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Abstract: Stochastic gradient SG-based algorithms for Markov chain Monte Carlo sampling (SGMCMC)
tackle large-scale Bayesian modeling problems by operating on mini-batches and injecting noise
on SGsteps. The sampling properties of these algorithms are determined by user choices, such as
the covariance of the injected noise and the learning rate, and by problem-specific factors, such
as assumptions on the loss landscape and the covariance of SG noise. However, current SGMCMC

algorithms applied to popular complex models such as Deep Nets cannot simultaneously satisfy
the assumptions on loss landscapes and on the behavior of the covariance of the SG noise, while
operating with the practical requirement of non-vanishing learning rates. In this work we propose
a novel practical method, which makes the SG noise isotropic, using a fixed learning rate that we
determine analytically. Extensive experimental validations indicate that our proposal is competitive
with the state of the art on SGMCMC.

Keywords: Bayesian sampling; stochastic gradients; Monte Carlo integration

1. Introduction

Stochastic gradient (SG) methods have been extensively studied as a means for MCMC-
based Bayesian posterior sampling algorithms to scale to large data regimes. Variants of
SG-MCMC algorithms have been studied through the lens of first [1–3] or second-order [4,5]
Langevin Dynamics, which are mathematically convenient continuous-time processes that
correspond to discrete-time gradient methods with and without momentum, respectively.
The common traits underlying many methods from the literature can be summarized
as follows: they address large data requirements using SG and mini-batching, they in-
ject Gaussian noise throughout the algorithm execution, and they avoid the expensive
Metropolis-Hasting accept/reject tests that use the whole data [1,2,4].

Despite mathematical elegance and some promising results restricted to simple mod-
els, current approaches fall short in dealing with the complexity of the loss landscape
typical of popular modern machine learning models, e.g., neural networks [6,7], for which
stochastic optimization poses some serious challenges [8,9].

In general, SG-MCMC algorithms inject random noise to SG descent algorithms: the
covariance of such noise and the learning rate, or step-size in the stochastic differential equa-
tion simulation community, are tightly related to the assumptions on the loss landscape,
which together with the SG noise, determine the sampling properties of these methods [5].
However, current SG-MCMC algorithms applied to popular complex models such as Deep
Nets, cannot simultaneously satisfy the assumptions on posterior distribution geometry
and on the behavior of the covariance of the SG noise, while operating with the practical
requirement of non-vanishing learning rates. In this paper, in accordance with most of
the Neural Network related literature, we refer to the posterior distribution geometry as
loss landscape. Some recent work [10], instead, argue for fixed step sizes, but settle for
variational approximations of quadratic losses. Although we are not the first to highlight
these issues, including the lack of a unified notation [5], we believe that studying the
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role of noise in SG-MCMC algorithms has not received enough attention, and a deeper
understanding is truly desirable, as it can clarify how various methods compare. Most
importantly, this endeavor can suggest novel and more practical algorithms relying on
fewer parameters and less restrictive assumptions.

In this work we chose a mathematical notation that emphasizes the role of noise
covariances and learning rate on the behavior of SG-MCMC algorithms (Section 2). As a
result, the equivalence between learning rate annealing and extremely large injected noise
covariance becomes apparent, and this allows us to propose a novel practical SG-MCMC

algorithm (Section 3). We derive our proposal, by first analyzing the case where we inject
the smallest complementary noise such that its combined effects with the SG noise result in
an isotropic noise. Thanks to this isotropic property of the noise, it is possible to deal with
intricate loss surfaces typical of deep models, and produce samples from the true posterior
without learning rate annealing. This, however, comes at the expense of cubic complexity
matrix operations. We address such issues through a practical variant of our scheme, which
employs well-known approximations to the SG noise covariance (see, e.g., [11]). The result
is an algorithm that produces approximate posterior samples with a fixed, theoretically
derived, learning rate. Please note that in generic Bayesian deep learning setting, none of
the existing implementations of SG-MCMC methods converge to the true posterior without
learning rate annealing. In contrast, our method automatically determines an appropriate
learning rate through a simple estimation procedure. Furthermore, our approach can
be readily applied to pre-trained models: after a “warmup” phase to compute SG noise
estimates, it can efficiently perform Bayesian posterior sampling.

We evaluate SG-MCMC algorithms (Section 4) through an extensive experimental
campaign, where we compare our approach to several alternatives, including Monte Carlo
Dropout (MCD) [12] and Stochastic Weighted Averaging Gaussians (SWAG, [9]), which have
been successfully applied to the Bayesian deep learning setting. Our results indicate that
our approach offers performance that are competitive to the state of the art, according to
metrics that aim at assessing the predictive accuracy and uncertainty.

2. Preliminaries and Related Work

Consider a dataset of m−dimensional observations D = {U i}N
i=1. Given prior p(θ)

for a d-dimensional set of parameters, and a likelihood model p(D|θ), the posterior is
obtained by means of Bayes theorem as follows:

p(θ|D) = p(D|θ) p(θ)
p(D) (1)

where p(D) is also known as the model evidence, defined as the integral
p(D) =

∫
p(D|θ) p(θ)dθ. Except when the prior and the likelihood function are con-

jugate, Equation (1) is analytically intractable [13]. However, the joint likelihood term in
the numerator is typically not hard to compute; this is a key element of many MCMC algo-
rithms, since the normalization constant p(D) does not affect the shape of the distribution
in any way other than scaling. The posterior distribution is necessary to obtain predictive
distributions for new test observations U∗, as:

p(U∗|D) =
∫

p(U∗|θ)p(θ|D)dθ (2)

We focus in particular on Monte Carlo methods to obtain an estimate of this predictive
distribution, by averaging over NMC samples obtained from the posterior over θ, i.e.,
θ(i) ∼ p(θ|D)

p(U∗|D) ≈
1

NMC

NMC

∑
i=1

p(U∗|θ(i)) (3)
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We develop our work by working with an unnormalized version of the logarithm of
the posterior density, by expressing the negative logarithm of the joint distribution of the
dataset D and parameters θ as:

− f (θ) =
N

∑
i=1

log p(U i|θ) + log p(θ). (4)

For computational efficiency, we use a minibatch stochastic gradient g(θ), which
guarantees that the estimated gradient is an unbiased estimate of the true gradient ∇ f (θ),
and we assume that the randomness due to the minibatch introduces a Gaussian noise:

g(θ) ∼ N(∇ f (θ), 2B(θ)), (5)

where the matrix B(θ) denotes the SG noise covariance, which depends on the parametric
model, the data distribution and the minibatch size.

