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Abstract—The use of vector coded caching has been shown to
provide important gains and, more importantly, to alleviate the
impact of the file-size constraint, which prevents coded caching
from obtaining its ideal gains in practical settings. In this work,
we analyze the performance of vector coded caching in the
massive MIMO regime, aiming at understanding the benefits that
allowing users to cache a practical amount of data could bring to
realistic settings in such massive MIMO regime. In particular, we
separately consider two linear precoding schemes and analyze the
corresponding throughput, for which we derive simple but precise
upper and lower bounds. These bounds enable us to characterize
the delivery speed-up gain over the uncoded caching setting
when the CSI acquisition costs are taken into account. Numerical
results demonstrate the tightness of the derived bounds and
show a significant boost over uncoded caching and the standard
cacheless setting.

Index Terms—Coded caching, linear precoding, massive MIMO.

I. INTRODUCTION

Coded caching was shown to yield a multiplicative delivery
speed-up of Kγ + 1 over uncoded caching in a single-stream
and error-free shared Broadcast Channel [1], where K and γ
represent the total number of served users and the normalized
cache size at each user, respectively. This speed-up factor of
Kγ+1 is also the degrees-of-freedom (DoF) provided by coded
caching in [1]. However, this seminal coded caching framework
[1] requires the file size to grow exponentially with K. Under
realistic file-size constraints, the DoF of Kγ + 1 is reduced to
Λγ + 1, where Λ is obtained from some maximum allowable
subpacketization level S, such that Λ = argmaxλ

(
λ
λγ

)
s.t.(

λ
λγ

)
≤ S. In practice, Λ ≪ K and, more precisely, Λγ remains

in the single-digit range [2], [3].
As multiple-input multiple-output (MIMO) (and in particular

massive MIMO) framework has been a key technology in
the current development of wireless networks [4], [5], the
implementation of coded caching should be incorporated in
such MIMO systems, which leads to the development of multi-
antenna coded caching [6]–[10]. However, for the first proposed
solutions, multi-antenna coded caching was providing a theo-
retic DoF of Λγ+Q, where Q is the multiplexing gain provided
by the multiple antennas. In the massive MIMO regime, when
Λγ ≪ Q, the DoF gain due to caching becomes marginal.
Fortunately, this situation was reversed after introducing the
so-called vector coded caching [11]. Specifically, vector coded
caching [11] provides a DoF of Q(Λγ+1) while also achieving
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a dramatically reduced subpacketization, since the file size
grows exponentially in Λ/Q.

However, [11] focused on the importance of vector coded
caching in the high-SNR (DoF) sense and did not consider
any practical issue, such as realistic SNR ranges, impact of
beamforming, or performance costs from gathering channel
state information (CSI). With the exception of some numerical
beamforming optimization in the preliminary work [12], the real
performance of such approach compared to uncoded caching
still remains unknown.

The multiplicative theoretic DoF boost Λγ + 1 that vector
coded caching provides over its uncoded caching counterpart
with multiplexing gain Q can be helpful to effectively alleviate
the network congestion generated from the ever-increasing
user density [13]. This motivates us to investigate the real
performance of vector coded caching in a practical system. In
this paper, we analyze the performance of vector coded caching
[11] in the massive MIMO regime by considering realistic SNR
values, practical linear precoders, effects of beamforming, and
CSI costs. The main contributions are outlined as follows.

• We derive simple closed-form upper and lower bounds of
the effective sum-rate (later defined in Definition 1) of
vector coded caching under two practical linear precoding
schemes: Matched Filter (MF) and Zero-Forcing (ZF).

• Making use of the derived upper and lower bounds, we
obtain a lower-bound of the effective coded caching gain.
Numerical results demonstrate the tightness of this lower-
bound and show a significant effective gain over standard
linear transmission without coded caching.

