for bona fide and spoofed score distributions and where μ and σ refer to the means and standard deviations respectively.

System	EER(%)
CQCC-GMM (baseline)	9.57
LFCC-GMM (baseline)	8.09
HR-LFCC-GMM	3.50

- Specific subband selection using Centre-of-Mass (CoM) approach for each spoof attack
 - CoM is a rudimentary means of dealing with a noisy surface containing multiple minima
 - ...but it works!
 - the coordinates $R = [f_{\min}^{CoM}, f_{\max}^{CoM}]$ of the CoM satisfy the condition $\sum_{i=1}^{n} m_i(r_i R) = 0$

$$R = \frac{1}{M} \sum_{i=1}^{n} m_i r_i$$

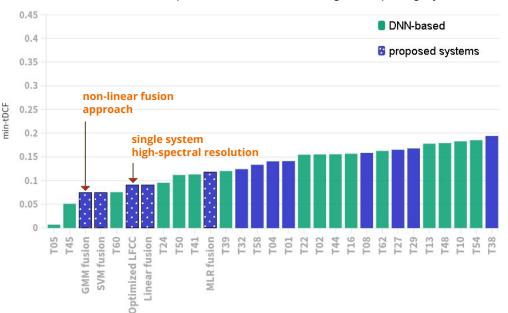


2D heat map representation of subband analysis results for the six different spoof attacks on development partition

Results on ASVspoof 2019 LA

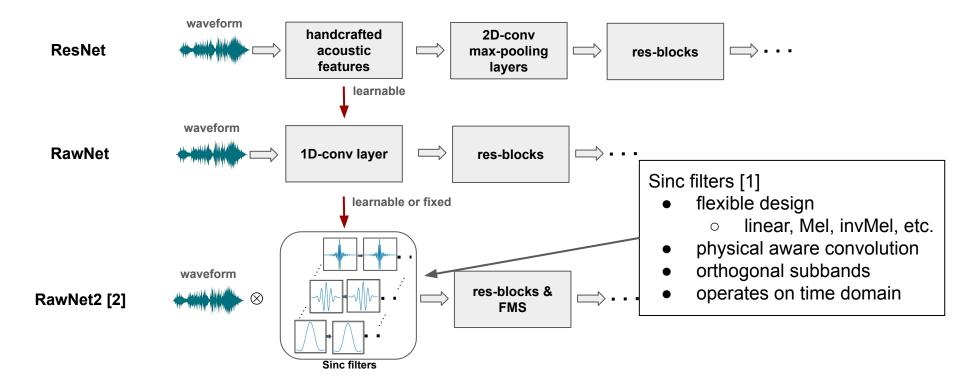
System	EER (%)	min-tDCF
HR-LFCC-GMM	3.50	0.0904
Ensemble GMM-fusion	2.92	0.0740
Ensemble SVM-fusion	2.92	0.0748
Ensemble Linear fusion	3.38	0.0911

Performance comparisons with 48 challenge competing systems



[.] H. Tak et al., "Spoofing Attack Detection using the Non-linear Fusion of Sub-band Classifiers," in Proc. INTERSPEECH, 2020.

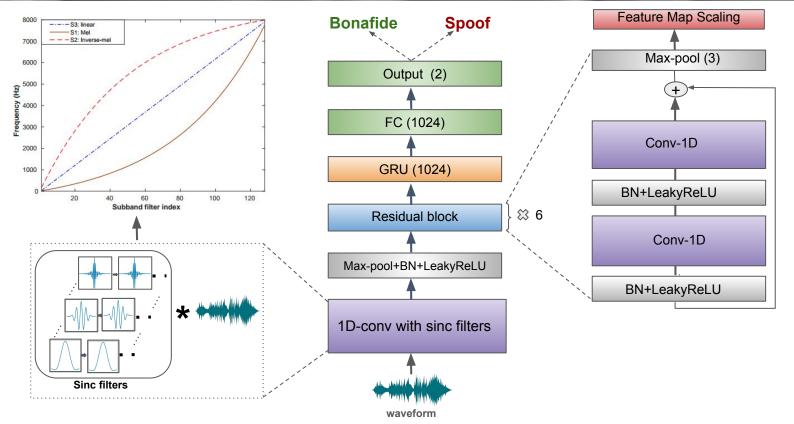
From ResNet to RawNet2 passing by Sinc filters



M. Ravanelli, Y. Bengio, "Speaker recognition from raw waveform with sincnet," in IEEE Proc. Spoken Language Technology Workshop (SLT), 2018.
 H. Tak, et al., "End-to-end anti-spoofing with RawNet2," in Proc. IEEE ICASSP, 2021

Secure and explainable voice biometrics - Massimiliano Todisco

RawNet2 - end2end approach in the time domain

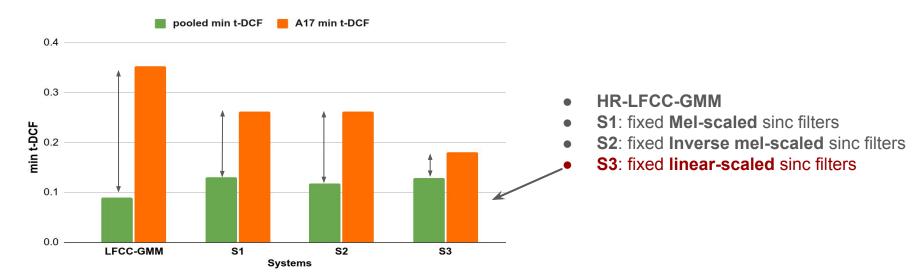


[1] Jung et al., "Improved RawNet with Feature Map Scaling for Text-independent Speaker Verification using Raw Waveforms, Interspeech 2020.

