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Abstract
The first spoofing-aware speaker verification (SASV) challenge
aims to integrate research efforts in speaker verification and
anti-spoofing. We extend the speaker verification scenario by
introducing spoofed trials to the usual set of target and impostor
trials. In contrast to the established ASVspoof challenge where
the focus is upon separate, independently optimised spoofing
detection and speaker verification sub-systems, SASV targets
the development of integrated and jointly optimised solutions.
Pre-trained spoofing detection and speaker verification models
are provided as open source and are used in two baseline SASV
solutions. Both models and baselines are freely available to par-
ticipants and can be used to develop back-end fusion approaches
or end-to-end solutions. Using the provided common evalua-
tion protocol, 23 teams submitted SASV solutions. When as-
sessed with target, bona fide non-target and spoofed non-target
trials, the top-performing system reduces the equal error rate
of a conventional speaker verification system from 23.83% to
0.13%. SASV challenge results are a testament to the reliability
of today’s state-of-the-art approaches to spoofing detection and
speaker verification.
Index Terms: spoofing-aware speaker verification, audio
spoofing detection, anti-spoofing, speaker verification

1. Introduction
Automatic speaker verification (ASV) systems determine
whether or not an input utterance contains speech uttered by
a given, known speaker. As one of the most efficient, conve-
nient, natural and non-intrusive biometric characteristics, ASV
has found widespread application, most notably, in telephony-
based scenarios. Reliability is crucial and must be maintained
not only in the face of target and impostor trials or utterances,
but also so-called spoofed utterances, namely manipulated, syn-
thesised or specially crafted utterances designed to deceive or
manipulate the ASV system.

The resistance of ASV systems to spoofing attacks has
been studied only relatively recently and within the context
of the ASVspoof initiative and associated challenge series [1].
ASVspoof tackles the threat of spoofing attacks using counter-
measures (CMs), separate detection sub-systems in the form of
binary classifiers designed to distinguish between bona fide and
spoofed inputs. While there are other approaches [2, 3], CMs
are usually combined with the ASV system in the form of a
gate, the role of which is to detect and reject spoofed utterances
such that they are never treated by the ASV sub-system.

∗These authors contributed equally to this work.

While the combination of CM and ASV sub-systems have
the potential to improve security through increased robustness
to spoofing attacks (rejection of spoofed trials), there is also
the potential for degraded usability (rejection of bona fide tar-
get trials). An integrated approach to assessment is hence desir-
able and should gauge the impact of spoofing and CMs upon the
ASV system. Such a strategy implies that neither CMs nor ASV
systems should be assessed independently from each other. Ul-
timately, there is but a single goal – reliable ASV.

The minimum tandem detection cost function (min t-
DCF) [4] metric has been developed with this vision and is
one approach to the assessment of integrated CM and ASV
sub-systems. Given the potential dependence between CM and
ASV sub-systems, and given the integrated approach to evalu-
ation, it seems logical that the sub-systems themselves should
also be jointly developed and optimised. This is not the case
with ASVspoof, for which CMs are developed by challenge
participants, while the ASV system is designed by the organ-
isers. Herein lies the original goal of the new Spoofing-Aware
Speaker Verification (SASV) Challenge.1

SASV aims to promote the study of jointly optimised or
fused CM+ASV solutions in addition to single, integrated so-
lutions [5–13]. The former is a more flexible and incremen-
tal approach to SASV. Fusion can be applied using current CM
and ASV sub-systems and can hence exploit future advances in
both. With the addition of a new fusion model, however, com-
plexity is increased, even if perhaps only modestly. The fusion
of two separate sub-systems is also somewhat at odds from the
spirit of solutions to the single task of reliable ASV.

Single, integrated solutions, envisaged on a longer-term
horizon, represent more of step change and a more substantive
SASV solution; they demand the design of entirely new solu-
tions to the single problem of reliable ASV. The development of
single, integrated solutions is expected to be more challenging;
it calls for the learning of a new latent space for the represen-
tation of both speaker identity and artefacts related to utterance
authenticity (spoofing). No matter what the solution strategy,
the primary objective is progress in reliable ASV, where reli-
ability implies resistance to both spoofed as well as bona fide
non-target inputs.

