
Colmade: Collaborative Masking in Auditable Decryption for
BFV-based Homomorphic Encryption

Alberto Ibarrondo
IDEMIA & EURECOM
Sophia Antipolis, France

Hervé Chabanne
IDEMIA & Telecom Paris

Paris, France

Vincent Despiegel
IDEMIA

Paris, France

Melek Önen
EURECOM

Sophia Antipolis, France

ABSTRACT
This paper proposes a novel collaborative decryption protocol for
the Brakerski-Fan-Vercauteren (BFV) homomorphic encryption
scheme in a multiparty distributed setting, and puts it to use in
designing a leakage-resilient biometric identification solution. Al-
lowing the computation of standard homomorphic operations over
encrypted data, our protocol reveals only one least significant bit
(LSB) of a scalar/vectorized result resorting to a pool of N parties.
By employing additively shared masking, our solution preserves
the privacy of all the remaining bits in the result as long as one
party remains honest. We formalize the protocol, prove it secure in
several adversarial models, implement it on top of the open-source
library Lattigo and showcase its applicability as part of a biometric
access control scenario.

CCS CONCEPTS
• Security and privacy → Privacy-preserving protocols; Bio-
metrics.

KEYWORDS
Muptiparty Homomorphic Encryption, Decryption, Masking, Bio-
metric Identification, Secure Computation Leakage, Privacy Pre-
serving Technologies
ACM Reference Format:
Alberto Ibarrondo, Hervé Chabanne, Vincent Despiegel, and Melek Önen.
2022. Colmade: Collaborative Masking in Auditable Decryption for BFV-
based Homomorphic Encryption. In Proceedings of the 2022 ACM Workshop
on Information Hiding and Multimedia Security (IH&MMSec ’22), June 27–
28, 2022, Santa Barbara, CA, USA. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3531536.3532952

1 INTRODUCTION
Data has been frequently labelled as the 21st century oil. There
are innumerable modern applications fueled by data, ranging from
Data Analytics & Machine Learning to Biometrics to name a few,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IH&MMSec ’22, June 27–28, 2022, Santa Barbara, CA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9355-3/22/06. . . $15.00
https://doi.org/10.1145/3531536.3532952

whose impact in society is undeniable. Yet, the tremendous poten-
tial of data manipulation is coupled with high risks. Data privacy
essential to deal with risks of data misuse or theft, even more so
when dealing with personal data (as covered in present-day data
protection legislations such as GDPR [16] or HIPAA [11]).

Moreover, there are sectors where these risks are unacceptable or
even illegal. Biometric Identification must rely on secure hardware
or trusted parties to hold the personal data vital for their recognition
models, and all the biometric data manipulation must follow strict
security rules. Hospitals and health specialists are deprived of the
advantages of training and using models with all the available data
from patients. Banks and finance institutions are limited to the
locally available data to prevent fraud and prosecute tax evasion.
Child Exploitative Imagery detection models [54] need training
data that is in itself illegal to possess.

An observant reader might notice that many of the use-cases
just described share two important characteristics: there are mul-
tiple parties interested in performing a chosen computation over
personal data, and the output of such computation can often be
expressed with a single bit: Is a user in the database/list of registered
users? Does the patient present indicators of cancer? Is a certain
entity committing fraud? These aspects will play a key role in the
present work.

Under the field of advanced cryptography, several privacy pre-
serving technologies arise to the challenge. Fully Homomorphic
Encryption (FHE)[23] is a family of encryption schemes that sup-
port certain operations between ciphertexts (typically addition and
multiplication), yielding the results of these operations when de-
crypting. Secure Multiparty Computation (MPC) covers a series
of techniques (garbled circuits[55], secret sharing[49], or the more
recent replicated secret sharing[1] and functional secret sharing[9])
that split computation of a given function across multiple distinct
parties, so that each individual party remains ignorant of the global
computation, and collaborate to jointly compute the result. FHE and
MPC can also coexist in Multiparty Homomorphic Encryption[36]
(MHE), where distributed versions of the FHE protocols are carried
out by several collaborating parties.

These technologies alone offer private computation capabilities
suited for biometric operations, often based on threat models with
Honest-But-Curious adversaries, where parties involved perform the
selected protocol faithfully and without deviation while attempting
to obtain as much information from the private data as possible. In-
deed FHE&manyMPC techniques fall under this category, whereas
some MPC techniques can deal with Malicious adversaries capable

https://orcid.org/0000-0003-4079-4127
https://orcid.org/0000-0002-5916-3387
https://orcid.org/0000-0003-0269-9495
https://doi.org/10.1145/3531536.3532952
https://doi.org/10.1145/3531536.3532952

of deviating arbitrarily from the protocol. Besides requiring these
stronger threat models, industrial instantiations of these technolo-
gies are frequently sought to be auditable, so that an independent
auditor may inspect some of the protocol execution based on the
public protocol transcript [5].

Even then, the output of a private computation protocol always
leaks some information about the input, as this leakage is inherent
to the function being computed and independent from the chosen
private computation technology. E.g., model extraction attacks [39,
53] and membership inference attacks[50] in privacy-preserving
machine learning inference, or reference biometric template extrac-
tion and brute force impersonation in privacy-preserving biometric
identification [27]. The most straightforward way to thwart these
attacks is to limit the output to yield strictly minimal information
(e.g., one bit for binary decisions).

In designing a secure biometric identification system, all these
properties are clearly desired: minimal output leakage, auditability
and guaranteed data privacy in stronger threat models. The main
motivation of this work is to combine them all, improving on previ-
ously proposed biometric systems that only tackle a subset of these
properties.

Our Contribution. We propose a novel decryption protocol with
collaborative masking based on the multiparty variant [36] of the
Brakerski-Fan-Vercauteren (BFV) [22] Homomorphic Encryption
scheme. Our protocol makes use of predefined pools of users to per-
form a decryption in a distributed setting, where each user masks
a fragment of the ciphertext during decryption while remaining
agnostic of the full computation. We guarantee the privacy of all but
one bit of the disclosed output in diverse threat models. Colmade
effectively reduces the input leakage to the minimum possible by
masking all but the Least Significant Bit of the encrypted output pro-
duced by a HE-based private computation. We display its relevance
by using it to construct an auditable privacy-preserving biometric
identification system. Lastly, we open-source an implementation of
this protocol on top of the Lattigo HE library[20].

A fitting application. We target biometric access control for
groups where multiple users are expected to get together right
before identifying themselves to request access. Together with clas-
sic biometric access control scenarios such as airplane boarding
or multitudinous events (popular sport matches or concerts), we
consider events such as entering a museum, a temporary exhibition,
a fair or a semi-professional sports competition. In these selected
applications, the computation to perform the biometric identifica-
tion of the user Alice would happen in the FHE domain, and a set
of users (who may or may not include Alice) would collaborate
with the gatekeeper to decrypt only the one bit of vital information
required to answer "Is Alice in the list of registered people?".

This work is arranged as follows. Section 2 introduces the single-
party & multi-party BFV encryption schemes. Section 3 details
our design of a biometric access control solution, and leans on
it to formalize three protocols: a simplified single-party masked
decryption, our flagship privacy-preserving multiparty decryption
protocol already displayed in the biometric system, and an extended
protocol to provide abort against a malicious adversary in an honest
majority setting. Section 4 covers an in-depth security analysis of
our protocols. The paper wraps up with a succinct mention to the

implementation in Section 5, previous works in Section 6 and some
takeaways in Section 7.

2 PRELIMINARIES
2.0 Notation
We use regular letters for integers and polynomials, and boldface
letters for vectors of integers and of polynomials. 𝑅𝑧 expresses a
polynomial ring with integer coefficients modulo 𝑧. 𝑎[𝑗] denotes
the 𝑗 − 𝑡ℎ coefficient/element of a polynomial/vector 𝑎 with 𝑁 coef-
ficients/elements. Given a sampling of an individual coefficient 𝑎[𝑗]
from a distributionD, written as 𝑎[𝑗] ∼ D, we denote the sampling
of a polynomial 𝑎 over a ring 𝑅𝑧 as 𝑎 ← D[𝑅𝑧] . A computing party
is denoted as P𝑖 in a pool of 𝐾 parties P = {P1, . . . , P𝑖 , P𝐾 }.

We use ⟨𝑎⟩𝑖 to refer to share 𝑖 in an arithmetic secret sharing of
𝑎 =

∑𝐾
𝑖 ⟨𝑎⟩𝑖 . We denote [·]𝑞 the reduction modulo q, and ⌊·⌋, ⌊·⌉,

⌈·⌉ the rounding to the previous, nearest and next integer respec-
tively. When applied to polynomials or vectors, these reductions
are performed coefficient/element-wise. We useU(𝑋) to denote a
uniformly random distribution in the set 𝑋 , and N(𝜇, 𝜎) to denote
a univariate gaussian distribution with mean 𝜇 and standard devia-
tion 𝜎 . For a polynomial 𝑎, we write its infinity norm as ∥𝑎∥. For
an input integer 𝑥 ∈ Z we use 𝑠𝑖𝑔𝑛(𝑥) = 𝑥/|𝑥 |, and define 𝑠𝑔𝑏 (𝑥)
as the sign bit such that:

𝑠𝑔𝑏 (𝑥) =
{
1 if 𝑥 < 0
0 if 𝑥 ≥ 0

2.1 Homomorphic Encryption
A homomorphic encryption scheme allows certain operations over
ciphertexts, which is equivalent to encrypting the result of those
same plaintext operations. Thanks to this, third parties can per-
form computations on encrypted data without learning the inputs
or the computation results. In contrast to partially homomorphic
encryption, which supports only one type of arithmetic operation
(e.g. only additions[38] or only multiplications[46]), fully homo-
morphic encryption allows encrypted multiplications and additions,
theoretically enabling private computation of arbitrary functions.
This concept was conceived by Rivest et al. in the 1970s[45], but it
remained unrealized until Craig Gentry presented a first feasible
FHE scheme in 2009[23]. Since then, FHE has gone from theoretical
breakthrough to practical deployment, dropping the initial 30 min-
utes required to compute a multiplication between two encrypted
values down to less than 20 milliseconds. Even then, FHEmultiplica-
tions are still around seven orders of magnitude slower than native
CPU integer multiplication instructions. Therefore, practical FHE
requires that applications be specifically adapted and optimized.