Secure and explainable voice biometrics - Massimiliano Todisco

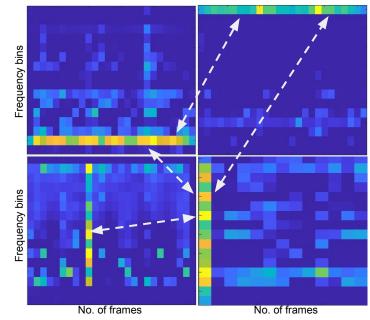
• Comparison of overall pooled performance and worst-case A17 spoof attack

- time-domain processing facilitates the detection of the most challenging A17 attack
- achieves close to state-of-the-art performance while operating upon raw audio signals in truly end-to-end fashion



Graph attention (GAT) to model T-F atoms

- what we know → artefacts lie in specific subbands or temporal frames [1,2,3]
- conventional attention mechanisms do not explicitly model these relationships
- modelling the relationship between the evidence spanning different sub-bands and time intervals
- to leverage the potential of GAT for modeling relationships in spectral or temporal domain [4,5]



IBE-RSPEEC

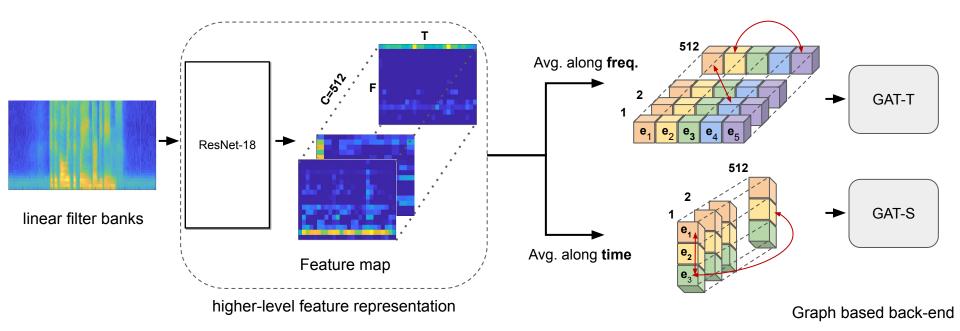
feature-map representations from deep residual network

[1] H. Tak et al., "An explainability study of the constant Q cepstral coefficient spoofing countermeasure for automatic speaker verification," in Proc. Speaker Odyssey Workshop, 2020.

- [2] B. Chettri et al., "Subband Modeling for Spoofing Detection in Automatic Speaker Verification," in Proc. Speaker Odyssey Workshop, 2020.
- [3] H. Tak et al., "Spoofing Attack Detection using the Non-linear Fusion of Sub-band Classifiers," in Proc. INTERSPEECH, 2020.
- [4] P. Velickovic et al., "Graph attention networks," in Proc. ICLR, 2018.
- [5] J.-w. Jung et al., "Graph attention networks for speaker verification," in Proc. ICASSP, 2021

Secure and explainable voice biometrics - Massimiliano Todisco

Graph attention (GAT) to model T-F atoms



[6] H. Tak, Jee-weon Jung, J. Patino, M. Todisco and N. Evans, "Graph attention network for anti-spoofing," in Proc. INTERSPEECH 2021

Secure and explainable voice biometrics - Massimiliano Todisco

GAT modelling

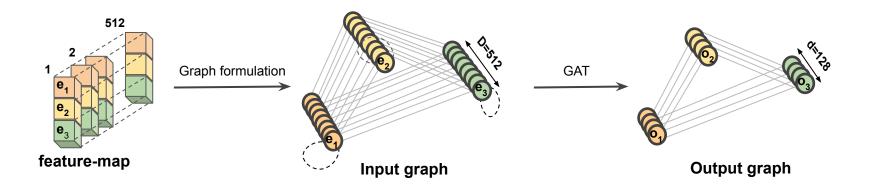
Input: a set of node features

$$\mathbf{e} = \{ \mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_N \}, \mathbf{e}_n \in \mathbb{R}^L$$

Output: a set of new node features including neighboring information

IBE-RSPEECH22

$$\mathbf{O} = \{ \mathbf{O}_1, \mathbf{O}_2, \dots, \mathbf{O}_N \}, \mathbf{O}_n \in \mathbb{R}^d$$



[4] P. Velickovic et al., "Graph attention networks," in Proc. ICLR, 2018.

Secure and explainable voice biometrics - Massimiliano Todisco

Graph attention (GAT) results

• Performance comparisons with other CM techniques on ASVspoof 2019 LA

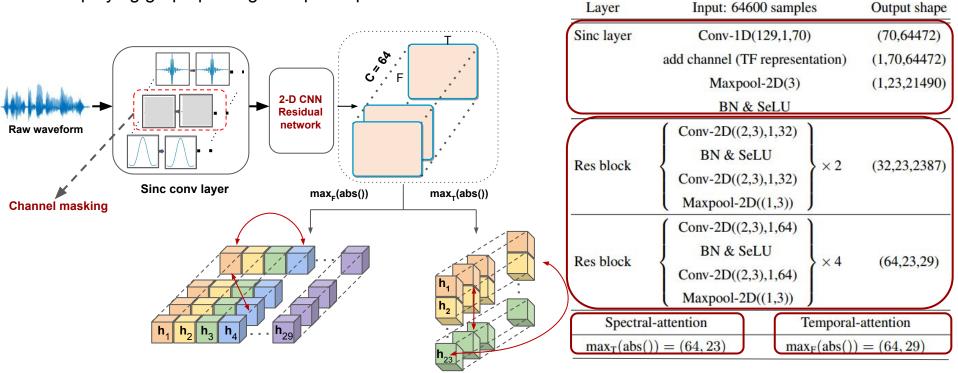
CM Systems	Pooled min t-DCF	Pooled EER (%)
HR-LFCC-GMM	0.090	3.50
RawNet2 + RawBoost	0.155	5.31
GAT-T	0.089	4.71
GAT-S	0.091	4.48
Resnet18-SP	0.114	6.82
Resnet18-SAP	0.138	7.11
ResNet18-ASP	0.127	6.22