A survey of algorithms to sample from the posterior using SG methods can be found
in Ma et al. [5]. In Appendix A we report some well-known facts which are relevant
for the derivations in our paper. As shown in the literature [10,14], there are structural
similarities between SG-MCMC algorithms and stochastic optimization methods, and both
can be used to draw samples from posterior distributions. Notice that the original goal of
stochastic optimization is to find the minimum of a given cost function, and the stochasticity
is introduced by sub-sampling the dataset to scale. SG-MCMC methods instead aim at
sampling from a given distribution, i.e., collecting multiple values, and the stochasticity
is necessary explore the whole landscape. In what follows, we use a unified notation to
compare many existing algorithms in light of the role played by their noise components.

It is well-known [15–17] that stochastic gradient descent (SGD), with and without
momentum, can be studied through the following stochastic differential equation (SDE),
when the learning rate η is small enough (In this work we do not consider discretization
errors. The reader can refer to classical SDE texts such as [18] to investigate the topic in
greater depth.):

dzt = s(zt)dt +
√

2ηD(zt)dW t. (6)

where s is usually referred to as driving force and D as diffusion matrix We use a generic
form of the SDE, with variable z instead of θ, which accommodates SGD variants, with and
without momentum. By doing this, we will be able to easily cast the expression for the
two cases in what follows (The operator ∇> applied to matrix D(z) produces a row vector
whose elements are the divergences of the D(z) columns. Our notation is aligned with
Chen et al. [4]).

Definition 1. A distribution ρ(z) ∝ exp(−φ(z)) is said to be a stationary distribution for the
SDE of the form (6), if and only if it satisfies the following Fokker-Planck equation (FPE):

0 = Tr
{
∇
[
−s(z)>ρ(z) +∇>(D(z)ρ(z))

]}
. (7)

Please note that in general, the stationary distribution does not converge to the desired
posterior distribution, i.e., φ(z) 6= f (z), as shown by Chaudhari and Soatto [8]. Addition-
ally, given an initial condition for zt, its distribution is going to converge to ρ(z) only for
t → ∞. In practice, we observe the SDE dynamics for a finite amount of time: then, we
declare that the process is approximately in the stationary regime once the potential has
reached low and stable values.

Next, we briefly overview known approaches to Bayesian posterior sampling, and
interpret them as variants of an SGD process, using the FPE formalism.
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2.1. Gradient Methods without Momentum

The generalized updated rule of SGD, described as a discrete-time stochastic process,
writes as:

δθn = −ηP(θn−1)(g(θn−1) + wn), (8)

where P(θn−1) is a user-defined preconditioning matrix, and wn is a noise term, dis-
tributed as wn ∼ N(0, 2C(θn)), with a user-defined covariance matrix C(θn). Then, the
corresponding continuous-time SDE is [15]:

dθt = −P(θt)∇ f (θt)dt +
√

2ηP(θt)2Σ(θt)dW t. (9)

In this paper we use the symbol n to indicate discrete time, while t for continuous time. We
denote by C(θ) the covariance of the injected noise and Σ(θ) the composite noise covariance.
Please note that Σ(θt) = B(θt) + C(θt) combines the SG and the injected noise. Notice that
our choice of notation is different from the standard one, in which the starting discrete-
time process is in the form δθn = −ηP(θn−1)(g(θn−1)) + wn. By directly grouping the
injected noise with the stochastic gradient we can better appreciate the relationship between
annealing the learning rate and extremely large injected noise. Moreover, as will be
explained in Section 3, this allows derivation of a new sampling algorithm.

We define the stationary distribution of the SDE in Equation (9) as ρ(θ) ∝ exp(−φ(θ)).
Please note that when C = 0, the potential φ(θ) differs from the desired posterior f (θ) [8].
The following theorem, which is an adaptation of known results in light of our formalism,
states the conditions for which the noisy SGD converges to the true posterior distribution
(proof in Appendix A).

Theorem 1. Consider dynamics of the form (9) and define the stationary distribution ρ(θ) ∝
exp(−φ(θ)). If

∇>
(

Σ(θ)−1
)
= 0> and ηP(θ) = Σ(θ)−1, (10)

then φ(θ) = f (θ).

Stochastic Gradient Langevin Dynamics (SGLD) [1] is a simple approach to satisfy
Equation (10); it uses no preconditioning, P(θ) = I, and sets the injected noise covariance
to C(θ) = η−1 I. In the limit for η → 0, it holds that Σ(θ) = B(θ) + η−1 I ' η−1 I.
Then, ∇>

(
Σ(θ)−1

)
= η∇> I = 0>, and ηP(θ) = Σ(θ)−1. Although SGLD succeeds in

(asymptotically) generating samples from the true posterior, its mixing rate is unnecessarily
slow, due to the extremely small learning rate [2].

An extension to SGLD is Stochastic Gradient Fisher Scoring (SGFS) [2], which can be
tuned to switch between sampling from an approximate posterior, using a non-vanishing
learning rate, and the true posterior, by annealing the learning rate to zero. SGFS uses
preconditioning, P(θ) ∝ B(θ)−1. In practice, however, B(θ) is ill conditioned for com-
plex models such as deep neural networks. Then, many of its eigenvalues are almost
zero [8], and computing B(θ)−1 is problematic. An in-depth analysis of SGFS reveals that
conditions (10) would be met with a non-vanishing learning rate only if, at convergence,
∇>(B(θ)−1) = 0>, which would be trivially true if B(θ) was constant. However, recent
work [6,7] suggest that this condition is difficult to justify for deep neural networks.

The Stochastic Gradient Riemannian Langevin Dynamics (SGRLD) algorithm [3] ex-
tends SGFS to the setting in which ∇>(B(θ)−1) 6= 0>. The process dynamic is adjusted by
adding the term ∇>(B(θ)−1). However, the term ∇>(B(θ)−1) has not a clear estimation
procedure, restricting SGRLD to cases where it can be computed analytically.

The work by [10] investigates constant-rate SGD (with no injected noise), and deter-
mines analytically the learning rate and preconditioning that minimize the Kullback–Leibler
(KL) divergence between an approximation and the true posterior. Moreover, it shows
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that the preconditioning used in SGFS is optimal, in the sense that it converges to the true
posterior, when B(θ) is constant and the true posterior has a quadratic form.

In summary, to claim convergence to the true posterior distribution, existing ap-
proaches require either vanishing learning rates or assumptions on the SG noise covariance
that are difficult to verify in practice, especially when considering deep models. We
instead propose a novel practical method that induces isotropic SG noise and thus satis-
fies Theorem 1. We determine analytically a fixed learning rate, and we require weaker
assumptions on the loss shape.

2.2. Gradient Methods with Momentum

Momentum-corrected methods emerge as a natural extension to SGD approaches. The
general set of update equations for (discrete-time) momentum-based algorithms is:{

δθn = ηP(θn−1)M−1rn−1

δrn = −ηA(θn−1)M−1rn−1 − ηP(θn−1)(g(θn−1) + wn),

where P(θn−1) is a preconditioning matrix, M is the mass matrix and A(θn−1) is the friction
matrix, as shown by [4,19]. As with the first order counterpart, the noise term is distributed
as wn ∼ N(0, 2C(θn))). Then, the SDE to describe continuous-time system dynamics is:{

dθt = P(θt)M−1rtdt
drt = −(A(θt)M−1rt + P(θt)∇ f (θt))dt +

√
2ηP(θt)2Σ(θt)dW t.