The majority of modern FHE schemes are based on the Learning
with Errors (LWE) hardness assumption [42] and its variants (e.g.,
Ring LWE) and rely on a small amount of noise added during encryp-
tion to guarantee security. During homomorphic operations, this
noise grows negligibly for additions, and significantly for multipli-
cations. Should the noise grow too large, correct decryption would
no longer be possible. Theoretically, a computationally expensive
technique known as bootstrapping can be used to homomorphically
reset the noise in a ciphertext. Instead, schemes are instantiated

with parameters large enough to allow the computation to complete
without requiring bootstrapping.

We now introduce the Brakerski/Fan-Vercauteren (BFV) [10, 22]
scheme, foundational to our work, leaving out other schemes such
as Cheon-Kim-Kim-Song (CKKS) [12] or TFHE [13].

2.2 BFV scheme
The Brakerski/Fan-Vercauteren scheme [10, 22] is a ring-learning-
with-errors (RLWE)[35] homomorphic encryption scheme. Mes-
sages are encoded in the plaintext space 𝑅𝑡 = Z𝑡 [𝑋]/(𝑋𝑁 + 1) of
polynomials of degree up to 𝑁 − 1, and then encrypted into the
ciphertext space 𝑅𝑞 = Z𝑞 [𝑋]/(𝑋𝑁 +1) with 𝑡 < 𝑞 (typically 𝑡 ≪ 𝑞),
𝑁 a power of 2 and Δ = ⌊𝑞/𝑡⌋.

The BFV scheme utilizes secrets sampled from two small-normed
distributions: the secret key distribution S[𝑅𝑞] with coefficients
sampled from a uniform distribution 𝑠 [𝑗] ∼ S ≜ U({−1, 0, 1})
so that Image(S𝑅𝑞) = Z{−1,0,1} [𝑋]/(𝑋𝑁 + 1). (although in some
implementations they are instead sampled fromU({0, 1})), and the
error distributionX[𝑅𝑞] with coefficients 𝑒 [𝑗] ∼ X ≜ N[−𝐵,𝐵] (0, 𝜎)
sampled following a discrete Gaussian with standard deviation
𝜎 truncated into [−𝐵, 𝐵] where 𝜎 and 𝐵 are two cryptosystem
parameters.

The security of BFV is rooted in the hardness of the decisional-
RLWE problem, informally stated as: given a uniformly random
𝑎 ←U(𝑅𝑞) , a secret 𝑠 ← S[𝑅𝑞] , and an error term 𝑒 ← X[𝑅𝑞] , it
is computationally hard for an adversary that does not know 𝑠 and
𝑒 to distinguish between the distribution of (𝑠𝑎 + 𝑒, 𝑎) and that of
(𝑏, 𝑎) where 𝑏 ← U(𝑅𝑞). A more formal definition can be found
in Section 3.1 of [22].

While BFV supports bootstrapping in theory, it is slow and thus
the scheme is commonly instantiated with parameters large enough
to handle the noise growth result of a limited number of multiplica-
tions (the multiplicative depth). Even then, a public relinearization
should be used between multiplications to reshape the ciphertext
without changing the underlying message, lowering noise growth
and ciphertext size by employing a specific public key named relin-
earization key (𝑟𝑙𝑘).

Scheme 1 outlines the subset of algorithms conforming the BFV
scheme that are pertinent for this work. We will now focus on the
decryption algorithm, as it constitutes the foundation of Colmade.
A reasoning on how to select these parameters in practice can be
followed in Section 3.4 of [36].

2.2.1 Decryption in BFV. The decryption of a ciphertext c𝑡 =

(𝑐𝑡0 , 𝑐𝑡1) can be described as a two-step process. The first step takes
the secret key to compute a noisy upscaled plaintext in 𝑅𝑞 as:

[𝑐𝑡0 , +𝑠𝑐𝑡1]𝑞 = Δ𝑚 + 𝑒c𝑡 (1)
where 𝑒c is the ciphertext error/noise. In the second step, the mes-
sage is decoded from this upscaled noisy term in 𝑅𝑞 to a plaintext
in 𝑅𝑡 , by downscaling and rounding:[⌊

𝑡

𝑞
(Δ𝑚 + 𝑒c𝑡)

⌉]
𝑡

= [⌊𝑚 + 𝛼𝑡 + 𝑣⌉]𝑡 (2)

where𝑚 ∈ 𝑅𝑡 , 𝛼 ∈ Z𝑁 , 𝑣 ∈ Q𝑁 . The correctness of the decryption
is preserved as long as the noise residue 𝑣 in the plaintext space be
∥𝑣 ∥ < 1/2, which translates into an upper bound to the ciphertext

Scheme 1 BFV(𝑡, 𝑛, 𝑞,𝑤, 𝜎, 𝐵)

BFV.SecKeyGen()→ 𝑠𝑘 :
Sample 𝑠 ← S[𝑅𝑞]
Output 𝑠𝑘 = 𝑠

BFV.PubKeyGen(𝑠𝑘)→ pk:
Let 𝑠𝑘 = 𝑠 a secret key
Sample 𝑝1 ←U(𝑅𝑞), and 𝑒 ← X[𝑅𝑞]
Output pk = (𝑝0, 𝑝1) = (−𝑠𝑝1 + 𝑒, 𝑝1)

BFV.Encrypt(pk,m)→ c𝑚 :
Let pk = (𝑝0, 𝑝1) a public key
Sample 𝑢 ← S[𝑅𝑞] ; 𝑒0 ← X[𝑅𝑞] ; 𝑒1 ← X[𝑅𝑞]
Output c𝑚 = (𝑐𝑚0 , 𝑐𝑚1) = (Δ𝑚 + 𝑢𝑝0 + 𝑒0, 𝑢𝑝1 + 𝑒1)

BFV.Add(c𝑎, c𝑏)→ c𝑎𝑑𝑑 :
Let c𝑎 = (𝑐𝑎0 , 𝑐𝑎1), c𝑏 = (𝑐𝑏0 , 𝑐𝑏1) two ciphertexts.
Output c𝑎𝑑𝑑 = ([𝑐𝑎0 + 𝑐𝑏0]𝑞, [𝑐𝑎1 + 𝑐𝑏1]𝑞)

BFV.Decrypt(𝑠𝑘, c𝑡)→ m𝑟𝑒𝑠 :
Let 𝑠𝑘 = 𝑠 a secret key, c𝑡 = (𝑐𝑡0 , 𝑐𝑡1) a ciphertext.
Output𝑚𝑟𝑒𝑠 =

[⌊
𝑡
𝑞 [𝑐𝑡0 + 𝑠𝑐𝑡1]𝑞

⌉]
𝑡

noise term of 𝑒𝑐𝑡 < Δ/2. This is often achieved by choosing a
sufficiently large 𝑞.

2.3 Multiparty BFV Scheme
Multiparty Homomorphic Encryption (MHE) provides a natural
extension of FHE to an N-party setting. We will focus on the Dis-
tributed BFV scheme or DBFV of [36], summarizing some of the key
protocols in Scheme 2. The secret key generation is now performed
by local generation of shares ⟨𝑠𝑘⟩𝑖 , then the collective public key
protocol is based on the underlying global secret key 𝑠𝑘 . To pre-
serve practical security, 𝑠𝑘 is never reconstructed, but parties can
collaborate to generate a collective public key 𝑐𝑝𝑘 corresponding
to 𝑠𝑘 . Homomorphic encryption and evaluation are left untouched
from the original BFV scheme (Scheme 1), whereas relinearization
and key switching present specific multi-party protocols (protocols
3 and 4 of [36]).

2.3.1 Decryption and Noise in DBFV. The main difference between
the single-party BFV.Decrypt protocol summarized in equations 1
and 2 and its multiparty counterpart DBFV.ColDecrypt is that an
additional error is introduced to preserve the security of the ⟨𝑐1𝑠 ⟩𝑖
shares based on the decisional RLWE problem.

The distributed secret-key generation protocol yields a global
secret key 𝑠𝑘 whose coefficients, as a sum of 𝐾 samples of R𝑠 , add
up to a maximum of ∥𝑠𝑘 ∥ ≤ 𝐾 . As a result of DBFV.ColPubKeyGen,
the collective public key 𝑐𝑝𝑘 contains noise 𝑒𝑐𝑝𝑘 =

∑𝐾
𝑖 𝑒𝑖 , implying

that ∥𝑒𝑐𝑝𝑘 ∥ ≤ 𝐾𝐵.
Thus, a freshly encrypted ciphertext c𝑚 = (𝑐𝑚0 , 𝑐𝑚1) of a mes-

sage𝑚 under a collective public key 𝑐𝑝𝑘 will decrypt, following
equation 1 with the single-party BFV.Decrypt, to [𝑐𝑚0 , +𝑠𝑐𝑚1]𝑞 =

Δ𝑚 + 𝑒𝑓 𝑟𝑒𝑠ℎ , where ∥𝑒𝑓 𝑟𝑒𝑠ℎ ∥ ≤ 𝐵(2𝑁𝐾 + 1). Thus, the worst-case
fresh ciphertext noise is linear in the number 𝐾 of parties.