- Limitations
 - \circ spectral and temporal relationship is separated \rightarrow no communication
 - averaging nodes in aggregator might not be informative

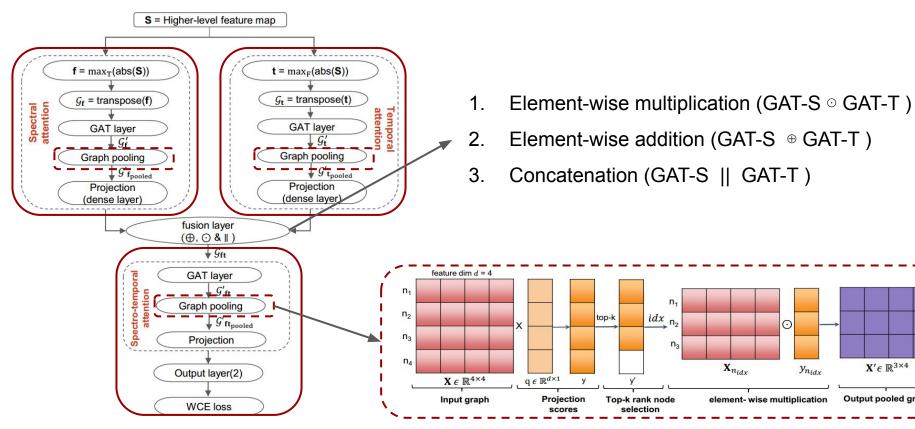
a single E2E GAT model might be useful

E2E feature learning from raw waveform

- modeling the relationship between subbands and temporal segments in E2E fashion
- employing graph pooling to improve performance



Spectro-temporal GAT (RawGAT-ST)



[1] H. Gao, S. Ji, "Graph u-nets," in international conference on machine learning (PMLR), 2019.

Secure and explainable voice biometrics - Massimiliano Todisco

Spectro-temporal GAT (RawGAT-ST)

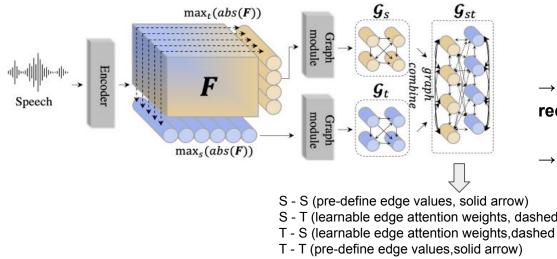
- Performance comparisons with other CM techniques on ASVspoof 2019 LA
 - RawGAT-ST-mul [1] shows 78% relative reduction in min t-DCF over RawNet2 system

CM systems	min t-DCF	EER(%)
HR-LFCC-GMM	0.090	3.50
RawNet2 + RawBoost	0.155	5.54
RawGAT-ST-mul	0.033	1.06
RawGAT-ST-add	0.037	1.15
RawGAT-ST-concat	0.038	1.23

[1] H. Tak et al., "End-to-End Spectro-Temporal Graph Attention Networks for Speaker Verification Anti-Spoofing and Speech Deepfake Detection," in ASVspoof 2021 workshop.

AASIST model for anti-spoofing

- explore heterogeneous graph attention network to model the heterogeneous relationship between spectral and temporal domains.
- relationship between different types of nodes (spectral & temporal) and edges.
- to learn the importance between a node and its meta-path based neighboring nodes.



Performance on ASVspoof 2019 LA

IBE-RSPEECH2

→ AASIST model [2] shows 25% relative reduction in min t-DCF over RawGAT-ST-mul

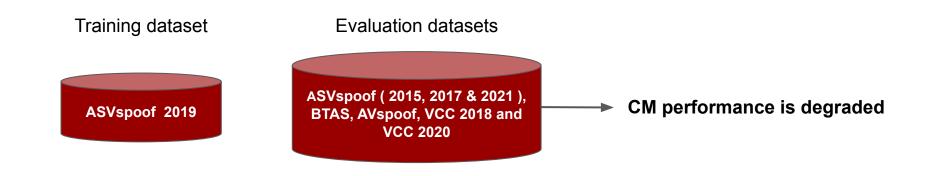
 \rightarrow EER: from 1.06% to 0.83%

- S T (learnable edge attention weights, dashed arrow)
- T S (learnable edge attention weights, dashed arrow)

[1] X. Wang et al., "Heterogeneous Graph Attention Network," in The World Wide Web Conference, 2019. [2] J. Jung et al., "AASIST: Audio Anti-Spoofing using Integrated Spectro-Temporal Graph Attention Networks," submitted in ICASSP 2022.

Secure and explainable voice biometrics - Massimiliano Todisco

- Challenges
 - Lack of generalisation and domain mismatch between training and testing data [1,2].
 - Lack of sufficiently representative training data.



D. Paul, M. Sahidullah, et al.," Generalization of spoofing countermeasures: A case study with ASVspoof 2015 and BTAS 2016 corpora", in Proc. ICASSP 2017.
 R. K Das, H. Li, "Assessing the scope of generalized countermeasures for anti-spoofing", in Proc. ICASSP 2020.