(11)

where P(θt)2 = P(θt)P(θt) and we assume P(θt) to be symmetric. The theorem hereafter
describes the conditions for which noisy SGD with momentum converges to the true
posterior distribution (Appendix A).

Theorem 2. Consider dynamics of the form (11) and define the stationary distribution for θt as
ρ(θ) ∝ exp(−φ(θ)). If

∇>P(θ) = 0> and A(θ) = ηP(θ)2
Σ(θ), (12)

then φ(θ) = f (θ) .

In the naive case, where P(θ) = I, A(θ) = 0, C(θ) = 0, Equation (12) are not satisfied
and the stationary distribution does not correspond to the true posterior [4]. To generate
samples from the true posterior it is sufficient to set P(θ) = I, A(θ) = ηB(θ), C(θ) = 0
(as in Equation (9) in [4]).

Stochastic Gradient Hamiltonian Monte Carlo (SGHMC) [4] suggests that estimating
B(θ) can be costly. Hence, the injected noise C(θ) is chosen such that C(θ) = η−1 A(θ),
where A(θ) is user-defined. When η → 0, the following approximation holds: Σ(θ) ' C(θ).
It is then trivial to check that conditions (12) hold without the need for explicitly estimating
B(θ). A further practical reason to avoid setting A(θ) = ηB(θ) is that the computational
cost for the operation A(θn−1)M−1rn−1 hasO(D2) complexity, whereas if C(θ) is diagonal,
this is reduced to O(D). This, however, severely slows down the sampling process.

Stochastic Gradient Riemannian Hamiltonian Monte Carlo (SGRHMC) is an exten-
sion to SGHMC [5]), which considers a generic, space-varying preconditioning matrix
P(θ) derived from information geometric arguments [20]. SGRHMC suggests setting
P(θ) = G(θ)−

1
2 , where G(θ) is the Fisher Information matrix. To meet the require-

ment ∇>P(θ) = 0>, it includes a correction term, −∇>P(θ). The injected noise is
set to C(θ) = η−1 I − B(θ), consequently Σ = η−1 I, and the friction matrix is set to
A(θ) = P(θ)2. With all these choices, Theorem 2 is satisfied. Although appealing, the
main drawbacks of this method are the need for an analytical expression of ∇>P(θ), and
the assumption for B(θ) to be known.
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From a practical standpoint, momentum-based methods suffer from the requirement
to tune many hyperparameters, including the learning rate, and the parameters that govern
the simulation of a second-order Langevin dynamics.

The method we propose in this work can be applied to momentum-based algorithms;
in this case, it could be viewed as an extension of the work in [11], albeit addressing the
complex loss landscapes typical of deep neural networks. However, we leave this avenue
of research for future work.

3. Sampling by Layer-Wise Isotropization

We present a simple and practical approach to inject noise to SGD iterates to perform
Bayesian posterior sampling. Our goal is to sample from the true posterior distribution
(or approximations thereof) using a constant learning rate, and to rely on more lenient
assumptions about the shape of the loss landscape that characterize deep models, compared
to previous works. In general, in modern machine learning applications, we deal with
multi-layer neural networks [21]. We exploit the natural subdivision of the parameters of
these architecture into different layers to propose a practical sampling scheme

Careful inspection of Theorem 1 reveals that the matrices P(θ), Σ(θ) are instrumental
in determining the convergence properties of SG methods to the true posterior. Therefore,
we consider the constructive approach of designing ηP(θ) to obtain a sampling scheme that
meets our goals; we set ηP(θ) to be a constant, diagonal matrix which we constrain to be
layer-wise uniform:

ηP(θ) = Λ−1 = diag([λ(1), . . . , λ(1)︸ ︷︷ ︸
layer 1

, . . . , λ(Nl), . . . λ(Nl)︸ ︷︷ ︸
layer Nl

])−1. (13)

By properly selecting the set of parameters {λi} we can achieve the simultaneous result of
non-vanishing learning rate and well-conditioned preconditioning matrix. This implies a
layer-wise learning rate η(p) = 1

λ(p) for the p-th layer, without further preconditioning.
We can now prove (see Appendix B), as a corollary to Theorem 1, that our design

choices can guarantee convergence to the true posterior distribution.

Corollary 1. (Theorem 1) Consider dynamics of the form (9) and define the stationary distribution
ρ(θ) ∝ exp(−φ(θ)). If ηP(θ) = Λ−1 as in (13), C(θ) = Λ− B(θ) and C(θ) � 0 ∀θ, then
φ(θ) = f (θ).

If aforementioned conditions are satisfied, it is in fact simple to show that the relevant
matrices satisfy the conditions in Equation (10). The covariance matrix of the composite
noise is said to be isotropic within the layers of (deep) models. In fact, Σ(θ) = C(θ) +

B(θ) = diag
([

λ(1), . . . , λ(1), . . . , λ(Nl), . . . λ(Nl)
])

. From a practical point of view, we
choose Λ to be, among all valid matrices satisfying Λ− B(θ) � 0, the smallest (the one
with the smallest λ’s). Indeed, larger Λ induce a smaller learning rate, thus unnecessarily
reducing sampling speed.

Now, let us consider an ideal case, in which we assume the SG noise covariance B(θ)
and Λ to be known in advance. The procedure described in Algorithm 1 illustrates a naive
SG method that uses the injected noise covariance C(θ) to sample from the true posterior.
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Algorithm 1 Idealized posterior sampling

{Initialization: θ0}

SAMPLE (θ0, B(θ), Λ):

θ← θ0

loop

g = ∇ f̃ (θ)

n ∼ N(0, I)

C(θ)
1/2 ← (Σ− B(θ))1/2

g ← Σ−1(g +
√

2C(θ)
1/2n)

θ← θ− g

end loop

This deceivingly simple procedure generate samples from the true posterior, with a
non-vanishing learning rate, as shown earlier. However, it cannot be used in practice as
B(θ) and Λ are unknown. Furthermore, the algorithm requires computationally expensive

operations, i.e., to compute (Σ− B(θ))
1
2 , which requires O(d3) operations, and C(θ)

1
2 ,

which costs O(d2) multiplications.
Next, we describe a practical variant of our approach, where we use approximations

at the expense of generating samples from the true posterior distribution. We note that [10]
suggest exploring a related preconditioning, but do not develop this path in their work.
Moreover, the proposed method shares similarities with a scheme proposed in [22] although
the analysis we perform here is different.