In building upon long-established best practice in addi-
tion to the momentum generated through ASVspoof, the new
SASV Challenge is built upon a common evaluation protocol
and benchmarking framework, metrics, open source baseline
solutions and use of publicly available ASVspoof data, specif-
ically the 2019 Logical Access (LA) database [14]. The two
different solution strategies are described in Section 2. SASV

1https://sasv-challenge.github.io
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datasets and new metrics are introduced in Sections 3. Baseline
sub-systems and solutions are described in Section 4. SASV
Challenge results and solution strategies are presented in Sec-
tions 5 and 6. Conclusions are presented in Section 7.

2. Related Works
In this section, we describe prior, related work in two ap-
proaches to SASV: (i) back-end fusion; (ii) single, integrated
models [15–22]. Among the first category are decision-
level, score-level, and embedding-level approaches to back-
end fusion. Decision-level fusion includes various cascade
approaches. Approaches to score-level fusion can be either
parameter-free (e.g., score-sum ensemble) or parameter-driven
(e.g., Gaussian mixture model) where both utilise separate
scores from ASV and CM sub-systems [18]. Embedding-level
fusion can also be achieved using a model operating upon
embeddings that lie in different latent spaces [21–23]. Prior
work includes Gomez-Alanis et al. [22] and Shim et al. [21]
which both propose deep neural network (DNN)-based models
to jointly optimise ASV and CM embeddings and hence pro-
duce single SASV scores and decisions. Kanervisto et al. [23]
reports a tandem solution to jointly optimise ASV and CM sys-
tems using reinforcement learning.

Single, integrated models have also been proposed. These
models classify utterances into target and non-target classes
where the latter comprises both traditional bona fide as well as
spoofed non-target trials [3, 19, 20, 24]. Sizov et al. [3] propose
a two-stage PLDA approach to the joint optimisation of speaker
and synthesis (spoofing) channel variations in an i-vector space.
First, a PLDA model is trained using only embeddings extracted
from bona fide speech. Then, a synthesis (spoofing) chan-
nel subspace is trained using only embeddings extracted from
spoofed speech. Zhao et al. [24] propose an integrated spoofing-
robust automatic speaker verification (SR-ASV) system. It uses
a multi-task learning framework with max feature map activa-
tion [25] and residual convolutional blocks to extract discrimi-
native embeddings and scores from task-specific, CM and ASV
layers. None of the work described above was performed using
common databases and protocols.

3. Databases, protocols and metrics
Described in this section are the two publicly available
databases used for the SASV challenge. The VoxCeleb2 [26]
database is used for the training of ASV sub-systems (see Sec-
tion 4.1). The ASVspoof 2019 LA database [14] is used for the
training of CM sub-systems (see Section 4.2).

3.1. VoxCeleb2

The VoxCeleb2 database2 was collected by crawling online
videos of celebrity interviews. The database is extracted from
150,480 unique videos with an average individual utterance
length of 7.8 seconds. The development partition of the Vox-
Celeb2 database is used for the training of ASV sub-systems. It
contains over 2,000 hours of data corresponding to 5,994 speak-
ers (61% male). The absence of spoofed utterances necessitates
use of the VoxCeleb2 database in conjunction with additional
databases containing spoofed utterances.

2https://www.robots.ox.ac.uk/˜vgg/data/
voxceleb/vox2.html

Table 1: Trial types used for estimation of each EER. “+” in-
dicates the positive class and “-” indicates the negative class.
Each trial involves enrolment utterance(s) and a test utterance.
The enrolment utterance(s) is bona fide (i.e. genuine) whereas
test utterance belongs to either of the three types.