Scheme 2 DBFV(𝑡, 𝑁 , 𝑞, 𝜎, 𝐵, 𝐾)

DBFV.SecKeyGen()→ ⟨𝑠𝑘⟩1 , . . . ⟨𝑠𝑘⟩𝑖 , . . . ⟨𝑠𝑘⟩𝐾 :
P𝑖 : Sample 𝑠𝑖 ← S[𝑅𝑞]
P𝑖 : Output ⟨𝑠𝑘⟩𝑖 = 𝑠𝑖 , where 𝑠𝑘 =

[∑𝐾
𝑖 𝑠𝑘𝑖

]
𝑞

DBFV.ColPubKeyGen(⟨𝑠𝑘⟩1 , . . . ⟨𝑠𝑘⟩𝑖 , . . . ⟨𝑠𝑘⟩𝐾)→ cpk :
Let 𝑠𝑘𝑖 = 𝑠𝑖 private key share of P𝑖 .
Any: Sample 𝑝1 ←U(𝑅𝑞). Disclose to all P𝑖 .
P𝑖 : Sample 𝑒𝑖 ← X[𝑅𝑞]
P𝑖 : Compute ⟨𝑝0⟩𝑖 = −𝑝1𝑠𝑖 + 𝑒𝑖
Any: Output cpk = (𝑝0, 𝑝1) = (

∑𝐾
𝑖 ⟨𝑝0⟩𝑖 , 𝑝1).

DBFV.Encrypt(cpk,𝑚)→ c𝑚 :
Any: Output c𝑚 = BFV.Encrypt(cpk,𝑚).

DBFV.ColDecrypt(c, ⟨𝑠𝑘⟩1 , . . . ⟨𝑠𝑘⟩𝑖 , . . . ⟨𝑠𝑘⟩𝐾)→𝑚𝑟𝑒𝑠 :
Let 𝑠𝑖 = ⟨𝑠𝑘⟩𝑖 private key share of P𝑖 , c𝑡 = (𝑐𝑡0 , 𝑐𝑡1) a ciphertext.
P𝑖 : Sample 𝑒𝑖 ← X[𝑅𝑞]
P𝑖 : Compute ⟨𝑐1𝑠 ⟩𝑖 = 𝑠𝑖𝑐1 + 𝑒𝑖
Any: Output𝑚𝑟𝑒𝑠 =

[⌊
𝑡
𝑞

[
𝑐0 +

∑𝐾
𝑖 ⟨𝑐1𝑠 ⟩𝑖

]
𝑞

⌉]
𝑡

Conversely, the freshly encrypted ciphertext c𝑚 = (𝑐𝑚0 , 𝑐𝑚1)
of a message𝑚 under a single-party public key 𝑝𝑘 will generate,
following equation 1 and using the multi-party DBFV.ColDecrypt,
a similar error term, which then doubles if both DBFV.ColDecrypt
and a collective public key are used.

2.4 Encoding, Packing and modular operations
Inputs to BFV.Encrypt are first to be encoded into the plaintext
space 𝑅𝑡 . We consider two main encoding techniques (see Scheme
3): base encoding, where a single integer fills an entire plaintext, and
packed encoding, where a vector of integers is mapped elementwise
to the coefficients of the plaintext. Figure 1 illustrates an example
of these encodings.

The packing technique enables Single Instruction Multiple Data
(SIMD) parallelism, making it highly efficient for applications work-
ing over larger amounts of data while supporting both additive and
multiplicative homomorphic operations. Due to its practicality, it
is implemented in most of the current lattice-based cryptographic
libraries [20, 26, 41, 48] and is part of the draft HE standard [2].

Homomorphic addition is naturally performed elementwisewhen
adding two packed polynomials. To obtain homomorphic multipli-
cation applied elementwise, one needs to follow the instructions for
RLWE-based packing from section 3.2 of [51]. In short, input integer
vectors need to be encoded using the inverse Number Theoretic
Transform (InvNTT) over 𝑅𝑡 to turn polynomial multiplications
into coefficient-wise multiplications. Additionally, rotation oper-
ations cyclically rotate the elements inside the vectors, allowing
elements originally stored at different indices (also known as “slots")
to interact.

Furthermore, typical applications of homomorphic encryption
deal with operations in the non-modular domains Z or R. Their
coercion to arithmetic modulo 𝑡 forces the underlying plaintext
operations to not overflow their coefficients modulo 𝑡 . Hence, the

∈ 𝑅𝑡𝑚𝑏𝑎𝑠𝑒 =

∈ ℤ in base 𝑏 = 4

𝑎 = 17710 = 20314

1 0 3 2 0 ... 0 0()
1 + 0𝑥 + 3𝑥2 + 2𝑥3 + 0𝑥4…+ 0𝑥𝑁−2 + 0𝑥𝑁−1

1 0 3 2 0 ... 0 0()
𝐑𝐋𝐖𝐄.𝐁𝐚𝐬𝐞𝐄𝐧𝐜𝐨𝐝𝐞 𝑎, 𝑏

∈ 𝑅𝑡𝑚𝑝𝑎𝑐𝑘 =

∈ ℤ𝑁0 2 3 -1 -2 ... 0 1𝒂𝑣𝑒𝑐 =
𝐑𝐋𝐖𝐄. 𝐏𝐚𝐜𝐤𝐄𝐧𝐜𝐨𝐝𝐞 𝒂𝑣𝑒𝑐

[]
0 2 3 t-1t-2 … 0 1()

0 + 2𝑥 + 3𝑥2 + 𝑡 − 1 𝑥3…+ 0𝑥𝑁−2 + 1𝑥𝑁−1

Figure 1: Visualization of the BaseEncode (top) and PackEn-
code (bottom) algorithms for arbitrary inputs

Scheme 3 RLWE Codec(𝑡, 𝑁)
RLWE.BaseEncode(𝑎, 𝑏)→𝑚:
Let 𝑎 ∈ Z an input integer value with up to 𝑁 digits in base-𝑏

representation.
Output: Polynomial𝑚 ∈ 𝑅𝑡 with

𝑚[𝑗] = (⌊|𝑎 |⌋𝑏 (𝑗+1) − ⌊|𝑎 |⌋𝑏 𝑗) ∀𝑗 for unsigned encoding,
𝑚[𝑗] = (⌊|𝑎 |⌋𝑏 (𝑗+1) − ⌊|𝑎 |⌋𝑏 𝑗) ∗ 𝑠𝑖𝑔𝑛(𝑎) + 𝑡 ∗ 𝑠𝑔𝑏 (𝑎) ∀𝑗 for
signed encoding.

RLWE.BaseDecode(𝑚,𝑏)→ 𝑎𝑟𝑒𝑠 :
Let𝑚 ∈ Z𝑁𝑡 the coefficients of an encoded polynomial in 𝑅𝑡 .
Output Integer 𝑎𝑟𝑒𝑠 ∈ Z with

𝑎𝑟𝑒𝑠 =
∑𝑁
𝑖=1𝑚[𝑖] ∗ 𝑏 (𝑖−1) for unsigned encoding,

𝑎𝑟𝑒𝑠 =
∑𝑁
𝑖=1𝑚[𝑖] ∗ 𝑏 (𝑖−1) ∗ (−1) ∗ 𝑠𝑖𝑔𝑛(𝑚[𝑖] − 𝑡/2) for

signed encoding.

RLWE.PackEncode(a)→𝑚:
Let a ∈ Z𝑁 an input vector with 𝑁 elements in:

[0, 𝑡) for unsigned encoding,
[−𝑡/2, 𝑡/2) for signed encoding,

where 𝑡 must be a prime congruent to 1 mod 2𝑁 .
Output Polynomial𝑚 ∈ 𝑅𝑡 where𝑚 = InvNTT(a mod 𝑡).

RLWE.PackDecode(𝑚)→ a𝑟𝑒𝑠 :
Let𝑚 ∈ 𝑍𝑁𝑡 the coefficients of an encoded polynomial of degree

𝑁 − 1 in 𝑅𝑡 .
Compute a𝑑𝑒𝑐 = NTT(𝑚).
Output

a𝑟𝑒𝑠 = a𝑑𝑒𝑐 for unsigned encoding,
a𝑟𝑒𝑠 [𝑖] = (a𝑑𝑒𝑐 [𝑖] − 𝑡) if a𝑑𝑒𝑐 [𝑖] > 𝑡/2 else(a𝑑𝑒𝑐 [𝑖]) ∀𝑖 for
signed encoding.

encrypted vector elements are limited to 𝑡 when using packing, and
the digits of the encrypted value in base-𝑏 representation must fall
below 𝑡 when using base encoding. If using signed encoding, the
underlying values/digits are limited to the interval [−𝑡/2, 𝑡/2). For

deep arithmetic circuits, this overflow limitation causes 𝑡 to take
higher values, at a non-negligible performance cost. 1

3 OUR CONTRIBUTION
3.1 Towards biometric database protection
Firstly, let us sketch the main components of a biometric system
for access control, depicted in Figure 2:
• A Biometric Identity Provider (BIP), holding a database of ref-
erence biometric templates and executing the identification
operations upon reception of a live biometric template.
• A service provider acting as gatekeeper (Gate), in charge of
capturing live biometric data of an individual requesting
access, submitting it to the BIP and authorizing/denying him
access based on the identification result.
• Users/individuals, seeking to access the premise or service.

Enrollment

Gate

BIP

Reference DB
𝒚𝟏, … , 𝒚𝒖, …𝒚𝑼

Live biometric
template 𝒙

𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛

Reference
template 𝒚𝒖

Match Reject
Users

Figure 2: Sketch of a biometric system for access control

In biometric systems such as this, the most sensitive asset is
the database of stored biometric samples that act as references
for identification requests. These reference templates could lead to
successful impersonation attempts were they to fall in the wrong
hands, and their unintended disclosure can lead to severe privacy
breaches: knowing who can enter a biometric access system may
make these individuals subject of targeted attacks.

To protect the privacy of this database, a straightforward solu-
tion is to encrypt it. Enhancing this system with FHE allows the BIP
to hold the encrypted database and execute the identification oper-
ations over the encrypted domain. Yet, revealing the identification
result to the Gate poses several non-trivial concerns:

(1) The decryption algorithm makes use of the secret key, but
this secret key could also be used to decrypt the database.