3.1. A Practical Method: Isotropic SGD

To render the idealized sampling method practical, it is necessary to consider some
additional assumptions. As we explain at the end of this section, the assumptions that
follow are less strict than other approaches in the literature.

Assumption 1. The SG noise covariance B(θ) can be approximated with a diagonal matrix, i.e.,
B(θ) = diag(b(θ)).

Assumption 2. The signal-to-noise ratio (SNR) of a gradient is small enough such that in the
stationary regime, the second-order moment of the gradient is a good estimate of the true variance.
Hence, combining with Assumption 1, b(θ) ' E[g(θ)�g(θ)]

2 , where � indicates the element-
wise product.

Assumption 3. The sum of the variances of noise components, layer by layer, can be assumed
to constant in the stationary regime. Then, β(p) = ∑

j∈Ip

bj(θ), where Ip is the set of indices of

parameters belonging to pth layer.

The diagonal covariance assumption (i.e., Assumption 1) is common in other works,
such as [2,11]. The small signal-to-noise ratio as stated in Assumption 2 is in line with
recent studies, such as [11,23]. Assumption 3 is similar to those appeared in earlier work,
such as [24]. Please note that Assumptions 2 and 3 must hold in the stationary regime
when the process reaches the bottom valley of the loss landscape. The matrix (b(θ)) has
been associated in the literature with the empirical Fisher information matrix [2,25]. As we
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do not consider this matrix for preconditioning purposes, we do not further investigate
this connection.

Given our assumptions, and our design choices, it is then possible to show (see Appendix B)
that the optimal (i.e., the smallest possible) Λ =

[
λ(1), . . . , λ(1), . . . , λ(Nl), . . . λ(Nl)

]
satisfy-

ing Corollary 1 can be obtained as λ(p) = β(p). Please note that we do not assume
B(θ) to be known, but use a simple procedure to estimate its components by computing:

λ(p) = ∑
j∈Ip

bj(θ) =
||g(p)(θ)||2

2 , where g(p)(θ) is the portion of stochastic gradient correspond-

ing to the p-th layer. Then, the composite noise matrix Σ = Λ is a layer-wise isotropic
covariance matrix, which inspires the name of our proposed method as Isotropic SGD
(I-SGD).

The practical implementation of I-SGD is shown in Algorithm 2. The advantage of
I-SGD is that it can either be used to obtain posterior samples starting from a pre-trained
model, or do so by training a model from scratch. In either case, the estimates of B(θ) are
used to compute Λ, as discussed above. An important consideration is that once all λ(i)

have been estimated, the learning rate, layer by layer, is determined automatically. In fact,

for the p-th layer, the learning rate is: η(p) = λ(p)−1
. A simpler approach is to use a unique

learning rate for all layers, where the equivalent λ is the sum of all λ(p).

Algorithm 2 I-SGD: practical posterior sampling

SAMPLE (θ0):

θ← θ0

loop

g = ∇ f̃ (θ)

for p← 1 to Nl do

n ∼ N(0, I)

C(θ)
1/2 ←

(
λ(p) − (1/2)

(
g(p) � g(p)

))
g(p) ← 1/λ(p)

(
g(p) +

√
2C(θ)

1/2n
)

end for

θ← θ− g

end loop

A Remark on Convergence

In summary, I-SGD is a practical method to perform approximate Bayesian posterior
sampling, backed up by solid theoretical foundations. Our assumptions, which are at the
origin of the approximate nature of I-SGD, are less strict than those used in the literature of
SG-MCMC methods. More precisely, the theory behind I-SGD can explain convergence to the
true posterior with a non-vanishing learning rate in the particular case when Assumption 1
holds and the estimation of B(θ) is perfect. Even with perfect estimates, this is not the case
for SGFS, which requires the correction term∇>B(θ)−1 = 0. Additionally, both SGRLD and
SGRHMC are more demanding than I-SGD because they require computing ∇>B(θ)−1, for
which an estimation procedure is elusive. Finally, the method by Springenberg et al. [11]
needs a constant, diagonal B(θ), a condition that does not necessarily hold for deep models.
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3.2. Computational Cost

The computational cost of I-SGD is as follows. As with [4], we define the cost of
computing a gradient minibatch as Cg(Nb, d). Thanks to Assumptions 1 and 2, the com-
putational cost for estimating the noise covariance scales as O(d) multiplications. The
computational cost of generating random samples with the desired covariance scales as
O(d) square roots and O(d) multiplications (without considering the cost of generating
random numbers). The overall cost of our method is the sum of the above terms. Notice
that the cost of estimating the noise covariance does not depend on the minibatch size Nb.
We would like to stress that in many modern models, the real computational bottleneck
is the backward propagation for the computation of the gradients. As all the SG-MCMC

methods considered in this work require one gradient evaluation per step, the different
methods have in practice the same complexity.

The space complexity of I-SGD is the same as SGHMC,SGFS and variants: it scales as
O(Nsamd), where Nsam is the number of posterior samples.

4. Experiments

The empirical analysis of our method, and its comparison to alternative approaches
from the literature, is organized as follows. First, we proceed with a validation of I-SGD

using the standard UCI datasets [26] and a shallow neural network. Then we move to the
case of deeper models: we begin with a simple CNN used on the MNIST [27] dataset, then
move to the standard RESNET-18 [28] deep network using the CIFAR-10 [29] dataset.

We compare I-SGD to other Bayesian sampling methods such as SGHMC [4], SGLD [2],
and to alternative approaches to approximate Bayesian inference, including MCD [12],
SWAG [9] and VSGD [10]. In general, our result indicates that: (1) I-SGD achieves similar or
superior performance regarding competitors, when measuring uncertainty quantification,
even with simple datasets and models; (2) I-SGD is simple to tune, when compared to
alternatives; (3) I-SGD is competitive when used for deep Bayesian modeling, even when
compared to standard methods used in the literature. In particular, the proposed method
shares some of the strengths of VSGD, such as learning rates determined automatically and
the simplicity of SGLD. Appendix B includes additional implementation details on I-SGD.
Appendix C presents detailed configurations of all methods we compare, and additional
experimental results.

4.1. A Disclaimer on Performance Characterization

It is important to stress a detail on the analysis of the experimental campaign. The
discussion is usually focused on the goodness of the various methods for representing the
true posterior distribution. Different methods can or cannot claim convergence to the true
posterior according to certain assumptions and the nature of the hyperparameters. In the
experimental validation of the results, however, we do not have access to the form of the
true posterior as it is exactly the problem we are trying to solve. The practical solution
adopted is to compare the different methods in terms of proxy metrics evaluated on the
test sets, such as the accuracy and uncertainty metrics. Being better in terms of these
performance metrics does not imply that the sampling method is better at approximating
the posterior distribution, and outperforming competitors in terms of these metric do not
provide sufficient information about the intrinsic quality of the sampling scheme.