Notation: C stands for set of complex numbers, IL ∈ CL×L
denotes the identity matrix, and 0L ∈ CL denotes the all-zeros
vector. | · | denotes the cardinality of a set or the absolute value
of a complex number, || · || denotes the norm-2 operator for a
vector, and we define [Z] ≜ {1, ..., Z} for a positive integer Z.
Tr{·} and E{·} denote the trace and the expectation operators,
whereas (·)T , (·)∗ and (·)H are the non-conjugate transpose,
conjugate, and conjugate transpose of a matrix, respectively.

II. SYSTEM MODEL AND PROBLEM DESCRIPTION

We consider a downlink scenario where an L-antenna base
station (BS) serves K single-antenna users. The BS has access
to a library of N equally-sized files, and each user is endowed
with a cache that can store a fraction γ ∈ [0, 1] of the library
content {Wn}Nn=1, where Wn denotes the n-th library file.

We consider a symmetric Rayleigh fading channel, where
all channel coefficients are assumed to be independent and
identically distributed (i.i.d.). Upon denoting the set of users



to which the transmitted signal is intended as K ⊆ [K], the
received signal at any user k ∈ K is given by yk = hTk xK+zk,
where zk ∈ C represents the corresponding Additive White
Gaussian Noise (AWGN) with zero-mean and unit-variance,
xK ∈ CL denotes the transmitted signal vector that simultane-
ously serves the users in K, and where hk ∈ CL represents
the channel vector between the BS and user k. As mentioned,
hk ∼ CN (0L, IL). Finally, xK is obtained by applying a
specific precoding scheme (which we will detail later on) to
the information vector sK ∈ C|K| intended for the users in K,
where sK has mean 0|K| and covariance matrix I|K|.

A. Signal-Level Vector Coded Caching for Finite SNR

The coded caching transmission here considered builds on
the general vector-clique structure presented in [11], but we are
here allowed to select different precoding schemes and variate
the dimensionality of each vector clique. This added flexibility
is crucial in optimizing the performance when both CSI costs
and power-splitting across users are considered, since both
aspects impact the performance in practical SNR regimes [14].
We proceed to describe the cache placement phase and the
subsequent delivery phase.

1) Placement Phase: The system assumes Λ different cache
states (i.e., different non-disjoint subsets of the library content).
The number of cache states Λ is chosen to satisfy the file-
size constraint. The first step involves the partition of each
library file Wn into

(
Λ
Λγ

)
non-overlapping equally-sized subfiles{

W T
n : T ⊆ [Λ], |T | = Λγ

}
, each labeled by some Λγ-tuple

T ⊆ [Λ]. Subsequently the K users are uniformly distributed
into Λ disjoint groups D1,D2, . . . ,DΛ, where the g-th group
consists of B ≜ K

Λ users and is given by Dg ≜
{
bΛ+g

}B−1

b=0
⊆

[K]. The ϑ-th user of this g-th group is denoted1 by Ug,ϑ.
At this point, all the users belonging to the same group

are assigned the same cache state and thus proceed to cache
identical content. In particular, for those in the g-th group, this
content takes the form ZDg =

{
W T
n : T ∋ g, ∀n ∈ [N ]

}
.

2) Delivery Phase: This phase starts when each user κ ∈
[K] simultaneously asks for its intended file, denoted here by
Wdκ , dκ ∈ [N ]. The BS selects Q users from each group,
where Q ∈ [B] is the equivalent of the multiplexing gain. By
doing so, the BS decides to first ‘encode’ over the first ΛQ
users, and to repeat the encoding process B/Q times.2

To deliver to the first ΛQ users, the transmitter employs(
Λ

Λγ+1

)
sequential transmission stages. During each such stage,

the BS simultaneously serves a unique set Ψ of |Ψ| = Λγ + 1
groups, corresponding to a total of Q(Λγ + 1) users served at
a time (i.e., per stage). At the end of the

(
Λ

Λγ+1

)
transmission

stages, all the ΛQ users obtain their intended files. As suggested

1We will henceforth consider K to be a multiple of Λ for the sake of clarity
of exposition, which does not limit the scope of the results in any way. The
general case can be readily handled (cf. [11]). Furthermore, this grouping and
the entire placement phase are naturally done before users’ requests are made
and before the channel states are known to the BS.

