
3D DoA-based Localization with Phase Jump
Corrections

Hoang. M. Le1,2, Dirk Slock1, Jean-Pierre Rossi2

1Communication Systems Departement, EURECOM - Sophia Antipolis, France
2Orange Labs - Sophia Antipolis, France

Email: hoangminh.le@orange.com, leho@eurecom.fr

Abstract—Localizing a source based on the directions of its
signals is an attractive approach because no synchronization
among clocks is required. In this paper, we propose a Maximum
Likelihood (ML) estimator to solve the location problem in 3D
schemes, where a signal’s direction is mathematically expressed
by an elevation angle and an azimuth angle which applies iter-
ative procedures for position estimation. This estimator applies
iterative procedures for position estimations. To avoid confusions,
the value of each angle must be predefined in an interval of 2π-
length. However, the convergence of iterative procedures will be
really challenging if there are angle estimation errors caused
by noisy measurements with values near the boundaries of this
interval. In our proposed procedure, the elevation angle is defined
with the arctan function and the azimuth angle is defined with
the atan2 function, whose codomain is 2π-long, to map the DoA.
Furthermore, to robustify the estimations near the boundaries,
phase jump corrections are proposed to rectify the final estimates.
Simulation results show significant performance improvements.

Index Terms -direction-based, positioning, DoA, Direction of
Arrival, 3D localization, Maximum Likelihood.

I. INTRODUCTION

Localization in 3D is an important research field in wireless
communications. So far, there are some principal positioning
methods: Received Signal Strength (RSS), Time of Arrival
(ToA), Time Difference of Arrival (TDoA), and Direction of
Arrival (DoA) (in some other documents, it is often referred
to as Angle of Arrival - AoA) [1]. RSS-based localization
[2], [3] is very sensitive to the log normal fadings so it
provides rough estimates for localization. On the other hand,
in ToA-based [4]–[6] and TDoA-based [7]–[9] positioning,
very accurate clock synchronization among all BSs and mobile
device is highly demanded. DOA-based localization is an
attractive approach, since no synchronization is required. The
main challenge to this approach is that the accuracy of DoA
estimations depend on the number of elements in the antenna
array, their inter-element spacings and the Signal-to-Noise
Ratio (SNR). Nevertheless, recent developments enable small
antenna arrays with lower separation among the elements [10],
which encourages the researches on position location using
DoA.

As for localization based on ToA, TDoA, RSS, the posi-
tioning algorithms for 2D and 3D scenarios are quite similar.
On the other hand, DoA-based positioning algorithm changes
when we expand the 2D problems into 3D, because of the

mathematical expression of DoA. An angle expressed a DoA
in 2D schemes; meanwhile in 3D, each DoA is expressed by
an azimuth angle and an elevation angle (Fig. 1).

A. Related works

Fig. 1 demonstrates that at the i-th base station, the DoA
of the incident wave is expressed by the azimuth angle ϕi and
an elevation angle θi.
• The elevation angle θi is the trigonometric angle between

the horizontal (xy)-plane and the incident wave. Its value
varies from −π/2 to π/2.

• The azimuth angle ϕi is the trigonometric angle between
the x-direction and the orthogonal projection of the in-
cident wave onto the (xy)-plane (Fig. 2). When α is
the value of an angle, α + k2π (where k is any integer)
identifies the same angle, which will cause confusions in
taking the estimated value of an angle. As a result, to
avoid such a trouble, the set of definition of an azimuth
angle must be in an interval of 2π-length.

In practice, there are always additive noises in measured
values of azimuth and elevation angles. At the boundaries of
the sets of definition, the computations and estimations are
very sensitive to noise:
• When the value of θi near the boundaries −π/2 or π/2,

a small noise in measurements can make the calculation
tanθi considerably incorrect.

• As for ϕi, a small angle estimation error can lead to
big consequences. On condition that the azimuth’s set
of definition is [0;2π), when the true value of an angle
is âOb = εa, a small error of εa + εb (where εa and εb
are small positive values) can make the angle’s measured
value âOb′ = 2π− εb (Fig. 3).

Related papers [11]–[15] about DoA-based localization use
arctan function to define azimuth and elevation angles; mean-
while the codomain of that function is [−π/2;π/2]. This
codomain does not comprise all the possible values of an
azimuth angle. In the paper [16], a Maximum Likelihood
estimator is proposed to optimize the positioning. However,
the sensitivity to noise of a value near the boundaries of the
set of definition of azimuth angles is not well considered and
analysed.



