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ABSTRACT
Dynamic Time Duplex Division (D-TDD) is a promising solution
to accommodate the new emerging 5G and 6G services charac-
terised by the asymmetric and dynamic Uplink (UL) and Downlink
(DL) traffic demands. D-TDD dynamically changes the TDD con-
figuration of a cell without interrupting users’ connectivity, hence
balancing the bandwidth for UL or DL communication according
to the traffic pattern. However, 3GPP standard does not specify
algorithms or solutions to derive the TDD configuration, i.e., the
number of slots to dedicate to UL and DL. In [1], we have proposed
a Machine Learning (ML)-based solution relaying on Deep Rein-
forcement Learning (DRL) to allow the base station (or gNB) to
self-adapt to the traffic pattern of the cell by periodically adapt-
ing the number of slots dedicated to UL and DL. In this work, we
implemented the DRL algorithm on top of an open-source gNB
based on OpenAirInterface (OAI) [3] to demonstrate its efficiency.
To this end, we relied on the O-RAN architecture [5], where the
proposed DRL algorithm is deployed as xApp at the Near Real-time
RAN Intelligent Controller (RIC) and communicates with the base
station using O-RAN E2 interface. We developed xTDD Service
Model (SM) following the E2SM standard [5], allowing the DRL
solution to monitor DL and UL buffers from the gNB to deduce
the optimal TDD configuration that accommodates the current
traffic. Then, the decision (i.e., TDD configuration) is pushed to
the base station. We implemented the solution on top of the OAI
5G StandAlone (SA) platform and Open Networking Foundation
(ONF) RIC [4] based on 𝜇onos. To the best of our knowledge, this
is the first demonstration of a ML-based D-TDD on top of a real 5G
network, showing the advantage of O-RAN architecture to building
Self Organized Network (SON) function for dynamic configuration
of D-TDD.
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1 INTRODUCTION
In recent years, the small cell deployment scenario has been experi-
encing increasing growth, especially for industry 4.0 use cases and
5G private networks. While 4G networks were designed to accom-
modate DL dominant traffic, 5G networks need to adapt to the new
emerging services such as high-quality video streaming captured by
drones for building surveillance that requires more UL traffic than
DL. In this context, Dynamic TDD (D-TDD) is a promising solution
introduced in 5G to satisfy the dynamic traffic pattern of small cell
deployment. In D-TDD the allocation of the DL/UL ratio (i.e., the
number of DL and UL slots in a frame) can be dynamically adjusted
according to the UL and DL traffic demands. D-TDD allows the
base station to change the TDD pattern dynamically without inter-
rupting users’ connectivity. Introduced flexibility by D-TDD allows
the base station to adapt the frame configuration according to the
traffic pattern by selecting the number of slots dedicated to UL and
DL. However, the 5G NR specifications only cover the mechanism
allowing the base station to inform the UE about the UL/DL slots
pattern in a TDD frame, leaving the algorithm deriving the pattern
UL/DL opens. In [1], we have filled this gap by proposing a novel
algorithm, namely, Deep Reinforcement Learning (DRL)-based 5G
RAN TDD Pattern (DRP), which allows deriving the UL/DL pattern
of TDD frames according to the existing cell traffic whatever it
is DL or UL dominant. DRP monitors the DL and UL traffic and
derives the percentage of the frame (number of slots) dedicated to
UL and DL, aiming to avoid the overflow of DL and UL buffers to
guarantee the optimal quality of service (QoS) whatever the pattern
of traffic, UL or DL dominant. In this demo, we leveraged O-RAN
architecture by executing the DRL inference at the near RT RIC
as a xApp, while the dynamic TDD mechanism is implemented
in OAI. xTDD Service Model (SM) is introduced to plug DRP in
OAI following the E2SM standard [5]. xTDD xApp receives UL
and DL buffer fullness ratio from the base station via E2 indication
messages periodically and executes DRP to derive the TDD pattern.
Finally, xTDD sends the TDD pattern via E2 control message to the
base station. The latter will update the cell configuration allowing
to ensure SON function for D-TDD.
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Figure 1: O-RAN aligned architecture of xTDD