2This means that, if there exist B = aQ users per group (K = aΛQ), then
the algorithm will be applied to the first ΛQ users, and, once the delivery to
these users is finished, the same algorithm will be independently applied to
the next ΛQ users, repeating the process a times until all K users are served.

above, the factor G ≜ Λγ + 1 describes the number of user-
groups that are simultaneously served.

Let us focus on a single transmission stage, where a set
Ψ ⊆ Λ of G = Λγ+1 groups is selected and we serve Q ≤ B
users per group. In particular, for each user Uψ,ϑ of some group
ψ ∈ Ψ, this stage delivers all subfiles3 sψ,ϑ by transmitting

xΨ =
∑

ψ∈Ψ

ρψ√
G
Vψsψ, (1)

where Vψ ≜ [vψ,1
∣∣ . . . ∣∣vψ,Q] and vψ,ϑ ∈ CL×1 denotes the

precoder applied to the subfile intended by user Uψ,ϑ, whereas
sψ ≜ [sψ,1, . . . , sψ,Q]

T , and where ρψ denotes the power
normalization factor for group ψ ∈ Ψ, applied under a total
power constraint Pt.

This scheme just simultaneously delivers a carefully selected
linear combination of G linear-precoding vectors. Moreover,
the above scheme also incorporates the traditional cacheless
downlink scenario (i..e, γ = 0) which corresponds to G = 1.
In such case, we obtain the simpler usual expression x = ρVs.

For decoding to work, the subfiles must be chosen carefully
following the principles of vector coded caching, such that
for the transmission stage which serves the group-set Ψ, the
subfile transmitted to user Uψ,ϑ is here selected to be WΨ\{ψ}

dψ,ϑ
,

because this subfile is stored in the cache of each user of every
other group in Ψ except ψ. Due to this structure, the users
can remove the inter-group interference from the other Λγ
groups by using their cached content. On the other hand, the
intra-group interference is handled with linear precoding.

Certainly, both the interference nulling and the cache-
aided removal of interference require precise estimates of the
composite precoder-channel coefficients (cf. (3), (4)), and we
will account for these so-called composite CSI costs.

B. Vector Coded Caching for the Physical Layer

As is common in practical massive MIMO, we assume TDD
uplink-downlink transmission, such that the BS and the users
estimate the downlink channels through pilot transmissions by
applying channel reciprocity [4].

Let us focus now on describing the transmission that serves
a specific set Ψ of user-groups. We consider that there exists a
nominal power constraint, which is denoted by Pt. Then, the
power normalization factor ρψ from (1) takes the form

ρψ = P
1/2
t

(
Tr{VH

ψVψ}
)−1/2

. (2)

The subsequent corresponding received signal at user Uψ,k
(i.e., at the k-th user of group ψ ∈ Ψ), will take the form

yψ,k =
hTψ,k√
G
ρψVψsψ +

hTψ,k√
G

∑
ϕ∈Ψ,ϕ ̸=ψ

ρϕVϕsϕ︸ ︷︷ ︸
inter-group interference

+zψ,k. (3)

As previously mentioned, this inter-group interference can be re-
moved from yψ,k by exploiting that same user’s cached content
and that user’s composite CSI {hTψ,kvϕ,k′ρϕ}ϕ∈{Ψ\ψ}, k′∈[Q].

3In a slight abuse of notation, we use the term “subfile" to refer both to
the actual subfile generated after file-splitting, as well as to the corresponding
complex-valued information symbol sψ,ϑ.



Then, after the cache-aided removal of this inter-group
interference, the equivalent received signal at Uψ,k is given by

y′ψ,k=
ρψ√
G
(hTψ,kvψ,ksψ,k +

∑
ϑ∈[Q]
ϑ̸=k

hTψ,kvψ,ϑsψ,ϑ︸ ︷︷ ︸
intra-group interference

) + zψ,k.