(2) It is impractical to have one secret key per identity in the
database, as individuals might wish to gain access without a
personal device holding his key (e.g., smartphone ran out of
battery). Also, multi-key homomorphic encryption solutions
[32] do not scale well with a high number of keys.

1CKKS[12] solves this elegantly at the expense of introducing additional noise in the
computation result.

In a real-world instantiation of this biometric system, neither
Gate nor the BIP should hold the secret key, as either could team up
with the other to fully decrypt the database. Moreover, other issues
emerge concerning identification requests formulated by Gate and
the responses of BIP:
• The Gate could seek the creation of a False Acceptance (FA)
to determine what are the identities present in the database,
or search beforehand if a particular person is in there.
• The BIP could exploit the fact that his answers are encrypted
to leak the identities present in the base.

One solution to deal with these issues would be to combine
Homomorphic Encryption with Verifiable Computing. However, at
the present day this combination is far from being practical[6].

We propose a different approach: splitting the decryption among
the users seeking access. We thus hypothesize that a certain number
of users will accept to cede a bit of CPU in their smartphones for
this task. We could then envision individuals without a phone
benefitting from this distributed decryption service thanks to other
users. This way, the notion of distributing personal secret keys
based on the principle of consent is replaced by a cooperative
decryption carried out by those seeking to utilize the identification
service. To entice users to do so, we limit their interactions to be
only with the Gate, and not with other individuals. 2

Under this setting the Gate is forced to communicate with the
users to decrypt the results of the identification, producing a public
communication transcript that will render the service auditable and
consequently reduce the risks associated to his requests.

3.2 Colmade for group biometric identification
Motivated by the use-case of biometric access control for group
events, we display the Colmade protocol in Figure 3, to answer if
user Alice is allowed to access the museum. We distinguish three
types of actors in our scenario:
• BIP, holding the encrypted database of reference templates
belonging to users allowed to access.
• Gate, in charge of capturing the live biometric template of
the users requesting access, submitting it to the BIP (possibly
encrypted), receiving the encrypted result and aggregating
the decryption shares.
• P1 . . . P𝑖 . . . P𝐾 . Pool of users holding shares of the global se-
cret key and global masking polynomials. They collaborate
to perform a masked decryption of the encrypted identifica-
tion computation. Alice might or might not be among them.
We contemplate multiple pools of users, each with their own
sharing of the same global secret key. 𝐾 needs not be fixed
equally for all the pools of users.

This protocol requires a trusted setup to function. Nevertheless,
most of these setup operations could be instantiatedwith alternative
protocols that do not require full trust.

Armed with these distinctions, the system would carry out Al-
ice’s identification following this steps:

(1) Key Generation: The trusted setup generates a global se-
cret and public BFV keys and secret-shares the secret key

2Foreseeing some unwillingness on the user side to participate in this protocol in the
real world, we suggest to encourage participation using incentives (e.g., discounts,
benefits) to overcome their reluctance.

P1

Gate

Biometric Identity Provider (BIP)

Encrypted DB
𝑐𝑦1 , … , 𝑐𝑦𝑢 , … , 𝑐𝑦𝑈

Live biometric
template 𝒙

Encrypted
result

𝐵𝐹𝑉. 𝑒𝑣𝑎𝑙(𝒙, 𝒄𝑦)

2

3

5Party P𝑖

Reference
template 𝒚𝒖

𝐵𝐹𝑉. 𝐸𝑛𝑐𝑟(𝒚𝒖,𝑝𝑘)

Match (1)

Reject (0)

𝒄𝑠𝑡1 𝑖
= 𝒄𝑡1 + 𝒄𝑟1 𝑠𝑘 𝑖 + 𝒄𝑟0 𝑖

+ 𝑒𝑖

𝐶𝑜𝑙𝑀𝑎𝑠𝑘𝐷𝑒𝑐𝑟 𝑠𝑘 𝑖 , 𝒄𝑡1 , 𝒄𝑟1 , 𝒄𝑟0 𝑖
:

𝒎 =
𝑡

𝑞
𝒄𝑡0 + ∑ 𝒄𝑠𝑡1 𝑖 𝑞

𝑡

6

𝑠𝑘 1 ⋯ 𝑠𝑘 𝑖 ⋯ 𝑠𝑘 𝐾

𝐵𝐹𝑉. 𝑆𝑒𝑐𝐾𝑒𝑦𝐺𝑒𝑛()1
s𝑘

𝑝𝑘

𝐵𝐹𝑉. 𝑃𝑢𝑏𝐾𝑒𝑦𝐺𝑒𝑛(𝑠𝑘)

Trusted Setup

𝑟 𝐵𝐹𝑉. 𝐸𝑛𝑐𝑟(𝑟, 𝑝𝑘)𝐺𝑒𝑛𝑀𝑎𝑠𝑘()
𝒄𝑟0 1

⋯ 𝒄𝑟0 𝑖
⋯ 𝒄𝑟0 𝐾

𝒄𝑡

𝒄𝑡 = 𝒄𝑡0 , 𝒄𝑡1

4

𝒄𝑟 = 𝒄𝑟0 , 𝒄𝑟1

Pool 𝒫: {P1, … , P𝐾}

Figure 3: System diagram of a biometric access control using the Colmade protocol for single-bit masked results.

in 𝐾 shares. A distributed alternative would be to instead
employ DBFV.SecKeyGen and DBFV.ColPubKeyGen for key
generation, and then use the Enc2Share protocol from [36].

(2) Reference Database Encryption: During the enrollment
process, the users to be included in the access list would yield
biometric templates to act as references once they arrive at
the gate. These reference templates are encrypted with the
public key generated in the previous step, and are then sent
to the BIP for safe storing.

(3) Randomness generation Following the setup of Protocol
5, the masking polynomial is sampled, encrypted and se-
cret shared.The trusted entity then sends all the required
pieces to each of the parties enrolling. In practice this would
typically happen in a previous "offline" phase, after the en-
rollment, that could alternatively be based on correlated
randomness[29].

(4) Encrypted identification Once Alice approaches the gate,
a biometric template is extracted from her by the Gate and
sent to the BIP. This live template could be encrypted at the
cost of slower operations in the BIP, but guaranteeing privacy
of the live template in the BIP. Once received, the BIP would
perform the encrypted identification (e.g., vector-matrix mul-
tiplication followed by comparison to threshold[28] and ag-
gregation) with the encrypted DB, sending the encrypted
result back to the Gate.

(5) Collaborative Masked Decryption Upon receiving the
encrypted result, the Gate would request a decryption to a
pool of users by sending them all the second polynomial of
the encrypted result. Each of the parties answers back with
a share of that decrypted and masked polynomial.

(6) Result The Gate aggregates all the decrypted polynomial
shares with the first polynomial of the encrypted result,
decrypts and decodes the underlying message and answers,

based on the single LSB bit disclosed, if Alice is in the list
and can access the premises/service.

3.3 Masked Decryption
The goal of the Colmade protocol is to conceal all bits save a single
LSB of the underlying message during BFV decryption. To that end
we add a masking term as part of the decryption protocol. Portrayed
in Figure 4 as an additive term in the plaintext ring, this mask will
depend on the type of encoding being used:

• Base encoding places one base-𝑏 digit per polynomial coeffi-
cient. We distinguish two cases:
– For an even 𝑏, the LSB of the underlying integer value
depends only of the polynomial coefficient 𝑗 = 0, cor-
responding to the 𝑏0 term. The desired masking term 𝑟

would have to fully hide all coefficients except 𝑗 = 0, and
this coefficient ought to have all but the LSB bit masked.

– For odd 𝑏, the LSB depends on all the coefficients of the
polynomial, and thus no suitable additive mask can be
applied. We disregard this case from this point onward.

• Packed encoding places one vector element per polynomial
coefficient. The desired mask 𝑟 would have to completely
conceal all coefficients but one, and that coefficient should
have all its bits obscured except the LSB.

Protocol 4 MaskDecrypt(𝑠𝑘, c𝑡)→ m𝐿𝑆𝐵
Let 𝑠𝑘 = 𝑠 a secret key, c = (𝑐0, 𝑐1) a ciphertext.
Sample 𝑟 ← R [𝑅𝑡]
Compute𝑚𝐿𝑆𝐵𝑞 = [𝑐0 + 𝑠𝑐1 + Δ𝑟]𝑞
Output𝑚𝐿𝑆𝐵 =

[⌊
𝑚𝐿𝑆𝐵𝑞 ∗ 𝑡/𝑞

⌉]
𝑡

∈ 𝑅𝑡𝑚𝑏𝑎𝑠𝑒 = 1 0 3 2 0 ... 0 0()
𝐑𝐋𝐖𝐄.𝐁𝐚𝐬𝐞𝐄𝐧𝐜𝐨𝐝𝐞 177, 𝑏 = 4

∈ 𝑅𝑡𝑚𝑝𝑎𝑐𝑘 =

𝐑𝐋𝐖𝐄.𝐏𝐚𝐜𝐤𝐄𝐧𝐜𝐨𝐝𝐞 0, 2, 3, −1,−2,… , 0, 1

0 2 3 t-1t-2 … 0 1()

∈ 𝑅𝑡

∼ 𝒰ℤ𝑡

𝑟 =

∼ 2𝒰ℤ𝑡/2

𝑚𝑏𝑎𝑠𝑒 + 𝑟 = ∈ 𝑅𝑡()1 – – – – ... – –

𝑚𝑝𝑎𝑐𝑘 + 𝑟 = ∈ 𝑅𝑡0 – – – – ... – –()

...

