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Abstract—Synthetic DNA has received much attention recently
as a long-term archival medium alternative due to its high density
and durability characteristics. However, most current work has
primarily focused on using DNA as a precise storage medium.
In this work, we take an alternate view of DNA. Using neural-
network-based compression techniques, we transform images into
a latent-space representation, which we then store on DNA.
By doing so, we transform DNA into an approximate image
storage medium, as images generated back from DNA are only
approximate representations of the original images. Using several
datasets, we investigate the storage benefits of approximation,
and study the impact of DNA storage errors (substitutions,
indels, bias) on the quality of approximation. In doing so, we
demonstrate the feasibility and potential of viewing DNA as an
approximate storage medium.

Index Terms—DNA storage, representation learning, approxi-
mate storage, compression

I. INTRODUCTION

Recently, analysts have predicted that the Global Datas-
phere, the sum total of all data generated, will reach 160
Zettabyte by 2025 [19]. Unfortunately, all current storage
media, be it NAND flash, HDD, or tape, suffer from fun-
damental density and durability limitations that complicates
cost-effective storage of cold data [2]. Thus, researchers have
started exploring the use of radically new storage media that
can offer orders of magnitude improvement in both density and
durability. One such media that has received a lot of attention
recently is Deoxyribo Nucleic Acid (DNA).

DNA is a macro-molecule that is composed four sub-
molecules called nucleotides: Adenine (A), Cytosine (C),
Guanine (G), and Thymine (T). DNA used for data storage is a
short, single-stranded sequence of nucleotides, also referred to
as an oligo. Using DNA as a digital storage medium requires
mapping digital data into a sequence of strings that represent
oligos using an encoding algorithm. Once encoded, the strings
are used to synthesize oligos using a chemical process. Data
stored in DNA is read back by sequencing the oligos which
produces several noisy copies of the original strings, also
called reads. A consensus procedure is then used to infer the
original oligonucleotide sequences based on sequencing reads,
and the inferred strings are then passed to a decoder to recover
the original data.

Till date, current work on DNA storage has focused on deal-
ing with errors introduced by the imprecise nature of synthesis
and sequencing [5], [9], [8], [17], [16]. The typical approach

adopted is to use error-correction techniques from coding
theory, and high sequencing coverage (the average number of
reads that correspond to an oligo) to be able to recover data
despite errors. Such an approach is necessary for applications
like long-term archival or digital preservation, where DNA
should function as a precise storage medium similar to current
storage technologies like Hard Disk Drives or tape. However, a
large amount of generated data is increasingly used only as in-
put to data analytics and machine learning algorithms/models
that can produce functionally identical outcomes using ap-
proximate versions of the original data. Researchers have used
this insight to show that DATA-DRIVEN compression schemes
can provide substantial reduction in storage size with respect
to generic compression schemes(JPEG,PNG) for applications
that can tolerate approximations [23].

In this work, we investigate the utility of DATA-DRIVEN
compression schemes in reducing the cost of DNA storage by
viewing it as an approximate storage medium. In particular,
we build generative models (Section II) that compress and
represent images using a latent space. We propose to store
this learned representation in DNA. In contrast to the current
approach of masking the errors introduced by the DNA stor-
age channel, we take the alternate approach (Section III) of
exposing it to the decoder of our generative model that uses the
error-induced latent space to generate different versions of the
original images. In order to prove the feasibility and benefit of
our approach, we build an full-system prototype and using a
thorough simulation study (Section IV), we analyze the impact
of DNA storage errors on (i) the quality of reconstructed image
and (ii) the classification accuracy when such images are used
for training a machine learning model, for both approximate
storage and precise storage cases. We show that by treating
DNA as an approximate storage medium, we can dramatically
reduce synthesis and sequencing costs, as generative models
can (i) provide at least 10× better compression than generic
schemes, and thereby reduce synthesis costs, and (ii) recover
data back at much lower coverage and tolerate many errors,
and thereby reduce sequencing costs.