(4)

Consequently, under the usual Gaussian signaling assumption,
the corresponding SINR for information decoding at Uψ,k is

SINRψ,k=
ρ2ψ|h

T
ψ,kvψ,k|

2

G

(
1+

ρ2ψ
G

∑
ϑ∈[Q]
ϑ̸=k

|hTψ,kvψ,ϑ|2
)−1
. (5)

Next, we present the effective transmission rate, i.e., the actual
data rate after accounting for the need for CSI sharing [15],
[16]. For user Uψ,k, it reads as

Rψ,k ≜ ξGQ ln (1 + SINRψ,k) , (6)

where ξGQ ≜ (1 − ΘGQ
T ) accounts for the CSI costs due to

TDD training, since only T − ΘGQ symbols are used for
user data transmission; T is the coherence block length (in
symbols), and Θ is the number of resources per user and per
block used for pilot transmission (cf. [15], [16]).

We consider the MF and ZF linear precoding schemes, which
are selected for its simplicity, usage and competitiveness in
terms of performance [4]. Hence, we have the following cases:

Vψ =

HH
ψ MF Precoder

HH
ψ

(
HψH

H
ψ

)−1

ZF Precoder,
(7)

where Hψ ≜
[
hψ,1|hψ,2| · · · |hψ,Q

]T ∈ CQ×L denotes the
channel matrix between the BS and the Q chosen users.

We henceforth use the term (G,Q)-vector coded caching to
refer to the vector coded caching scheme when it serves G
groups with Q users per group. We also use the term MF-based
(resp. ZF-based) (G,Q)-vector coded caching to refer to the
same scheme when the underlying precoder is MF (resp. ZF).
Let us formally define two important metrics of interest.

Definition 1. (Effective sum-rate). For a (G,Q)-vector coded
caching scheme, its effective sum-rate is denoted by R̄(G,Q)
and is defined as the total data-transmission rate (after
accounting for CSI costs) summed over the GQ simultaneously
served users, and averaged over the fading.

Definition 2. (Effective coded caching gain). The effective
gain after accounting for CSI costs of the (G,Q)-vector
coded caching over the cacheless/uncoded caching4 scenario
(corresponding to G = 1, cf. [11]) with operating multiplexing
gain Q′ is defined as G(G,Q; 1, Q′) ≜ R̄(G,Q)

R̄(1,Q′)
.

III. LARGE-SCALE ANTENNA ANALYSIS

In this section, we analyze the effective sum-rate and the
effective coded caching gain of the scheme presented in
Section II-A for MF and ZF precoders. Specifically, we analyze
the regime where the number of transmit antennas L grows
unboundedly while Q remains constant, i.e., where the number

4Note that both uncoded caching and the cacheless settings enjoy the same
transmission rate [11] and they only differ in the amount of data to transmit.

of simultaneously served users remains fixed for a given value
of K, γ. The analysis of the other asymptotic regime, where
L,Q→ ∞ while Q

L remains fixed, is presented in [17].

A. MF Precoding Analysis

Before presenting the main results on the rate and effective
gain for MF precoding, we focus on the power factor ρψ .

From (2) and (7), we have that ρ2ψ = Pt
Tr{HψHH

ψ } . Note that

Tr{ 1
LHψH

H
ψ } = 1

L

∑Q
k=1 h

T
ψ,kh

∗
ψ,k converges to Q almost

surely (a.s.) as L→ ∞ according to the Strong Law of Large
Numbers. Thus, we have that ρψ

a.s.−→
√
Pt/(LQ).

Since we are interested in the large number of antennas
regime, we consider for the sake of clarity that ρψ =

√
Pt
LQ

for MF precoding. Then, the SINR at Uψ,k becomes

SINRMF
ψ,k =

Pt
GQL

∣∣hTψ,kh∗
ψ,k

∣∣2
1 + Pt

GQL

∑Q
ϑ=1,ϑ̸=k

∣∣hTψ,kh∗
ψ,ϑ

∣∣2 . (8)

Let us present our first main result, which focuses on the
average rate of the proposed scheme with MF precoding.