Figure 4: Visualization of masking in the plaintext domain
for the arbitrary encodings of Fig. 1

Notice how the mask for packed encoding and the mask for even-
based encoding would look very similar. For our desired masking
polynomial 𝑟 , we draw𝑁−1 coefficients as 𝑟 [𝑗] ∼ U

(
Z[0,𝑡)

)
∀𝑗 ≠

0, and one single coefficient from 𝑟 [0] ∼ 2U
(
Z[0,𝑡/2)

)
to preserve

the LSB.3 We define this mask distribution as R [𝑅𝑡] .
If we introduce this mask 𝑟 in the right hand side of Equation 2,

we would achieve our desired functionality. To balance the equation,
we add Δ𝑟 in the other side.

𝑟 ← R [𝑅𝑡] 𝑚𝐿𝑆𝐵 = [𝑚 + (𝑟)]𝑡
𝐿𝑆𝐵 = (𝐷𝑒𝑐𝑜𝑑𝑒 (𝑚𝐿𝑆𝐵) [0]) mod 2

(3)[⌊
𝑡

𝑞

(
Δ(𝑚 + 𝑟) + 𝑒𝑐𝑡

)⌉]
𝑡

= [⌊(𝑚 + 𝑟) + 𝑎𝑡 + 𝑣⌉]𝑡 (4)

Since ∥Δ𝑟 ∥ < 𝑞, we can introduce this mask in Equation 1:

[𝑐0 + 𝑠𝑐1 + Δ𝑟]𝑞 = Δ𝑚 + 𝑒𝑐𝑡 + Δ𝑟 (5)
We remark that adding masking might cause𝑚[0] + 𝑟 [0] ≥ 𝑡 ,

in which case the modulo operation would kick off and flip the
LSB (recall that 𝑡 is prime and thus an odd number). The following
limitation is imposed for the coefficient 𝑗 = 0 containing the LSB4:

𝑚[0] + 𝑟 [0] < 𝑡 (6)

This limitation effectively imposes𝑚[0] ∈ {0, 1} to avoid the LSB
flip and preserve correctness. To overcome it, the (mod 𝑡) operation
could be approximated by (mod (𝑡 − 1)) with (𝑡 − 1) being an even
number, ensuring the LSB preservation after applying modular
reduction. Translated into the 𝑅𝑞 domain,mod 𝑞 reductions during
and after decryption would then be approximated by mod 𝑞′ with
𝑞′ = Δ ∗ (𝑡 − 1) = 𝑞 − Δ.

3.4 Collaborative Masked Decryption
Extending the masked decryption to a multi-party collaborative
setting requires merging Protocol 4 with DBFV.ColDecrypt. To
do so we require the sampling of 𝑟 ← R [𝑅𝑡] to be handed to
the different parties in the form of shares ⟨𝑟 ⟩𝑖 . In addition, we
3In the packed encoding we could chose to preserve the LSB of an arbitrarily chosen
coefficient 𝑗 . We set 𝑗 = 0 for convenience.

encrypt the mask shares. For convenience and performance, we
swap the order, first encrypting the global masking polynomial
c𝑟 = BFV.Encrypt(𝑟, 𝑝𝑘) and then splitting it into shares in the
encrypted domain by adding encoded secret shares of zero.

Thanks to the standard properties of arithmetic secret sharing
[49], you require the results of all the 𝐾 parties to reconstruct the
correct masking polynomial 𝑟 , and any sum of shares from less than
𝐾 parties

∑<𝐾
𝑖 ⟨𝑟 ⟩𝑖 is indistinguishable from a uniformly random

sampling 𝑟 ′ ←U(𝑅𝑞).
The full Colmade decryption is outlined in Protocol 5.

Protocol 5 ColMaskDecr(c, ⟨𝑠𝑘⟩1 , . . . ⟨𝑠𝑘⟩𝐾) →𝑚𝐿𝑆𝐵

Let ⟨𝑠𝑘⟩𝑖 the private share of a global secret key 𝑠 =
∑𝐾
𝑖 ⟨𝑠𝑘⟩𝑖 ;

c = (𝑐0, 𝑐1) a ciphertext; 𝑟 ← R [𝑅𝑡] a masking polynomial
encrypted with BFV.Encrypt(𝑟, 𝑝𝑘) → c𝑟 = (𝑐𝑟0 , 𝑐𝑟1) and
splitting 𝑐𝑟0 in 𝐾 shares

〈
𝑐𝑟0

〉
𝑖

Setup: P𝑖 holds 𝑠𝑖 ,
〈
𝑐𝑟0

〉
𝑖
and 𝑐𝑟1 .

P𝑖 : Sample 𝑒𝑖 ← X[𝑅𝑞]
P𝑖 : Compute ⟨𝑐1𝑠 ⟩𝑖 =

[
⟨𝑠𝑘⟩𝑖 (𝑐1 + 𝑐𝑟1) + 𝑒𝑖 +

〈
𝑐𝑟0

〉
𝑖

]
𝑞

Any: Output𝑚𝐿𝑆𝐵 =

[⌊
𝑡
𝑞

[
𝑐0 +

∑𝐾
𝑖 ⟨𝑐1𝑠 ⟩𝑖

]
𝑞

⌉]
𝑡

3.5 Replicated Masked Decryption
We can customize the Colmade protocol under a malicious setting
by sending/setting 𝐽 shares of the secret key ⟨𝑠𝑘⟩𝑖 and 𝐽 shares of
the first polynomial of the encrypted mask

〈
𝑐𝑟0

〉
𝑖
to each party P𝑖 ,

in a replicated sharing scheme. Protocol 6 details this modification.
In this replicated setting, each party would compute 𝐽 shares of

⟨𝑐1𝑠 ⟩𝑖 , whose individual decryptions should yield uniformly ran-
dom yet equal results for the same input shares of 𝑠𝑘 and 𝑐𝑟0 . By
comparing these auxiliary decryptions, the party in charge of aggre-
gating all the results and outputting𝑚 can detect up to 𝐽 − 1 parties
deviating from the protocol, thus allowing the aggregator to detect
these malicious adversaries and abort the decryption. However,
this replication technique lowers the number of parties required to
reconstruct the entire mask from 𝐾 to at least 𝐾 − 𝐽 , thus making
this technique suitable only for when a majority of parties is hon-
est. We study the relation between 𝐽 and the number of malicious
corruptions in the pool |AP | in section 4.4.

4 SECURITY ANALYSIS
The Colmade protocol seeks to guarantee the privacy of all bits but
a single LSB in a ciphertext. The underlying real-world motivation
in the biometrics domain was mentioned already: the most precious
resource in our system is the database of reference templates, since
they are often tightly linked to the person, and thus non revocable
like passwords or tokens. Hence, in scenarios where the reference
templates are used for multiple applications, its theft could lead
not only to a potential impersonation when accessing the desired
service/premise, but to a severe identity theft across applications.

To study the security of our protocol, we generalize that an ad-
versary corrupting the Gate also corrupts the BIP, which means that
this combined corruption would grant the adversary full access to
the encrypted database and can perform chosen ciphertext attacks

Protocol 6 ReplColMaskDecr(⟨𝑠𝑘⟩1 . . . ⟨𝑠𝑘⟩𝐾 , c, 𝐽) → m𝐿𝑆𝐵
Let 𝑠𝑖 = ⟨𝑠𝑘⟩𝑖 private shares of the global secret key 𝑠 =

∑
𝑠𝑖 ;

c = (𝑐0, 𝑐1) a ciphertext; 𝑟 ← R [𝑅𝑡] a masking polynomial
encrypted with BFV.Encrypt(𝑟, 𝑝𝑘) → c𝑟 = (𝑐𝑟0 , 𝑐𝑟1) and
secret-sharing 𝑐𝑟0 in 𝐾 shares

〈
𝑐𝑟0

〉
𝑖
;

with {𝑖 𝐽 } = {(𝑖 + 𝑗)%𝐾} for {0 · · · 𝑗 · · · 𝐽 − 1}
Setup: P𝑖 holds 𝐽 shares 𝑠 {𝑖 𝐽 } , 𝑐𝑟1 and 𝐽 shares

〈
𝑐𝑟0

〉
{𝑖 𝐽 } .

P𝑖 : Sample 𝐽 times 𝑒 {𝑙 } ← X[𝑅𝑞] .
P𝑖 : Compute ⟨𝑐1𝑠 ⟩ {𝑖 𝐽 } =

[
𝑠 {𝑖 𝐽 } (𝑐1 + 𝑐𝑟1) + 𝑒 {𝑖 𝐽 } +

〈
𝑐𝑟0

〉
{𝑖 𝐽 }

]
𝑞

Any: Check equality among all ⌊𝑡/𝑞 ⟨𝑐1𝑠 ⟩ {𝑖 𝐽 }⌉ ∀𝑖, 𝑗 .
Abort if non equal.

Output𝑚𝐿𝑆𝐵 =

[⌊
𝑡
𝑞

(
𝑐0 +

∑𝑘
𝑖 ⟨𝑐1𝑠 ⟩𝑖

)
𝑞

⌉]
𝑡

(CCA) using the pool of users as decryption oracle. We analyze
several threat models:

(1) Gate is semi-honest, following the protocol but tries to ex-
tract as much information as possible), and up to 𝐾 − 1
parties in the pool are semi-honest (at least one honest user
per pool).

(2) Gate is malicious, capable of deviating from the protocol
arbitrarily, and up to 𝐾 − 1 parties are semi-honest (at least
one honest user per pool).

(3) Gate is semi-honest, a minority of parties in the pool are
malicious (at least ⌈𝐾/2⌉ honest user per pool).

4.1 On Privacy of Colmade
4.1.1 Privacy in the semi-honest pool. We first provide a security
proof for the proposed Colmade protocol in the standalone pas-
sive adversary model for the pool of users, that we base on the
decision RLWE assumption[35]. We formulate our proof using the
ideal/real simulation paradigm[30]: We show that, for every possi-
ble adversarial subset A of all the computing parties in the pool
P = {P1, . . . , P𝐾 }, there exists a simulator program 𝑆 that can sim-
ulateA’s view in the protocol, when provided only withA’s input
and output. To achieve semantic security[24], we require A not
be able to distinguish the simulated view from the real one. Note
that the view of the adversary after the setup is the full transcript
(public transcript property). For a given value 𝑥 , we denote 𝑥 its
simulated equivalent. We consider computational indistinguisha-
bility between distributions, and denote it as 𝑥

𝑐≡ 𝑥 . We denote
viewColMaskDecr to the transcript of Protocol 5, consisting of all the
shares {⟨𝑐1𝑠 ⟩1 , . . . , ⟨𝑐1𝑠 ⟩𝑖 , . . . , ⟨𝑐1𝑠 ⟩𝐾 } of 𝑐1𝑠 in 𝑅𝑞 .