ASVspoof 2021 challenge

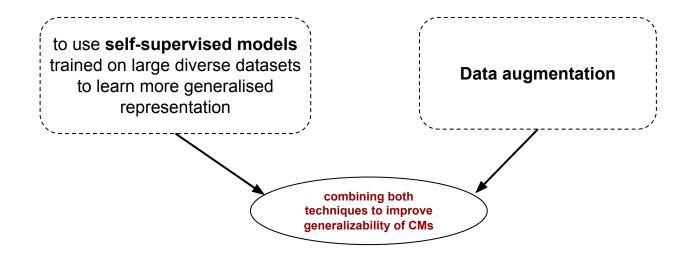
RawNet2 and AASIST trained on 2019 and tested on 2021

	No codec	a-law	unk. +µ-law	G.722	μ -law	GSM	OPUS	
	C1	C2	C3	C4	C5	C6	C7	Pooled
A07	0.88	3.65	14.54	1.56	3.49	7.08	3.51	5.57
A08	3.24	6.01	15.54	4.45	5.76	10.17	6.62	8.87
A09	0.76	3.34	17.28	1.29	3.15	6.55	3.45	5.29
A10	0.97	3.48	12.2	1.61	3.53	6.83	3.35	5.33
A11	0.97	3.85	13.06	1.74	3.91	8.52	3.48	5.65
A12	0.97	3.86	12.12	1.77	3.75	7.52	3.7	5.95
A13	0.73	2.71	10.61	1.13	2.68	3.78	2.3	3.77
A14	1.04	4.01	14.79	1.88	3.92	9.46	3.62	6.19
A15	1.03	3.85	12.91	1.79	3.65	8.05	3.53	5.91
A16	1.18	3.85	11.88	1.85	3.69	6.79	3.87	5.6
A17	12.01	11.61	28.78	12.51	11.21	20.77	18.05	19.36
A18	20.84	21	36.93	22.08	20.37	31.12	20.75	27.32
A19	2.58	5.24	14.2	3.36	4.5	9.61	5.36	7.93
Pooled	5.84	6.56	16.72	6.41	6.33	10.65	7.98	9.49

CM systems	EER(%)
RawNet2	9.49
AASIST	11.47

Augmentation and self-supervised models

- use of larger and diverse representative training database
 - Advantage: better generalisation
 - Disadvantage: It's impractical never enough



[1] D. Paul, M. Sahidullah, et al.," Generalization of spoofing countermeasures: A case study with ASVspoof 2015 and BTAS 2016 corpora", in Proc. ICASSP 2017. [2] R. K Das, H. Li, "Assessing the scope of generalized countermeasures for anti-spoofing", in Proc. ICASSP 2020.

Data augmentation

- Why data augmentation (DA) is important for machine learning?
 - increasing training data by introducing more variability
 - reduce model overfitting
 - improves generalization and robustness to out-of-domain data

• DA methods

- SpecAugment
- WavAugment
- Codec
- Multimedia & codec transformations
- RIR convolutive noise
- MUSAN database additive noise

[.] D. S. Park, W. Chan et al., "SpecAugment: A simple data augmentation method for automatic speech recognition," in Proc. INTERSPEECH, 2019. [.] E. Kharitonov, M. Riviere et al., "Data augmenting contrastive ` learning of speech representations in the time domain," in Proc. IEEE SLT, 2021.

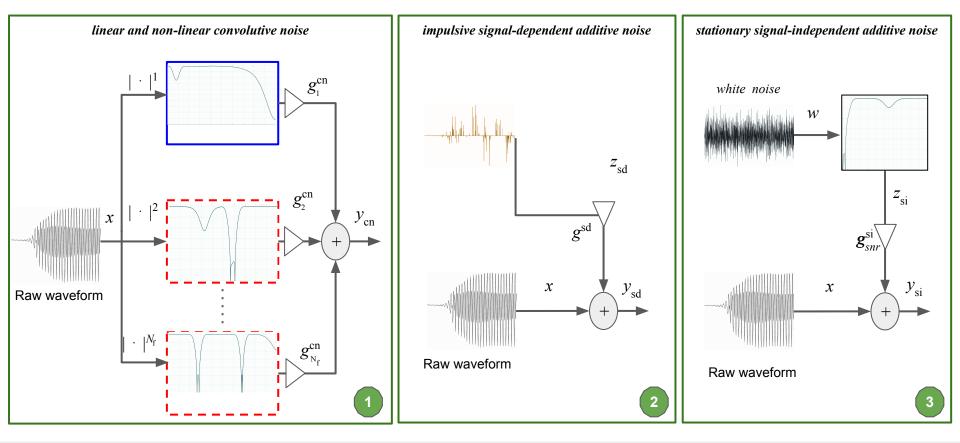
RawBoost data augmentation [1]

RawBoost

- a raw data boosting and augmentation method
- no additional data sources
- operate directly upon raw waveform inputs
- to address
 - lack of generalisation
 - channel and transmission nuisance
 - compression
- with 3 algorithms
 - 1. linear and non-linear convolutive noise
 - 2. impulsive signal-dependent additive noise
 - 3. stationary signal-independent additive noise

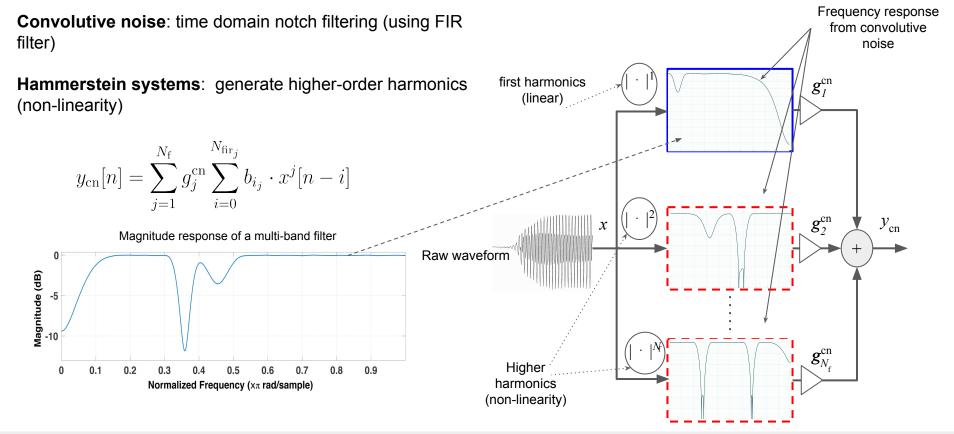
[1] H. Tak, et al., "RawBoost: A Raw Data Boosting and Augmentation Method applied to Automatic Speaker Verification Anti-Spoofing," accepted in ICASSP, 2022.