Lemma 1. For any fixed Q > 2 and L → ∞, the effective
sum-rate of MF-based vector coded caching, denoted by R̄MF

sum,
is bounded by R̃MF

sum ≤ R̄MF
sum ≤ R̂MF

sum, where

R̃MF
sum ≜ ξGQGQ ln

(
1 +

Pt(L− 1)(L− 2)

GQL+ Pt(Q− 1)(L− 2)

)
(9)

R̂MF
sum ≜ ξGQGQ ln

(
GQ+ Pt(L+Q)

GQ+ Pt(Q− 2)(L− 1)/L

)
(10)

Proof. The proof is relegated to Appendix I.

Corollary 1. For any fixed Q,Q′ > 2 and L → ∞, the
effective gain of MF-based (G,Q)-vector coded caching,
denoted by GMF, can be lower-bounded by

GMF≥
R̃MF

sum(G,Q)

R̂MF
sum(1, Q

′)
=
ξGQGQ

ξQ′Q′

ln
(
1+ Pt(L−1)(L−2)

GQL+Pt(Q−1)(L−2)

)
ln
(

GQ′+Pt(L+Q′)
GQ′+Pt(Q′−2)(L−1)/L

) .
Proof. Corollary 1 can be directly obtained from Lemma 1.

B. ZF Precoding Analysis

Considering now ZF precoding, it follows that the power
control factor ρψ is given by ρψ =

√
Pt/Tr{(HψH

H
ψ )−1}.

Since for ZF all intra-group interference in (4) is completely
canceled, the SINR at a typical user Uψ,k is given by

SINRZF
ψ,k = Pt

(
GTr

{(
HψH

H
ψ

)−1})−1
. (11)

Now, we can present our next result for the effective sum-rate
of ZF-based vector coded caching, which we denote as R̄ZF

sum.

Lemma 2. For Q<L, the effective sum-rate of ZF-based vector
coded caching is bounded as R̃ZF

sum ≤ R̄ZF
sum ≤ R̂ZF

sum, where

R̃ZF
sum ≜ ξGQGQ ln

(
1 + Pt

G
L−Q
Q

)
(12)

R̂ZF
sum ≜ ξGQGQ ln

(
1 + Pt

G
L−Q+1

Q

)
(13)
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Fig. 1: Effective sum-rate for Pt = 10 dB, G = 6 and Q = 15.

Proof. Note that HψH
H
ψ is a Wishart matrix with L degrees

of freedom. We know from [18] that

E
{
Tr
{(

HψH
H
ψ

)−1}}
= Q

L−Q , for L > Q. (14)

By considering (11) and applying Jensen’s inequality on the
convex function ln(1 + x−1), we can have that

R̄ZF
sum ≥ ξGQGQ ln

(
1 +

(
G
Pt
E
{
Tr
{
(HψH

H
ψ )−1

}})−1)
and thus, by considering (14), we have that (12) lower bounds
the performance for this setting.

For the upper-bound, considering that Tr{(HψH
H
ψ )−1}=

Tr{VH
ψVψ}=

∑Q
ℓ=1||vψ,ℓ||2, we have that

QE
{
ln
(
1 + Pt

G

(
Tr
{
HH
ψHψ

} )−1)}
(a)

≤ E
{∑Q

ℓ=1
ln
(
1 + Pt

G

(
Q||vψ,ℓ||2

)−1
)}

(b)

≤ Q ln
(
1 + Pt

GQE
{ (

||vψ,k||2
)−1})

, (15)

where (a) follows from Arithmetic-geometric inequality [5,
Lem. 5], and (b) follows from Jensen’s inequality and holds
for any k ∈ [Q]. By further considering that E{ 1

||vψ,k||2 } =

L−Q+ 1 (cf. [19]) in (15), we can derive R̂ZF
sum in (13).

Corollary 2. The effective gain of ZF-based (G,Q)-vector
coded caching, denoted by GZF, is lower-bounded by

GZF ≥ R̃ZF
sum(G,Q)

R̂ZF
sum(1, Q

′)
=
ξGQGQ

ξQ′Q′

ln
(
1 + Pt

G
L−Q
Q

)
ln
(
1 + Pt

L−Q′+1
Q′

) .
Proof. Corollary 2 can be directly obtained from Lemma 2.