Target Bona fide Spoofed
non-target non-target

SV-EER + -
SPF-EER + -
SASV-EER + - -

3.2. ASVspoof 2019

The ASVspoof 2019 LA database [14] is generated from the
VCTK3 source database [27], which includes speech data cap-
tured from 107 speakers (46 male, 61 female). It consists of
disjoint train, development, and evaluation partitions. Each par-
tition contains both bona fide and spoofed utterances. The lat-
ter are generated using 19 state-of-the-art VC, TTS and hybrid
TTS-VC attack algorithms (6 for the train and development par-
titions, 13 for the evaluation partition). Containing 25,380 ut-
terances corresponding to 20 different speakers and both bona
fide and spoofed utterances, the ASVspoof database can be used
for the training of CM sub-systems but can also be used in con-
junction with the VoxCeleb2 database for SASV research.

3.3. SASV protocols

While the SASV protocols4 exploit ASVspoof 2019 LA data,
they are different to those used by participants of the ASVspoof
challenge; they are not CM protocols and are, instead, ASV pro-
tocols or, more specifically, SASV protocols. The latter involve
three types of trial: (i) target, bona fide trials uttered by the
same speaker as enrolment utterance(s); (ii) bona fide non-target
trials uttered by a different speaker as enrolment utterance(s);
(iii) spoofed non-target trials containing speech which is either
synthesised or converted in order to resemble the voice of the
same speaker as enrolment utterance(s). Disjoint protocols are
provided to challenge participants to support their development
and evaluation of SASV solutions.

3.4. Metrics

SASV performance is assessed using the classical EER (SASV-
EER) as the primary metric. In keeping with [17, 18, 21], the
task hence remains one of binary classification: target vs non-
target. We define non-target as the set of bona fide non-target
(impostor) trials and spoofed non-target trials. Without ade-
quate countermeasures, both can cause increases in the false ac-
ceptance rate. As depicted in Table 1, two additional EER esti-
mates serve as secondary metrics. The speaker verification EER
(SV-EER) involves combinations of target trials and bona fide
non-target trials whereas the spoofing EER (SPF-EER) involves
combinations of target trials and spoofed non-target trials. The
SV-EER and SPF-EER are estimated using different subsets of
the full protocol used in estimating the SASV-EER. As such,
they reflect the reliability of the model under different, extreme
conditions in which there are either no spoofed non-target trials
or no bona fide non-target trials.

3http://dx.doi.org/10.7488/ds/1994
4https://github.com/sasv-challenge/SASVC2022_

Baseline/tree/main/protocols
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Figure 1: Illustration of the two baseline solutions of the SASV challenge. Both solutions utilise a pre-trained and fixed DNN-based
ASV and CM sub-systems. (a): Baseline1 is a score-sum fusion where the cosine similarity score of ASV and CM output score are
summed. (b): Baseline2 is a DNN-based fusion which involves speaker and spoofing embeddings.

4. SASV baseline solutions
There are two baseline SASV systems. Both comprise stan-
dalone CM and ASV sub-systems.

4.1. ASV and CM sub-systems

ECAPA-TDNN is an efficient, robust state-of-the-art speaker
embedding extractor [28] consisting of a Res2net backbone
architecture [29] with squeeze-excitation (SE) modules [30],
a channel and context dependent statistics pooling layer and
multi-layer feature aggregation to aggregate frame-level em-
beddings into utterance-level embeddings. Inputs are 80-
dimensional mel-filterbank features. After aggregating frame-
level representations, ASV embeddings are extracted using an
affine transform with a fully-connected (FC) layer. Data aug-
mentation techniques are applied using the room impulse re-
sponse database [31] and additive noise recordings from the
MUSAN database [32]. The network is trained using the recipe
in [33] and a reproducible open source implementation.5 Fur-
ther details are available in [28].

AASIST [34] is an end-to-end state-of-the-art spoofing
countermeasure system. It is based upon a RawNet2-based en-
coder [35, 36] and a spectro-temporal graph attention network
(RawGAT-ST) [37], novel heterogeneous graph attention lay-
ers and max graph operations to integrate temporal and spectral
representations.The output is generated using a readout opera-
tion and a hidden FC layer with two neurons. CM embeddings
of 160 dimensions are extracted prior to the FC output layer.
AASIST is also available as open source.6 Further details are
available in [34].