RawBoost algoritms



Secure and explainable voice biometrics - Massimiliano Todisco

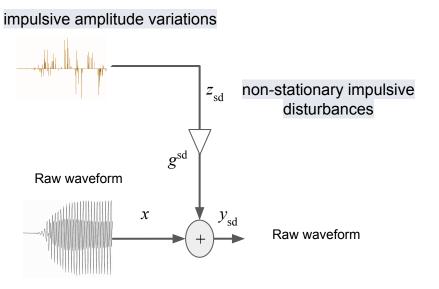
RawBoost 1 linear and non-linear convolutive noise



Secure and explainable voice biometrics - Massimiliano Todisco

- **Impulsive noise** usually generated through non-linear processes in microphones and amplifiers devices.
- We change the samples (chosen at random) with an amount proportional to the value of the sample itself.

$$y_{\rm sd}[n] = x[n] + z_{\rm sd}[n]$$



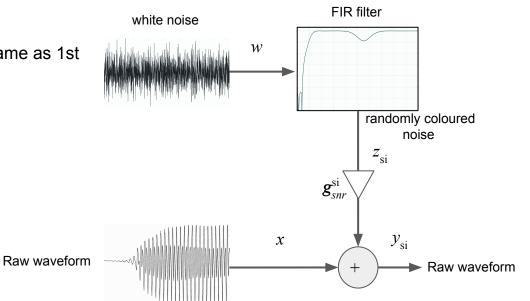
$$z_{\rm sd}[n] = \begin{cases} g^{\rm sd} \cdot D_R\{-1,1\}[n] \cdot x[n], & \text{if } n = \{p_1, p_2, ..., p_P\} \\ 0, & \text{otherwise} \end{cases}$$

• introduce through poorly joined cable connections, transmission channels effects, electromagnetic interference.

• **colored additive noise** using FIR filtering (same as 1st algo.) with a randomly chosen SNR.

$$y_{\rm si}[n] = x[n] + g_{snr}^{\rm si} \cdot z_{\rm si}[n]$$

 $g_{snr}^{\rm si} = \frac{10^{\frac{SNR}{20}}}{\|z_{\rm si}\|^2 \cdot \|x\|^2}$



RawBoost configuration

- RawNet2 with RawBoost DA
- RawBoost DA applied on-the-fly to existing training and development ASVspoof 2019 LA
- Comparisons with standard data augmentation techniques
 - SpecAugment [1]
 - WavAugment [2]

• RawBoost configuration

- RawBoost parameter values for each of the three different techniques
- values within expressed ranges are selected at random (uniform distributions)

Parameters	Notch filter	N _{fir} coefficients	Non-linearity (N _f)	f _c [Hz]	Δf [Hz]	g ^{cn} 1 [dB]	g ^{cn} _2-Nf[dB]	P _{relative} [%]	g ^{sd}	SNR [dB]
1	5	[10,100]	5	[20,4000]	[100,1000]	[0,0]	[-5,-20]	-	-	-
2	-	-	-	-	-	-	-	[0,10]	2	-
3	5	[10,100]	1	[20,4000]	[100,1000]	-	_	-	-	[10,40]

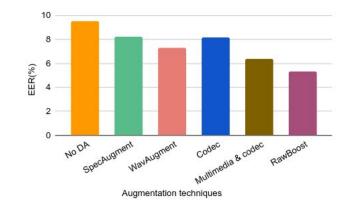
D. S. Park, W. Chan et al., "SpecAugment: A simple data augmentation method for automatic speech recognition," in Proc. INTERSPEECH, 2019.
 E. Kharitonov, M. Riviere et al., "Data augmenting contrastive ` learning of speech representations in the time domain," in Proc. IEEE SLT, 2021.

RawBoost performances on ASVspoof 2021 LA

• Performance comparisons with other DA techniques

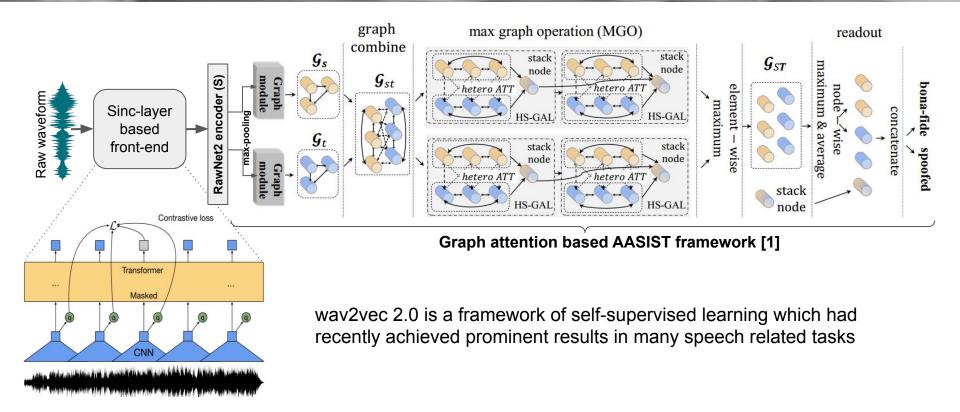
CM system	Augmentation	min t-DCF	EER(%)
RawNet2 (Baseline)	No augmentation	0.4257	9.49
RawNet2	SpecAugment	0.3418	8.25
RawNet2	WavAugment	0.3435	7.32
RawNet2	Codec	0.3297	8.17
RawNet2	Multimedia & codec transformations	0.3168	6.36
RawNet2	RawBoost	0.3099	5.31

RawBoost is model agnostic!