IV. NUMERICAL RESULTS

We provide numerical results to validate the accuracy of
the derived expressions. We consider that T = TcWc, where
Tc = 0.04 s and Wc = 300 kHz, which is suitable e.g. for
low-mobility users consuming videos. For simplicity, we set
Θ = 10, which is high enough to neglect the impact of CSI
estimation noise, such that we assume perfect CSI [15], [16].

Fig. 1 plots the effective sum-rate versus L for a practical
SNR value of 10 dB. We can see that the effective sum-rate
of MF/ZF precoding grows unboundedly as L increases. As is
known for the cacheless setting, MF precoding outperforms the
ZF precoding in the very low L region but, after a cutoff point,
ZF precoding has a higher effective sum-rate. In contrast, MF
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has a larger effective gain over the uncoded caching counterpart
than ZF. This means that coded caching is more effective for MF
because it maintains the same favorable propagation effect [4]
as for uncoded caching while serving more users at a time.

The effective gain of the considered coded caching scheme
is plotted in Fig. 2. As we can see, the effective gain of MF
precoding reaches the nominal gain (i.e., the high-SNR nominal
gain from [11]) after Pt = 25 dB (a realistic value). In contrast,
the effective gain of ZF precoding just achieves 85% of the
nominal gain when Pt is as high as 40 dB. Fig. 3 shows
the effective gain when uncoded caching has the same DoF
as coded caching. We observe a 30% additional boost in ZF
precoding and a 120% additional boost in MF precoding for
Pt = 10 dB. The main reason is that coded caching enables
each user to remove the interference resulted from (G− 1)Q
other users, thereby saving much spatial diversity provided
by multiple antennas, while the interference in each user is
entirely addressed by multiple antennas in uncoded caching.

V. CONCLUSIONS

We have analyzed the performance of vector coded caching
in the massive MIMO regime, and we have compared its perfor-
mance for both MF and ZF linear precoding schemes. We have
derived simple and robust closed-form expressions for lower
and upper bounds of the effective sum-rate, taking into account
the CSI acquisition costs, which allows us to investigate the
corresponding effective gain over the standard (without coded
caching) MIMO systems with the same system parameters.
The numerical evaluations show that the derived bounds tightly
approximate the actual performance. Furthermore, we have
shown how, for a given setting with a given number of transmit
antennas and SNR values, incorporating coded caching to the
multi-user linear precoding achieves a 300% effective gain for



Pt ≥ 10 dB for both MF and ZF (cf. Fig. 2). These results
show how coded caching can be used in tandem with multi-
antenna transmissions while maintaining both coded caching
and multiplexing gains in realistic scenarios, and motivates the
analysis of other aspects such as the impact of imperfect CSI.

APPENDIX I: PROOF OF LEMMA 1

The average rate for user Uψ,k before accounting for CSI
costs follows from (8) as R̄MF

ψ,k = E{ln(1+SINRMF
ψ,k)}. Apply-

ing Jensen’s inequality to the convex function ln(1+ 1
x ) yields

R̄MF
ψ,k≥ ln

(
1+

(
E

{
GQL/Pt∣∣hTψ,kh∗

ψ,k

∣∣2 +∑
ϑ∈[Q]\k

|hTψ,khψ,ϑ|2

|hTψ,kh∗
ψ,k|2

})−1)
.