II. BACKGROUND: REPRESENTATION LEARNING

Given a dataset of observations D = {xi}N
i=1, xi ∈ RM also

referred to as TRAIN set, it is possible to build parametric
(θ) probabilistic models pθ(·) to describe the density of the



observed data. The optimal set of parameters θ
∗, is obtained

by maximizing the probability of the observed dataset

θ
∗ = argmax

θ

pθ(D). (1)

Assuming independent datapoints xi the (log) of the objec-
tive function has factorized form

log(pθ(D)) =
N

∑
i=1

log(pθ(xi)) . (2)

In this work we focus on latent variable models, in par-
ticular Variational Autoencoders (VAE)[14]. The set of latent
variables z ∈ RK , K � M, are linked to the observations x
through the conditional parametric density pθ(x|z). Usually the
parametric densities are constructed using neural networks, as
we do in this work. The parametric density is then expressed as
pθ(x|z) = p(x;ψ), where ψ=Decθ(z) and Dec(·) is a decoder
Neural Network. The directed graphical model corresponds to
the joint distribution of observations and latent variables, i.e.
pθ(x,z). The marginal distribution over the observed variables
pθ(x), is given by

pθ(x) =
∫

pθ(x,z)dz =
∫

pθ(x|z)p(z)dz. (3)

Notice that in general Eq. (3) does not have a closed form
solution. Consequently, neither Eq. (2), the target of our
optimization, does. This intractability is solved by introducing
a new distribution qφ(z|x) constructed by a second neural
network qφ(z|x) = p(z;γ),γ = Encφ(x), where Enc(·) is an
encoder network. By means of Jensen’s inequality [6] we
manipulate Eq. (3) as follows

log(pθ(xi)) = log
(∫

pθ(xi|z)
p(z)

qφ(z|xi)
qφ(z|xi)dz

)
≥∫

log
(

pθ(xi|z)
p(z)

qφ(z|xi)

)
qφ(z|xi)dz =

Eqφ(z|xi) [pθ(xi|z)]−KL
[
qφ(z|xi)||p(z)

]
, (4)

where KL is the Kullback-Leibler divergence [6].
The first term of Eq. (4) can be trivially estimated with

Eqφ(z|xi) [pθ(x|z)]' pθ(xi|z), z∼ qφ(z|xi) (5)

In this work, we select qφ(z|xi) = N (z;µ,diag(σ)◦2)), that
corresponds to γ =

[
µ, log(σ)

]
= Encφ(x) [14]. Notice that the

invertible log transformation is included in the parametrization.
By selecting as target prior distribution p(z) = N (z;0,I), the
Kullback-Leibler term of Eq. (4) has closed form solution

KL
[
qφ(z|xi)||p(z)

]
=

1
2 ∑

i
σ

2
i +µ2

i − logσ
2
i −K. (6)

Combining Eq. (5) and Eq. (6) it is possible to evaluate
Eq. (4). Since the networks Enc, Dec are differentiable, it is
possible to compute the gradient with respect to φ,θ of Eq. (4),
and consequently of the bound of Eq. (2). The optimization
procedure, now including also the parameters ψ, can then be
performed iteratively with any gradient based optimizer (in
this work, we chose ADAM [13]).

III. DESIGN: REPRESENTATIONS AS ENCODINGS

In this section, we present our methodology for storing
quantized latent representations using DNA. We use the VAE
model to compress the data and store only the latent variables
representing it on the storage medium, in a similar vein to the
work in [23]. Once the VAE has been trained, it is possible
to encode data belonging to a previously unseen set, the TEST
set D∗ = {x∗i }T

i=1 by means of[
γ1, . . . ,γT

]
= Enc(D∗) (7)

Since the latent variables γ dimension is much smaller than
that of the original datapoints, as 2K�M, we can expect to
achieve a compression factor of M

2K .
However, latent parameters are continuous: it is thus not

possible to directly store them as they are produced. Although
discrete latent variable models exist [20], [12], [18], [21],
[7], i.e. z ∈ Z where Z is some finite cardinality space, we
propose instead to perform quantization of the parameters of
the latent variables after the training. Indeed, training discrete
latent variable models is extremely challenging and inefficient,
whereas empirical results indicate neural networks to be robust
to quantization [10], [11].

As a baseline, we quantize the parameters of the latent
variables by means of a uniform quantizer γq = quant(γ).
We encode the TEST set with the trained Enc network as[
γ1, . . . ,γT

]
= Enc(D∗) and feed the result element-wise to a

uniform quantizer with Nbit of precision and range [−3,3]. In
Section IV we refer to this implementation variant as VAEU.

Additionally, we propose an ad-hoc quantization scheme
based on the latent parameters statistics. We estimate, on the
TRAIN set, the element-wise empirical means and standard
deviations of the encodings

[
γ1, . . . ,γN

]
= Enc(D)→

[
m,s

]
.