Fig. 1: Uplink DoA at the i-th base station in the xyz
coordinate system

B. Our contributions
In this paper, we propose an algorithm that solves the

problems of the sensitivity to noise.
• The azimuth angle is computed with atan2 function

instead of arctan function. A modulo operation is applied
to map the definition of azimuth. Furthermore, compared
to [16], we formulate the Maximum Likelihood estimator,
with a phase jump correction added in estimating azimuth
angles to avoid possible huge computing errors caused by
small mistakes in practical measurements.

With the assumptions above, it is rational to do localizing
computations with estimated value of azimuth and elevation
angles in section II. In section III, a Maximum Likelihood
estimator is applied to optimize the position estimation. Fur-
thermore, an additional correction is added in estimating the
estimated azimuth angles to avoid possible huge computing
errors caused by small mistakes in practical measurements.

Notations: x can be the variable or the true value, depending
on the context. x̂ is the estimated value of x. mod(x,a) denotes
x modulo a; diag(a1, a2, . . . , an) is the diagonal matrix whose
diagonal elements are a1, a2, . . . , an respectively; [a;b) is the
interval of real numbers from a to b which includes a but
excludes b, atan2 means 2-argument which is defined as: ϕ =
atan2(y, x) ⇐⇒ x + jy = rejϕ with r =

√
x2 +y2, ϕ ∈ (−π;π]

and j is the imaginary unit. The standard arctangent function
arctan has values in [−π

2 ,
π

2 ]. Let

sign(x) =
{

1 , x≥ 0
−1 , x < 0 .

(1)

Then for (x,y) 6= (0,0), we have

atan2(y,x) = arctan
(y

x

)
− (sign(x)−1)sign(y)

π

2
. (2)

which takes values in (−π;π].

II. DOA-BASED LOCALIZATION BY LEAST SQUARES
ALGORITHM

A. Definition of DoA
Let (x,y,z) be the coordinates of the mobile device and

(xi,yi,zi) the coordinates of the i-th base station. An azimuth

Fig. 2: Azimuth angles in noiseless scenario

Fig. 3: Sensitivity to noise of an angle’s measured value

angle is a horizontal angle measured anticlockwise from the
x-direction. Therefore, its value is in the interval [0;2π). We
then have the true azimuth of DoA of the signal to the i-th
base station:

ϕi = mod(atan2(y− yi,x− xi),2π) (3)

Since the codomain of atan2 function is (−π;π], a modulo
operation with the divisor of 2π is applied to make the true
value ϕi in the interval [0;2π).

In practical measurements, there are always errors in az-
imuth estimations. When the size of the angle is near to 0
or 2π , the measured value is very sensitive to noise (a small
change in noise can cause a big difference in measured value).
To avoid this unexpected difference, a phase jump correction
is applied. Consequently, the measured value of i-th azimuth
angle can be expressed as:

ϕ̂i = ϕi +naz,i + ki2π (4)

where naz,i is the error in azimuth estimation. We name the
action of adding the phase jump correction of ki2π as k-
correction. We then have the expression of ki.

ki =


1 , ϕi +naz,i < 0
−1 , ϕi +naz,i ≥ 2π

0 otherwise.
(5)

Thanks to the k-correction, the estimated azimuth angle is
also in the interval: 0≤ ϕ̂i < 2π .



Fig. 4: M-element Uniform Circular Array (UCA) with radius
r at the i-th base station to estimate azimuth angle ϕi and
elevation angle θi

As for the i-th elevation angle, its true value is expressed
as:

θi = arctan
z− zi√

(x− xi)2 +(y− yi)2
(6)

The true elevation angle is in the range of [−π/2;π/2], or
−π/2≤ θi ≤ π/2. Its measured value is

θ̂i = θi +nel,i (7)

where naz,i is the error in elevation estimation. When θi is far
enough from the 2 boundaries of the interval [−π/2,π/2] and
nel,i is small enough, the estimated value θ̂i of the elevation
angle can be considered to be also in this interval: −π/2 ≤
θ̂i ≤ π/2.