4.2. Baselines

Open source baselines include: i) B1: Score-sum fusion;
and ii) B2: DNN back-end fusion.7 Both utilise pre-trained
(ECAPA-TDNN5 and AASIST6) ASV and CM models. As il-
lustrated in Figure 1-(a), baseline B1 is a score-level back-end
fusion method that combines ASV and CM sub-system out-
puts through score addition. Since it requires neither additional
training nor fine-tuning, back-end processing is parameter-free.
ASV scores are the cosine similarity between enrolment and test

5https://github.com/TaoRuijie/ECAPATDNN
6https://github.com/clovaai/aasist
7https://github.com/sasv-challenge/SASVC2022_

Baseline

Table 2: SASV 2022 Challenge results in evaluation SASV EER
(%). B1 and B2 correspond to the challenge baselines.

# Team ID EER # Team ID EER
1 IDVoice 0.13 14 VTCC 1.86
2 DKU OPPO 0.21 15 DeepASV 2.48
3 Hyu 0.28 16 SHELEZYAKA 2.77
4 DoubleRoc 0.37 17 xmuspeech 2.89
5 FlySpeech 0.56 18 HCCL 4.30
5 IRLAB 0.56 19 magnum 4.48
7 VicomSpeech 0.84 20 CAU KU 4.95
8 CUHK NTU 0.89 21 Tandem 6.22
9 MARG 1.15 B2 6.54

10 NII TJU 1.19 22 DHU 12.48
11 UR AIR 1.34 B1 19.31
12 clips 1.36 ASV sub-system 23.83
13 orange Lium 1.48 23 Souvik 24.32

B1-v2 1.71

utterances. A softmax non-linearity is optionally applied to the
CM scores, which are otherwise unbounded, to normalise the
scores within a (0,1) range. The version of B1 with the softmax
non-linearity is referred to as B1-v2.

As illustrated in Figure 1-(b), baseline B2 utilises an
embedding-level fusion whereby a DNN operates upon a pair
of speaker embeddings extracted from enrolment and test utter-
ances, and a CM embedding extracted only from the test utter-
ance. The DNN is a vanilla multi-layer perception comprising
three FC layers with leaky ReLU non-linear activation func-
tions after each layer. The output layer consists of two neurons
which correspond to the target and non-target (both bona fide
and spoofed) classes. The model is trained using the training
partition of the ASVspoof 2019 LA database. The larger-scale
VoxCeleb2 database cannot be used for training since it con-
tains only bona fide utterances. Full details regarding challenge
baselines are available in [38].

5. Challenge results
From among 53 registrations, we received 23 submissions.
SASV-EER results for each submission and the baselines for
the evaluation partition are presented in Table 2.8 Without any

8 Full results are available at https://sasv-challenge.
github.io/challenge_results
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countermeasure, the ECAPA-TDNN ASV sub-system gives an
SASV-EER of 23.83%. Among the baseline solutions and with
an SASV-EER of 1.71%, baseline B1-v2 gives the best perfor-
mance. With v2 having been developed after the release of the
evaluation plan, in the remainder of this paper we emphasise v1
of the B1 baseline which gives an SASV-EER of 19.31%, a re-
sult which serves to show the importance of score normalisation
prior to fusion. B2 gives an SASV-EERs of 6.54%.

From among the 23 submissions, 21 outperformed the B1
and B2 baselines. The submissions of 8 teams show SASV-
EERs of below 1%, a substantial reduction from that of the B1
baseline and is even below the SV-EER of 1.63% (assessment
without spoofed trials) of the ECAPA-TDNN ASV system [38].
These results are extremely encouraging and demonstrate the
synergistic merit of combined ASV and CM systems. The top-
performing system achieves an SASV-EER of 0.13% which cor-
responds to a 92% relative reduction compared to the SV-EER
of the ECAPA-TDNN ASV system.