As hTψ,kh
∗
ψ,k follows the Gamma distribution with shape

parameter L and scale parameter equal to 1 (cf. [9, Footnote
1]), it follows that E

{
1/|hTψ,kh∗

ψ,k|2
}
= 1

(L−1)(L−2) ∀L > 2,
from which we obtain E{GQLPt /|hTψ,kh∗

ψ,k|
2}. Next, we have that

E
{∑

ϑ∈[Q]
ϑ̸=k

|hTψ,khψ,ϑ|
2

|hTψ,kh
∗
ψ,k|2

}
=
∑

ϑ∈[Q]
ϑ̸=k

E
{

Tr{hTψ,khψ,ϑhHψ,ϑh∗
ψ,k}

|hTψ,kh
∗
ψ,k|2

}
(a)
=
∑

ϑ∈[Q]
ϑ̸=k

Tr
{
E
{

h∗
ψ,kh

T
ψ,k

|hTψ,kh
∗
ψ,k|2

}}
(b)
=
∑

ϑ∈[Q]
ϑ̸=k

E
{

Tr{hTψ,kh
∗
ψ,k}

|hTψ,kh
∗
ψ,k|2

}
=
∑

ϑ∈[Q]
ϑ̸=k

E
{

1
hTψ,kh

∗
ψ,k

}
=
Q− 1

L− 1
, (16)

where (a) and (b) follow from exchanging the order of expecta-
tion and trace operators and the property Tr{AB} = Tr{BA}.
Finally, combining the results above yields R̃MF

sum in (9).
In the following, we will derive the upper-bound R̂MF

sum

in (10). First, note that we can write R̄MF
ψ,k as

R̄MF
ψ,k = E

{
ln
(
1 + Pt

GQL

∑
ℓ∈[Q]

∣∣hTψ,kh∗
ψ,ℓ

∣∣2)}
− E

{
ln
(
1 + Pt

GQL

∑
ϑ∈[Q]\k

∣∣hTψ,kh∗
ψ,ϑ

∣∣2)}. (17)

By using Jensen’s inequality separately to the concave function
ln(1 + x) and to the convex function ln(1 + x−1) in (17), we
can derive an upper-bound of R̄MF

ψ,k as

R̄MF
ψ,k ≤ ln

(
1 + Pt

GQL

∑
ℓ∈[Q]

E
{∣∣hTψ,kh∗

ψ,ℓ

∣∣2})
− ln

(
1 + Pt

GQL

(
E
{(∑

ϑ∈[Q]\k
|hTψ,kh∗

ψ,ϑ|2
)−1})−1)

. (18)

Using the similar manipulations as in (16), we can have that∑
ℓ∈[Q]

E
{∣∣hTψ,kh∗

ψ,ℓ

∣∣2}=E
{∣∣hTψ,kh∗

ψ,k

∣∣2}+∑
ℓ∈[Q]\k

E
{∣∣hTψ,kh∗

ψ,ℓ

∣∣2}
(a)
= L2 + L+

∑
ℓ∈[Q]\k

Tr
{
E
{
h∗
ψ,ℓh

T
ψ,ℓ

}
E
{
h∗
ψ,kh

T
ψ,k

}}
= L2 + L+

∑
ℓ∈[Q]\k

Tr {ILIL} = L2 +QL, (19)

where (a) follows from the fact that hTψ,kh
∗
ψ,k ∼ Gamma(L, 1)

whose mean and variance are both L, and after exchanging
the order of expectation and trace operators.

By using iterated expectations, we have that:

E
{( ∑

ϑ∈[Q]\k
|hTψ,kh∗

ψ,ϑ|2
)−1}

= Ehψ,kE
{

1
||hψ,k||2

(∑
ϑ∈[Q]\k

∣∣∣hTψ,kh∗
ψ,ϑ

||hψ,k||

∣∣∣2)−1∣∣∣hψ,k}
(a)
= Ehψ,k

{
1

||hψ,k||2
1

Q−2

}
= 1

(L−1)(Q−2) , (20)

where (a) follows from the fact that given hψ,k, Xϑ ≜
|hTψ,kh∗

ψ,ϑ/||hψ,k|||2 is an exponential random variable with unit-
mean, and hence the summation of {Xϑ}ϑ̸=k (i.i.d. given hψ,k)
follows the Gamma distribution with shape parameter Q− 1
and unit-scale parameter (cf. [9, Footnote 1]). Finally, combin-
ing (18)-(20), we derive the upper-bound R̂MF

sum in (10).
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