AASIST	RawBoost	0.2804	3.89
AASIST	-	0.5081	11.47
CM systems	Augm	min t-DCF	EER(%)

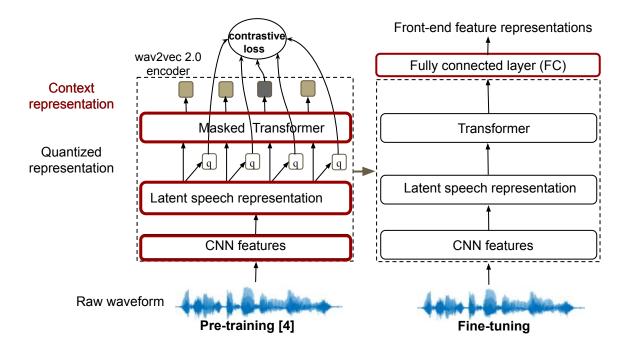
Self-supervised learning & AASIST



[1] J. Jung, H. Heo, H. Tak et al., "AASIST: Audio Anti-Spoofing using Integrated Spectro-Temporal Graph Attention Networks," in Proc. ICASSP, 2022. [2] A. Babu, C. Wang, et al., "XLS-R: Self-supervised cross-lingual speech representation learning at scale," arXiv preprint arXiv:2111.09296, 2021.c

Secure and explainable voice biometrics - Massimiliano Todisco

Wav2vec 2.0 (XLSR) model



Fine-tuning:

 add a simple linear layer on top of the transformer layer and jointly optimize using weighted cross entropy loss with a lower learning rate

IBE-RSPEECH22

 using ASVspoof 2019 training labeled data.

[.] H. Tak, M. Todisco, X. Wang, et al., "Automatic speaker verification spoofing and deepfake detection using Wav2vec 2.0 and data augmentation," in Proc. Odyssey, 2022, pp. 112–119.

Wav2vec 2.0 (XLSR) model and DA

ASVspoof 2021 LA evaluation set

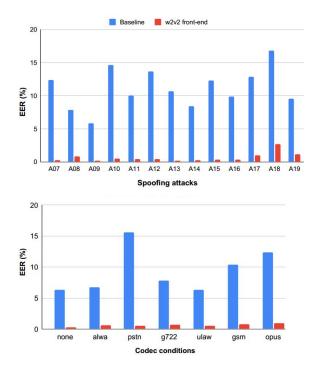
SA refers to the self-attentive aggregation layer whereas DA refers to data augmentation

front-end	SA	DA	Pooled EER	Pooled min t-DCF
sinc-layer	×	×	11.47 (11.95)	0.5081 (0.5139)
wav2vec 2.0	×	×	6.15 (6.46)	0.3577 (0.3587)
sinc-layer	\checkmark	×	8.73 (11.61)	0.4285 (0.5203)
wav2vec 2.0	\checkmark	×	4.48 (6.15)	0.3094 (0.3482)
sinc-layer	\checkmark	\checkmark	7.65 (7.87)	0.3894 (0.3960)
wav2vec 2.0	\checkmark	\checkmark	0.82 (1.00)	0.2066 (0.2120)
	~90% relative improvement			

~90% relative improvement

- Baseline: an integrated spectro-temporal graph attention network (AASIST).
- RawBoost Data augmentation applied on-the-fly to existing training database.
- Best single system results on ASVspoof 2021 challenge LA task till date

[1] H. Tak, M. Todisco, X. Wang, et al., "Automatic speaker verification spoofing and deepfake detection using Wav2vec 2.0 and data augmentation," in Proc. Odyssey, 2022, pp. 112–119.



SHapley Additive exPlanations (SHAP)

- An explainability study using SHAP to gain new insights in spoofing detection
 - use SHAP to estimate the importance of individual speech features for spoofing detection
 - visualise SHAP values for both bona fide and spoofed classes
 - analyse differences in classifier behaviour

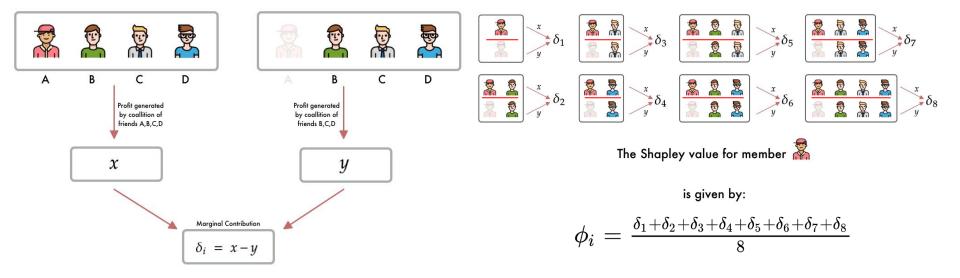
• Definition

- SHAP value φ_i can be both negative and positive to reflect the relative (un)importance of a particular feature to a classifier output
- to obtained φ_i , a classifier is trained twice, with and without the inclusion of the feature *i*

$$\phi_i = \sum_{S \subseteq F \setminus \{i\}} \frac{|S|! \, (|F| - |S| - 1)!}{|F|!} \delta_i(S)$$

- where *S* is a feature subset of full set of features *F*, and δ_i is the prediction difference of feature *i* being presented and absent
- SHAP values are of the same size as the input feature