4.2. Regression Tasks, with Simple Models

We consider several regression tasks defined on the UCI datasets. We use a simple
neural network configuration with two fully connected layers and a ReLU activation
function; the hidden layer includes 50 units. In this set of experiments, we use the following
metrics: the root mean square error (RMSE) to judge the model predictive performance and
the mean negative log-likelihood (MNLL) as a proxy for uncertainty quantification. We note
that the task of tuning our competitors was far from trivial. We used our own version of
SGHMC, based on [11], to ensure a proper understanding of the implementation internals,
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and we proceeded with a tuning process to find appropriate values for the numerous
hyperparameters. In this set of experiments, we omit results for SWAG, which we keep for
more involved scenarios.

Tables 1 and 2 report a complete overview of our results, for a selection of UCI

datasets. For each method and each dataset, we also included how many out of the 10
splits considered failed to converge, indicated as F = . . . . As explained in Appendix C we
implemented a temperature scaled version of VSGD. A clear picture emerges from this first
set of experiments: while for the RMSE the performance is similar for different methods, for
the MNLL averaging over multiple samples clearly improves the uncertainty quantification
capabilities. SGHMC is in many cases better than alternatives, considering however the
standard deviation of the results it is difficult to claim clear superiority of one method over
the others.

Table 1. RMSE results for regression on UCI datasets.

Method WINE PROTEIN NAVAL KIN8NM POWER BOSTON

SGLD 0.759 ± 0.07 5.687 ± 0.05 0.007 ± 0.00 (F = 6.000) 0.171 ± 0.07 (F = 3.000) 11.753 ± 3.25 9.602 ± 2.06

I-SGD 0.635 ± 0.05 4.699 ± 0.03 0.001 ± 0.00 0.079 ± 0.00 4.320 ± 0.13 3.703 ± 1.19

Baseline 0.641 ± 0.05 4.733 ± 0.05 0.001 ± 0.00 0.080 ± 0.00 4.354 ± 0.12 3.705 ± 1.19

VSGD 0.635 ± 0.05 4.699 ± 0.03 0.001 ± 0.00 0.079 ± 0.00 4.325 ± 0.13 3.588 ± 1.06 (F = 1.000)

SGHMC 0.628 ± 0.04 4.712 ± 0.03 0.000 ± 0.00 (F = 2.000) 0.076 ± 0.00 (F = 1.000) 4.310 ± 0.14 3.659 ± 1.24

SGLD T 0.752 ± 0.07 5.673 ± 0.04 0.007 ± 0.00 (F = 6.000) 0.169 ± 0.07 (F = 3.000) 11.351 ± 3.02 9.417 ± 2.07

DROP 0.637 ± 0.04 4.968 ± 0.05 0.003 ± 0.00 0.139 ± 0.01 4.531 ± 0.16 3.803 ± 1.26

SGHMC T 0.628 ± 0.04 4.684 ± 0.03 0.000 ± 0.00 (F = 6.000) 0.076 ± 0.00 4.326 ± 0.13 3.692 ± 1.19

Table 2. MNLL results for regression on UCI datasets.

Method WINE PROTEIN NAVAL KIN8NM POWER BOSTON

SGLD 1.546 ± 0.25 5.604 ± 0.08 −1.751 ± 0.28 (F = 6.000) 5.140 ± 7.05 (F=3.000) 8.429 ± 3.14 30.386 ± 15.77

I-SGD 1.129 ± 0.15 4.371 ± 0.03 −2.466 ± 1.12 −0.460 ± 0.65 3.122 ± 0.07 9.799 ± 5.69

Baseline 1.182 ± 0.03 3.964 ± 0.04 0.920 ± 0.00 0.924 ± 0.00 3.071 ± 0.06 5.421 ± 2.73

VSGD 1.128 ± 0.15 4.371 ± 0.03 −2.466 ± 1.12 −0.480 ± 0.65 3.088 ± 0.06 8.413 ± 5.89 (F = 1.000)

SGHMC 1.041 ± 0.12 4.142 ± 0.02 −2.763 ± 1.33 (F = 2.000) −0.798 ± 0.39 (F = 1.000) 2.924 ± 0.04 3.097 ± 0.83

SGLD T 1.526 ± 0.24 5.591 ± 0.07 −1.752 ± 0.28 (F = 6.000) 5.118 ± 7.06 (F = 3.000) 8.288 ± 3.04 33.212 ± 19.69

DROP 1.065 ± 0.12 4.218 ± 0.06 −2.322 ± 0.75 −0.086 ± 0.41 2.941 ± 0.04 3.989 ± 1.23

SGHMC T 1.104 ± 0.14 4.191 ± 0.02 −2.966 ± 1.89 (F = 6.000) −0.756 ± 0.42 3.116 ± 0.07 9.826 ± 5.72

4.3. Classification Tasks, with Deeper Models

Next, we compare I-SGD against competitors on image classification tasks. First,
we use the MNIST dataset, and a simple LENET-5 CNN [30]. All methods are com-
pared based on the test accuracy ACC,MNLL and the expected calibration error (ECE,
[31]). Additionally, at test time, we carry out predictions on both MNIST and NOT-
MNIST; the latter is a dataset equivalent to MNIST , but it represents letters rather than
numbers. (http://yaroslavvb.blogspot.com/2011/09/notmnist-dataset.html, accessed on
24 October 2021) This experimental setup is often used to check whether the entropy of
the predictions on NOT-MNIST is higher than the entropy of the predictions on MNIST (the
entropy of the output of an Ncl classes classifier, represented by the vector p, is defined as

−
Ncl
∑

i=1
pi log pi).

Table 3 indicates that all methods are essentially equivalent in terms of accuracy
and MNLL. We consider, together with the classical in and out of distribution entropies
the regions of convergence (ROCS) diagrams comparing detection of out of distribution

http://yaroslavvb.blogspot.com/2011/09/notmnist-dataset.html
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samples and false alarms when using as test statistic the entropy. Results, reported in
Figure 1, clearly shows that: (1) collecting multiple samples improve the uncertainty
quantification capabilities (2) I-SGD is competitive (but not the best scheme) and importantly
outperform the closest approach to ours, i.e., VSGD. The experimental results show that
I-SGD improves the quality of the BASELINE model with respect to all metrics. To test
whether the improvements are due just to “additional training” or are intrinsically due to the
Bayesian averaging properties, we do consider alternative deterministic baselines (details
in Appendix C). For this set of experiments the best performing is BASELINE R. As can be
appreciated by comparing Table 3 and Figure 1, while it is possible to increase the classical
metrics, I-SGD (and other methods) still outperform by a large margin the baselines in
terms of detection of out of distribution samples.

Table 3. Results for classification on MNIST dataset.