For all datapoints belonging to the TEST set D∗, we first apply
to the generic latent variable γ

( j)
i the (invertible) nonlinear

transformation f : 1
2 (1+

erf(·−mi)√
2s2

i
). Then we apply a uniform

quantizer considering Nbit of precision. Given the encoded
parameters representing a TEST datapoint, it is possible to
recover the original data by applying f (−1) to the quantized
values and subsequently feed the values to the decoder network
Dec. In Section IV we refer to this variant as VAEN.

The latent space representation is materialized as a binary
file. To convert this file into strings that represent DNA to
be synthesized, we use pg oligo archive, a tool developed
in prior work [2] which builds on work done by Gold-
man et al. [9]. As each DNA strand is limited to length
to a few hundred nucleotides due to synthesis limitations,
pg oligo archive divides the binary files into chunks, such
that each chunk corresponds to a single DNA strand. It then
uses a uses a Huffman dictionary to convert each chunk from
binary into ternary format and adds an index to each chunk
to be able to infer the order of oligos back again during
recovery as DNA, in itself, is not an explicitly addressed
storage medium. Finally, a rotational code is used to convert
the ternary form into a quaternary DNA string to ensure that
the generated oligos have a balanced G-C content (ratio of Gs



TABLE I: Enc(·)
CV(1,32),BN,RELU
CV(32,64),BN,RELU
CV(64,128)
FC(32)

TABLE II: Dec(·)
FC(32768)
DC(128,64),BN,RELU
DC(64,32),BN,RELU
DC(32,1)SIGM

and Cs) and no homopolymer repeats (repeated sequences of
a particular nucleotide), as oligos with extreme GC content
or repeats are known to create problems during synthesis and
sequencing. The decoding pipeline of pg oligo archive starts
with sequenced reads, which are noisy copies of the original
oligos. From these reads, a consensus procedure is used to
infer the original oligos. The inferred oligos are then reordered
using the index stored in each oligo, and the reverse decoding
from quaternary to ternary to binary is performed to restore
back the original data.

As we show in the evaluation, the fraction of data that can
be successfully recovery depends on the sequencing coverage
used, where coverage roughly corresponds to the number of
reads that correspond to a reference oligo. It is well known
that bias in synthesis and sequencing steps lead to variation
in coverage. Thus, while some oligos are sequenced and read
multiple times, others can be completely omitted (or dropped
out). In order to recover data completely when DNA is used
as a precise storage medium, most current approaches use a
reasonably high coverage (10×-100×). One of the goals of our
work is to show that when we use DNA as an approximate
storage medium with generative compression, we can tolerate
much lower coverage levels.

IV. EXPERIMENTS

In this section we experimentally validate our proposal by
comparing it against JPEG and PNG on the standard MNIST
dataset [15].
Architecture and training details. The Enc and Dec net-
works are represented in Table I and Table II respectively.
In our notation, a single line of a table represents a layer.
The convention is the following: at the beginning of the
row, we have the type of layer, the indication of presence
of BatchNorm if the BN acronym is present, as well as
the nonlinearity associated with the layer (if present). The
first type of layers we consider is the convolutional one
CV(Nin,Nout), where Nin,Nout are the number of input and
output channels respectively. For all CV layers we consider
kernel size 3 and stride 2. A similar convention holds for
the deconvolutional layers (DC(Nin,Nout)). For DC layers we
consider kernel size 4 and stride 2. Finally we consider fully
connected layers (FC(Nout)), where Nout is the cardinality of
the output. We use as nonlinearities the rectified linear unit
(RELU) and the standard sigmoid (SIGM).

We use the ADAM optimizer with default settings, learning
rate 0.001, 100 training epochs and batch size 64.
Storage of Enc and Dec network weights. We assume,
as done in [23], that the neural architectures are available
to the data reader. This can be achieved either by storing
the network weights on the DNA, or transmitted through a

MS-SSIM PSNR ACC
VAEN 0.863 15.000 0.752
VAEU 0.775 12.881 0.422

TABLE III: Metrics comparison between VAEN and VAE

Fig. 1: Comparison of reconstructed images with a coverage
of 3. From top to bottom: original images, VAEN reconstruc-
tions, VAEU.

separate channel [1]. We stress that the overhead introduced
by such an operation is independent on the dataset size, and
thus negligible in the large data regime.
Comparison Metrics. The quantitative metrics we consider
are the standard Peak Signal to Noise Ratio (PSNR) and
MultiScale Structural Similarity Index Measure (MS-SSIM).
We include such metrics to have experimental uniformity with
the literature but we stress that such metrics are known to be
not perfect in terms of actual representation of the perceptual
quality of an image [3]. For this reason, we also include the
classification accuracy ACC of a pretrained classifier on the
reconstructed data. While this last metric can be considered
more semantically meaningful than PSNR and MS-SSIM we
resort also to a qualitative inspection of the results by com-
paring a random subset of the reconstructed images for all
the considered algorithms. In all the experiments we report
the Bit Per Pixel (BPP) for all the considered algorithms as a
quantitative indicator of the compression ratio.