2 SYSTEM DESIGN AND IMPLEMENTATION
In this demo, we improved the design introduced in [1] by aligning
it with O-RAN architecture as depicted in Figure 1. xTDD xApp
executes the DRP agent, responsible for deriving the TDD pattern.
xTDD receives E2 indication messages each 𝑇 ms from the base
station containing the DL and UL buffer status. The DL buffer
status is extracted from the RLC layer by summing the amount of
remaining data (in bytes) after each scheduling process over all the
Logical Channels (LC). In contrast, the UL buffer status is estimated
at the MAC layer by summing the Buffer Status Report (BSR) MAC
Control Element (CE) received over all the LCs. xTDD derives the
TDD pattern taking buffer status history as input, and sends a E2
control message containing the ratio of UL slots. The xTDD SM
at the base station updates the TDD configuration of the cell at
the first slot of the next TDD period upon the reception of the E2
control message.

At the gNB side, we have implemented D-TDD in OAI by: (i)
removing the TDD pattern information from the periodic SIB1
broadcast to UEs, which lead the latter to figure out the direction of
the slot dynamically via the Downlink Control Information (DCI);
(ii) changing the MAC and PHY layers context to change the TDD
pattern at gNB. (iii) sending multiple DCI with different K2 param-
eters in order to schedule multiple UL slots in the same DL slot (to
enable more UL slots than DL slots).

At the RIC side, we have implemented DRP using the Deep
Deterministic Policy Gradient (DDPG) Algorithm [6]. The DRL
hides the complexity of the environment, which helps DRP to make
efficient and quick decisions that adapt according to the traffic
patterns. We define the DRP design by:
State: The DRP agent considers K previous observations before
taking any action. Each observation depicts the buffer fullness ratio
of both DL and UL.
Action: The DRP agent has only one continuous action 𝑎𝑡 that
presents the percentage of slots that should be reserved for the UL
traffic.
Reward:TheDRP agent receives a positive rewardwhen the buffers
do not exceed their threshold (i.e., the maximum size of the buffers).
Moreover, the emptiest the buffers are, the highest reward becomes.
The agent receives a penalty when one of the buffers exceeds its
capacity. This strategy will enforce the DRP agent to keep all buffers

(DL and UL) empty as much as possible and prevent their overflow,
which positively impacts the QoS.

We leveraged 𝜇onos SD-RAN to create the xTDD SM and xApp
and integrate it with 𝜇onos RIC. xTDD xApp gains the ability to
learn with time and adapts to different and unseen situations. We
have designed xTDD to be lightweight to ensure real-time interac-
tion with OAI. Also, we have designed xTDD to ensure generality
and then work in an unseen environment. xTDD has been designed
in a way to work independently from the number of slots (which
makes xTDD suitable for multiple numerologies) and the number
of UEs. Further, it considers the variation and correlation in the
buffer states to predict the traffic patterns.

3 DEMONSTRATION
3.1 Equipment and Settings
Our setup is composed of (i) Twomachines with 36 CPUs, each CPU
is an Intel(R) Xeon(R) Gold 6154 CPU @ 3.00GHz. One machine is
used to run gNB based on OAI (based on commit d49db79). OAI
is connected to AW2S Radio Unit (RU). The second machine is
used as a single node cluster based on Kubernetes. It hosts the 5G
Core Network based on OAI, and the SD-RAN services [4] of 𝜇onos
RIC. (ii) two laptops, each one connected to a Quectel RM500Q-GL
module, considered as 5G UEs.

3.2 Experiment Scenario
We connect two UEs to the 5G network. The base station uses
numerology 1 and a TDD period of 5ms. For instance, a TDD period
has 10 slots. Using Iperf tool [2], we generate traffic for UL and DL
following different scenarios with different rates. (i) UL traffic only:
we will observe that xTDD selects more UL slots; (ii) DL traffic only:
we observe that xTDD selects more DL slots; (iii) UL and DL traffic:
we observe that the base station changes the pattern dynamically
to avoid buffers overflow and to satisfy the requested data rate from
Iperf clients.
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