Method ACC MNLL Mean H0 ECE Mean H1 Failed

I-SGD 9916.3333 ± 2.8674 263.5311 ± 16.3600 0.0368 ± 0.0019 0.0491 ± 0.0003 0.4558 ± 0.0591 0.0000

SGHMC 9930.6667 ± 2.4944 268.2559 ± 6.8172 0.0593 ± 0.0018 0.0531 ± 0.0003 1.0369 ± 0.0346 0.0000

DROP 9912.6667 ± 6.0185 362.8973 ± 24.8881 0.0960 ± 0.0090 0.0541 ± 0.0011 0.5507 ± 0.0577 0.0000

BASELINE 9886.6667 ± 11.0252 352.6640 ± 20.8622 0.0353 ± 0.0058 0.0468 ± 0.0001 0.0019 ± 0.0003 0.0000

BASELINE r 9919.0000 ± 9.4163 242.7644 ± 17.0736 0.0303 ± 0.0001 0.0482 ± 0.0006 0.0021 ± 0.0002 0.0000

SWAG 9917.0000 ± 2.8284 308.8182 ± 20.0979 0.0675 ± 0.0108 0.0524 ± 0.0011 0.3953 ± 0.0442 0.0000

SGLD 9927.0000 ± 1.0000 279.7685 ± 16.6563 0.0556 ± 0.0034 0.0531 ± 0.0004 1.3032 ± 0.1942 1.0000

VSGD 9927.3333 ± 6.7987 225.3725 ± 16.3739 0.0274 ± 0.0008 0.0481 ± 0.0005 0.0414 ± 0.0070 0.0000

I-SGD T 9915.6667 ± 0.9428 255.9641 ± 12.8051 0.0289 ± 0.0014 0.0478 ± 0.0002 0.0284 ± 0.0122 0.0000

SGHMC T 9937.0000 ± 0.0000 231.5332 ± 0.0000 0.0434 ± 0.0000 0.0518 ± 0.0000 0.4623 ± 0.0000 2.0000

10 8 6 4 2 0
Pfa
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Figure 1. Detection/False alarm diagrams for different methods.

We now move on to a classical image classification problem with deep convolutional
networks, whereby we use the CIFAR10 dataset, and the RESNET-18 network architecture.
For this set of experiments, we compare I-SGD, SGHMC, SWAG, and VSGD using again test
accuracy and MNLL, which we report in Table 4. As usual, we compare the results against
the baseline of the individual network resulting from the pre-training phase. Results are
obtained averaging over three independent seeds. Notice, as expanded in Appendix C that
for SWAG we do consider two variants: the Bayesian correct one (SWAG) and a second vari-
ant that has better performance (SWAG wd). We stress again, as highlighted in Section 4.1
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that not always goodness of approximation of the posterior and performance correlate
positively. Additionally in this case, we found I-SGD to be competitive with other methods
and superior to the baseline. Among the competitors, we found I-SGD to the easiest to
tune, given the feature of a fixed learning rate informed by theoretical considerations; we
believe that this is an important aspect to consider for a wide adoption of our proposal by
practitioners.

Table 4. Results for classification on CIFAR10 10 dataset.

Method ACC MNLL mean H0 ECE

I-SGD 8591.3333 ± 17.4611 4393.3557 ± 107.0878 0.6107 ± 0.0337 0.0731 ± 0.0075

SGHMC 8634.6667 ± 5.1854 4357.8998 ± 11.2722 0.6300 ± 0.0023 0.0819 ± 0.0017

SWAG wd 8740.6667 ± 35.5653 3931.9900 ± 45.6605 0.4130 ± 0.0066 0.0275 ± 0.0015

SWAG 8061.0000 ± 11.4310 5903.2605 ± 62.8167 0.5308 ± 0.0135 0.0163 ± 0.0019

BASELINE 8273.3333 ± 26.7872 8050.4467 ± 109.9864 0.2250 ± 0.0005 0.0809 ± 0.0020

VSGD 8255.6667 ± 24.1155 8919.8062 ± 106.3571 0.1761 ± 0.0078 0.0905 ± 0.0020

5. Conclusions

SG methods allowed Bayesian posterior sampling algorithms, such as MCMC, to regain
relevance in an age when datasets have reached extremely large sizes. However, despite
mathematical elegance and promising results, current approaches from the literature are
restricted to simple models. Indeed, the sampling properties of these algorithms are
determined by simplifying assumptions on the loss landscape, which do not hold for the
kind of complex models which are popular these days, such as deep models. Meanwhile,
SG-MCMC algorithms require vanishing learning rates, which force practitioners to develop
creative annealing schedules that are often model specific and difficult to justify.

We have attempted to target these weaknesses by suggesting a simpler algorithm that
relies on fewer parameters and less strict assumptions compared to the literature on SG-
MCMC. We used a unified mathematical notation to deepen our understanding of the role
of the covariance of the noise of stochastic gradients and learning rate on the behavior of SG-
MCMC algorithms. We then presented a practical variant of the SGD algorithm, which uses
a constant learning rate, and an additional noise to perform Bayesian posterior sampling.
Our proposal is derived from the ideal method, in which it is guaranteed that samples are
generated from the true posterior. When the learning rate and noise terms are empirically
estimated, with no user intervention, our method offers a very good approximation to the
posterior, as demonstrated by the extensive experimental campaign.

We verified empirically the quality of our approach, and compared its performance to
state-of-the-art SG-MCMC and alternative methods. Results, which span a variety of settings,
indicated that our method is competitive to the alternatives from the state-of-the-art, while
being much simpler to use.
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Appendix A. Background and Related Material

Appendix A.1. The Minibatch Gradient Approximation

Starting from the gradient of the logarithm of the posterior density:

−∇ f (θ) =
N

∑
i=1
∇ log p(U i|θ) +∇ log p(θ),

it is possible to define its minibatch version by computing the gradient on a random subset
INb with cardinality Nb of all the indices. The minibatch gradient g(θ) is computed as

−g(θ) =
N
Nb

Nb

∑
i=1
∇ log p(U i|θ) +∇ log p(θ),

By simple calculations it is possible to show that the estimation is unbiased (E(g(θ)) = ∇ f (θ)).
The estimation error covariance is defined to be E

[
(g(θ)−∇ f (θ))(g(θ)−∇ f (θ))>

]
= 2B(θ).

If the minibatch size is large enough, invoking the central limit theorem, we can state
that the minibatch gradient is normally distributed:

g(θ) ∼ N(∇ f (θ), 2B(θ)).

Appendix A.2. Gradient Methods without Momentum

Appendix A.2.1. The SDE from Discrete Time

We start from the generalized updated rule of SGD:

δθn = −ηP(θn−1)(g(θn−1) + wn).