Theorem 1. (ColMaskDecr privacy in the semi-honest pool
model) For each possible set of corrupted parties A ⊂ P by a passive
adversary with |A| ≤ 𝐾 − 1, there exists a simulator 𝑆ColMaskDecr

such that:
𝑆ColMaskDecr 𝑐≡ viewColMaskDecr

Proof. First, Theorem 1 forces at least one arbitrarily chosen
party Pℎ to be honest. We denote H ≜ P\(A ∪ {Pℎ}) to the set
of all other honest parties, so that the tuple (A,H) represent any
partition of P\Pℎ . We consider the error term 𝑒𝑖 sampled as a part
of the protocols as private input to the protocol.

Simulator 1 𝑆ColMaskDecr

Input: The simulator is given {⟨𝑠𝑘⟩𝑖 ,
〈
𝑐𝑟0

〉
𝑖
, 𝑒𝑖 }∀𝑖 and 𝑐𝑟1 by the

trusted setup.
The simulator receives c𝑡1 from the Gate.

Output: for each party P𝑖 in the pool:

⟨𝑐1𝑠 ⟩𝑖 =



[
(𝑐𝑡1 + 𝑐𝑟1) ⟨𝑠𝑘⟩𝑖 + 𝑒 ′𝑖 +

〈
𝑐𝑟0

〉
𝑖

]
𝑞

if P𝑖 ∈ A
← U(𝑅𝑞) if P𝑖 ∈ H[
𝑐1𝑠 −

∑
P𝑖 ∈P\Pℎ

⟨𝑐1𝑠 ⟩𝑖

]
𝑞

if P𝑖 = Pℎ

We can now consider the distribution of the simulated and real
views. The decision-RLWE assumption suffices to prove it in the
absence of the masking term, as for an adversary that does not
know ⟨𝑠𝑘𝑖 ⟩ nor 𝑒 ′𝑖 , we get that:

(⟨𝑠𝑘𝑖 ⟩ 𝑐𝑡1 + 𝑒 ′𝑖 , 𝑐𝑡1)
𝑐≡ (𝑎 ← 𝑅𝑞, 𝑐𝑡1)

The addition of themasking terms only increases the randomness
of the first element in the tuple, thus the equation holds true. □

4.1.2 Minimum leakage of the output. When considering the threat
model #1 (all semi-honest), we resort to Theorem 1 to show that
the protocol itself does not reveal more than what the output does.
Now we seek to prove that the output reveals only one bit.

Theorem 2. (ColMaskDecr 1-bit leakage of output in the semi-
honest pool model) For each possible set of corrupted parties A ⊂ P
by a passive adversary with |A| ≤ 𝐾 − 1, the protocol reveals a
maximum of one bit from the encrypted message, the LSB of the first
coefficient in the underlying encoded polynomial.

Proof. Since the output𝑚𝐿𝑆𝐵 = [𝑚 + 𝑟]𝑡 is the result of adding
a mask 𝑟 to the underlying message 𝑚, and this mask contains
uniformly random values in Z[0,𝑡) for all 𝑗 ≠ 0, we get that:

𝑃 (𝑚[𝑗] = 𝑎 | 𝑚𝐿𝑆𝐵 [𝑗] = 𝑏) =
𝑃 (𝑚[𝑗] = 𝑎) · 𝑃 (𝑚𝐿𝑆𝐵 [𝑗] = 𝑏 |𝑚[𝑗] = 𝑎)

𝑃 (𝑟 [𝑗] = 𝑏) =

𝑃 (𝑚[𝑗] = 𝑎)

(7)

This is because 𝑚𝐿𝑆𝐵 [𝑗]
𝑐≡ 𝑟 [𝑗] ∼ U(Z[0,𝑡)), and thus an ad-

versary receiving 𝑚𝐿𝑆𝐵 [𝑗] obtains no information beyond what
he already knew about𝑚[𝑗], showing how all slots 𝑗 ≠ 0 of the
message are perfectly masked.

For 𝑗 = 0 we can proceed in a similar fashion to prove that
𝑃 (𝑚[0] mod 2 = 𝑎 | 𝑚𝐿𝑆𝐵 [0] mod 2 = 𝑎) = 1 with 𝑎 ∈ {0, 1} if
𝑚[0] ∈ {0, 1}, which requires the Gate & BIP to follow the protocol
as specified (honest or semi-honest) and comply with the limitation
from equation 6. At the same time, 𝑃 (𝑚[0]/2 = 𝑏 | 𝑚𝐿𝑆𝐵 [0]/2 =

𝑐) = 𝑃 (𝑚[0]/2 = 𝑏), showing that all but the LSB of𝑚𝐿𝑆𝐵 [0] are
perfectly masked.

In the event of𝑚[0] ∉ 0, 1, arising from a malicious Gate & BIP
submitting a chosen c𝑡 (threat model #2), we get that𝑚𝐿𝑆𝐵 yields
the correct LSB if (𝑏 + 𝑟 [0]) < 𝑡 with probability (𝑡 −𝑏)/𝑡 , and flips
with probability𝑏/𝑡 . Interestingly, all the other bits remain perfectly

masked, since 𝑃 (𝑚[0]/2 = 𝑏 | 𝑚𝐿𝑆𝐵 [0]/2 = 𝑐) = 𝑃 (𝑚[0]/2 = 𝑏) in
this case too. 5

Based on this, we can conclude that, with up to𝐾−1 semi-honest
parties in the pool, our protocol discloses only one bit if the protocol
is followed by the Gate & BIP and less than one bit otherwise. □

4.2 On Correctness of Colmade
To ensure that the message requested by the Gate is correctly de-
crypted in the presence of a minority of malicious users in the
pool (threat model #3), we employ the ReplColMaskDecr enhanced
protocol described in Section 3.5. We resort to the replication of
shares inside each pool to effectively overcome a small number of
malicious users by detecting misbehavior and aborting. Following
Protocol 6, a semi-honest Gate in charge of aggregating all the
masked shares can detect when two replicas are different in an
honest-majority pool (with some additional limitations studied in
Section 4.4), and abort the decryption, potentially requesting the
decryption again to a different pool.

Beyond this, the correctness of the biometric system depends on
Gate & BIP following the protocol by performing the valid oper-
ations for encrypted identification and submitting the encrypted
result to a pool for decryption.

4.3 On well known FHE attacks
Fully Homomorphic Encryption schemes are known to be secure
against Chosen Plaintext Attacks (CPA) as a direct consequence of
the indistinguishability property that is the base of their security
(e.g., the decision RLWE assumption for BFV and CKKS schemes).
However, many of these schemes fail catastrophically against Cho-
sen Ciphertext Attacks (CCA), and they are all insecure against
adaptive CCA (or CCA-2)[31].

Beyond this, an adversary with access to a decryption oracle can,
with one single well-chosen query, reveal the entire secret key in
the standard BFV scheme [40],being just as applicable to DBFV to
extract the global secret key. Since our solution provides a sort of
decryption oracle to the Gate, we analyze the impact of this attack
on our system.

The attack of [40] is rooted in a malicious adversary corrupting
the Gate and performing one decryption request to a decryption
oracle:

1. Craft a fake ciphertext c𝑡 = (𝑐𝑡0 , 𝑐𝑡1) = (0,Δ)6
2. Request decryption of c𝑡 to the oracle. Following equation 1,

he obtains in result 𝑝𝑠 = [0 + Δ ∗ 𝑠]𝑞 , where 𝑠 is the secret
key and 𝑒𝑐𝑡 = 0.

3. Locally downscale this plaintext using equation 2 to obtain
an estimation of key: 𝑠 = 𝑝𝑠/Δ.

In the case of Colmade, this attack is much less problematic.
Step 2 of the attack would consist of Gate requesting a pool P to
decrypt the result. Using equations 3 and 4, the result would be
𝑝𝑠 = [0 + Δ ∗ 𝑠 + Δ𝑟]𝑞 , which in step 3 translates into 𝑠 = 𝑝𝑠/Δ + 𝑟 .
The crucial difference is the mask addition. For all 𝑗 ∈ [1, 𝑁 − 1]
save the first coefficient 𝑗 = 0, this translates into 𝑠 [𝑗] +𝑟 [𝑗], where
𝑟 [𝑗] ∼ U(Z[0,𝑡)) acts as a perfect one-time pad over the underlying

5If using the modulo approximation hinted at the end of section 3.3, the LSB would be
retrieved correctly ∀𝑚 [0] ∈ Z[0,𝑡) , covering threat models #1 and #2.
6All the coefficients in polynomial 𝑐𝑡0 set to 0 and in polynomial 𝑐𝑡1 set to Δ.

plaintext space [0, 𝑡), completely hiding that secret key coefficient.
For 𝑗 = 0 this leaks one bit of 𝑠 [0] ∼ U({−1, 0, 1}), thus 𝑠 [0] would
be recoverable with two queries. Most importantly, the coefficient of
𝑠 being leaked is always 𝑗 = 0, as the other coefficients are perfectly
hidden and no rotations are applied as part of the decryption, which
would hypothetically help to extract other coefficients.

While CCA attacks are still feasible, our single-bit output cou-
pled with the auditability property makes these attacks7 much less
practical due to the number of malicious requests required.