At each base station, an M-element Uniform Circular Array
(UCA) is installed to estimate the azimuth angle and the ele-
vation angle of the incident wave (Fig. 4). In [17], it is proved
that if noises in received signals are Gaussian distributed, naz,i
and nel,i will be asymptotically and independently Gaussian
distributed with zero-mean. Consequently, we can assume that
naz,i and nel,i are independently Gaussian distributed with zero-
mean. Their variances are σ2

az,i and σ2
el,i, correspondingly.

Since all naz,i and nel,i are independent, we have covariance
matrix of the noise vector nnn:

CCC = E{nnnnnnT }= diag{σ2
az,1, . . . ,σ

2
az,N ,σ

2
el,1, . . . ,σ

2
el,N} (8)

where nnn = [naz,1 . . . naz,N nel,1 . . . nel,N ]
T and N is the number

of base stations.

B. Estimating position by Least Squares method

From equation (3), we have

tanϕi =
y− yi

x− xi
(9)

xsinϕi− ycosϕi = xi sinϕi− yi cosϕi (10)

As naz,i is very small, we approximate that sinnaz,i ≈ 0 and
cosnaz,i ≈ 1. Thus

sinϕi = sin(ϕ̂i−naz,i− ki2π) = sin(ϕ̂i−naz,i)≈ sin ϕ̂i (11)

cosϕi = cos(ϕ̂i−naz,i− ki2π) = cos(ϕ̂i−naz,i)≈ cos ϕ̂i (12)

Hence, from (10), it is approximated that

xsin ϕ̂i− ycos ϕ̂i = xi sin ϕ̂i− yi cos ϕ̂i (13)

From equation (6), we have

tanθi =
z− zi√

(x− xi)2 +(y− yi)2
=

(z− zi)cosϕi

x− xi
(14)

As nel,i is very small, we approximate that sinnel,i ≈ 0 and
cosnaz,i ≈ 1, so tannel,i ≈ 0. Thus tanθi ≈ tan θ̂i

We have the approximation

tan θ̂i =
(z− zi)cos ϕ̂i

x− xi
(15)

x tan θ̂i− zcos ϕ̂i = xi tan θ̂i− zi cos ϕ̂i (16)

In matrix approach

ÂAA =



sin ϕ̂1 −cos ϕ̂1 0
sin ϕ̂2 −cos ϕ̂2 0
. . . . . . . . .

sin ϕ̂N −cos ϕ̂N 0
tan θ̂1 0 −cos ϕ̂1

tan θ̂2 0 −cos ϕ̂2
. . . . . . . . .

tan θ̂N 0 −cos ϕ̂N



b̂bb =



x1 sin ϕ̂1− y1 cos ϕ̂1
x2 sin ϕ̂2− y2 cos ϕ̂2

. . .
xN sin ϕ̂N− yN cos ϕ̂N

x1 tan θ̂1− z1 cos ϕ̂1

x2 tan θ̂2− z2 cos ϕ̂2
. . .

xN tan θ̂N− zN cos ϕ̂N


xxx =

[
x y z

]T
We then have the equation of approximation

ÂAA xxx = b̂bb (17)

Therefore, the estimate of xxx is

x̂xx = min
xxx
‖ÂAAxxx− b̂bb‖2 (18)

x̂xx is calculated by Least-Square estimation of xxx

x̂xx = ÂAA
†
b̂bb (19)

where AAA† = (AAAT AAA)−1AAAT is the Moore-Penrose pseudo inverse
of matrix AAA.

For a more accurate estimation of the mobile’s position, this
estimate is taken as the initialization of an iterative procedure,
which will be discussed in the following section.



III. OPTIMIZING POSITION ESTIMATION BY THE TRUE
MAXIMUM LIKELIHOOD ESTIMATOR

In this section, we apply an iterative Maximum Likelihood
estimator, to optimize x̂xx obtained in (19),

In vector form, we denote

ϕ̂ϕϕ =
[
ϕ̂1 . . . ϕ̂N θ̂1 . . . θ̂N

]T (20)

fff (xxx,kkk) =



ϕ1(xxx)+ k12π

ϕ2(xxx)+ k22π

. . .
ϕN(xxx)+ kN2π

θ1(xxx)
θ2(xxx)
. . .