Since g(θn−1) ∼ N(∇ f (θn−1), 2B(θn−1)) we can rewrite the above equation as:

δθn = −ηP(θn−1)(∇ f (θn−1) + w
′
n),

where w
′
n ∼ N(0, 2Σ(θn−1)). If we separate deterministic and random component we can

equivalently write:

δθn = −ηP(θn−1)∇ f (θn−1) + ηP(θn−1)w
′
n = −ηP(θn−1)∇ f (θn−1)+√

2ηP2(θn−1)Σ(θn−1)vn

where vn ∼ N(0,
√

ηI). When η is small enough (η → dt) we can interpret the above
equation as the discrete-time simulation of the following SDE [15]:

dθt = −P(θt)∇ f (θt)dt +
√

2ηP(θt)2Σ(θt)dW t,

where dW t is a d−dimensional Brownian motion.

Appendix A.2.2. Proof of Theorem 1

The stationary distribution of the above SDE, ρ(θ) ∝ exp(−φ(θ)), satisfies the follow-
ing FPE

0 = Tr
{
∇
[
∇>( f (θ))P(θ)ρ(θ) + η∇>(P(θ)2

Σ(θ)ρ(θ))
]}

,

that we rewrite as

0 = Tr{∇[∇>( f (θ))P(θ)ρ(θ)− η∇>(φ(θ))P(θ)2
Σ(θ)ρ(θ) + η∇>(P(θ)2

Σ(θ))ρ(θ)]}.
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The above equation is verified with ∇ f (θ) = ∇φ(θ) if{
∇>(P(θ)2

Σ(θ)) = 0
ηP(θ)2

Σ(θ) = P(θ)→ ηP(θ) = Σ(θ)−1

that proves Theorem 1.

Appendix A.3. Gradient Methods with Momentum

Appendix A.3.1. The SDE from Discrete Time

The general set of update equations for (discrete-time) momentum-based algorithms is:{
δθn = ηP(θn−1)M−1rn−1

δrn = −ηA(θn−1)M−1rn−1 − ηP(θn−1)(g(θn−1) + wn).

Similarly to the case without momentum, we rewrite the second equation of the system as

δrn = −ηA(θn−1)M−1rn−1 − ηP(θn−1)(g(θn−1) + wn) =

− ηA(θn−1)M−1rn−1 − ηP(θn−1)∇ f (θn−1) +
√

2ηP2(θn−1)Σ(θn−1)vn

where again vn ∼ N(0,
√

ηI). If we define the supervariable z = [θ, r]> we can rewrite the
system as

δzn = −η

[
0 −P(θn−1)

P(θn−1) A(θn−1)

]
s(zn−1) +

√
2ηD(zn−1)νn

where s(z) =
[
∇ f (θ)
M−1r

]
, D(z) =

[
0 0
0 P(θ)2

Σ(θ)

]
and νn ∼ N(0,

√
ηI).

As the learning rate goes to zero (η → dt), similarly to the previous case, we can
interpret the above difference equation as a discretization of the following FPE

dzt = −
[

0 −P(θt)
P(θt) A(θt)

]
s(zt) +

√
2ηD(zt)dW t

Appendix A.3.2. Proof of Theorem 2

As before we assume that the stationary distribution has form ρ(z) ∝ exp(−φ(z)).
The corresponding FPE is

0 = Tr
(
∇
(

s(z)>
[

0 −P(θ)
P(θ) A(θ)

]
ρ(z) + η

(
∇>(D(z)ρ(z))

)))
.

Notice that since ∇>D(z) = 0 we can rewrite

0 = Tr
(
∇
(

s(z)>
[

0 −P(θ)
P(θ) A(θ)

]
ρ(z) + η∇>(ρ(z))D(z)

))
= Tr

(
∇
(

s(z)>
[

0 −P(θ)
P(θ) A(θ)

]
ρ(z)− η∇>(φ(z))D(z)ρ(z)

))
= Tr

(
∇
(

s(z)>
[

0 −P(θ)
P(θ) A(θ)

]
ρ(z)− η∇>(φ(z))

[
0 0
0 P(θ)2Σ(θ)

]
ρ(z)

))
that is verified with ∇φ(z) = s(z) if{

∇>P(θ) = 0
A(θ) = ηP(θ)2Σ(θ).
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If ∇>P(θ) = 0 in fact

Tr
(
∇
(
∇>(φ(z))ρ(z)

[
0 −P(θ)

P(θ) 0

]))
= ∇>

([
0 −P(θ)

P(θ) 0

]
∇(φ(z))ρ(z)

)
=

∇>
([

0 −P(θ)
P(θ) 0

])
∇(φ(z))ρ(z) + Tr

([
0 −P(θ)

P(θ) 0

]
∇
(
∇>(φ(z))ρ(z)

))
= 0,

since∇>
[

0 −P(θ)
P(θ) 0

]
= 0 and the second term is zero due to the fact that

[
0 −P(θ)

P(θ) 0

]
is anti-symmetric while∇

(
∇>(φ(z))ρ(z)

)
is symmetric.

Thus, we can rewrite

Tr
(
∇
(

s(z)>
[

0 −P(θ)
P(θ) A(θ)

]
ρ(z)− η∇>(φ(z))

[
0 0
0 P(θ)2Σ(θ)

]
ρ(z)

))
=

Tr
(
∇
(

s(z)>
[

0 −P(θ)
P(θ) A(θ)

]
ρ(z)−∇>(φ(z))

[
0 0
0 ηP(θ)2Σ(θ)

]
ρ(z)

))
=

Tr
(
∇
(

s(z)>
[

0 −P(θ)
P(θ) A(θ)

]
ρ(z)−∇>(φ(z))

[
0 0
0 A(θ)

]
ρ(z)

))
=

Tr
(
∇
((

s(z)> −∇>(φ(z))
)[ 0 −P(θ)

P(θ) A(θ)

]
ρ(z)

))
= 0

and then ∇φ(z) = s(z) proving Theorem 2.

Appendix B. I-SGD Method Proofs and Details

Appendix B.1. Proof of Corollary 1

The requirement C(θ) � 0 ∀θ, ensures that the injected noise covariance is valid.
The composite noise matrix is equal to Σ(θ) = Λ. Since ∇>Σ(θ) = ∇>Λ = 0 and
ηP(θ) = Λ−1 by construction, then Theorem 1 is satisfied.

Appendix B.2. Proof of Optimality of Λ

Our design choice is to select λ(p) = β(p). By the assumptions, the matrix B(θ) is
diagonal, and consequently C(θ) = Λ − B(θ) is diagonal as well. The preconditioner
Λ must be chosen to satisfy the positive semidefinite constraint, i.e., C(θ)ii ≥ 0 ∀i, ∀θ.
Equivalently, we must satisfy λ(p) − bj(θ) ≥ 0 ∀j ∈ Ip, ∀p, ∀θ, where Ip is the set of
indices of parameters belonging to pth layer. By assumption 3, i.e., β(p) = ∑k∈Ip bk(θ), it is

easy to show that bj(θ), j ∈ Ip, is upper bounded as bj(θ) ≤ β(p). To satisfy the positive
semidefinite requirement in all cases the minimum valid set of λ(p) is then determined as
λ(p) = β(p).