4.4 On the choice of users, pools and replicas
In principle the choice of pool for each decryption request of the
Gate must be a random choice among all the pools available. We
propose the use of a Verifiable Delay Function [7] with a chosen ran-
dom beacon [8, 15] to guide the choice of pool for every decryption,
as a way to have an unbiased choice and facilitate auditability.

The number of users per pool 𝐾 is left open, knowing that in
practice bigger pools are harder to manage (e.g., bigger delay) and
more error prone, but also more theoretically secure, since per
Theorem 1 it in the real world it increases the chances of including
one honest user needed to preserve the privacy of the collaborative
decryption. The choice of users for each pool should ideally also be
random, and it is included in the trusted setup.

TheReplColMaskDecr protocol can used to address threat model
#3. If so, the number of replicas per user 𝐽 should be set such that
the adversary cannot reconstruct the secret key. This leads to:

|AP | ∗ 𝐽 < 𝐾 (8)

To support a maximum number of malicious users in the pool |AP |,
𝐽 should thus be set small. However, to ensure that each replica is
at least in the hands of one honest user we require

𝐽 ≥ |AP | + 1 (9)

Hence, to ensure security in an honest majority, we limit the maxi-
mum number of malicious corruptions to:

|AP | < ⌊
√
𝐾⌋ (10)

4.5 On Auditability of Colmade
An external auditor could enroll as a user in the pool to take part in
the Colmade decryption protocol, and since the protocol requires
communication with all parties, an eavesdropping auditor with
access to the public transcript of these communications would
know about all decryption requests.

The biometric solution based on Colmade can thus be audited
by an external entity with the following items:
• The public transcript of all the communications between
Gate and users testify of the number of decryption requests
performed. Following 2, the auditor could infer an upper
bound on the number of bits extracted from the database
if all the decryption requests contained maliciously crafted
ciphertexts.
• Since our solution does contain a trusted setup, an auditor
suspecting malfeasance could request access to the secret
key material to open some decryption requests.

7An overview of FHE key recovery attacks can be found in [19].

• For the choice of the pools, a Verifiable Delay Function with
some well chosen random beacon could serve as an unbiased
yet auditable way for the Gate to select what pool to use for
each decryption request.

5 IMPLEMENTATION
We implement the Colmade protocol on top of the Lattigo [20]
homomorphic encryption library, including examples of usage and
correctness checks. Our Golang implementation is open-sourced in
https://github.com/ibarrond/colmade.

Simply encoding each vector element into an upscaled coeffi-
cient in 𝑅𝑞 would lead to slower ring operations when 𝑞 < 264, as
it requires arbitrary-precision arithmetic that is much more com-
putationally expensive than standard integer arithmetic in a 64-bit
machine. In practice[20], vectors are encoded to polynomials using
the Chinese Remainder Theorem (CRT) into a Residue Numeral
System (RNS) form [3] by decomposing 𝑞 = 𝑞1 · 𝑞2 · . . . · 𝑞𝑙 into
coprime factors smaller yet close to machine word size of 264.

While all our protocols apply in the RNS variant of BFV, it is
worth noting that the modulo approximation of Section 3.3 could be
applied to a single factor, 𝑞′ = 𝑞′1 ·𝑞2 · . . . ·𝑞𝑙 with 𝑞

′
1 = (𝑞1−𝑞1/Δ).

6 PREVIOUS WORK
Preceding work employing masking for RLWE instances has been
focused on protecting the secret key during decryption opera-
tions, to upgrade the Chosen-Plaintext-Attack (CPA) security guar-
antees of RLWE cryptosystems into Chosen-Ciphertext-Attack
(CCA1/CCA2). In this line, additively homomorphic masking was
proposed to output a a secret-shared result that will later be recon-
structed during decoding [43], and an follow-up work proposed
a decryption outputting boolean shares suitable for derivation of
a symmetric key to be used during decoding [44]. Further down
the line, [37] proposes an adaptation of RLWE schemes to render
them CCA2-Secure based on a post-quantum variant of the Fujisaki-
Okamoto (FO) transform combined with masked binomial sampling
to secure a re-encryption process.

The idea of masking in HE has also been studied previously in
the form of slot masking, a method to collapse multiple unique-
repeated-value ciphertexts into a single ciphertext for encrypted
vector-matrix multiplication: multiply each ciphertext with a mask
containing a 1 set in a chosen slot and 0 in all the other slots. We
saw this technique applied for HE-based applications in the context
of phishing web page classification[14], and in HE-Friendly privacy-
preserving mobile neural network architectures[33].

In other line of works, FHE has been widely studied as a tech-
nique for privacy-preserving biometrics, from the HE-based biomet-
ric access control system of [34], to the packing technique of [56],
or [52] showing a clever encoding using packing to perform a bio-
metric matching with one single homomorphic multiplication. [4]
used Homomorphic Encryption for fingerprint biometrics, whereas
[18] employed both CKKS and BFV for face identification, and [25]
proposed the protection of a multi-biometric system.

While there are many previous works studying secure biometrics
with MPC[21] and FHE[47], to the best of our knowledge this is the
first work to contemplate the intersection of multiparty homomor-
phic encryption [17, 36] with biometrics. Lastly, while the vanilla

DBFV decryption of [36] would already provide auditability and
data privacy against a semi-honest adversary, our work extends it
to malicious corruptions and yields minimum input leakage thanks
to the collaborative masking embedded in the decryption protocol.

7 CONCLUSIONS
Colmade proposes a novel collaborative masking decryption proto-
col for the multiparty BFV scheme guaranteeing data privacy, mini-
mal output leakage (1 bit), and auditability. Our protocol makes use
of predefined pools of users to perform a decryption in a distributed
setting while adding an additively shared encrypted masking term.
We showcase its applicability as part of a biometric access control
solution where groups of users get together for orderly individual
identification. We prove this protocol secure against 𝐾 − 1 corrup-
tions of a semi-honest adversary, and show an enhanced version
using replicas to be resilient against ⌊

√
𝐾⌋ active corruptions of

a malicious adversary. We analyze practical security aspects of
the biometric solution, and open-source implementations of these
protocols on top of the Lattigo library.

REFERENCES
[1] Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, and Kazuma Ohara.

2016. High-throughput semi-honest secure three-party computation with an
honest majority. In Proceedings of the 2016 ACM SIGSAC CCS Conference. 805–817.

[2] Multiple authors. 2018. Homomorphic Encryption Security Standard. Technical
Report. HomomorphicEncryption.org, Toronto, Canada.

[3] Jean-Claude Bajard, Julien Eynard, M Anwar Hasan, and Vincent Zucca. 2016.
A full RNS variant of FV like somewhat homomorphic encryption schemes. In
International Conference on Selected Areas in Cryptography. Springer, 423–442.

[4] Mauro Barni, Tiziano Bianchi, Dario Catalano, Mario Di Raimondo, Rug-
gero Donida Labati, Pierluigi Failla, Dario Fiore, Riccardo Lazzeretti, Vincenzo
Piuri, Alessandro Piva, et al. 2010. A privacy-compliant fingerprint recogni-
tion system based on homomorphic encryption and fingercode templates. In
2010 Fourth IEEE International Conference on Biometrics: Theory, Applications and
Systems (BTAS). IEEE, 1–7.

[5] Carsten Baum, Ivan Damgård, and Claudio Orlandi. 2014. Publicly auditable
secure multi-party computation. In International Conference on Security and
Cryptography for Networks. Springer, 175–196.

[6] Alexandre Bois, Ignacio Cascudo, Dario Fiore, and Dongwoo Kim. 2021. Flexible
and efficient verifiable computation on encrypted data. In IACR International
Conference on Public-Key Cryptography. Springer, 528–558.

[7] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. 2018. Verifiable
delay functions. In Annual international cryptology conference. Springer, 757–788.

[8] Joseph Bonneau, Jeremy Clark, and Steven Goldfeder. 2015. On bitcoin as a public
randomness source. Cryptology ePrint Archive (2015).

[9] Elette Boyle, Niv Gilboa, and Yuval Ishai. 2015. Function secret sharing. In
EUROCRYPT. Springer, 337–367.

[10] Zvika Brakerski. 2012. Fully Homomorphic Encryption without Modulus Switch-
ing from Classical GapSVP. In Advances in Cryptology – CRYPTO 2012. Springer
Berlin Heidelberg, 868–886. https://doi.org/10.1007/978-3-642-32009-5_50

[11] Centers for Medicare & Medicaid. 1996. The Health Insurance Portability and
Accountability Act of 1996 (HIPAA). Online at http://www.cms.hhs.gov/hipaa/.

[12] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. 2017. Homo-
morphic Encryption for Arithmetic of Approximate Numbers. In Advances
in Cryptology – ASIACRYPT 2017. Springer International Publishing, 409–437.
https://doi.org/10.1007/978-3-319-70694-8_15

[13] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. 2020.
TFHE: Fast Fully Homomorphic Encryption Over the Torus. Journal of Cryptology.
The Journal of the International Association for Cryptologic Research 33, 1 (1 Jan.
2020), 34–91. https://doi.org/10.1007/s00145-019-09319-x

[14] Edward J Chou, Arun Gururajan, Kim Laine, Nitin Kumar Goel, Anna Bertiger,
and Jack W Stokes. 2020. Privacy-preserving phishing web page classification via
fully homomorphic encryption. In ICASSP 2020-2020 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2792–2796.

[15] Jeremy Clark and Urs Hengartner. 2010. On the use of financial data as a random
beacon. In 2010 Electronic Voting Technology Workshop/Workshop on Trustworthy
Elections (EVT/WOTE 10).

[16] European Commission. [n.d.]. 2018 reform of EU data protection rules. https:
//gdpr-info.eu/

https://github.com/ibarrond/colmade
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/s00145-019-09319-x
https://gdpr-info.eu/
https://gdpr-info.eu/

[17] Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah Zakarias. 2012. Multiparty
computation from somewhat homomorphic encryption. In Annual Cryptology
Conference. Springer, 643–662.