A. Results

Next, we present our results where we simulate an approx-
imate DNA storage medium, as if data would be sent through
a communication channel.
Simple Binary Channel. We begin by simulating DNA
storage with a simple binary channel with a bit flip probability
of 0.05. The qualitative and quantitative results, presented in
Fig. 1 and Table III respectively, show that the VAEN variant
(non uniform quantization) outperform the baseline VAEU.
In this simple experiment, PNG and JPEG encoding schemes
failed to reconstruct any of the images that were compressed
and sent through the channel.
Full DNA simulated channel. In this more realistic exper-
iment, we simulate DNA storage using pg oligo archive to
encode the latent space representation of images into oligo
strings. To simulate the DNA channel, we rely on a widely
used sequencing simulator randomreads1 that takes the oligos
generated by pg oligo archive as a reference and simulates
the sequenced reads that contain various substitution, insertion,
and deletion errors using the default Illumina sequencing error

1https://sourceforge.net/projects/bbmap/
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Fig. 2: Comparison of different compression algorithms

model. In order to simulate the effect of coverage on accuracy,
we configure the simulator to generate different sets of reads
with different sequencing coverage ranging from 1× to N×,
where N is configured to achieve complete recovery with our
decoding pipeline. We use the decoding pipeline we developed
in prior work to infer original oligos from the reads and convert
them back into their binary form.

Quantitative results are presented in Fig. 2a,Fig. 2b,Fig. 2c
in terms of MS-SSIM,PSNR and retained ACC. By compar-
ing the two proposed approaches, VAEU and VAEN, with
the standard compression schemes PNG and JPEG a clear
trend repeats for all metrics: our methods achieve orders of
magnitude better compression rates (notice that the BPP is
represented in log-scale). In Fig. 2d we report the MS-SSIM as
a function of the inverse of the coverage (IC = 1/coverage),
clearly showing that although at high recovery rates JPEG and
PNG outperform the VAE schemes, the latter are much more
resilient to channel errors. A qualitative comparison of the
various algorithms, for a coverage of 3 and 10, is presented
in Fig. 3a and Fig. 3b respectively. At a low coverage the
VAE variants are more resilient to channel errors (the VAEN
seems qualitatively better) while the decoding of JPEG and
PNG fails in the majority of the cases. This is not surprising as
JPEG and PNG are designed to operate in error-free settings.
At higher coverages qualitatively we observe no difference
among different algorithms.

In summary, our approach outperforms classical methods
by more than 10× and is more resilient to channel errors.
As the cost of DNA synthesis is directly proportional to the
size of data stored and the sequencing coverage used, it is
clear that using generative models for compressing data and
viewing DNA as an approximate storage medium can provide
a substantial cost reduction for applications that do not need
precise storage.

V. CONCLUSIONS

Recent research has clearly demonstrated the benefit of
using DNA as a precise digital storage medium. However, cost
remains one of the main road blocks in wide spread adoption
of DNA-based data storage. In this work, we open up DNA
for wider adoption by showing that it is possible to achieve
orders of magnitude reduction in cost by targeting workloads

(a) coverage of 3

(b) coverage of 10

Fig. 3: Comparison of reconstructed images with different
coverages. From top to bottom (in both figures): original
images, VAEN reconstructions, VAEU, JPEG and PNG.

that do not need precise storage, and by treating DNA as an
approximate storage medium. Central to our approach was
the use of data-driven, generative machine learning models
that can provide much a higher compression rate and error
tolerance over generic compression schemes. There are several
avenues of future that we are pursuing. First, we are planning
on carrying out real synthesis and sequencing experiments
to validate our idea with real wet-lab experiments. Second,
we are expanding this work to investigate the effect of long-
read sequencers and new enzymatic synthesis approaches that
introduce more errors. Third, we are exploring data types
other than images to identify the utility of approximate DNA
storage in other settings. Finally, we are exploring the design
of joint source–channel encoding schemes based on neural
networks that have gained popularity recently[22], [4], [24] in
the context of DNA storage.
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