Appendix B.3. Algorithmic Details

In this section, we provide further details about the practical implementation of the
proposed scheme. At any (discrete) time instant a minibatch version of the gradient is
computed that is distributed, according to the hypotheses of the main paper, as g(θ) ∼
N(∇ f (θ), 2b(θ). Since we assumed that the second-order moment is a good approximation
of the variance, we can estimate b(θ) as 1

2 (g(θ)� g(θ)). In practice, we found that the
following running average estimation procedure to be the most robust

b(θ)← µb(θ) + (1− µ)
1
2
(g(θ)� g(θ)) (A1)

where µ ∈ (0, 1]. In all experiments we considered µ = 0.5
After a warmup period, the various λ(p), layer per layer, are estimated as λ(p) = ∑k∈Ip bk(θ)

and kept constant until the end. The estimation procedure continues during sampling phase,
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as the quantity λ(p) − b(θ) is necessary at every step. As the learning rate is derived as 2
λ(p) ,

we found that the usage of second-order moments instead of variances, and in certain cases
temperature scaling, kept the simulated trajectories more stable.

Appendix C. Methodology

We hereafter present additional implementation details.

Appendix C.1. Regression Tasks, with Simple Models

For this set of experiments we considered , the BASELINE is obtained by running the
ADAM optimizer for 20,000 steps with learning rate 0.01 and default parameters. At test time
we use 100 samples to estimate the predictive posterior distribution, using Equation (3),
for the sampling methods (I-SGD,SGLD,SGHMC,VSGD), with a keep-every value equal to
1000. The I-SGD and VSGD sampling methods are started from the BASELINE. For I-SGD

we selected temperature 0.01, while for SGHMC and SGLD we do performed experiments
for temperatures 1 and 0.01. We modified the implementation of VSGD as the original
implementation produced unstable learning rates (as noticed also in [9]). A simple and
effective solution we implement that we kept throughout the experimental campaigns
is to divide the learning rate by the number of parameters (thus performing variational
inference on a tempered version of the posterior). For SGLD the learning rate decay is the
one suggested in [2], with initial and finial learning rate equal to 10−6 and 10−8 respectively.
For MCD we collected 1000 samples with standard dropout rate of 0.5. All our experiments
use 10-splits. The considered batch size is 64 for all methods.

Appendix C.2. Classification Task, CONVNET

For the LENET-5 on MNIST experiment, we do consider also the SWAG algorithm.
At test time we use 30 samples for all methods. Baselines are again trained using ADAM

optimizer for 20,000 steps with learning rate 0.01 and default parameters. For I-SGD and
SGHMC we collected samples for the different temperatures of 1 and 0.01. SGLD has initial
and final learning rates of 10−3 and 10−5. For all the sampling methods we do collect
100 samples with a keep-every of 10,000 steps. SWAG results are obtained by collecting the
statistics over 300 epochs using ADAM optimizer and decreasing the learning rate every
epoch in accordance with the original paper schedule [9]. DROP results are obtained by
training the networks with SGD, with learning rate 0.005 and momentum 0.5. The number
of collected samples for this method is 1000. The batch size for all the methods is 128.

As explained in the main text, we performed an ablation study on the considered
baselines. In Table A1 we do report the results for the additional variants obtained by
early stopping (10,000 iterations instead of 20,000) BASELINE S, to ablate overfitting, and
BASELINE L, by training for 30,000 iterations. Finally, we include the best performing
BASELINE R, obtained starting from BASELINE, reducing the learning rate by a factor of 10
and training for 10,000 more iterations.

Table A1. Baselines comparison for classification on MNIST dataset.

Method ACC MNLL Mean H0 ECE Mean H1 Failed

BASELINE 9886.6667 ± 11.0252 352.6640 ± 20.8622 0.0353 ± 0.0058 0.0468 ± 0.0001 0.0019 ± 0.0003 0.0000

BASELINE l 9871.6667 ± 20.7579 389.7142 ± 79.0354 0.0378 ± 0.0051 0.0468 ± 0.0008 0.0025 ± 0.0006 0.0000

BASELINE s 9893.0000 ± 4.8990 339.8170 ± 7.9855 0.0392 ± 0.0042 0.0477 ± 0.0008 0.0024 ± 0.0001 0.0000

BASELINE r 9919.0000 ± 9.4163 242.7644 ± 17.0736 0.0303 ± 0.0001 0.0482 ± 0.0006 0.0021 ± 0.0002 0.0000

Appendix C.3. Classification Task, Deeper Models

We here report details for the RESNET-18 on CIFAR10 experiments. The BASELINE is
obtained with ADAM optimizer with learning rate 0.01 decreased by a factor of 10 every
50 epochs for a total of 200 epochs and weight decay of 0.05. For this set of experiments no
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temperature scaling was required. We could not find good hyperparameters for the SGLD

scheme. Concerning I-SGD, SGHMC and VSGD the keep-every value is chosen as 10,000 and
the number of collected samples is 30. For SWAG we used the default parameters described
in [9]. Notice that for SWAG we performed the following ablation study: we trained the
networks considering as loss function the joint log-likelihood and included or not the
suggested weight decay of the original work [9]. From a purely Bayesian perspective no
weight decay should be considered to be the information is implicit in the prior; however,
we found that without the extra decay SWAG was not able to obtain competitive results. As
underlined in Section 4.1, not necessarily a better posterior approximation translates into
better empirical results.

Appendix C.4. Definition of the Metrics

For regression datasets, we consider RMSE and MNLL. Consider a single datapoint
U i = (xi, yi), with xi the input of the model and yi the true corresponding output. The
output of the model, for a single sample of parameters θj, is ŷθj

(xi). RMSE is defined as

1
N

N
∑

i=1
||yi − µ(xi)||2, where µ(xi) is the empirical mean 1

NMC

NMC
∑

j=1
ŷθj

(xi). MNLL is defined

instead as ( 1
N

N
∑

i=1

(
1
2 log(2πσ2

i ) +
1
2
||yi−µ(xi)||2

σ2
i

)
, where σ2

i is the empirical variance.

For classification datasets, we consider ACC,MNLL and entropy. Consider a single
datapoint U i = (xi, yi), with xi the input of the model and yi the true corresponding label.
The output of the model, for a single sample of parameters θj, is the Ncl vector pθj(xi). The

averaged probability vector for a single sample is p(xi) =
1

NMC

NMC
∑

i=1
pθj(xi).ACC is defined

as 1
N

N
∑

i=1
1(arg max p(xi) = yi). MNLL is computed as 1

N

N
∑

i=1
log
(
pyi (xi)

)
. Entropy, as stated

in the main text, is instead computed according to 1
N

N
∑

i=1

(
Ncl
∑

k=1
pk(xi) log(pk(xi))

)
.
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