θN(xxx)


(21)

where kkk = [k1 k2 · · · kN ]
T ; ϕi(xxx) and θi(xxx) are the estimated

azimuth and elevation angles, respectively, depending on xxx =
[x y z]T and are computed by

ϕi(xxx) = mod(atan2(x− xi, y− yi),2π) (22)

θi(xxx) = arctan
z− zi√

(x− xi)2 +(y− yi)2
(23)

Treating the phase shift vector kkk as unknown parameters
and ignoring their dependence on the noise, the measurement
vector ϕ̂ϕϕ is Gaussian with mean vector of fff and covariance
matrix Cu, we have the probability density function (pdf) [18]:

p(ϕ̂ϕϕ|xxx,kkk) = (2π)−N

|CCC|1/2 exp
[−1

2 (ϕ̂ϕϕ− fff )T C−1(ϕ̂ϕϕ− fff )
]

(24)

Maximizing the pdf in (24) is equivalent to
x̂xx, k̂kk = argmin

xxx,kkk
(ϕ̂ϕϕ− fff (xxx,kkk))TCCC−1(ϕ̂ϕϕ− fff (xxx,kkk)) (25)

which we shall perform alternatingly. We consider Gauss
Newton [19] for x̂. At the iteration (u+1):

x̂xx(u+1)= x̂xx(u)+(GGGTCCC−1GGG)−1GGGTCCC−1(ϕ̂ϕϕ− fff (x̂xx(u),kkk(u+1)))
(26)

where GGG is the Jacobian matrix.

GGG = GGG(x̂xx(u),kkk(u+1)) , GGG(xxx,kkk) =
∂ fff (xxx,kkk)

∂xxxT . (27)

At this point, it is important to determine the value of ki.
As the additive noise in each DoA measurement is unclear, ki
cannot be determined by equation (5). From (4), we have

|naz,i|= |ϕ̂i−ϕi(xxx)− ki2π| (28)

We assume naz,i small enough, so |naz,i| < π with the
probability almost 1. Thus k̂i can be estimated by

k̂(u+1)
i = arg min

ki∈{0;±1}
|ϕ̂i−ϕi(x̂xx(u))− ki2π| (29)

where x̂xx(u) is the estimated coordinate vector of the mobile
device at the u-th iteration.

The procedure is expected to terminate when ‖x̂xx(u) −
x̂xx(u−1)‖2 < ε , for the stopping value ε sufficiently small.
However, iterative procedures do not always converge. In [20],
we show that there are three possible outcomes for an iterative
procedure: Convergence, Divergence and Oscillation.

If a procedure is diverging or oscillation, we will take
its initialization as the estimated mobile position. As for a
converging procedure, the final position is selected as estimate.

In summary, the Algorithm 1, a Gauss-Newton iterative
procedure of Maximum Likelihood estimator, is proposed.

Algorithm 1: Proposed Maximum Likelihood estima-
tor with estimation of k̂kk

1 Take the measured Direction of Arrival: azimuth ϕ̂i

and elevation θ̂i.
2 Assign u = 1 and ε sufficiently small.
3 Assign the coordinate vector computed by (19) as the

first estimated coordinate vector x̂xx(1) of the mobile
device.

4 repeat
5 Compute the estimated azimuth ϕ̂i and elevation θ̂i

by (22) and (23), respectively.
6 if |ϕi(x̂xx(u))− ϕ̂i| ≥ π then
7 k̂i = sign(ϕi(x̂xx(u))− ϕ̂i)
8 else
9 k̂i = 0 ;

10 Compute the following estimated coordinate vector
x̂xx(u+1) of the mobile device by (26).

11 u = u+1;
12 until ‖xxx(u)− xxx(u−1)‖2 < ε or u > 1000 or
‖xxx(u)‖2 =±∞;

13 if u > 1000 or ‖x̂xx(u)‖2 =±∞ then
14 x̂xx(1) is the estimated position of the mobile device;
15 else
16 x̂xx(u) is the estimated position of the mobile device;

IV. SIMULATIONS AND RESULTS

A. Cramer-Rao Bound (CRB)

The Cramer-Rao Bound (CRB) is computed for the quaility
evaluation of the algorithm. The Fisher Information Matrix
(FIM) is calculated by

III(xxx) = GGGT (xxx)CCC−1GGG(xxx) (30)

The CRB is the trace of the inverse of FIM:

CRB = tr(III−1) (31)

B. Simulation Setup

The Root Mean Square Position Error (RMSE) is defined
by

RMSE =
√

E(‖x̂xx− xxx‖2) (32)



(a) View from top

(b) View from one side

Fig. 5: Map of base stations and random positions of the
mobile device

where xxx is the true position of the mobile device and x̂xx is its
estimate.