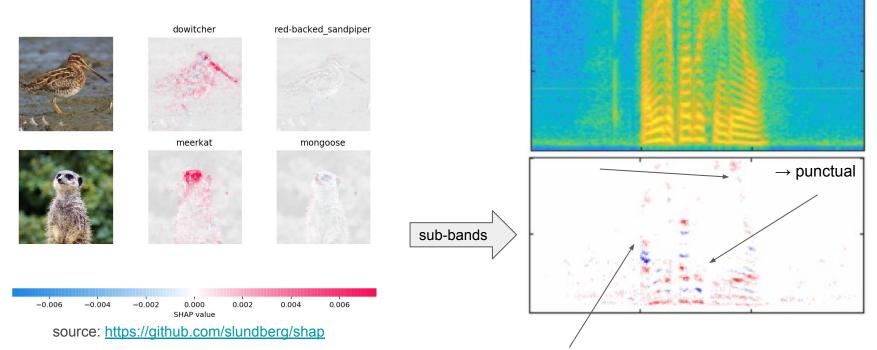
[1] S. M. Lundberg, S.-i. Lee and D. Fohr, "A unified approach to interpreting model predictions," in Advances in Neural Information Processing Systems, 2017, pp. 4765–4774.



source: F. López, "SHAP: Shapley Additive Explanations," https://towardsdatascience.com/shap-shapley-additive-explanations-5a2a271ed9c3

SHapley Additive exPlanations (SHAP)

- Positive SHAP values represent parts of the image that the network considers important for the detection of that class
- But how to interpret it for speech signals?



A bonafide file LA_E_3757378 from ASVspoof 2019 LA

• Models

- 1D- and 2D- Res-TSSDNet [1] with raw waveform and STFT spectrogram as input
- audio files are fed with original length during inference time to avoid concatenation

• Post-processing

• only the highest 0.2% SHAP values are plotted

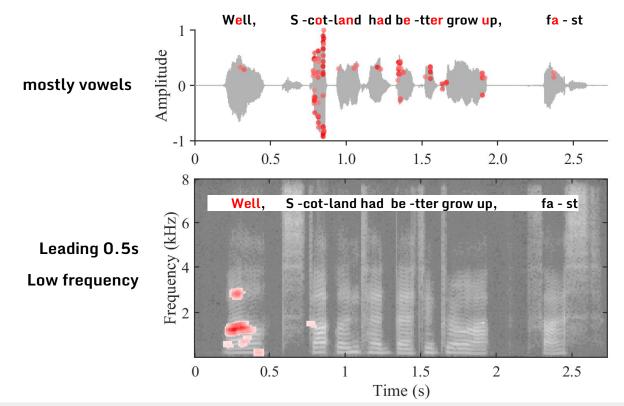
ASVspoof 2019 LA development partition

• examples are shown attack-wisely for the 6 seen attacks in train set

[1] W. Ge, J. Patino, M. Todisco, and N. Evans, "Explaining deep learning models for spoofing and deepfake detection with SHapley Additive exPlanations," in ICASSP 2022.

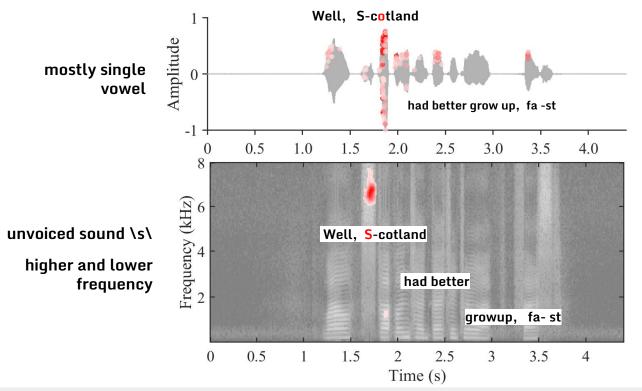
Secure and explainable voice biometrics - Massimiliano Todisco

• A01 - TTS attack with a WaveNet vocoder



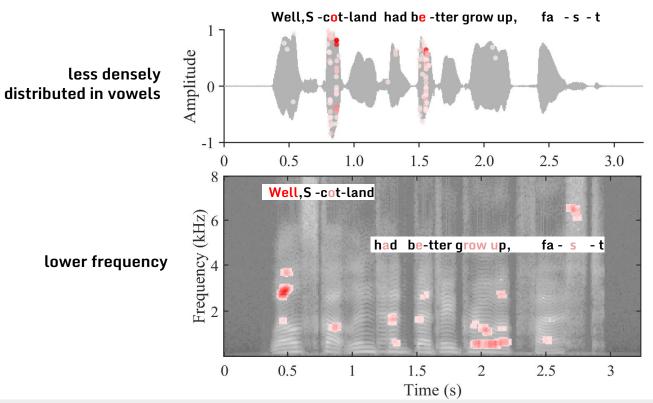
Secure and explainable voice biometrics - Massimiliano Todisco

A02 - TTS attack with a WORLD vocoder



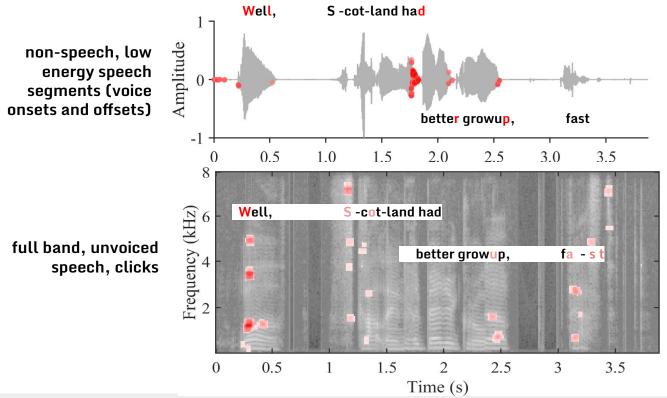
Secure and explainable voice biometrics - Massimiliano Todisco