[18] Pawel Drozdowski, Nicolas Buchmann, Christian Rathgeb, Marian Margraf, and
Christoph Busch. 2019. On the application of homomorphic encryption to face
identification. In 2019 International Conference of the Biometrics Special Interest
Group (BIOSIG). IEEE, 1–5.

[19] Keita Emura. 2021. On the Security of Keyed-Homomorphic PKE: Preventing
Key Recovery Attacks and Ciphertext Validity Attacks. IEICE Transactions on
Fundamentals of Electronics, Communications and Computer Sciences 104, 1 (2021),
310–314.

[20] EPFL-LDS. 2022. Lattigo v2.4.0. Online: https://github.com/ldsec/lattigo.
[21] Diana-Elena Fălămaş, KingaMarton, and Alin Suciu. 2021. Assessment of Two Pri-

vacy Preserving Authentication Methods Using Secure Multiparty Computation
Based on Secret Sharing. Symmetry 13, 5 (2021), 894.

[22] J Fan and F Vercauteren. 2012. Somewhat Practical Fully Homomorphic Encryp-
tion. IACR Cryptology ePrint Archive (2012). https://eprint.iacr.org/2012/144

[23] Craig Gentry et al. 2009. A fully homomorphic encryption scheme. Vol. 20. Stan-
ford.

[24] Oded Goldreich. 2009. Foundations of cryptography: volume 2, basic applications.
Cambridge university press.

[25] Marta Gomez-Barrero, Emanuele Maiorana, Javier Galbally, Patrizio Campisi, and
Julian Fierrez. 2017. Multi-biometric template protection based on homomorphic
encryption. Pattern Recognition 67 (2017), 149–163.

[26] Shai Halevi and Victor Shoup. 2020. Design and implementation of HElib: a
homomorphic encryption library. Cryptology ePrint Archive, Report 2020/1481.
https://eprint.iacr.org/2020/1481

[27] Alberto Ibarrondo, Hervé Chabanne, and Melek Önen. 2021. Practical Privacy-
Preserving Face Identification based on Function-Hiding Functional Encryption.
In International Conference on Cryptology and Network Security. Springer, 63–71.

[28] Ilia Iliashenko and Vincent Zucca. 2021. Faster homomorphic comparison opera-
tions for BGV and BFV. Proceedings on Privacy Enhancing Technologies 2021, 3
(2021), 246–264.

[29] Yuval Ishai, Eyal Kushilevitz, Sigurd Meldgaard, Claudio Orlandi, and Anat
Paskin-Cherniavsky. 2013. On the power of correlated randomness in secure
computation. In Theory of Cryptography Conference. Springer, 600–620.

[30] Yehuda Lindell. 2017. How to simulate it–a tutorial on the simulation proof
technique. Tutorials on the Foundations of Cryptography (2017), 277–346.

[31] Jake Loftus, Alexander May, Nigel P Smart, and Frederik Vercauteren. 2011. On
CCA-secure somewhat homomorphic encryption. In International Workshop on
Selected Areas in Cryptography. Springer, 55–72.

[32] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. 2012. On-the-fly
multiparty computation on the cloud via multikey fully homomorphic encryption.
In Proceedings of the forty-fourth annual ACM symposium on Theory of computing.
1219–1234.

[33] Qian Lou and Lei Jiang. 2021. HEMET: A Homomorphic-Encryption-Friendly
Privacy-Preserving Mobile Neural Network Architecture. In International Con-
ference on Machine Learning. PMLR, 7102–7110.

[34] Ying Luo, S Cheung Sen-ching, and Shuiming Ye. 2009. Anonymous biometric
access control based on homomorphic encryption. In 2009 IEEE International
Conference on Multimedia and Expo. IEEE, 1046–1049.

[35] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. 2010. On ideal lattices and
learning with errors over rings. In Annual international conference on the theory
and applications of cryptographic techniques. Springer, 1–23.

[36] Christian Mouchet, Juan Troncoso-Pastoriza, Jean-Philippe Bossuat, and Jean-
Pierre Hubaux. 2020. Multiparty homomorphic encryption from ring-learning-
with-errors. Cryptology ePrint Archive (2020).

[37] Tobias Oder, Tobias Schneider, Thomas Pöppelmann, and Tim Güneysu. 2016.
Practical CCA2-secure and masked ring-LWE implementation. Cryptology ePrint
Archive (2016).

[38] Pascal Paillier. 1999. Public-Key Cryptosystems Based on Composite Degree
Residuosity Classes. InAdvances in Cryptology — EUROCRYPT ’99. Springer Berlin
Heidelberg, 223–238. https://doi.org/10.1007/3-540-48910-X_16

[39] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay
Celik, and Ananthram Swami. 2017. Practical black-box attacks against machine
learning. In Proceedings of the 2017 ACM on Asia conference on computer and
communications security. 506–519.

[40] Zhiniang Peng. 2019. Danger of using fully homomorphic encryption: A look at
microsoft SEAL. arXiv preprint arXiv:1906.07127 (2019).

[41] Yuriy Polyakov, Kurt Rohloff, and Gerard W Ryan. 2017. PALISADE lattice
cryptography library user manual. Technical Report. NJIT. https://git.njit.edu/
palisade/PALISADE/wikis/resources/palisade_manual.pdf

[42] Oded Regev. 2005. On Lattices, Learning with Errors, Random Linear Codes, and
Cryptography. In In STOC. ACM Press, 84–93.

[43] Oscar Reparaz, Ruan de Clercq, Sujoy Sinha Roy, Frederik Vercauteren, and
Ingrid Verbauwhede. 2016. Additively homomorphic ring-LWE masking. In
Post-Quantum Cryptography. Springer, 233–244.

[44] Oscar Reparaz, Sujoy Sinha Roy, Ruan De Clercq, Frederik Vercauteren, and Ingrid
Verbauwhede. 2016. Masking ring-LWE. Journal of Cryptographic Engineering 6,
2 (2016), 139–153.

[45] Ronald L Rivest, Len Adleman, and Michael L Dertouzos. 1978. On Data
Banks and Privacy Homomorphisms. Foundations of secure computation 4, 11
(1978), 169–180. https://people.csail.mit.edu/rivest/RivestAdlemanDertouzos-
OnDataBanksAndPrivacyHomomorphisms.pdf

[46] R L Rivest, A Shamir, and L Adleman. 1978. A method for obtaining digital
signatures and public-key cryptosystems. Commun. ACM 21, 2 (1 Feb. 1978),
120–126. https://doi.org/10.1145/359340.359342

[47] Zhang Rui and Zheng Yan. 2018. A survey on biometric authentication: Toward
secure and privacy-preserving identification. IEEE access 7 (2018), 5994–6009.

[48] SEAL 2020. Microsoft SEAL (release 3.6). https://github.com/Microsoft/SEAL.
Microsoft Research, Redmond, WA.

[49] Adi Shamir. 1979. How to share a secret. Comm. of the ACM 22, 11 (1979),
612–613.

[50] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. 2017. Mem-
bership inference attacks against machine learning models. In 2017 IEEE sympo-
sium on security and privacy (SP). IEEE, 3–18.

[51] Nigel P Smart and Frederik Vercauteren. 2014. Fully homomorphic SIMD opera-
tions. Designs, codes and cryptography 71, 1 (2014), 57–81.

[52] Hiroto Tamiya, Toshiyuki Isshiki, Kengo Mori, Satoshi Obana, and Tetsushi Ohki.
2021. Improved Post-quantum-secure Face Template Protection System Based
on Packed Homomorphic Encryption. In 2021 International Conference of the
Biometrics Special Interest Group (BIOSIG). IEEE, 1–5.

[53] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart.
2016. Stealing machine learning models via prediction apis. In 25th {USENIX}
Security Symposium ({USENIX} Security 16). 601–618.

[54] Paulo Vitorino, Sandra Avila, Mauricio Perez, and Anderson Rocha. 2018. Lever-
aging deep neural networks to fight child pornography in the age of social media.
Journal of Visual Communication and Image Representation 50 (2018), 303–313.

[55] Andrew Chi-Chih Yao. 1986. How to generate and exchange secrets. In 27th
Annual Symposium on Foundations of Computer Science (sfcs 1986). IEEE, 162–167.

[56] Masaya Yasuda, Takeshi Shimoyama, Jun Kogure, Kazuhiro Yokoyama, and
Takeshi Koshiba. 2013. Packed homomorphic encryption based on ideal lat-
tices and its application to biometrics. In International Conference on Availability,
Reliability, and Security. Springer, 55–74.

https://github.com/ldsec/lattigo
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2020/1481
https://doi.org/10.1007/3-540-48910-X_16
https://git.njit.edu/palisade/PALISADE/wikis/resources/palisade_manual.pdf
https://git.njit.edu/palisade/PALISADE/wikis/resources/palisade_manual.pdf
https://people.csail.mit.edu/rivest/RivestAdlemanDertouzos-OnDataBanksAndPrivacyHomomorphisms.pdf
https://people.csail.mit.edu/rivest/RivestAdlemanDertouzos-OnDataBanksAndPrivacyHomomorphisms.pdf
https://doi.org/10.1145/359340.359342
https://github.com/Microsoft/SEAL

	Abstract
	1 Introduction
	2 Preliminaries
	2.0 Notation
	2.1 Homomorphic Encryption
	2.2 BFV scheme
	2.3 Multiparty BFV Scheme
	2.4 Encoding, Packing and modular operations

	3 Our Contribution
	3.1 Towards biometric database protection
	3.2 Colmade for group biometric identification
	3.3 Masked Decryption
	3.4 Collaborative Masked Decryption
	3.5 Replicated Masked Decryption

	4 Security Analysis
	4.1 On Privacy of Colmade
	4.2 On Correctness of Colmade
	4.3 On well known FHE attacks
	4.4 On the choice of users, pools and replicas
	4.5 On Auditability of Colmade

	5 Implementation
	6 Previous Work
	7 Conclusions
	References