Detection error trade-off (DET) curves for all 23 sub-
missions in addition to the baseline are plotted in Figure 2.
Highlighted green, brown, red and blue profiles correspond to
the top-performing submission and the B2, B1 baselines and
ECAPA-TDNN ASV system respectively. The plots show sub-
stantial differences in the trade-off between false rejections and
false acceptances and point toward the potential for tuning com-
bined ASV and CM solutions for operating points other than the
SASV-EER. Even so, the DET profile for the top-performing
submission is below that of every other system. The elbow
that is visible in many profiles stems from assessment being
performed using both bona fide and spoofed non-target trials.
Even if SASV-EER results show higher correlation with SV-
EER than with SPF-EER results, the SASV-EER is still a com-
posite of the SV-EER and the SPF-EER.

6. Solution strategies
All three systems with the lowest SASV-EER employed sim-
ilar strategies [39–41]. First, they are all fusions of indepen-
dent ASV and CM sub-systems. Second, they are all ensembles
of multiple ASV+CM systems. Third, each of the three sys-
tems gives similarly low SV-EERs and SPF-EERs indicating
that they are insensitive to the proportion of spoofed non-target
trials. SV-EER and SPF-EER results for each system, for which
we have no space to report here, are available online.8

There are differences too. The IDVoice [39] system fuses
ASV and CM sub-systems at the score-level. The DKU OPPO
system performs fusion at the decision-level, whereas embed-
ding level fusion is employed in the Hyu system. Among their
different systems, IDVoice use four different scores: ASV co-
sine similarity with and without score normalisation; CM co-
sine similarity; the score output of an end-to-end CM. Qual-
ity measurement functions [42] are also used to normalise the
score for each trial according to various meta information such
as the duration of speech. The DKU OPPO [40] system uses
a modified cascade framework which combines decisions pro-
duced by the ASV sub-system with scores produced by the CM.
Team HYU [41] focused on developing a latent space in which
both speaker identity and spoofing artefacts can be captured us-
ing ASV and CM sub-system embeddings. A DNN with con-
dition layers is used to map ASV and CM embeddings into a
single SASV embedding [43]. There are further differences in
the training strategies which are described in the participants’
system descriptions and associated articles.8

Figure 2: DET curves of challenge submissions on the evalua-
tion protocol. green: best performing system, brown: B2, red:
B1 (without softmax), blue: ECAPA-TDNN ASV system.

7. Discussion and Conclusions
The SASV Challenge was formed to promote the study of
jointly optimised or fused and single solutions to reliable ASV.
Reliability in this sense implies resistance to both bona fide and
spoofed non-target trials. We received submissions from 23 par-
ticipating teams who all designed competing solutions using a
common training and development protocol. Results show sub-
stantial improvements over two Challenge baselines. At 0.13%,
the lowest equal error rate for a spoofing-aware speaker verifi-
cation system is even well below the equal error rate of a con-
ventional, state-of-the-art speaker verification system assessed
in the absence of spoofed trials. This is an especially encour-
aging result which not only indicates the reliability of today’s
speaker verification and spoofing countermeasure technologies,
but also the synergistic merit in their combination. There is also
evidence that such impressive levels of reliability are consistent
no matter what fraction of non-target trials that are spoofed;
similarly low SV-EER and SPF-EER results show that perfor-
mance is insensitive to the spoofing prior. We hope that these
findings help to belay concerns of vulnerabilities to spoofing.

Looking to the future, we acknowledge some limitations
of the current database. All top-performing systems remain
ensemble combinations of independent countermeasure and
speaker verification sub-systems. We anticipate future advances
in joint optimisation stemming from the development of truly
integrated, single system approaches. Research in this direction
will likely depend on the availability of larger databases con-
taining not only spoofing attacks generated with diverse attack
algorithms, but also data collected from many more speakers.
We hope that these developments may improve yet further on
what are already extremely encouraging results.
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