A03 - TTS attack with a WORLD vocoder



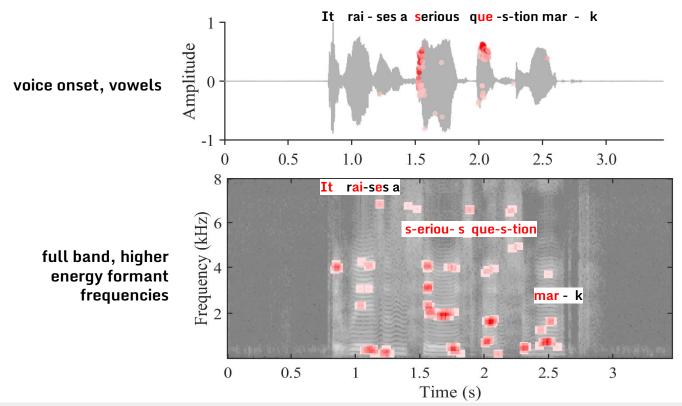
Secure and explainable voice biometrics - Massimiliano Todisco

• A04 - TTS (waveform concatenation)



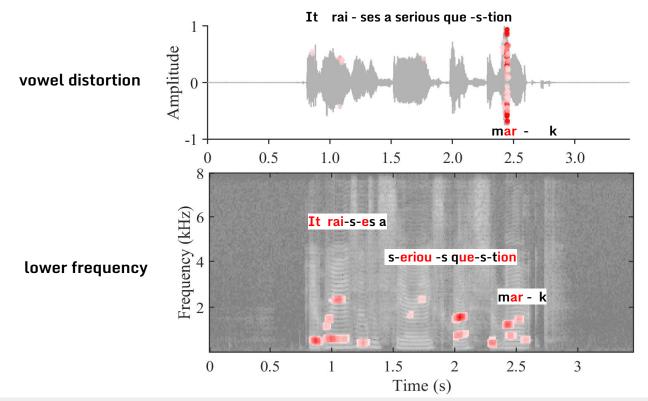
Secure and explainable voice biometrics - Massimiliano Todisco

• A05 - VC (NN-based)



Secure and explainable voice biometrics - Massimiliano Todisco

• A06 - VC (transfer-function-based)



Secure and explainable voice biometrics - Massimiliano Todisco

- Time-domain and spectral domain classifiers use different artefacts
- TTS (A01-03), vowels and lower frequency bands speech are generally more important for spoofing detection
- TTS A04 and VC (A05 and A06), artefacts distribution is different depending on the attack

		Found artefacts	
Attack	Algorithm	Waveform	Spectrogram
A01	TTS	Vowels	Lower frequency bands, leading 0.5s
A02	TTS	Single dominant vowel	Lower & higher frequency bands, unvoiced \s
A03	TTS	Less densely distributed in vowels	Lower frequency bands
A04	TTS	Non-speech, low energy speech seg- ments (voice onsets and offsets)	Full spectrum, unvoiced speech, clicks
A05	VC	Voice onset, vowels	Full spectrum, higher energy formant frequencies
A06	VC	Speech distortion	Lower frequency bands

Table 1: Artefact description of attacks in ASVspoof 2019 LA train partition.

• What we have learned

- there is no single countermeasure that works for all attacks
 - artefacts for different attacks have extremely different characteristics
- performance of CMs degrades in real life scenarios
- the fusion of several systems to increase complementarity is always necessary
 - not convenient for complexity and power consumption
- (i) self-supervised models and (ii) data augmentation are good candidate for the detection
 - (i) need of huge, diverse data for training
 - (ii) need to be tailored to the problem to be tackled

• Unsolved questions

- generalisation will be always a problem
 - new unseen attacks are always ready to break countermeasures
- training on all types of attacks is impossible
- Some ideas
 - explainability and interpretability: artefacts seen from a physical point of view can help
 - physical-aware attention mechanism
 - \circ one-class classification \rightarrow anomaly detection

Links to open-source codes

- RawNet2 (ASVspoof 2021 challenge baseline)
 - <u>https://github.com/eurecom-asp/rawnet2-antispoofing</u>
 - <u>https://github.com/asvspoof-challenge/2021/tree/main/LA/Baseline-RawNet2</u>
- RawGAT-ST Spectro-Temporal Graph Attention Network
 - <u>https://github.com/eurecom-asp/RawGAT-ST-antispoofing</u>
- AASIST Integrated Spectro-Temporal Heterogeneous Graph Attention Network
 - <u>https://github.com/clovaai/aasist</u>
- RawBoost: A Raw Data Boosting and Augmentation Method
 - <u>https://github.com/TakHemlata/RawBoost-antispoofing</u>
- SSL (wav2vec 2.0) for anti-spoofing
 - <u>https://github.com/TakHemlata/SSL_Anti-spoofing</u>
- SHapley Additive exPlanations for anti-spoofing
 - <u>https://github.com/GeWanying/shap-anti-spoofing</u>

ASVspoof5 (the 2023 edition challenge)

ASVspoof5

IBE-RSPEECH22

https://www.asvspoof.org/ info@asvspoof.org

We Need You!

Call For Spoofed/Speech DeepFake Data Contributors

Database creation:ongoingChallenge set-up:first half, 2023ASVspoof5 challenge:second half, 2023

- focus on VC and TTS, including adversarial attacks (ASV/CM feedback)
- tentative data for creating attacks: Librispeech, LibriTTS, others (TBD) with noise/channel effects
- as in ASVspoof 2021, attack detection from degraded-quality data
- both CM-only and CM+ASV tasks

Secure and explainable voice biometrics - Massimiliano Todisco