We consider an area of 1000m x 1000m with the height of
20m. RMSE averaging is over 1000 mobile positions picked
randomly in this space (Fig. 5). The center of this space is
at the coordinates (500; 500; 10). At the height of 10m, 4
base stations of the coordinates (200; 200; 10), (800; 200; 10),
(200; 800; 10) and (800; 800; 10) are placed, which forms a
square. To enhance the localization in 3D, two similar sets
of base stations are installed at the height of 15m and 20m,
respectively. As a result, there are totally 12 base stations in
our network.

The positions of the base stations, as well as the space where
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Fig. 6: DoA-based localization at network of base stations:
Comparison of RMSE when the standard deviation of DoA
measuremnts varies from 0.5◦ to 4◦
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the mobile device is arbitrarily placed, are illustrated with a
view from top (Fig. 5a) and a view from one side (Fig. 5b).
In Fig. 5a, the x-coordinate and y-coordinate of any random
position of the mobile device are set up to be far enough
from those coordinates of all the base stations, so that the true
elevation angles are far from the 2 boundaries −π/2 and π/2.

The value ε for the stopping criterion is 0.01.

C. Results

Instead of comparing the MSEs to the CRB, we compare
their square roots: The Root Mean Square Error (RMSE) =√

MSE and square root of CRB (
√

CRB). In the simulations,



Possible
outcomes

Estimated
position of mobile RMSE Number of iterations

Convergence Final position of
the procedure Low Low (fewer than 10)

Divergence First position of the
procedure High Low (fewer than 10)

Oscillation First position of the
procedure High High (1000)

TABLE I: Possible outcomes of an iterative procedure

we assume that all the estimations of azimuth and elevation
angles have the same standard deviation: σaz,1 = σel,1 = · · ·=
σaz,N = σel,N = σ .

Fig. 6 and Fig. 7 illustrate the results when the common
standard deviation of DoA estimations (σ) varies from 0.5◦

to 4◦. Specifically, Fig. 6 compares the RMSEs of the 4
algorithms:
(a) The initial position obtained by Least Squares method

shown in section II-B.
(b) Maximum Likelihood estimator with the definition of

azimuth angle using arctan function [16].
(c) Maximum Likelihood estimator without k-correction; the

definition of azimuth angle using atan2 function without
k-correction.

(d) Maximum Likelihood estimator with k-correction; the
definition of azimuth angle using atan2 function (our
proposed algorithm).

To validate the performances of the algorithms, we added
the
√

CRB. Fig. 7 compares the average number of iterations
of the three algorithms (b), (c) and (d).

Section III introduces 3 possible outcomes of an iterative
procedure. Table I compares their results on RMSE and
number of iterations.

In Fig. 6, the RMSE of our proposed algorithm (d) is much
smaller than the “initial point” and higher than the

√
CRB,

which shows that the algorithm (d) is efficient and unbiased.
Compared to the algorithms (b) and (c), the algorithm (d) has
the lowest RMSE so its positioning results are the most accu-
rate. Furthermore, in Fig. 7, the average number of iterations of
our proposed algorithm (d) is the lowest, which proves that this
algorithm has the most converging procedures and the fewest
combinations of diverging and oscillating procedures. As a
result, it reduces remarkably the time delay for localization.

V. CONCLUSIONS

This paper thoroughly analyzes a Maximum Likelihood
estimator with the DoA-based positioning algorithms using
the phase jump corrections and atan2 function to define
the azimuth angle. The simulations demonstrate the superior
properties of our proposed algorithm: maintaining the unbiased
property with the most accurate results and the shortest time
delay.

However, this positioning algorithm is only feasible for
localization at network of base stations, where the orientation
of the antenna array is already known and unchanged. The
positioning algorithms for mobile-based localization, where

the orientation of the mobile device is unknown, are under
researches. An extension of [20] into 3D schemes, where
mobile position is estimated based on Direction Difference
of Arrival (DDoA), is a promising approach.
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